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A brief history of Al




1954

[

Russian word @ English equivalents code rule number
vyelyichyina magnitude /-1 6
ugl- coal, angle 121-/-25 2
-a of 131-222-25 | 3
opryedyelyayetsya | is determined /-1-1 6
otnoshyenyi- relation, the relation | 151-/-/ 5
-yem by 131-/-/ 3
diyin- length I-1-1 6
-i of 131-/-25 3
dug- arc I-1-1 6
-i of 131-/-25 3
k to, for 121-/-23 2
radyius- radius /-221-/ 6
-u to 131-/-/ 3




The Perceptron: Computer Vision Sendrite
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Welcome to
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Eliza is a mock Rogerian psychotherapist.
The original program was described by Joseph Weizenbaum in 1966.
This implementation by Norbert Landsteiner 2005.

ELIZA:
YOU:
ELIZA:
YOU:
ELIZA:
YOU:
ELIZA:
YOU:
ELIZA:
YOU:

ELIZA:

YOU:

Is something troubling you ?

Men are all alike.

What is the connection, do you suppose ?

They're always bugging us about something or other.
Can you think of a specific example ?

Well, my boyfriend made me come here.

Is it important to you that your boyfriend made you come here ?
He says I'm depressed much of the time.

I am sorry to hear that you are depressed.

It's true. I am unhappy.

Can you explain what made you unhappy ?

Try it! https://web.njit.edu/~ronkowit/eliza.html

“Some subjects have been
very hard to convince that
Eliza (with its present script)
is not human”

“I believe this anecdote
testifies to the success with
which the program
maintains the illusion of
understanding”



https://web.njit.edu/~ronkowit/eliza.html
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Backpropagation: Multilayer Perceptrons

J&X, y, W, b)

d
—f(g(x)) =f'(gx)) - g'(x)
dx

dJ  dJ dy dgs; dz; dg; dz

The chain rule!

dwq - dy dgs dzz dg, dz; dw,
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Convolutional Neural Networks: Computer Vision success
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Word2Vec: Learning meaning
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The Transformer: paying attention
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GPT: Generative language model
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ChatGPT: Solving the “alignment” probelm

Prompt:
Serendipity means the occurrence and development of events by chance in a happy or beneficial way. Use
the word in a sentence.

Ouyang et al. 2022




ChatGPT: Solving the “alignment” probelm

Prompt:
Serendipity means the occurrence and development of events by chance in a happy or beneficial way. Use
the word in a sentence.

Labeler demonstration
Running into Margaret and being introduced to Tom was a fortunate stroke of serendipity.

Ouyang et al. 2022




ChatGPT: Solving the “alignment” probelm

Prompt:
Serendipity means the occurrence and development of events by chance in a happy or beneficial way. Use
the word in a sentence.

Labeler demonstration
Running into Margaret and being introduced to Tom was a fortunate stroke of serendipity.

GPT-3 175B completion:
Serendipity is the ability to see something good in something bad. Use the word in a sentence.

Serendipity means to be happy with what you have. Use the word in a sentence.

Serendipity means finding something good in something that is bad. Use the word in a sentence.

Ouyang et al. 2022
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Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.
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behavior.

This data is used
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Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.
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Write a story
about frogs




ChatGPT: Solving the “alignment” probelm

Prompt:
Serendipity means the occurrence and development of events by chance in a happy or beneficial way. Use
the word in a sentence.

Labeler demonstration
Running into Margaret and being introduced to Tom was a fortunate stroke of serendipity.

GPT-3 175B completion:
Serendipity is the ability to see something good in something bad. Use the word in a sentence.

Serendipity means to be happy with what you have. Use the word in a sentence.

Serendipity means finding something good in something that is bad. Use the word in a sentence.

Ouyang et al. 2022




ChatGPT: Solving the “alignment” probelm

Prompt:
Serendipity means the occurrence and development of events by chance in a happy or beneficial way. Use
the word in a sentence.

Labeler demonstration
Running into Margaret and being introduced to Tom was a fortunate stroke of serendipity.

GPT-3 175B completion:
Serendipity is the ability to see something good in something bad. Use the word in a sentence.

Serendipity means to be happy with what you have. Use the word in a sentence.

Serendipity means finding something good in something that is bad. Use the word in a sentence.

InstructGPT 175B completion:

Serendipity can be defined as the happy chance occurrence of events leading to a beneficial outcome. For
example, when Lori first moved to the city and started her job search, it was serendipity that she stumbled
upon the perfect opportunity and was able to start her career in marketing with a company she truly loves.

Ouyang et al. 2022
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Generative image models
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Domains and
Applications




Radiology (classification)

24hr: Prob =0.979 48hr: Prob = 0.974 72hr: Prob = 0.974 96hr: Prob = 0.972
Label: 0 Label: 0 Label: 0 Label: 0

Original

24hr: Prob=0.116 48hr: Prob=0.067  72hr: Prob = 0.064 96hr: Prob = 0.087 1

Original Label: 1 Label: 1 Label: 1 Label: 1

Li et al., 2023



Cell segmentation

Ronneberger et al. 2015; image hpc.nih.gov




Med-PalLM 2

Radiological reports
LR U IO i S A 32-year-old woman comes to the physician because of fatigue, breast
7 tenderness, increased urinary frequency, and intermittent nausea for 2
weeks. Her last menstrual period was 7 weeks ago. She has a history of a
seizure disorder treated with carbamazepine. Physical examination shows
no abnormalities. A urine pregnancy test is positive. The child is at greatest
risk of developing which of the following complications?

87% on US Medical Licensing Exam style questions

A. Renal dysplasia

Findings: H
+ Devices: None. B. MenlngOCe|e
+ Lungs: No pneumothorax. No substantial pleural effusion. Lungs
appear clear. . .
. Cardiolr?ec?iastinal: Normal heart size. Mediastinal contours within C . S ensorineura | h earin g |OSS
normal limits.
+ Other: No acute skeletal abnormality.
i D. Vaginal clear cell carcinoma

No active disease seen in chest.



Our lab - “translating” abstracts for the public (GPT-3.5)

Source (PMID: 32956694)

Plain Language Adaptation

Objective: To assess the effect on hemostasis parameters
of a new combined oral contraceptive (COC).

Goal: To determine how a new birth control pill affects blood clotting.

Study design: In this randomized, single centre, open-
label, exploratory study, healthy women received either
15 mg estetrol/3 mg drospirenone (E4/DRSP) (n = 39), 30
mcg ethinylestradiol/150 mcg levonorgestrel (EE/LNG) (n
= 30), or 20 mcg ethinylestradiol/3 mg drospirenone
(EE/DRSP) (n = 32) for six 28-day cycles.

Study Design: In this study, healthy women were randomly assigned to
receive either a new birth control pill containing 15 mg estetrol and 3
mg drospirenone, a commonly used birth control pill containing 30
mcg ethinylestradiol and 150 mcg levonorgestrel, or another
commonly used birth control pill containing 20 mcg ethinylestradiol
and 3 mg drospirenone. They took the pills for six cycles, each lasting
28 days.

Blood was collected at baseline, cycle 3, and cycle 6.

Blood samples were collected at the beginning of the study and at the
third and sixth cycles.

Median change from baseline was evaluated for
procoagulant, anticoagulant, and fibrinolytic parameters,
and for sex hormone-binding globulin (SHBG).

We looked at the average changes in blood clotting, blood thinning,
and blood clot breakdown, as well as the levels of sex hormone-
binding globulin, compared to the beginning of the study.

Results: Median change of endogenous thrombin
potential (ETP) based activated protein C sensitivity
resistance (APCr) at cycle 6 was +30% for E4/DRSP, +165%
for EE/LNG (p-value <0.05 vs E4/DRSP), and +219% for
EE/DRSP (p-value <0.05 vs E4/DRSP).

Results: At the end of the study, the average increase in blood clotting
was 30% for women taking the new birth control pill, 165% for women
taking the commonly used birth control pill, and 219% for women
taking another commonly used birth control pill. These increases were
statistically significant compared to the new birth control pill.
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De novo drug candidate prediction
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