FUNDAMENTALS OF MASS SPECTROMETRY BASED PROTEOMICS

Ronald Holewinski, Ph.D. Scientist II Protein Characterization Lab (NCI/CCR)

OVERVIEW

- What is Mass Spectrometry?
- How do we analyze proteins by MS?
- What are the different instruments we can use?
- What are the different types of Mass Spectrometry acquisition for protein analysis?
 - What type of analysis is right for me?
- How do we identify and quantify proteins?
- How do we identify post-translational modifications?

WHAT IS MASS SPECTROMETRY

- Mass spectrometry is not actually measuring mass of a molecule but rather the mass-to-charge ratio (m/z) of a molecule.
 - m/z = [mass of ion / charge of ion].
 - The mass of the ion is the molecular mass in the ionic state and can differ for the same molecule depending if it carries a positive or negative charge
 - If a molecule cannot be ionized to carry a positive or negative charge, then that molecule cannot be analyzed by MS

TYPES OF MS INSTRUMENTS

- Orbitraps ThermoFisher
 - High Resolution, High Mass Accuracy, Speed
- Quadrupole Time of Flight (QToF) Sciex, Agilent, Bruker, Waters
 - Speed, Sensitivity

• Triple Quadrupole – Variety of Vendors

• Selectivity

• MALDI-TOF – Variety of Vendors

• MS Imaging, Intact mass

WHAT CAN WE ANALYZE BY MS?

- Metabolites
- Lipids
- Drug metabolism (PK)
- DNA/RNA
- Proteins/Peptides

HOW DO WE ANALYZE PROTEINS BY MS?

Measure m/z of intact protein

Protein-Drug conjugates

Fragment to get protein identification/PTMs

Provides "proteoform" information

Proteins < 150kDa

Bottom Up

measure m/z of digested peptides

Lose "proteoform" information

Constrained by protease specificity

Deepest depth/most versatile

DATA ACQUISITION

- Data-Dependent Acquisition (DDA) No prior knowledge needed
 - MS1 survey scan to detect peptides within specified m/z range
 - MS2 scan of top abundant ions for peptide sequencing
- Data-Independent Acquisition (DIA) Library based (a priori) or Library-Free
 - MS1 survey scan
 - MS2 scan of wide m/z range to theoretically fragment all ions eluting at a given RT
- Parallel Reaction Monitoring (PRM) Orbitraps, TOFs
 - MS2 scan of <u>specified</u> m/z value(s) followed by MS2 scan of ALL fragmentation products
- Multiple Reaction Monitoring (MRM) Quadrapoles
 - MS1 scan of <u>specified</u> m/z value(s) followed by MS2 scan of SINGLE fragmentation product

Orbitraps, QToFs

No. 10.000 No. 10.00 Maggar (1999) (). Maggar (1999) ().

DATA ACQUISITION Q: What type of analysis do I need? A: It depends..... on what you want to accomplish ulletSample type and amount \bullet Other factors ulletDDA DIA PRM **MRM** Speed **Selectivity Throughput**

argets

CHOOSING BETWEEN METHODS

Untargeted Methods

Targeted Methods

IDENTIFYING PROTEINS BY MS

IDENTIFYING PTMS BY MS

What PTMs have the most publications in PubMed?

modification	modification motif	amino acid modification site	number of publications (2017–2022)
phosphorylation	HPO3	Y, S, T, H, D	68208
methylation	(-CH3)	К	21750
glycosylation	(N-Glc-NAc)	N-X-S/T, X ≠ P	10660
ubiquitination	ubiquitin	К	9505
acetylation	CH3CO	S, K	8590
glycation	(-Hex)n	K, R	5331
disulfide bond	S–S	С	4580
SUMOylation	small ubiquitin-like modifier	protein chain	1919
hydroxylation	(-OH)	side chain	1458
S-nitrosylation	(-NO)	cysteine thiol group	1395
lipidation	lipid/fatty acid	protein chain	631
succinylation	CO–CH2–CH2–CO2H	К	584
glutathionylation	GSH	cysteine thiol group	561

Bobalova et. al. J. Agric. Food Chem. 2023

Challenges

- Low stoichiometry to unmodified peptides
 - Enrichment often necessary but not available for most PTMs
- Reduced Ionization
- Fragmentation issues
- Constrained by sequence
- Changes in hydrophobicity
- Search ambiguity

SUMMARY/MAIN POINTS

1. Proteomic analysis by MS can be done by a variety of techniques

2. MS has a lot of different applications in proteomic analysis

3. The type of analysis is dependent upon the experiment

A TRIPLE QUADRUPOLE IS USED TO PERFORM WHICH ANALYSIS?

A. DDA
B. DIA
C. MRM
D. PRM

WHAT IS THE MOST COMMON PROTEASE USED FOR BOTTOM-UP PROTEOMICS?

A. GluC
B. Trypsin
C. LysC
D. Chymotrypsin

WHICH OF THE FOLLOWING DOES PRM HAVE AN ADVANTAGE OVER MRM?

- A. Throughput
- B. Speed
- C. Selectivity
- **D. Assay Development**

THANK YOU