RNA-Seq Analysis in Partek® Flow®

HANDS-ON TRAINING

National Institutes of Health November 2018

Xiaowen Wang

Field Application Specialist

Partek Incorporated

support@partek.com

Login and Project Set-up

- · Open Google Chrome and enter: training-server-url
- · Log in using the username and password given to you
- · This will open to the Partek Flow homepage
- Click **New Project** and enter project name: RNAseq-[username]
- This will create a new project

Notes:		

Experiment Description

- HT29 colon cancer cells exposed to 5-aza drug with 3 different doses
 - 0 µM (Control)
 - 5 µM
 - 10 µM
- Goal: Identify differentially expressed genes between different groups
- mRNA purified and sequenced using Illumina HiSeq (Paired end reads)
- Xu et al. 2013 BMC Bioinformatics (PMID: 23902433)

Notes:			

Data Upload

- · Creating a new project automatically opens up the Data tab
- To upload your data, click Import data>Automatically create samples from files
- Browse to /home/flow/FlowData/RNA-seq
- Select all 18 fastq.gz files and click Create sample
 - Partek Flow recognizes paired-end read data if tagged with (_1 or _R1)

Notes:	

Sample Attribute Assignment

- · Assign sample attributes using a tab-delimited text file
 - Contains table with ID in 1st column, followed by corresponding treatment groups
- Click Assign sample attributes from a file
- In the same folder, select sampleInfo.txt, click Next
- Click Import

This will assign treatment groups to all samples

Notes:			

Analyses Tab Overview

- · Go to the Analyses tab
- · Your first data node, the Unaligned reads node appears
 - All data nodes are circles
- Select the Unaligned reads data node and select Pre-alignment QA/QC
- · Use the default settings and click Finish
- · This will create a new task node in the Analyses tab
 - All task nodes are rectangles
- Clicking any node will bring up a **Context sensitive menu** on the right. Only the tasks that can be performed on that node will appear in this menu

Notes:			

Pre-alignment QA/QC

Notes:

- · Double-clicking on the Pre-alignment QA/QC node opens the task report
- Double-clicking each sample name also shows QA/QC results per sample

Quality score is -10log₁₀Prob

Phred Quality Score	Prob. of error	Base call accuracy
10	1/10	90%
20	1/100	99%
30	1/1000	99.9%
40	1/10000	99.99%

<u></u>			

Pre-analysis Tools: Trim Bases

Base trimming based on quality score

- Select Unaligned reads data node
- Click Trim bases from the Pre-analysis tools section in the toolbox
- · Select Trim based on: Quality score with default settings and click Finish
- This will trim the reads at the 3' end with a Phred quality score less than 20
- This produces your 1st new data node, the **Trimmed reads** data node

Tip: Hover over any 10 to get additional information about a specific option

Notes:		

Aligning RNA-Seq Data

- RNA-Seq data must be aligned using an aligner that supports junction reads
- · A junction read is one that spans two exons
- · STAR is one of several aligners in Flow that you can use
 - Others include TopHat and GSNAP

Notes:		

Alignment

- Select the Trimmed reads data node
- · Click STAR from the Aligners section of the menu
- · Select STAR index:
 - Genome build: Homo sapiens (human) hg19_chr22
 - Index: Whole genome
- Use the default options, click Finish

Notes:			

Post-alignment QA/QC

- Perform Post-alignment QA/QC to asses the quality of the alignment task
- Select Aligned reads data node
- Click Post-alignment QA/QC from the QA/QC section of the menu
- · Use default settings and click Finish
- Click on a sample name to get QA/QC results for that sample name

Notes:	
-	

Quantification to Annotation Model

- Mapping aligned reads to a database of known transcripts
 - This method can be used with any gene or feature annotation
- Select Aligned reads data node
- Click Quantify to annotation model (Partek E/M) from the Quantification section of the menu
- Select RefSeq as the Annotation model and click Finish
 - By default, features with total number of reads less than 10 will be filtered out

Notes:			

Viewing Quantification Results

- Since the RefSeq annotation has both *gene-* and *transcript-level* information, this task will generate 2 data nodes:
 - Gene counts
 - Transcript counts
- · To view the results, double-click the Gene counts data node
- · Data at this level can be downloaded as text file containing count matrix

Filter Features

- Low expression genes maybe indistinguishable from noise, will decrease the sensitivity of DEG detection
- To filter out low expression at the gene level, select the Gene counts data node and click Filter features under the Filtering portion of the menu
- Choose Filter exclude features if Maximum<=10
- · Click Finish

Notes:				
		•	•	•

Normalize Counts

- · Data must be normalized before differential expression analysis
- Select the filtered gene count node and click Normalize counts under the Normalization and scaling portion of the menu
- · Click the Recommended button and select Finish

Notes:				
·	·	<u> </u>	 ·	

Principal Components Analysis

- The principal components analysis (PCA) scatter plot allows you to assess relatedness between samples and identify outliers
- · This can only performed on quantified data
- To create the PCA plot, select the Normalized counts data node, click PCA under the Exploratory analysis portion of the menu, use default settings and select Finish

Notes:		

Differential Expression Analysis

- Select the Normalized counts data node
- Click GSA from the Differential analysis section of the menu
- Select Treatment as an attribute to include in statistical test and click Next
- Setup the following comparisons and click the Add comparison button
 - 5uM vs 0uM
 - 10uM vs 0uM
- Click Finish

Creating a Filtered Gene List

- Select Feature list data node and then click Task report in the toolbox
- To get a sense of how to filter list, view the Volcano plot by clicking
- Under the **Gene list** section, on the **Filter** panel select:
 - FDR step up, then select All contrasts and set it to Less than or equal to 0.05
 - Fold-change, then select All contrasts and set it to From -2 to 2, with Exclude range selected
- At the bottom of the table, click Generate filtered node

Viewing Gene/Transcript Level Results

- Select Feature List data node and then click Task report in the toolbox
- · On the table, under the View column, select
 - .to view the Dot plot
 - Ito see the region in Chromosome View
 - Ito see additional information about the statistical results

Notes:			

Chromosome Viewer

- Select tracks allows you to select different annotations or datasets to view together
- Sample grouping, color and transcript labeling can be edited in the Controls panel
- Search for any gene using the Search box
- Navigate to a genomic coordinate using the **Position** box
- Change and pin any displayed tracks using Track order
- Select any read in the reads pileup track to display additional information about the read

Notes:			

Hierarchical Clustering

- Select any Feature list data node to perform clustering on that list of genes/transcripts
- · For this training, select the Feature list produced after filtering
- Click Hierarchical clustering from the Exploratory analysis section of the menu
- · Click Finish to run hierarchical clustering with default settings
- Select the Hierarchical clustering task node and click on Task Report

Notes:			

Enrichment Analysis

- · Perform gene set enrichment analysis using filtered list of genes
- · Select Feature List data node resulting from the Filtered gene analysis task
- Select Enrichment analysis from the Biological interpretation section of the menu
- · Select GO (Gene Ontology) as Gene set annotation and then click Finish
- Select the Enrichment task node and click on Task Report
- Select to get additional information about each specific pathway

Creating Pipelines

- · Pipelines allows you to repeat the same set of tasks on different datasets
- On the Analyses tab, click Make a pipeline at the lower-left of the page
- Name the pipeline as RNAseq-Pipeline-[username]
- Select **Section name: Pipelines** then select the task nodes (rectangles) to include in the pipeline
- Click Make pipeline to create the pipeline

Click on the task	s above to include in the pipe	line. Then click Make pipeline below.
Pipeline name:	RNAseq-Pipeline-[demo]	Description:
Section name:	Pipelines •	
Make pipeline	Cancel	

Notes:			

Project Sharing

- Add collaboration on the project
- · Import and export project

Notes: _				

Further Training

Self-learning

- Check out http://www.partek.com/flow-resources for documentation and additional resources
- Recorded webinars available on http://www.partek.com/webinars

Regional Technical Support

•	www.	partek.com/PartekSuj	р	port

Notes:		 	