Overview of Cell Ranger output files and single cell data analysis quality control

Kimia Dadkhah Bioinformatics Analyst Single Cell Analysis Facility (SCAF) April 17, 2024 BTEP Single Cell Seminar Series

BTEP Getting Started with scRNA-Seq Seminar Series

Outline

- Considerations before and after sequencing of single cell libraries
- Steps of primary analysis of single cell data
- How to use primary analysis output to check the quality and success of single cell experiment before moving on to downstream analysis

SCAF full support for 10x workflow and steps of QC in single cell experiment

Before Sequencing considerations

QC after sequencing Illumina BaseSpace Sequencing Hub

Per Lai	ne Metri	CS										L
LANE	STATUS	READ	CLUSTER PF(%)	%e Q30	YIELD	ERROR RATE(%)	READS PF	DENSITY	TILES	LEGACY PHAS / PREPHAS(%)	COMMENTS	INTENSI
1	Initial	Read 1	77.45±1.12	95.92	12.35 Gbp	0.06 ±0.01	494.376.384	2,961 ±0	156	0.082 / 0.048		1377±34
		Read 2 (I)		97.95	4.44 Gbp	0.00 ±0.00				0.000 / 0.000		503±56
		Read 3 (I)		96.83	4.44 Gbp	0.00 ±0.00				0.000 / 0.000		1337±65
		Read 4		94.09	43.96 Gbp	0.11 ±0.01				0.084 / 0.059		1078±25
2	initial	Read 1	76.78±3.25	95.70	12.25 Gbp	0.08 ±0.04	490,108,416	2,961 ±0	156	0.079 / 0.045		1356±48
		Read 2 (I)		97.81	4.41 Gbp	0.00 ±0.00				0.000 / 0.000		465±26
		Read 3 (I)		96.85	4.41 Gbp	0.00 ±0.00				0.000 / 0.000		1283±70
		Read 4		93.82	43.62 Gbp	0.12 ±0.03				0.097 / 0.068		1039±50

Per Read Metrics

READ	CYCLES	YIELD	PROJECTED YIELD	ALIGNED (%)	ERROR RATE (%)	INTENSITY CYCLE 1	%>Q30
Read 1	26	24.60 Gbp	24.60 Gbp	0.73	0.07	1366.41	95.81
Read 2 (I)	10	8.86 Gbp	8.86 Gbp	0.00	0.00	483.88	97.88
Read 3 ()	10	8.86 Gbp	8.86 Gbp	0.00	0.00	1309.87	96.84
Read 4	90	87.58 Gbp	87.58 Gbp	0.73	0.12	1058.70	93.96
Non-index Reads Total	116	112.18 Gbp	112.18 Gbp	0.73	0.10	1212.55	94.36
Total	136	129.89 Gbp	129.89 Gbp	0.73	0.10	1054.72	94.77

Primary analysis of single cell data

For the sake of this presentation, we will focus on **10x genomics Gene Expression (GEX)** droplet-based technology data analysis quality steps.

This would be just an example of performing qc by considering both the front-end of the workflow (capture) and back-end (data processing). Not all qc metrics/ all single cell platforms will be discussed here.

Steps of primary analysis

- 1. Demultiplex and generate FASTQs
- 2. Performs alignment, filtering, barcode counting, and UMI counting and generate count matrix
- 3. Optionally, aggregate multiple GEM wells

Cellranger

- Chromium Single Cell Software Suite for 10x Genomics experiments
- A set of analysis pipelines that process Chromium Next GEM single cell data to align reads, generate feature-barcode matrices, perform clustering and other secondary analysis.
- Current version: Cell Ranger 8.0.0 (Mar 13, 2024)
- New in Cell Ranger v7.0 and beyond: **Intronic reads** are counted by default for whole transcriptome gene expression data.
- SCAF uses the most updated version unless requested otherwise.
- Additional information file from SCAF (any plan for combining datasets or preference on cellranger version)

Generate Fastqs

cellranger mkfastq: a wrapper of Illumina bcl2fastq, takes Illumina BCL files and demultiplex to fastqs If you are already starting with FASTQ files, you can skip this step and proceed directly to run cellranger count.

One library on the two different flowcells

Make sure to upload fastqs from all flowcells on public databases so the results can be reproduced.

Alignment and generate count matrix

- Cell Ranger count/ multi
- Input:
 - Fastqs
 - Transcriptome reference of species of interest (custom reference is supported, GFP, or CAR T sequence)
- The output will be for each GEM well that was demultiplexed separately

Cellranger aggr

- Aggregate multiple GEM wells from a single experiment that were analyzed by cellranger count and produces a single feature-barcode matrix containing all the data
- There are two modes:
 - None: Do not normalize at all. maximize sensitivity and plan to handle depth normalization in a downstream step
 - Mapped (default): For each library type, subsample reads from higher-depth GEM wells until they all have, on average, an equal number of reads per cell that are confidently mapped to the transcriptome (Gene Expression) or assigned to known features (Feature Barcode Technology). This approach avoids artifacts that may be introduced due to differences in sequencing depth.

One Sample, Multiple GEM Wells, One Flowcell

ecule info.h5

Cellranger count output

- BAM
- BAM index
- Filtered feature-barcode matrices MEX/ HDF5
- Raw feature-barcode matrices MEX/ HDF5
- Per-molecule read information
- Run summary CSV
- Run summary HTML
- Loupe Browser file
- Secondary analysis output

possorted_genome_bam.bam possorted_genome_bam.bam.bai

BAM and Bai file

An indexed BAM file containing **positionsorted reads** aligned to the genome and transcriptome, as well as unaligned reads

- Can be used to generate Fastq
 BAM Fastq
 (bamtofastq available on cellranger suite)
- Can be imported to IGV (Integrative Genomics Viewer) e.g. for checking coverage of any gene of interest like knock out genes

filtered_feature_bc_matrix

- Contains only detected cell-associated barcodes. Each element of the matrix is the number of UMIs associated with a feature (row) and a barcode (column.
- This file can be input into third-party packages and allows users to wrangle the barcodefeature matrix (e.g. to filter outlier cells, run dimensionality reduction, normalize gene expression).

raw_feature_bc_matrix

- Contains every barcode from the fixed list of known-good barcode sequences that has at least one read. This includes background and cell-associated barcodes.
- Each element of the matrix is the number of UMIs associated with a feature (row) and a barcode (column)

Two formats of feature barcode matrix

- Market Exchange Format (MEX)
- Hierarchical Data Format (HDF5)
 - H5 is a binary format that can compress and access data much more efficiently than text formats such as MEX, which is especially useful when dealing with large datasets. H5 files are supported in both R and Python.

molecule_info.h5

• Contains per-molecule information for all molecules that contain a valid barcode, valid UMI, and were assigned with high confidence to a gene or Feature Barcode. This file is a required input to run cellranger aggr.

Metrics summary file in CSV format

Estimated Number of Cells	Mean Reads per Cell	Median Genes per Cell	Number of Reads	Valid Barcodes	Sequencing Saturation	Q30 Bases in Barcode	Q30 Bases in RNA Read	Q30 Bases in UMI	Reads Mapped to Genome	Reads Mapped Confidently to Genome	Reads Mapped Confidently to Intergenic Regions	Reads Mapped Confidently to Intronic Regions	Reads Mapped Confidently to Exonic Regions	Reads Mapped Confidently to Transcripto me	Reads Mapped Antisense to Gene	Fraction Reads in Cells	Total Genes Detected	Median UMI Counts per Cell
4,413	70,348	2,908	310,443,939	92.50%	74.80%	97.50%	94.40%	97.40%	93.60%	84.50%	7.50%	9.10%	67.90%	68.90%	7.50%	88.60%	45,040	7,953

These metrics are also available in html web summary

analysis

Name

clustering
 gene_expression_graphclust
 gene_expression_kmeans_2_clusters
 clusters.csv
 gene_expression_kmeans_3_clusters
 gene_expression_kmeans_4_clusters
 gene_expression_kmeans_5_clusters
 gene_expression_kmeans_6_clusters
 gene_expression_kmeans_7_clusters
 gene_expression_kmeans_8_clusters
 gene_expression_kmeans_9_clusters
 gene_expression_kmeans_9_clusters
 gene_expression_kmeans_9_clusters
 gene_expression_kmeans_10_clusters
 gene_expression_kmeans_10_clusters
 gene_expression_graphclust
 gene_expression_kmeans_2_clusters

gene_expression_kneans_z_clusters
 differential_expression.csv
 gene_expression_kmeans_3_clusters

> gene_expression_kmeans_4_clusters
 > gene_expression_kmeans_5_clusters

gene_expression_kmeans_6_clusters

> gene_expression_kmeans_7_clusters

> 🚞 gene_expression_kmeans_8_clusters

> gene_expression_kmeans_9_clusters

> gene_expression_kmeans_10_clusters

gene_expression_10_components components.csv dispersion.csv features_selected.csv projection.csv variance.csv tsne gene_expression_2_components

analysis

- clustering

– diffexp

pca

tsne

umap

projection.csv
 umap
 gene_expression_2_components
 projection_csv

projection.csv

Analysis folder

- Graph-based clusters
- K-means clustering 2-10
- Differential gene expression analysis between clusters
- PCA, t-SNE, and UMAP dimensionality reduction

web_summary.html

- Run summary metrics and charts in HTML format
- A great place to start assessing the quality of your data.
- Several metrics in the web summary file can be used to assess the overall success of an experiment, including sequencing, mapping, and cell metrics.

SC3pv3_GEX_Human_PBMC - Human Peripheral Blood Mononuclear Cells (SC3'v3.1)

Alerts

Reads Mapped Confidently to Transcriptome

Reads Mapped Antisense to Gene

The analysis detected () 1 informational notice. Alert Value Detail Intron This data has been analyzed with intronic reads included in the count matrix. This behavior is different from previous Cell mode Ranger versions. If you would not like to count intronic reads, please rerun with the "include-introns" option set to "false". used Please contact support@10xgenomics.com for any further questions. Gene Expression Summary Cells ? 5,140 Estimated Number of Cells Barcode Rank Plot 100 - Cells Background 2.827 10k 35,473 1000 Mean Reads per Cell Median Genes per Cell 100 11 Sequencing 💮 Number of Reads 182,330,834 100 10k Number of Short Reads Skipped Barcodes Valid Barcodes 98.2% Estimated Number of Cells Valid UMIs 99.9% Fraction Reads in Cells Sequencing Saturation 60.9% Mean Reads per Cell Q30 Bases in Barcode 96.8% Median UMI Counts per Cell Q30 Bases in RNA Read 94.5% Median Genes per Cell Q30 Bases in UMI 96.1% Total Genes Detected Mapping 💿 Sample Reads Mapped to Genome 95.9% Sample ID SC3pv3_GEX_Human_PBMC Reads Mapped Confidently to Genome 90.5% Sample Human Peripheral Blood Mononuclear Cells Reads Mapped Confidently to Intergenic Regions Description 3.6% Reads Mapped Confidently to Intronic Regions 33.3% Chemistry Single Cell 3' v3 Reads Mapped Confidently to Exonic Regions 53.6% Include introns

76.1%

10.1%

Reference Path

Transcriptome

Pipeline Version

SC3pv3_GEX_Human_PBMC - Human Peripheral Blood Mononuclear Cells (SC3'v3.1)

Alerts

0 4

5,140

93.6%

35,473

8,685

2,827

27,572

(SC3'v3.1)

GRCh38-2020-A

cellranger-7.0.1

...ch2/nanopore/refdata-gex-GRCh38-2020-A

True

The analysis detected ①1 informational notice.

Top Features by Cluster (Log2 fold-change, p-value) 🛞

Feature		Clus	ter 1	Clus	ter 2	Clus	ter 3	Clus	ter 4	Clus	ter 5	Clus	ter 6	
ID	Name	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC	p-value	L
ENSG00000232021	LEF1-AS1	3.85	7e-50											
ENSG00000138795	LEF1	3.07	7e-37											
ENSG00000154027	AK5	3.04	4e-33											
ENSG00000249806	AC13972	2.97	2e-30											
ENSG00000184613	NELL2	2.84	1e-29									1.00	3e-2	
ENSG00000182463	TSHZ2	2.83	2e-28									0.96	5e-2	
ENSG00000126353	CCR7	2.77	4e-29											
ENSG00000186854	TRABD2A	2.64	2e-26											
ENSG00000141576	RNF157	2.56	4e-24											
ENSG00000152495	CAMK4	2.51	8e-25									1.14	5e-3	
Prev	/ious		F	age 1 of 4	17		10 rows	\sim			0	Next		

Web summary of single species

10k_hgmm_3p - 10k 1:1 Mixture of Human HEK293T and Mouse NIH3T3 Cells, 3' v3.1 Summary Analysis 9,383 Estimated Number of Cells 64,763 Mean Reads per Cell

		10	
equencing 💿		1	
ber of Reads 6	87,673,069	1	100 10k
ber of Short Reads Skipped	θ		Barcodes
Barcodes	97.2%	Estimated Numb	er of Cells
UMIs	100.0%	Estimated Numb	er of Cells (GRCh38)
encing Saturation	19.8%	Estimated Numb	er of Cells (mm10)
lases in Barcode	96.0%	Fraction Reads in	n Cells
Bases in RNA Read	93.5%	Fraction Reads in	n Cells (GRCh38)
ases in UMI	93.3%	Fraction Reads in	n Cells (mm10)
		Mean Reads per	Cell
oping 💿		Median Genes pe	r Cell (GRCh38)
ds Mapped to Genome	95.95	Median Genes pe	r Cell (mm10)
ds Mapped to Genome (GRCh38)	58.8%	Total Genes Dete	cted (GRCh38)
ds Manned to Genome (mm10)	27 19	Total Genes Dete	cted (mm10)
de Manned Confidently to Genome	01.5%	Median UMI Court	nts per Cell (GRCh38)
is Manned Confidently to Genome (GRCb38)	56.0%	Median UMI Cour	nts per Cell (mm10)
is Manned Confidently to Genome (mm10)	26 64		
Is Mapped Confidently to Intergenic Regions	5 3%	Sample	
s Mapped Confidently to Intergenic Regions (GRCh	38) 3.7%	Sample ID	
Mapped Confidently to Intergenic Regions (mm1)	0) 1.6%	Sample ID	
s Mapped Confidently to Intronic Regions	30.1%	Description	10k 1:1 Mixture of
s Mapped Confidently to Intronic Regions (GRCh38	0 21.7%	Chemistry	
s Mapped Confidently to Intronic Regions (mm10)	8.4%	Include introns	
s Mapped Confidently to Exonic Regions	56.2%	Reference Path	_s/refdata-ge
is Mapped Confidently to Exonic Regions (GRCh38)	30.7%	Transcriptome	
Is Mapped Confidently to Exonic Regions (mm10)	25.5%	Pipeline	
is Mapped Confidently to Transcriptome	52.5%	Version	
s Mapped Confidently to Transcriptome (GRCh38)	28.5%		
is Mapped Confidently to Transcriptome (mm10)	24.0%		
is Mapped Antisense to Gene	2.4%		
s Mapped Antisense to Gene (GRCh38)	1.4%		
ds Mapped Antisense to Gene (mm10)	1.0%		

10k_hgmm_3p - 10k 1:1 Mixture of Human HEK293T and Mouse NIH3T3 Cells, 3' v3.1

Top Features by Cluster (Log2 fold-change, p-value) 💿

Web summary of combined human and mouse

cloupe.cloupe

- The input file for loupe browser
- Can be uploaded to Loupe Browser, a free desktop visualization software from 10x that provides the intuitive functionality to explore and analyze 10x Genomics Chromium and Visium data.
- You can also convert your Seurat objects into Loupe Browser files using the LoupeR package.

Using cellranger output for quality Control of single cell data

SC3pv3_GEX_Human_PBMC - Human Peripheral Blood Mononuclear Cells (SC3'v3.1)

Alerts

The analysis detected () 1 informational notice.

Reads Mapped Confidently to Intergenic Regions

Reads Mapped Confidently to Intronic Regions

Reads Mapped Confidently to Exonic Regions

Reads Mapped Confidently to Transcriptome

Reads Mapped Antisense to Gene

3.6%

33.3%

53.6%

76.1%

10.1%

Sample	
Sample ID	SC3pv3_GEX_Human_PBMC
Sample Description	Human Peripheral Blood Mononuclear Cells (SC3'v3.1)
Chemistry	Single Cell 3' v3
Include introns	True
Reference Path	ch2/nanopore/refdata-gex-GRCh38-2020-A
Transcriptome	GRCh38-2020-A
Pipeline Version	cellranger-7.0.1

SC3pv3_GEX_Human_PBMC - Human Peripheral Blood Mononuclear Cells (SC3'v3.1)

Alerts

0 #

5,140

93.6%

35,473

8,685

2,827

27,572

The analysis detected () 1 informational notice.

Summary Gene Expression

Top Features by Cluster (Log2 fold-change, p-value) @

Feature		Cluster 1		Cluster 2		Cluster 3		Cluster 4		Cluster 5		Cluster 6		(
ID	Name	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2FC	p-value	L2F	
ENSG00000232021	LEF1-AS1	3.85	7e-50												
ENSG00000138795	LEF1	3.07	7e-37												
ENSG00000154027	AK5	3.04	4e-33												
ENSG00000249806	AC13972	2.97	2e-30												
ENSG00000184613	NELL2	2.84	1e-29									1.00	3e-2		
ENSG00000182463	TSHZ2	2.83	2e-28									0.96	5e-2		
ENSG00000126353	CCR7	2.77	4e-29											1	
ENSG00000186854	TRABD2A	2.64	2e-26											1	
ENSG00000141576	RNF157	2.56	4e-24												
ENSG00000152495	CAMK4	2.51	8e-25									1.14	5e-3		
Pre	vious		P	age 1 of 4	47		10 rows	\sim				Next			

Web summary of single species

	Number of cells picked up b cellranger	Y Target cell number			
5,140		Multiplet Dete	∓ cf Cells F		
	115	Multiplet Rate	Next GEM	GEM-X	
25 472		0.8%	1,000	2,000	
35,413	2,021	1.6%	2,000	4,000	
Mean Reads per Cell Mee	lian Genes per Cell	2.4%	3,000	6,000	
		3.2%	4,000	8,000	
		4.0%	5,000	10,000	
Sequencing depth for	Sensitivity	4.8%	6,000	12,000	
the sample		5.6%	7,000	14,000	
		6.4%	8,000	16,000	
T 2	Carlos and a	7.2%	9,000	18,000	
lop 3 main metrics on top o	of web summary	8.0%	10,000	20,000	

The target and cells detected by pipeline is not always the same and it depends on the quality of the cell/nuclei prep and how it affects cell counting

Sequencing and mapping metrics

Sequencing ⑦

Number of Reads	182,330,834
Number of Short Reads Skipped	0
Valid Barcodes	98.2%
Valid UMIs	99.9%
Sequencing Saturation	60.9%
Q30 Bases in Barcode	96.8%
Q30 Bases in RNA Read	94.5%
Q30 Bases in UMI	96.1%

Mapping 💿

Reads Mapped to Genome	95.9%
Reads Mapped Confidently to Genome	90.5%
Reads Mapped Confidently to Intergenic Regions	3.6%
Reads Mapped Confidently to Intronic Regions	33.3%
Reads Mapped Confidently to Exonic Regions	53.6%
Reads Mapped Confidently to Transcriptome	76.1%
Reads Mapped Antisense to Gene	10.1%

Metrics		Definition		Expecte <u>d</u> V	alue	Notes	
Sequenci	ing Me	trics					
Number o reads	of	Total number of re assigned to this li	ead pairs that were brary	Sequencin dependent	g output	Lower th (over-clu	nan expected may indicate poor sequencing run Istering, under-clustering, low % passing filter).
Valid barcodes		Fraction of reads w match the whitelist originating from an	rith barcodes that t fraction of reads a already observed UMI	>75%		Low val (such as	id barcodes may indicate sequencing issues low Read 1 Q30 score).
Valid UMI	s	Fraction of reads UMI sequences th and that are not h	with valid UMIs; i.e. at do not contain Ns omopolymers	>75%		Low vali library q	d UMIs may indicate issues with sequencing or uality.
Sequenci saturation	ng n	The fraction of rea an already-observ function of library sequencing depth	ads originating from ved UMI. This is a complexity and	Dependent upon sequencing depth and sample complexity		Depende experim indicates not been	ent on library complexity, sequencing depth, and ent analysis goals. Lower sequencing saturatior s a high proportion of the library complexity has captured by sequencing.
Q30 base in barcod Sample Ir or UMI	es le, ndex,	Fraction of cell ba Index, or UMI base ≥30, excluding ver no call (Q-score ≤ denominator	Sequencing platform dependent		Low Q30 issue su) base percentages could indicate sequencing ch as sub-optimal loading concentration.	
Q30 base RNA read	is in I	Fraction of RNA rea ≥30, excluding very (Q-score ≤ 2) bases	ad bases with Q-score low quality/no-call from the denominator	Sequencing platform dependent ideally >65	g , ;%	Expected (Read 1) platform Consult 3' v2 L Sequence more inf Low Q30 issue su	d to be lower than Q30 Bases in Barcode or UM or Sample Index (i7 read) and is sequencing dependent. Technical Note – Chromium Single Cel ibraries – Sequencing Metrics for Illumina rers (v2 Chemistry) Document CG000089 fo formation. D Base percentages could indicate sequencing ch as sub-optimal loading concentration.
	Metric	:5	Definition		Expected	Value	Notes
	Маррі	ing Metrics					
	Reads mapped to genome		Fraction of reads that a to the genome	are mapped	Variable		Dependent on the quality of genome annotation. Lower than expected values could be an indication of incorrect reference selection or library quality.
	Reads confid	s mapped lently to genome	Fraction of reads that in uniquely to a genome. mapped to exonic loci single gene and also to loci is considered uniq to one of the exonic loc	mapped A gene from a o non-exonic uely mapped :i	Variable		Lower than expected values could be indicative of low library quality or reference quality.
	Reads confid regior	s mapped lently to intergenic ns	Fraction of reads that i uniquely to an interger the genome	mapped nic region of	Variable		May vary based on sample type and genome annotation.
	Reads confid regior	s mapped lently to intronic ns	Fraction of reads that a uniquely to an intronic the genome	mapped region of	Variable		Sample types with low RNA content (e.g. PBMCs, nuclei) or samples with suboptimal health may have a higher fraction of reads mapping to intronic regions.
	Reads confid regior	s mapped lently to exonic is	Fraction of reads that m uniquely to an exonic re genome	apped gion of the	Variable		There is a balance between exonic and intronic reads. A sample with higher exonic reads will have lower intronic reads, and vice versa. This is highly dependent upon sample type.
	Reads confid transc	s mapped lently to criptome	Fraction of reads that in unique gene in the tran The read must be cons annotated splice juncti reads are considered fo counting	mapped to a nscriptome. istent with ons. These or UMI	Variable, i >30%	deally	Reference quality and sequencing configuration (shorter than recommended cycles on Read 2) can impact mapping. Lower than expected values may indicate the use of the wrong reference transcriptome.
	Reads mapped antisense to gene		Fraction of reads confi mapped to the transcri on the opposite strand annotated gene. A read is counted as an if it has any alignment	dently iptome, but of their ntisense	Ideal <10	%	These values may be higher if using a pre- mRNA reference or may indicate incorrect Gel Bead chemistry.

consistent with an exon of a transcript but antisense to it, and has no sense alignments

Cells metrics

Estimated Number of Cells	5,140
Fraction Reads in Cells	93.6%
Mean Reads per Cell	35,473
Median UMI Counts per Cell	8,685
Median Genes per Cell	2,827
Total Genes Detected	27,572

Cell Metrics			
Estimated number of cells	The number of barcodes associated with at least one cell	500-10,000	Higher or lower than expected values may indicate inaccurate cell count, cell lysis, or failures during GEM generation.
Fraction reads in cells	The fraction of reads that contain a valid barcode, are confidently mapped to the transcriptome and are associated with a barcode that is called as a cell	>70%	Lower percentages indicate that a high level o ambient RNA partitioned into all (cell-containing and non-cell-containing) GEMs.
Median reads per cell	The total number of sequenced reads divided by the number of barcodes associated with cell-containing partitions	User defined; 20,000 reads/ cell minimum recommended	The necessary sequencing depth per cell depends or the cell type (high or low RNA) and the desired analysis
Median genes per cell	The median number of genes detected per cell-associated barcode. Detection is defined as the presence of at least 1 UMI count	Dependent on cell type and sequencing depth	Lower than expected median genes per cell may be biological (low transcriptional diversity) or may indicate low sequencing depth or library complexity.
Total genes detected	The number of genes with at least one UMI count in any cell	Dependent on cell type and sequencing depth	Lower than expected could be a result of shallower sequencing depth and/or sample/library quality.
Median UMI counts per cell	The median number of UMI dependent on cell counts per cell-associated type barcode	Dependent on cell type and sequencing depth	Lower than expected could be a result of shallowe sequencing depth and/or sample/library quality.

Sample				
Sample ID	SC3pv3_GEX_Human_PBMC			
Sample Description	Human Peripheral Blood Mononuclear Cells (SC3'v3.1)			
Chemistry	Single Cell 3' v3			
Include introns	True			
Reference Path	ch2/nanopore/refdata-gex-GRCh38-2020-A			
Transcriptome	GRCh38-2020-A			
Pipeline Version	cellranger-7.0.1			

Barcode Rank Plot

A distribution of cell barcodes ranked according to the number of unique molecular identifiers (UMIs) that are associated with a given barcode

Image adapted from 10X promotional materials

Enzyme

Overview of cellranger cell calling algorithm

A multi-step process that determines which barcodes/GEMs are likely to contain an intact cell and uses those for downstream analysis. The cell calling algorithm can be broadly divided into two major steps:

Step 1. Identify barcodes/GEMs that are likely to contain an intact cell based on the expected cell number and UMI counts.

Step 2. Distinguish low RNA content cells from empty droplets based on the **expression profiles** using the EmptyDrops method.

Optimal Barcode Rank Plot

- The overall shape of the Barcode Rank Plot is a useful indicator of sample quality. A "cliff-and-knee" shape in the Barcode Rank Plot is indicative of a good quality sample.
- In this case, the steep cliff, followed by the plateaued knee, demonstrates that the cell calling algorithm was able to distinguish between intact cells and background barcodes.

Optimal cell suspension

- ✓ No background debris
- ✓ Not many dead cells

0

 \odot

Propidium iodide

cells red

stained dead nucleated

Acridine orange stained

nucleated cells green

 \odot

 \odot \odot

100 µm

- ✓ No clumps or clusters of cells
- ✓ Strong green signal (high viability)
- ✓ Counting live cells is not compromised

 \bigcirc

Optimal barcode rank plot

 Steep drop off, however, there is a range of UMI that some called as cell-associated GEMS and some as background.

> 2,896 out of 2,896 barcodes in this UMI range were called as cells.

Barcodes

X Not a clean background, debris
 X Some clumps or clusters of cells
 X Some light green signal (low viability, dying cells, autofluorescence)
 X Counting live cells is compromised

Cells 📀

Curvy barcode rank plot

Add more sequencing depth may increase the cell number as well and will end up lots of sequencing to get the recommended read count per cell

Example of an optimal cDNA

<õ.