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SUMMARY

The Molecular Signatures Database (MSigDB) is one
of the most widely used and comprehensive data-
bases of gene sets for performing gene set enrich-
ment analysis. Since its creation, MSigDB has grown
beyond its roots in metabolic disease and cancer to
include >10,000 gene sets. These better represent a
wider range of biological processes and diseases,
but the utility of the database is reduced by increased
redundancy across, and heterogeneity within, gene
sets. To address this challenge, here we use a com-
bination of automated approaches and expert cura-
tion to develop a collection of ‘‘hallmark’’ gene sets
as part of MSigDB. Each hallmark in this collection
consists of a ‘‘refined’’ gene set, derived from multi-
ple ‘‘founder’’ sets, that conveys a specific biological
state or process and displays coherent expression.
The hallmarks effectively summarizemost of the rele-
vant information of the original founder sets and, by
reducing both variation and redundancy, provide
more refined and concise inputs for gene set enrich-
ment analysis.

INTRODUCTION

High-throughput technologies, such as microarrays and next-

generation sequencing, generate measurements of gene activity

at genomic scale. For transcription profiling, these technologies

report transcript abundances for tens of thousands of genes.

Analysis of this type of data usually follows one of two ap-

proaches. The first identifies genes that are differentially ex-

pressed across phenotypes of interest. This is straightforward

to perform, but in practice, it leads to challenges in the follow-

up analysis and interpretation of results. For example, in some

instances, only a few genes reach statistical significance and

the analysis may not produce meaningful results. Alternatively,

when a large number of genes pass a significance threshold,

there may be no obvious way to select the most interesting

genes to follow up. Moreover, the resulting list of genes may

be difficult to interpret and to identify the relevant biological pro-

cess that those genes represent. An alternative approach, pio-
Cel
neered by gene set enrichment analysis (GSEA) (Mootha et al.,

2003; Subramanian et al., 2005), focuses on coordinated differ-

ential expression of annotated groups of genes, or gene sets,

and produces results that canmore easily be interpreted in terms

of the relevant biological processes. Since its introduction, the

use of GSEA has become widespread and has motivated the

development of many similar approaches (reviewed in Huang

et al., 2009a) and even novel statistical methods based on

groups of variables (Efron, 2010; Good, 2011). Over the last

decade, GSEA has proven a very successful approach in many

fields of biomedical research and has become an essential

part of the genomic analysis toolbox.

The Molecular Signatures Database (MSigDB) (Liberzon et al.,

2011), originally developed for use with GSEA and now em-

ployed by many similar approaches, remains one of the largest

and most popular repositories of gene sets. The latest version

of MSigDB consists of seven collections C1–C7, which include

genes grouped by their location in the human genome (C1),

canonical pathways and experimental signatures curated from

publications (C2), genes sharing cis-regulatory motifs up- or

downstream of their coding sequences (C3), clusters of genes

co-expressed in microarray compendia (C4), genes grouped

according to gene ontology (GO) categories (C5), signatures of

oncogenic pathway activation (C6), and a large collection of

immunological conditions (C7). All of the gene sets in MSigDB

are reviewed, curated, and annotated manually by the MSigDB

curator. They are all represented as lists of human gene symbols

from the HUGOGene Nomenclature Committee at the European

Bioinformatics Institute (Gray et al., 2015).

The usefulness of GSEA and other gene-set-based analysis

methods depends on the availability of independent compendia

of gene sets such as MSigDB. The growth of these compendia

over time can provide the benefits of better representation and

coverage of biological processes, but it can also pose new chal-

lenges. These challenges derive from the intrinsic redundancy

and heterogeneity associated with a larger universe of gene sets.

Redundancy can take different forms—e.g., gene sets may

simply share a large proportion of their comprising genes.

Another more subtle form of redundancy can occur when gene

sets have only a partial overlap but their annotations refer to

similar or the same biological process. In the latter case, the

gene sets may actually represent partial transcriptional readouts

of the same processes, and in both cases, the sets may attain

similar enrichment scores. As a consequence of this redun-

dancy, GSEA could produce long lists of statistically significant
l Systems 1, 417–425, December 23, 2015 ª2015 Elsevier Inc. 417
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Table 1. Summary of the Hallmark Gene Sets: Name, Process Category, Description, Number of Founder Sets, and Number of Genes

It Contains

Hallmark Name Process Category Description

Number of

Founder Sets

Number of

Genes

1 APICAL_JUNCTION cellular component apical junction complex consisting of

adherens and tight junctions

37 200

2 APICAL_SURFACE cellular component membrane proteins in the apical domain 12 44

3 PEROXISOME cellular component peroxisomes 28 107

4 ADIPOGENESIS development adipocyte development 36 200

5 ANGIOGENESIS development blood vessel formation 14 36

6 EPITHELIAL_MESENCHIMAL_

TRANSITION

development epithelial mesenchymal transition 107 200

7 MYOGENESIS development muscle differentiation 64 200

8 SPERMATOGENESIS development sperm development and male fertility 24 135

9 PANCREAS_BETA_CELL development genes specific to pancreatic beta cells 24 40

10 DNA_REPAIR DNA damage DNA repair 44 150

11 UV_RESPONSE_DOWN DNA damage UV response: downregulated genes 17 144

12 UV_RESPONSE_UP DNA damage UV response: upregulated genes 16 158

13 ALLOGRAFT_REJECTION immune allograft rejection 190 200

14 COAGULATION immune blood coagulation cascade 71 138

15 COMPLEMENT immune complement cascade 71 200

16 INTERFERON_ALPHA_RESPONSE immune interferon alpha response 82 97

17 INTERFERON_GAMMA_RESPONSE immune interferon gamma response 82 200

18 IL6_JAK_STAT3_SIGNALING immune IL6 STAT3 signaling during acute

phase response

24 87

19 INFLAMMATORY_RESPONSE immune inflammation 120 200

20 BILE_ACID_METABOLISM metabolic biosynthesis of bile acids 28 112

21 CHOLESTEROL_HOMEOSTASIS metabolic cholesterol homeostasis 28 74

22 FATTY_ACID_METABOLISM metabolic fatty acid metabolism 53 158

23 GLYCOLYSIS metabolic glycolysis and gluconeogenesis 87 200

24 HEME_METABOLISM metabolic heme metabolism and erythroid lineage 36 200

25 OXIDATIVE_PHOSPHORYLATION metabolic oxidative phosphorylation and citric

acid cycle

93 200

26 XENOBIOTIC_METABOLISM metabolic metabolism of xenobiotics 124 200

27 APOPTOSIS pathway programmed cell death; caspase

pathway

80 161

28 HYPOXIA pathway response to hypoxia; HIF1A targets 87 200

29 PROTEIN_SECRETION pathway protein secretion 74 96

30 UNFOLDED_PROTEIN_RESPONSE pathway unfolded protein response; ER stress 22 113

31 REACTIVE_OXYGEN_SPECIES_

PATHWAY

pathway reactive oxygen species pathway 13 49

32 E2F targets proliferation cell cycle progression: E2F targets 420 200

33 G2M_checkpoint proliferation cell cycle progression: G2/M checkpoint 420 200

34 MYC_TARGETS_V1 proliferation MYC targets, variant 1 404 200

35 MYC_TARGETS_V2 proliferation MYC targets, variant 2 6 58

36 P53_PATHWAY proliferation p53 pathway 85 200

37 MITOTIC_SPINDLE proliferation cell cycle progression: mitotic spindle

assembly

108 200

38 ANDROGEN_RESPONSE signaling androgen response 8 117

39 ESTROGEN_RESPONSE_EARLY signaling early estrogen response 61 200

40 ESTROGEN_RESPONSE_LATE signaling late estrogen response 61 200

41 IL2_JAK_STAT5_SIGNALING signaling IL2 STAT5 signaling 13 200

42 KRAS_SIGNALING_UP signaling KRAS signaling, upregulated genes 14 200

(Continued on next page)
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Table 1. Continued

Hallmark Name Process Category Description

Number of

Founder Sets

Number of

Genes

43 KRAS_SIGNALING_DN signaling KRAS signaling, downregulated genes 16 200

44 MTORC1_SIGNALING signaling mTORC1 signaling 487 200

45 NOTCH_SIGNALING signaling Notch signaling 49 32

46 PI3K_AKT_MTOR_SIGNALING signaling PI3K signaling via AKT to mTORC1 591 105

47 HEDGEHOG_SIGNALING signaling Hedgehog signaling 79 36

48 TGF_BETA_SIGNALING signaling TGF beta signaling 29 54

49 TNFA_SIGNALING_VIA_NFKB signaling TNFA signaling via NFkB 132 200

50 WNT_BETA_CATENIN_SIGNALING signaling canonical beta catenin pathway 49 42
results with multiple occurrences of essentially the same biolog-

ical process. Moreover, many high-scoring, but overlapping

or redundant, gene sets can dominate the top of a result set

and effectively hide other potentially relevant hits further

down the list. In this scenario, one can easily fail to notice impor-

tant and relevant findings and thus not realize the full potential

of GSEA. In addition, the overrepresentation of a biological

process at the top of a gene set list can skew the tail of the

observed distribution of enrichment scores, thereby increasing

the significance of top-scoring gene sets that represent the

same signal.

A second challenge stems from heterogeneity within a gene

set. For example, genes in a given gene set do not always

behave consistently or coherently. This could be due to several

causes: variation because of context dependencies, the exis-

tence of multiple modalities of biological response, intrinsic

variation in the original dataset from which the gene set is

experimentally or computationally derived, limitations of manual

curation, or poor biological resolution with respect to the relevant

biological process.

Here, we present a newMSigDB collection of ‘‘hallmark’’ gene

sets and show how it can help to overcome these challenges.

These hallmark gene sets are generated by a hybrid approach

that combines an automated computational procedure with

manual expert curation. The computational methodology iden-

tifies gene set overlaps and generates coherent representatives

of them. The manual curation makes critical use of domain

expert knowledge in order to (1) assign biological themes to

groups of the original overlapping gene sets, (2) identify expres-

sion data for refinement and validation of the hallmark sig-

natures, and (3) properly annotate the refined hallmarks. The

hallmarks summarize information across multiple gene sets by

emphasizing genes that display coordinate expression and

represent well-defined biological processes, thereby reducing

variation and redundancy, and providing a better delineated bio-

logical space for GSEA analysis.

RESULTS

Generating the Hallmark Collection
Here, we give an overview of the hallmarks generation proce-

dure (see Experimental Procedures for details). We first identi-

fied groups of similar gene sets according to their individual

gene membership overlaps using consensus clustering. Starting

with 8,380 gene sets from MSigDB v4.0 collections C1–C6, the
Cel
consensus clustering grouped them into 600 clusters. Wemanu-

ally reviewed the clusters and were able to annotate 43 of them

with 50 clear biological themes. While 36 clusters had only one

theme assigned to them, seven clusters were assigned to two

themes due to the heterogeneity of their founder gene sets

(see Supplemental Experimental Procedures). These themes,

and their associated clusters, served as candidates for an initial

collection of hallmark signatures. We defined ‘‘raw’’ sets, one for

each candidate hallmark, as the union of a cluster’s gene sets.

We refined each of these raw sets according to its gene expres-

sion profile in a number of datasets relevant to the corresponding

biological theme. The refinement excluded genes that did not

well discriminate the relevant phenotype. In this way, only coor-

dinately expressed and biologically relevant genes remained in

the final hallmark to be added to the collection. An additional vali-

dation procedure determined whether the final hallmark general-

ized, i.e., performed as expected in an independent dataset that

was not used for the refinement. Founders for the final set of 50

hallmarks (Table 1) comprise 4,022 of the original 8,380 MSigDB

gene sets.

Examples Using the Hallmark Collection
In this section, we give three examples that illustrate different as-

pects of the use of the hallmark collection for GSEA. The first

example shows how using only the hallmarks can form the basis

for a concise and sensitive comparison between subtypes of

medulloblastoma. It also illustrates the type of summarization

that hallmarks provide for their founder sets. The next example,

necrosis in glioblastoma, demonstrates the redundancy reduc-

tion gained from using the hallmark collection instead of the

original MSigDB collections C1–C6. Finally, in the last example,

we show that hallmarks can effectively associate with their cor-

responding protein activation phenotypes, thus confirming their

biological relevance.

Analysis of Hedgehog Signaling in Medulloblastoma
Medulloblastomas comprise a diverse group of malignant tu-

mors of the cerebellum and are themost common pediatric brain

cancers (Northcott et al., 2012). In 2011, Cho et al. (2011)

analyzed transcriptomes of a collection of 189 primary medullo-

blastoma tumors. Unsupervised clustering of this dataset iden-

tified six distinct molecular subgroups of medulloblastoma,

including one that is driven by the tumorigenic activation of the

Hedgehog pathway (Cho et al., 2011). Here, we considered

only the samples of the Hedgehog subtype. As a ‘‘control,’’ we
l Systems 1, 417–425, December 23, 2015 ª2015 Elsevier Inc. 419
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Figure 1. Analysis of Hedgehog Signaling in Medulloblastoma

(A and B) The figure shows ssGSEA scores ranked by their degree of association (IC) between the Hedgehog and photoreceptor phenotype for (A) the

50 hallmarks and (B) the Hedgehog hallmark and 9 of its top scoring founder gene sets. The IC scores, p values, and FDRs appear on the right side of the heat

maps. Black and gray colors denote medulloblastoma subtypes (Hedgehog and photoreceptor subtypes, respectively).
used samples of another subtype from this dataset where the

relevant oncogenic process is not Hedgehog signaling but rather

photoreceptor activation and GABRA5 upregulation. We pro-

jected the samples from these two subtypes into the space of

the 50 hallmarks by means of single-sample GSEA (ssGSEA)

(Barbie et al., 2009). ssGSEA (see Experimental Procedures) es-

timates the degree of enrichment of gene sets in individual sam-

ples. Thenwe estimated the degree of association between each

hallmark’s ssGSEA profile and the Hedgehog versus photore-

ceptor activation phenotypic distinction using the information

coefficient (IC, see Experimental Procedures). In fact, any stan-

dard method for differential analysis could be used for this pur-

pose. An empirical sample-label permutation test (500,000

random permutations) was used to estimate the statistical signif-

icance of the scores (i.e., the p value and false discovery rates

[FDR] in Figure 1A). Notably, if we rank the hallmarks according

to their association with the Hedgehog versus photoreceptor

phenotypes, then the top-scoring hallmark, i.e., the one with

the highest IC value (IC: 0.7346, p value: 2 3 105, FDR:1 3

105), is indeed the Hedgehog hallmark, which is consistent

with prior findings in the literature (Cho et al., 2011). A heat

map of the results, along with the hallmarks ranked by IC, ap-
420 Cell Systems 1, 417–425, December 23, 2015 ª2015 Elsevier Inc
pears in Figure 1A. Thus, we see the sensitivity of the Hedgehog

hallmark in detecting its relevant biological process—i.e., onco-

genic activation of the sonic hedgehog pathway in the context of

a disease subtype.

Repeating the analysis with the original Hedgehog hallmark’s

founder sets, augmented by the hallmark itself, reveals that the

hallmark attains the fourth highest IC measure of association

with the oncogenic phenotype (Figure S1). The first three high-

est-scoring gene sets refer to embryonic development of the

nervous system (Figures 1B and S1).

Analysis of Necrosis in Glioblastoma
Here, we show how hallmarks address the problem of gene set

redundancy by illustrating the difference between GSEA per-

formed with the hallmarks and one that uses thousands of

gene sets from theMSigDB collections C1–C6. The dataset con-

tains expression data for 200 glioblastoma multiforme (GBM)

and two normal brain samples from the Cancer Genome Atlas

Research Network (TCGA) (Verhaak et al., 2010). GBM is the

most common, most aggressive malignant primary brain tumor

in adults (Ostrom et al., 2013). Necrosis, resulting from a limited

supply of oxygen and nutrients, is a critical diagnostic feature of
.



Figure 2. Ranks of Gene Sets Grouped by Biological Themes

The horizontal axis denotes rankings of gene sets enriched in the GBM data with respect to necrosis. The biological themes are on the right side of the graph. The

vertical bars indicate ranks of gene sets. Black bars denote the 245 significantly enriched sets. Gray bars stand for the gene sets that were not enriched

significantly. The uncategorized gene sets are not shown. The rows indicate 11 biological themes. The red box shows gene sets that are pushed down the list by

high-scoring gene sets representing hypoxia/glycolysis, EMT, and NFkB signaling.
GBM (Karsy et al., 2012). We performed standard GSEA on

this dataset with the MSigDB v4.0 collections C1–C6 using the

samples’ clinical annotation of percentage of necrosis as a

continuous phenotype, the Pearson correlation as the ranking

metric, and 1,000 permutations of sample labels to estimate

significance.

The analysis yielded 527 significantly enriched gene sets that

were positively correlated with necrosis (FDR < 0.25, Table S1).

Upon inspecting these 527 significant gene sets, wewere able to

assign 11 biological themes to 245 of them. Figure 2 shows the

ranks of those annotated gene sets according to their enrich-

ment scores (NES values) grouped by their corresponding bio-

logical theme on the left side.

The 100 top-scoring gene sets show numerous instances of

three biological processes: NFkB signaling, EMT (epithelial-

mesenchymal transition), and hypoxia/glycolysis. Indeed, 62

out of the 100 top scoring sets account for 27 NFkB, 25 EMT,

and 10 hypoxia/glycolysis annotations (Figure 2). The strong

presence of EMT and NFkB signatures in association with necro-

sis agrees with the observations made in the original GBM study.

However, an additional group of 8 biological themes (shown in-

side a red box in Figure 2) only appear below rank 97 in the

ranked results list and are thus eclipsed. For example, the

original study noted deregulation of the p53 pathway as an

underlying relevant biological theme of GBM. Our analysis finds

significant enrichment of 15 gene sets corresponding to the p53

pathway. However, the first such gene set appears only at rank

114 and thus, despite being statistically significant, would

more likely be overlooked in a routine interpretation of the

GSEA results.

Repeating GSEA with the 50 hallmarks finds 12 that are signif-

icantly enriched (FDR < 0.25, Table S2). The three top hallmarks

correspond to the biological themes in the top 100 full MSigDB

analyses, but the hallmark collection is more sensitive and also

highlights the other eight biological processes. Notably, the hall-

marks not only produce more parsimonious but equivalent re-
Cel
sults representing the main biological themes found in the prior

analysis, but they also avoid the problem of gene set redundancy

and over-representation altogether.

Matching Hallmark Enrichment Scores to Protein Level
Phenotypes
We sought biological validation that the hallmark gene sets are

able to detect their annotated processes by measuring their

performance against experimental data from established protein

reporters of pathway activation. For this, we used a subset of the

Cancer Cell Line Encyclopedia (CCLE) gene expression dataset

(Barretina et al., 2012). Besides gene expression, the CCLE re-

pository (http://www.broadinstitute.org/ccle) maintains detailed

genomic, proteomic, and pharmacologic records for about

1,000 cancer cell lines. We projected the CCLE gene expression

dataset onto hallmark gene sets using ssGSEA. To define protein

abundance phenotypes, we utilized the CCLE reverse-phase

protein array (RPPA) data. RPPA is an antibody-based assay

that quantifies expression of proteins and allows concordant

interrogation of multiple proteins in many samples (Spurrier

et al., 2008). For a large panel of CCLE cell lines, we obtained

the RPPA abundances of 8 proteins: AR, BCL2, CDH2 (N-cad-

herin), ESR1, KDR (VEGFR2), MYC, SMAD3, STAT5A, and a

variant of STAT3 phosphorylated at Tyr705 (STAT3_pY705).

Next, we matched 9 relevant ssGSEA hallmark profiles to those

phenotypes using the IC and assessed the significance of their

matching scores using an empirical permutation test as above

(2,083,333 permutations). Figures 3A–3I show the results. We

observe that all the relevant hallmark enrichment profiles display

a high degree of association against the corresponding protein

profiles (IC scores and p values).

MYC Protein

Cell lineswith high levels ofMYCprotein are associatedwith high

ssGSEA scores for bothMYC hallmarks (Figure 3A) (MYC targets

V1: IC = 0.552, p < 4.8 3 10�7; MYC targets v2: IC = 0.464 p <

4.8 3 10�7).
l Systems 1, 417–425, December 23, 2015 ª2015 Elsevier Inc. 421

http://www.broadinstitute.org/ccle


Figure 3. Matching Hallmark Enrichment Scores to Phenotypes Defined by Protein Levels

(A–I) The top row of the heat maps shows reverse phase protein array (RPPA) profiles of selected proteins sorted in descending order from left to right. The chosen

protein expression profiles are from top to bottom: (A) MYC (c-Myc-R-C), (B) ESR1 (ER-alpha-R-V), (C) AR (AR-R-V), (D) BCL2 (Bcl-2-M-V), (E) CDH2 (N-cadherin-

R-V), (F) SMAD3 (Smad3-R-V), (G) STAT3 pY705 (STAT3_pY705-R-V), (H) STAT5A (STAT5-alpha-R-V), and (I) KDR (VEGFR2-R-V) proteins. The bottom row in

each heatmap shows the hallmarks ssGSEA scores.
Estrogen Response

There is a strong association of ESR1 protein expression with the

ssGSEA scores of both hallmarks for estrogen response (Fig-

ure 3B) (IC = 0.518, p < 4.8 3 10�7).

Androgen Receptor

Androgens are a group of steroid hormones that regulate

the development and maintenance of male characteristics

(Figure 3C) (Matsumoto et al., 2013). Accordingly, the highest

ssGSEA score of the hallmark set denoting androgen response

corresponds to high AR protein levels (IC = 0.429, p = 0.0002).

BCL2 and Apoptosis

BCL2 blocks apoptosis, and consequently, its protein levels

display strong association (IC = 0.476, p < 4.83 10�7) with a pro-

liferation signature represented by the E2F hallmark (Figure 3D)

(Topham and Taylor, 2013). The BCL2 profile has also a strong

negative association with the apoptosis hallmark (IC = �0.588,

p < 4.8 3 10�7).
422 Cell Systems 1, 417–425, December 23, 2015 ª2015 Elsevier Inc
N-cadherin and the Epithelial-Mesenchymal Transition

N-cadherin is a marker of mesenchymal cells (Figure 3E) (Zeis-

berg and Neilson, 2009) and the epithelial-mesenchymal

transition (EMT) (Kalluri and Weinberg, 2009). This figure shows

a strong correlation between N-cadherin protein levels and

ssGSEA scores of the EMT hallmark (IC = 0.560, p < 4.83 10�7).

SMAD3 and TGF-b

TGF-b interacts with TGF-b receptors and leads to phosphoryla-

tion of SMAD2 and SMAD3 proteins (Figure 3F) (Akhurst and

Hata, 2012). The profile of SMAD3 protein expression matches

activity of the TGF-b hallmark (IC = 0.396, p < 4.8 3 10�7).

STAT3 and Interleukin-6

Interleukin-6 (IL6) binds a cytokine receptor and triggers a signal

transduction cascade through Janus kinases (JAK) that cul-

minates in phosphorylation of STAT3 on the Tyr705 (Figure 3G)

(Kaptein et al., 1996; Stark and Darnell, 2012). There is a strong

correlation between high levels of the phosphorylated STAT3
.



Box 1. Practical Guidelines for Using theMSigDBHallmark Gene
Set Collection

I. Establish a ‘‘bird’s-eye view’’ of the data by carrying out

GSEA using the hallmark collection. Because the hall-

marks have been carefully generated and tested, a sig-

nificant result in this analysis should be considered as

having high confidence and worthy of additional follow

up.

II. Repeat GSEA using the founder gene sets for each of

the top scoring hallmarks to explore more specific or

detailed findings.

III. Complement the analysis using other sub-collections

of MSigDB gene sets for specific purposes. For

example, the C3 (master regulators/transcription fac-

tors) or C6 (oncogenic pathways) collections can pro-

vide additional insight via signals not yet represented

in the hallmarks.

In some cases, the hallmark gene sets can be useful in

generating target profiles to match against genomic variables

(e.g., mutation status, copy number alterations, drug sensi-

tivity, etc.) associated with the biological themes that the hall-

marks represent.
(STAT3_pY705) and enrichment of the IL6 JAK STAT3 hallmark

(IC = 0.422, p = 2.38 3 104).

STAT5 and Heme Metabolism

STAT5 is a member of JAK/STAT signaling network (Figure 3H)

(Stark and Darnell, 2012). During erythroid differentiation, eryth-

ropoietin activates STAT5, which in turn activates transcription

of genes defining erythroid lineage (Ferbeyre and Moriggl,

2011). Consistent with this relationship, the heme metabolism

hallmark (IC = 0.494, p < 4.763 10�7) attains high scores against

the profile of STAT5A. Activation of STAT5 by IL2 in T lympho-

cytes, on the other hand, turns on expression of a different group

of genes that play a role in a variety of immune responses.

Accordingly, the hallmark for IL2 STAT5 signaling pathway

is also associated with the STAT5A protein (IC = 0.368, p =

2.44 3 10�4).

VEGF and Angiogenesis

KDR is a receptor of VEGF growth factor. As such, it is a key

regulator of blood vessel formation (Figure 3I) (Folkman and

D’Amore, 1996). We observe strong correlation between KDR

protein levels and activity of the angiogenesis hallmark (IC =

0.580, p < 4.76 3 10�7).

DISCUSSION

Here, we introduce a collection of hallmarks, along with a meth-

odology to generate them, and demonstrate their utility in several

examples. The hallmark generation method of gene overlap

yielded groups of gene sets with coherent annotation and thus

eventually produced hallmarks that represented the relevant

signal in related and potentially redundant gene sets. Because

gene sets often convey approximate and incomplete versions

of the pertinent biological conditions, we developed a hybrid

approach, which combined computational and manual steps.

The automated steps included clustering, microarray data pro-
Cel
cessing, and meta-analysis. Expert human biological review

was essential to leverage prior domain knowledge for labeling

clusters with biological themes because the automated clus-

teringmethods do not provide a sense of the degree of biological

resolution represented by the clusters. Additional manual tasks,

also requiring an experienced curator, included locatingmicroar-

ray datasets and annotating their phenotype classes. The refine-

ment methodology allows the hallmark to contain the most tran-

scriptionally coherent set of genes, which serve asmore effective

andaccurate transcriptional signatures for detecting specificbio-

logical processes. By summarizing relevant information from

thousands of founder gene sets across diverse collections in

MSigDB, hallmarks greatly reduce redundancy and produce

more robust and concise GSEA results that facilitate interpreta-

tion and follow-up analysis, as well as substantially reduce the

chances of missing potentially important findings. The fifty hall-

marks described here represent 48% (4,022 out of 8,380) of

MSigDB gene sets. The hallmarks also capture 52.7% (452 out

of 858) gene sets from the C4 collection of co-expression mod-

ules, which cover the global landscape of the transcriptome.

The hallmarks are freely available as the H Collection in the

MSigDB v5.0 and can be used by any enrichment analysis

method that relies on gene sets. The name of every gene set in

this collection starts with HALLMARK to distinguish them from

other MSigDB gene sets. Table 1 lists all 50 hallmarks by their

names and provides their biological process category, a brief

description, and additional statistics such as their size and their

number of founder gene sets. Table S3 contains detailed statis-

tics for the gene sets used to make the hallmarks and their clus-

ter assignments. Each hallmark set and all of its annotations

appear on a separate web page of the MSigDB web site (see

example in Figure S2). This page also provides a brief description

of each hallmark and follows the standard conventions for

MSigDB gene sets. In addition, every hallmark page contains

links to its founder gene sets and includes details about specific

datasets and phenotype class comparisons that were used to

refine and validate the hallmark. This information is particularly

useful when interpreting enrichment analysis results and in

follow-up studies. In order to take full advantage of hallmarks

and the exploratory nature of GSEA, we recommend proceeding

through a series of GSEA analysis stages (see Box 1).

We view this groupof 50 hallmarks as an initial set deriving from

the gene set clusters where the relationship to a biological theme

wasclear duringmanual review.Notably, this first set already cor-

responds to a broad coverage of cellular processes representing

about half of the gene sets in the MSigDB. We plan to move for-

ward with a program to enhance and expand the collection,

encouraged by the current results that demonstrate an increase

in signal strength and the good summarization capability of the

hallmarks. We believe this collection will prove to be a valuable

user resource for the community and provide even more precise

results when used with enrichment analysis methods.

EXPERIMENTAL PROCEDURES

Hallmark Generation Methodology

Step 1: Identify Groups of Similar Gene Sets Using Consensus

Clustering

We first clustered all the gene sets according to their member genes’ overlaps

and regardless of their annotations. We used consensus clustering (Monti
l Systems 1, 417–425, December 23, 2015 ª2015 Elsevier Inc. 423



et al., 2003) with bootstrap resampling to allow a more robust determination of

cluster stability formultiple values of k, the ultimate number of clusters. In order

to find the optimal number of clusters, we inspected the cophenetic coefficient

as a function of k and searched for a peak value indicating the most stable

partition (Brunet et al., 2004). We avoid choosing solutions with high values

of k that produce higher values of the cophenetic coefficient but potentially

overfit and represent small numbers of gene sets in each cluster. The extreme

of this behavior is, for example, when the number of clusters equals the num-

ber of items, and the fit becomes perfect.

The input dataset to this procedure consisted of 8,380 gene sets from

MSigDB v4.0 (collections C1 through C6), each containing between 5 and

1,994 genes (features). We decided to include the C1 collection containing

genes in cytogenetic bands because these often indicate regions of similar

chromatin structure, or regions affected by oncogenic copy number alter-

ations, which could result in co-regulation and may be important in develop-

ment and cancer-related datasets. We used agglomerative hierarchical

clustering with average linkage as implemented in the fastclust R package

(Müllner, 2013). For the clustering distance metric, we used the Jaccard’s dis-

tance (Jaccard, 1902; Levandowsky and Winter, 1971). For two gene sets

S1, S2 the Jaccard distance is:

D12 =1� jS1XS2 j
jS1WS2 j (1)

where jS1X S2j is the number of elements in the intersection of S1 and S2, and

jS1 W S2j is the number of elements in the union of the sets.

The bootstrapping resampling procedure for consensus clustering involved

sampling with replacement from a pool of 31,847 genes comprising the union

of all the 8,380 original gene sets. We performed 100 resampling iterations and

carried out consensus clustering for 50 % k % 8,000 in increments of 50. We

used cophenetic coefficients (r) of the consensus clustering results to esti-

mate the optimal number of clusters. The cophenetic analysis showed two

peaks: one at k = 450 (r = 0.9668) and another at k = 600 (r = 0.9670; Fig-

ure S3). After inspecting results for both values of k, we found the partition

with k = 450 to be too coarse and heterogeneous for our purposes. On the

other hand, clusters made with k = 600 seemed to be at the level of granularity

that was more appropriate for making hallmark sets. We therefore chose the

partition at k = 600 to produce clusters of gene sets for the subsequent steps

in the hallmark methodology.

Step 2: Filter Clusters and Identify Biological Themes

After initial manual assessment, we excluded some of the clusters from further

consideration based on their small size in terms of number of genes or gene

sets. We left out clusters that had fewer than 150 genes total when we merged

the genes in all their member gene sets to allow for sufficient number of genes

for subsequent refinement by meta-analysis. We also removed clusters with

fewer than six gene sets as the smaller clusters usually lacked sufficient infor-

mation (in terms of descriptions of and overlaps among their constituent gene

sets) to deduce meaningful biological theme. The filtering left 168 clusters for

the next stage.

Uponmanual inspection of these clusters, we assigned biological themes to

73 clusters where the theme was clearly identifiable. To do this, we relied on

the MSigDB annotations of both the gene sets, in the form of their names

and descriptions, and their individual genes. In a number of cases, we also

used complementary annotation tools such as DAVID (Huang et al., 2009b)

to obtain additional clues about the most relevant pathways represented by

them.

Step 3: Identify Gene Expression Datasets for Refinement

We queried the GEO (Barrett et al., 2007) and ArrayExpress (Rustici

et al., 2013) to find relevant human, mouse, or rat expression datasets for

each of the 73 clusters of the previous step. Each dataset was required

to contain at least three samples in each phenotypic class. We also verified

that these datasets were not used to define any of the hallmarks. For sub-

sequent steps, we chose 43 of these clusters, for which we identified at

least three datasets for refinement and a fourth independent one for valida-

tion. These 43 clusters were annotated with 50 biological themes. Seven

clusters gave rise to two due to heterogeneity within founding gene sets

(Table S4). We plan to continue assigning themes and processing the re-

maining clusters (listed in Data S2) to develop additional hallmarks in the

future.
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Step 4: Define Raw Hallmark Sets

We defined raw hallmarks for each of the 50 hallmarks produced by the previ-

ous step. A raw hallmark is the union of a cluster of founder gene sets’ genes

after excluding all the ‘‘unknown genes.’’ We considered a gene as ‘‘unknown’’

if it has been identified exclusively by automatic computational predictions or

represented a poorly documented sequence such as an EST. Specifically, we

defined a gene as ‘‘unknown’’ if its official gene symbol (according to NCBI

Entrez and HUGO) matched naming conventions of an EST (e.g., ‘‘KIAA,’’

‘‘LOC,’’ ‘‘MGC,’’ ‘‘FLJ,’’ or ‘‘DKFZp’’ followed by digits).

Step 5: Refining Raw Hallmark Sets

We assessed how well each gene in each raw hallmark discriminated the rele-

vant phenotypes in each of the datasets identified in step 3. We again used the

IC between the phenotype or class vector and the gene expression profiles as

the discrimination metric. We assessed the statistical significance of each

gene’s IC score and produced nominal p values using a sample permutation

test to create an empirical null distribution. This was done independently for

each gene expression test dataset. A meta-analysis produced summary p

values across these datasets using Fisher’s method (Fisher, 1948) as imple-

mented in R packageMetaDE (Wang et al., 2012). We used summary p values

to compute FDR following the approach of Benjamini and Hochberg (1995).

The genes in the raw hallmark were then sorted by their FDR values and the

top-scoring genes with summary FDR values less than 0.01 comprised the

final hallmark set. When the number of genes obtained by this method was

less than 15 (or more than 200), the top-scoring 15 (or 200) genes were chosen

regardless of their FDR values. Thus, the refined hallmarks consist of at least

15 and at most 200 genes, which is the recommended size for use with

GSEA. In the refinement procedure, we focused on upregulated genes and

used one-tailed tests. The rationale for this stems from our empirical observa-

tion that expression patterns of downregulated genes are often context

dependent and tend to generalize poorly across datasets, while upregulated

genes are more consistent.

Step 6: Independent Validation and Final Hallmark Set

The final hallmark set consists of genes that, at the same time, represent mul-

tiple gene sets and also display coherent, discriminating behavior across a

number of test datasets. Every hallmark was validated on at least one addi-

tional independent dataset. The validation consisted of computing the ssGSEA

scores for the hallmark in the independent datasets and confirming that the

nominal p value of the IC score of the hallmark versus target phenotype was

less than 0.05.

Procedures for computing Jaccard’s coefficients (Data S1), microarray data

processing, the information coefficient metric, gene set enrichment analysis,

and data visualization are in the Supplemental Experimental Procedures.
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