Single Cell RNA-Seq Analysis in Partek[®] Flow[®]

HANDS-ON TRAINING

Xiaowen Wang

Partek Incorporated support@partek.com

Build 10.0.23.0130

Experiment Description

- 1k peripheral blood mononuclear cells (PBMCs) from a healthy donor
 - Any peripheral blood cell having a round nucleus
- Partek Flow supports file types: bcl, fastq, bam, h5, txt etc
- · Choose filtered feature/ cell matrix in .h5 format from CellRanger output
- Goal for today: Identify different blood cell populations

Download in browser Batch download			
If the file size is large, we suggest using batch download instead.			
Input Files	Size	md5sum	
FASTOs	29.3 GB	40274800f18c380b9bd7c25e3ed43419	
Output Files 🛛 Format details	Size	md5sum	
Genome-aligned BAM	23.3 GB	cd02b972a841487b09782f3b1724e42e	
Genome-aligned BAM index	10.5 MB	9fbb1a8593a9421e1b5320aea76e7157	
Per-molecule read information	257 MB	f592a76eba137b1ad07b845628a60112	
Feature / cell matrix HDF5 (filtered)	18.1 MB	4dcd7861f61219bd5325190e4c5f6798	
Feature / cell matrix (filtered)	43.1 MB	f741a636ede503cf65491320ed3ec719	
Feature / cell matrix HDF5 (raw)	153 MB	7c5d7164c8e8a36fa3f6e334fb0281cd	
Feature / cell matrix (raw)	89.6 MB	6616dcd7c6c5275b66ff7d6b806002c7	
Clustering analysis	27.1 MB	a96940bfa361d8b52953047bb1afca79	
Summary CSV	683 B	6178a3305959996189a48f3d5d73bb82	
Summary HTML	3.95 MB	7c386237483575edccd1362e14ff7027	
Loupe Browser file	65.1 MB	370d0bc8472a161054ac5d6209e4de56	

Import data

Login

- Open a web browser (Chrome, Firefox, Safari etc.)
- Go to the server URL
- Log in with your username and password
- This will open to the Partek Flow homepage

Create project

- Click New Project and enter project name
- Click Add data
- Select scRNA-seq>10X Genomics Cell Ranger count h5
- Click Next
- User file browser to select file
- Select feature annotation file
- Click Finish

Single Cell QA/QC

Run QA/QC task

- Click the Single cell counts data node
- Select Single Cell QA/QC from the QA/QC section of the task menu

View report and filter cells

- Double click on Single cell QA/QC report to open it
- Click Select & Filter in Tools section to specify filter criteria
- Set Detected features min to 200
- Set %Mitochondrial counts max to 15
- Click Filter include
- Click Apply observation filter
- Choose the Single cell counts data node and click Select
- Click **Save** in the data viewer to save the filter session

Filter Features & Normalization

Filter genes

- Click Filter features in Filtering section on the menu
- Choose Noise reduction
- Filter criteria: Exclude value <=0 in at least 99% of the cells
- Click Finish

Normalization

- Click on Filtered count node > Normalization in Normalization and scaling section on the menu
- Click Use recommended
- Click Finish

Exploratory analysis

Dimension reduction

- Click the Normalized counts data node
- Click PCA in the Exploratory analysis section of the task menu
- Click Finish to run with default settings
- Double click on PCA node to view report
- Select PCA node, choose UMAP task on the menu
- Click Finish with default settings
- Select PCA node, choose Graph-based clustering task
- · Click Finish with default settings
- Double click on Graph-based clusters node to view the report
- Double click on **Biomarkers** node to view the report

View Gene Expression in UMAP

- Double click **UMAP** to open the report
- Click Get data, search for Graph-based clusters node, click on the node, choose Graph-based annotation, drag and drop to Color UMAP
- From **Get data** dialog, search for **Biomarkers** data node, drag the node and drop to the **Bottom** of **UMAP** plot to add the biomarker table in the viewer
- Click **Duplicate plot** in UMAP plot to make a copy of UMAP
- Drag a gene from the biomarker table to drop on one of the UMAP plot to color the cells
 - Use one gene to color cells
 - Use two or three genes to color cells
 - Use gene list to color cells

Cell Type	Gene Markers
T-cells	CD3D, CD3E
Cytotoxic cells	NKG7, GNLY
B cells	CD79A, CD79B (list)
Monocytes	CD68, CD14

Classify Cell Types

- Click on Select & Filter in Tools menu
- Drag and drop legend from plots to add criteria
 - Use graph-based annotation
 - Use gene expression
- Search attributes or gene to add criteria
 - Click on the circle next to the criteria drop-down box to select correct data node
 - No limitation on the number of rules
 - And operation is performed among multiple rules
 - Cells meet the criteria will be selected and highlighted in the plots
- Once cells are selected, click on Classify in Tools menu, choose Classify selection to give a name to the selected cells
 - Always **Save** the analysis
 - Click on Style > Color by > New classification to preview the cell types before apply classification
 - Only click Apply classifications when all cell types are identified
- Once classification is applied, it will appear in Meta data tab. This cell attribute is project level, which means all data nodes in the project and see it.

Identifying Differentially Expressed Genes

- Click the Normalized counts node
- Click Statistics then the Differential analysis section of the task menu
- Choose ANOVA as the method and click Next
- Choose Cell type and click Add factors
- Click Next
- Choose to compare **B cell** vs **T cell**, click **Add comparison**
- Click Finish
- Double click the ANOVA data node to open the ANOVA report
- Click the :: icon next to a gene under View to open data viewer
- Using the **Style** configuration option under *Summary*, add violins or box Whiskers on the plot
 - Duplicate the plot and change Y-axis to view multiple genes
 - Drag and drop group name on X-axis to change order
- Click the 📓 icon to invoke volcano plot
 - Use on Style > Label by to display selected gene name
 - Use Select & Filter to search for genes
- Use Gene list filter panel on ANOVA report to generate gene list based on specified criteria

Plot Types

- Use New plot or Get data under Setup to add content to your Data Viewer session
- Tip: watch the help videos to navigate each of the panel options

- The plot types:
 - Text. Inserts a text box. Useful for captions and notes
 - Table. Inserts a table. E.g. table of biomarkers per cluster
 - · Heatmap. Inserts a heat map, e.g. result of hierarchical clustering
 - *Bubble map.* Uses 3 dimensions to display groups by summary statistics resulting from the hierarchical clustering/ heatmap task
 - *3D Scatter Plot.* Inserts a 3D scatterplot. This is a plot showing three data features at the same time.
 - 2D Scatter Plot. Inserts a 2D scatter plot. This is a plot showing two data features at the same time.
 - *Volcano plot.* Visualize significance and the magnitude of changes in features within a comparison
 - Scree plot. This plot shows information content per principal component.
 - Attribute summary table. Insert a table which shows attributes
 - Histogram. Histogram of a variable
 - · Profile plot. Bar or line chart on one or multiple variables
 - *Pie chart.* Inserts a pie chart. Useful for visualization of categorical variables.

Genaral Data Viewer Controls

· General control buttons are on the left

• Sheets are shown in the lower left corner. To add a blank sheet select the plus icon. For sheet options, click on the arrowhead

Customizing the Data Viewer Appearance

- Click on arrow icon to collapse or expand
- · Plots are separated by grippers. Mouse over a gripper to see options
 - · Click and drag: resize the plot
- To reset the view of the plot, use the 📩 control on the right of each plot
- To move a plot to a new position, use the handle at the top

• Mouse operation on a plot:

In-plot controls

Plot tools are located in the upper right corner and appear upon a mouseover

- · Horizontal series
 - Duplicate plot. Makes an exact replica
 - Save Image. Saves the selected plot only as an image to the local computer. Supported formats are .png and .svg
 - Send to Notebook Page. Sends the selected plot to the Notebook
 - Fullscreen plot/Exit Fullscreen mode. Plot is expanded to fill the canvas
 - *Remove plot.* Removes the selected plot from the canvas. *Data Viewer* session remains open
- Vertical series
 - Export data. Download a .txt file with data use to draw a scatter plot (2D & 3D scatter plots only)

٩.

k

ି

1 1 1

Ľ

- Pointer mode. Click to select data points
- · Lasso mode. Draws a lasso to select data points
- Invert Selection. Unselects the currently selected cells, and selects the others
- · Reset View. Resets plot rotation and zoom
- Toggle Legend. Turns legend on and off
- *Toggle Axes Autoscale.* Scales the axes with respect to the visible data points (e.g. after some data points have been filtered out)
- Transpose. Switch the axes

Getting Help

Self-learning

- Partek Flow documentation <u>https://documentation.partek.com/display/FLOWDOC/Partek+Flow+Docum</u> <u>entation</u>
- Step by step tutorials + practice data sets https://documentation.partek.com/display/FLOWDOC/Tutorials
- Recorded webinars https://www.partek.com/webinars/
- Live training event recordings <u>https://documentation.partek.com/display/FLOWDOC/Live+Training+Event+</u> <u>Recordings</u>
- · Partek blog page https://www.partek.com/blog/
- Tips and tricks on Partek Flow are regulary tweeted
 <u>https://twitter.com/Partek_Inc</u>
- How-to videos are accessable from the Help menu

Technical Support

• Open a support ticket at partek.com/support