

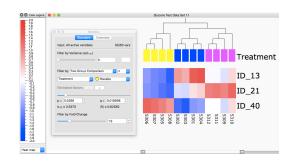
Multi-OMICs datasets – analysis side-by-side and as a merged dataset

Yana Stackpole, PhD Application Support

Visualize and Explore

- QC (outliers, mislabeled samples)
- Make observations identify structures, patterns
- Generate new hypotheses
- Browse the genome

Analysis


- t-test, ANOVA, Regressions, R scripts. Open API to R, Batch exec
- Variant calling
- Easy generation and export of reports, status, and plots
- Save your session, share

Biological Insight

- Gene Set Enrichment using MSigDB, reactome, or custome sets
- Explore annotations
- GO Browser

Classify and Predict

- Build classifiers
- kNN, SVM, RT
- Predict sample class, outcome, etc.

Side by Side	Merged datasets
Results on separate plots	Results on the same plot
Statistical analysis – q calculated separately for each (cannot just combine)	Statistical analysis – q calculated for a combined variables set
Correlation possible for one type at a time	Correlation available for all data types
Manual annotation of one data with results from another	Easier to relate sample annotations interpreting results
PCA – signals are from one data type	PCA- Signals blend together, may mask each other if opposite
Limited to one data type at a time	Can zoom in on one data type at a time
No scale issue	May need to scale before merging matrices
ML – limited to one type	ML – advantage of considering both for the best performance

Two types of data for the same samples: Gene expression and Proteomics

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	(
1	슛		Sample id	1	2	3	4	5	6	7	8	9	10	11	
2			Treatment	Drug1	Drug1	Drug1	Drug3	Drug2	Drug2	Drug1	Drug2	Drug2	Drug3	Drug3	Drug1
3			CON_Q3SX14 abundance	16.521	16.259	16.571	16.394	-3.3219	16.043	16.545	16.131	16.04	16.252	-3.3219	-
4	Gene /Protein	Туре													
5	S100A11	Gene		5.331	4.995	5.13	6.368	6.438	5.252	5.508	5.334	5.724	6.069	6.441	
6	GPX1	Gene		9.91	10.396	9.857	10.361	8.816	9.149	10.066	8.731	9.045	8.98	10.178	
7	CTNNA1	Gene		7.568	7.8495	7.169	7.425	7.2435	6.931	7.492	7.003	7.276	7.1575	6.918	1
8	RPS15	Gene		11.636	11.594	11.58	11.826	11.105	10.855	11.598	11.132	10.732	11.584	11.64	,
9	sp P15407 FOSL1_HUMA	Protein		16.177	15.954	16.064	15.75	16.059	16.321	16.133	16.246	16.155	15.917	15.764	l.
10	 sp P16144-2 ITB4_HUMA	Protein		17.115	16.337	17.068	16.756	16.856	16.253	16.573	16.597	17.094	17.862	17.111	
11	sp P16278-3 BGAL_HUM	Protein		16.382	15.459	16.036	17.248	16.097	15.508	15.747	16.267	15.851	16.356	17.116	1
12	sp P16401 H15_HUMAN	Protein		19.844	18.746	19.206	17.415	18.894	18.947	19.409	19.159	20.105	17.004	17.485	,

AAAS_mRNA

mRNA

Two+ types of data for the same samples mRNA and miRNA

SAMPLE ID
STATUS

BH-A0DO-01B-11 BH-A0DT-01A-21 BH-A18J-01A-11 BH-A18K-01A-11 BH-A18L-01A-32

tumor

tumor

tumor

tumor

tumor

CLASS mRNA (VARIABLE ID miRNA
A1BG_mRNA mRNA
A2BP1_mRNA mRNA
A2ML1_mRNA mRNA
A2M_mRNA mRNA
A4GALT_mRNA mRNA
A4GNT_mRNA mRNA

-0.75725

-1.00375

-0.58375

-0.20775

-0.389

ML – predictive model on miRNA

Classifier Training Report

Type: Random Tree Classifier

Number of variables used by classifier: 245

Classifier name: random trees miRNA

Class Accuracy Number of Samples

normal 0.928571 14

tumor 1 14

Mean / Total 0.964286 28

ML – predictive model on mRNA+miRNA Quucore

Classifier Training Report

Type: Random Tree Classifier

Number of variables used by classifier: 24 (only mRNA selected)

Classifier name: miRNA_mRNA Boosted trees

Validation Score

Class Accuracy Number of Samples

normal 0.928571 14

tumor 1 14

Mean / Total 0.964286 28

Next steps

- 1. Download and install the trial version (Mac or Win version links, you will need to register), and then update the license key in Qlucore License Activation Key with the key from us
- 2. Book a session with us get help importing your data and setting up your analysis. Here is a link https://calendly.com/yana-stackpole/30min
- 3. Explore your data in a cool GUI in a way that makes sense to you!

Reach out any time Yana.Stackpole@Qlucore.com

System requirements Base module

FOR WINDOWS

- Windows 7, Windows 8 or Windows 10
- 512 MB of RAM memory
- A graphical card with support of at least Open GL 2.1
- 5 GB of free hard disk space
- Qlucore Omics Explorer is available in both a 32-bit and 64-bit versions. The program takes full advantage of processors with multiple cores and computers with multiple processors.

FOR MAC

- Max OS X 10.15 or 10.14
- 512 MB of RAM memory
- A graphical card with support of at least Open GL 2.1
- 5 GB of free hard disk space

9/10/24