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Prior to dimensionality reduction, genes with highest expression variability
(with enough read counts/above background) are identified.

Typical input: Data normalized with the total expression in each cell, multiplied
by a factor (e.g., 10,000) and log-transformed (not scaled data).

1000-5000 genes with the highest expression variability are selected

In robust workflows (e.g., Seurat and Scanpy), downstream analysis is not very
sensitive to the exact number of selected genes.

Expanded selection can help identify novel clusters with the risk of introducing
additional noise into downstream analysis.

Ideally, gene selection is done after batch correction.

The goal is making sure genes variable only among batches (rather than cell
groups within batches) do not dominate downstream results.
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scRNA-Seq data is inherently low-dimensional.

PCA PCA +t-SNE

Information in the data (expression variability among genes/cells) can
be reduced from the number of total genes (1000s) to a much lower
number of dimensions (10s).

Dimensionality reduction generates linear/non-linear combinations of
gene expression vectors for clustering & visualization.

. Class
20 10 0 10 20 Bl benign
UMAP .

. ¢ malignant e Major dimensionality reduction techniques for scRNA-Seq:

3 o t

. o ®3 1 — Principal component analysis (PCA)

X L .f";: — Most commonly used ones: UMAP and t-SNE (inputs: PCA

. @ ) Ql results)

1 t — UMAPs typically preserve more of global structure with shorter

10 0 10 6 '3 0 3 run times

Vi — Other alternatives: Diffusion Maps & force-directed layout with

k-nearest neighbors
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The effect of regressing out cell cycle phase scores

on PCA results
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What if majority of variance in top PCs are dominated by a specific set of genes that are not of
biological interest?
Example: Cell cycle heterogeneity in a murine hematopoietic progenitor data set.

Scores computed for each phase based on canonical markers.

Each cell mapped to a cell cycle phase (highest scoring phase)

To differentiate between cycling and non-cycling cells, | G2/M-S| score difference is regressed out.
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t-SNE can capture * One of the two most commonly used nonlinear dimensionality reduction techniques
capture non-linear
dependencies in the

* Used for embedding high-dimensional data for onto a low-dimensional space of 2 or 3 dimensions
data, PCA can’t.

e o— * Can reveal local data structures efficiently without overcrowding

* t-SNE creates a probability distribution using the Gaussian distribution (defines the relationships
between points in high-dimensional space).

% q. . . . o . . . . . .
RS ;j:’-.'ﬂ! P . e * Uses the Student t-distribution to recreate the probability distribution in low-dimensional space.
8 0 e WYL 8 &”. . 8
S 8 % v. . S ."3‘,5‘ 2 s aen®
PR A 5 SR - .,'~ »_ - W
S L Fag | e, | o2
o L = * This prevents the crowding problem (points tend to get crowded in low-dimensional space/curse of
- Perplexity=10 Perplexity=30 Perplexity=50 d i m e n S | 0 n a I |ty) .
0 : ﬂ .
R . TS S P i ings directly using gradi
i y%‘* .g‘., tv-“;; ®y * t-SNE optimizes the embeddings directly using gradient descent.
§ 10 e \‘. '%9‘ i § : § I
o Fg M L e o
m:iy:m —— epriyeso  Cost function is non-convex with risk of getting stuck in local minima (t-SNE avoids poor local minima).
) -
A q&f’g* E awa® g - on * Perplexity parameter serves as a knob that sets the number of nearest neighbors
IR S O S Bt
P WURE Mt E - ® ¥ . , . e
L 2 t-SNE tries to recreate a low dimensional space that follows the probability distribution
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Parplsity=10 erplexity=30 Perplxity=50 dictating the relationships between various neighboring points in higher dimensions
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) ";fmgh;,‘;s,;s RSO = 20 "‘"Eighb:_rs - e UMAP is another manifold learning technique for dimensionality reduction
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= P {;‘ . s ) T, e Four major UMAP parameters control its topology
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) — Y et . . .
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£ R Nivede : : :
g ‘*Z‘i‘f-’;' 5 L e High values prevent packing points together (clusters get closer)

e High values preserves broad topological structure at the expense of finer
topological details
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/ ' UMAP distance metric (cell to cell)

Number of UMAP dimensions

e The metric used to measure distance between —
cells in the input space
¢ Reduced data can be embedded k
into 2, 3, or higher dimensions e Examples: Euclidean, Manhattan, and Minkowski Maghattan ,Z"xi — Vi
Cosine similarity & P /S | C | k v
osine similarity & Pearson/spearman e Angular metric: Cosine similarity  Minkowski v —

. . . . Xi =V
correlation are scale invariant (driven by - ;q )q
relative differences between cells, robust '

to library or cell size differences) e Pearson and Spearman correlation based metrics



Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Molecular systems biology (2019).
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Diffusion map: Each DC (diffusion map
dimension) highlights the heterogeneity
. of a different cell population.
Connectivity ~ probability of walking
between the points in one step of a
random walk (diffusion)
N
o
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=
,\ Various dimensionality
Sl reduction methods applied
Force-directed graph layout via ForceAtlas2 to mouse intestinal

Nodes repulse each other like charged particles,

epithelium data
while edges attract their nodes, like springs.

Count depth
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Unsupervised machine learning problem
— Input: distance matrix (cell-cell distances)
— Output: Cluster membership of cells

Cells grouped based on the similarity of their gene expression profiles
— Distance measured in dimensionality-reduced gene expression space (scaled data)

k-means clustering divides cells into k clusters
— Determines cluster centroids
— Assigns cells to the nearest cluster centroid

— Centroid positions iteratively optimized (MacQueen, 1967).

P s MnGmn, mmy Smmmmmseess
‘e o 5 — Input: number of expected clusters (heuristically calibrated)
‘ 0o v
" | e ’ | ® ’ e k-means can be utilized with different distance metrics
""""""""" 6t ' . l:: ‘ e Alternatives to standard Euclidean distance:
» = = r » — Cosine similarity (Haghverdi et al, 2018)
| o8 o’ = - — Correlation-based distance metrics (Kim et al, 2018)
: o e}

o § ° — SIMLR method learns a distance metric using Gaussian kernels (Wang et al, 2017)

oooooooooooooooooooooooo

Interactive process



for finding clusters

Community detection methods utilize graph
representation derived from k-nearest
neighbors (kNN)

Then, the modularity function is optimized to
determine clusters.

Typical range of k is 5-100

Densely sampled regions of expression space
are represented as densely connected regions
of the graph.

Community detection is often faster than
clustering as only neighboring cell pairs have to
be considered as belonging to the same cluster.

Optimized modularity function includes a
resolution parameter, which allows the user to
determine the scale of the cluster partition.

: : : : oy Frederick
Using community detection & modularity optimization National

Laboratory

for Cancer Research
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Number of clusters is a function of the resolution parameter.

* Multiple resolution values can be explored to see the interplay between
resolution and UMAP or t-SNE plots for a given data set.

* Biological context can be used for guidance.

* Examples: Expected number of major cell types or subtypes.

&Y @ .
* |solating a cluster to identify sub-clusters can generate useful biological
3 ® o @ o insights (e.g., differential expression between cellular subtypes in a
cluster).
Clustering Resolution Cluster Prop Cell Count (log) Cluster Size

©0®03%06e09e12 os=—o0z | INGEIP
~+06=10 35 40 45 ‘ 100 ‘ 200 300

e If cluster-specific markers for multiple clusters overlap (e.g., ribosomal
genes), these clusters can be merged without losing much information
regarding cell subtypes.



Clustering methods for scRNA-Seq data
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Name

scanpy*
Seurat (latest)*
PhenoGraph?
SC3%

SIMLR*

CIDR#
GiniClust”™
pcaReduce?
Tasicetal.””
TSCAN*
mpath*

BackSPINZ

RacelD?, RacelD2'",

RacelD3
SINCERA®

SNN-Clig®

Year
2018
2016
2015
2017

2017

2017

2016

2016

2016

2016

2016

2015

2015

2015

2015

Method type
PCA + graph-based

PCA +k-means

Data-driven dimensionality
reduction +k-means

PCA + hierarchical

DBSCAN

PCA +k-means + hierarchical
PCA + hierarchical

PCA +Gaussian mixture model
Hierarchical

Biclustering (hierarchical)
k-Means

Hierarchical

Graph-based

Strengths
Very scalable

High accuracy through consensus,
provides estimation of k

Concurrent training of the distance
metric improves sensitivity in noisy
data sets

Implicitly imputes dropouts when
calculating distances

Sensitive to rare cell types
Provides hierarchy of solutions

Cross validation used to perform
fuzzy clustering

Combines clustering and
pseudotime analysis

Combines clustering and
pseudotime analysis

Multiple rounds of feature selection
improve clustering resolution

Detects rare cell types, provides
estimation of k

Method is intuitively easy to
understand

Provides estimation of k

Limitations

May not be accurate for small data sets

High complexity, not scalable

Adjusting the distance metric to make
cells fit the clusters may artificially
inflate quality measures

Not effective for the detection of large
clusters

Very stochastic, does not provide a
stable result

High complexity, no software package
available

Assumes clusters follow multivariate
normal distribution

Uses empirically defined thresholds
and a priori knowledge

Tends to over-partition the data

Performs poorly when there are no rare
cell types

Simple hierarchical clustering is used,
may not be appropriate for very noisy
data

High complexity, not scalable

Kiselev, Vladimir Yu, Tallulah S. Andrews, and
Martin Hemberg. "Challenges in unsupervised
clustering of single-cell RNA-seq data."
Nature Reviews Genetics (2019).

Each method with own strengths & limitations.

Seurat, Phenograph, and scanpy are the most
popular methods (only limitation: accuracy for
small data sets)

Other methods are mainly limited in their
scalability, stability (stochastic), and
ability to handle very noisy data.
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Differential expression approaches for marker identification: Classifier based approach for marker identification:
* Wilcoxon rank sum test and student’s t-test o Classifiers built with normalized expression levels (one classifier
e Logistic regression per gene).
e DESeq2: Negative binomial generalized linear models (read counts) & Wald e Genes ranked with respect to their ability of each gene to
test for significance. distinguish between two groups of cells (e.g. KO vs WT, cluster 1
e MAST : GLMs in which cellular detection rate is treated as a covariate vs 2, or cluster 1 vs all clusters).
e GLMs are flexible and do not make assumptions (homogenous distributions of * Area under each ROC curve represents the predictive power of
residuals/fitting errors or normally distributed variances). the gene.

Butler et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature biotechnology. 2018 May;36(5):411.
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A B
100 N e *o W23 . .
g’ “; e e Accounts for the fact that the number of cells expressing a gene varies
g" 2 g of from gene to gene.
5’ F 5 -
s s 2 et * The fraction of genes expressed, or cellular detection rate (CDR) correlates
o T with top PCs of of variation.
g
2 "‘ :";-:‘?"4-' 0] ., .
2 =33 2 e
s g zl“‘ S Sl R . . . .
2=l % ria 2 | g * Modeling CDR as a covariate controls for differences in abundance due to
= A g cell size and other extrinsic biological and technical effects.
*2 Cellular Deladion' Rate %;lulnroé)ssmcﬁ(;: Ramd,
Diff tial E . . . .
mm%%m * MAST has been tested against differential expression methods developed
— B condition for bulk RNA-Seq (limma, edgeR, and DESeq) in Finak et al (2015).
o < R R et ]
= SRS AT e s R g B . e
e s 3 " * MAST was found to generate GO enrichment profiles biologically more
e L — o = ] 0 . . . . .
el S T e T e TR relevant to mucosal-associated invariant T cell activation and LPS-
e el el T — - - . . el . .
."'::;?" P e e e e, M stimulated myeloid dendritic cells in Finak et al (2015).
A e g;_;._'_-; el - - = ;:.F:'-:
5o == gAY Finak et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing

'l
!

e Rt o Y Y heterogeneity in single-cell RNA sequencing data. Genome biology. 2015 Dec;16(1):278.
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Cluster 1 vs Cluster 2 ROC. CORVE
Can the expression level Positive class:C1, Negative class:C2 1o FEERfEcT CLASIFER - 4@7
of a gene correctly predict the . ‘
luster membership at True positive (TP) o8=
. ¢ ) P True membership: C1, Prediction: C1 =
different expression thresholds? s
False positive (FP) ué 26T
True membership: C2, Prediction: C1 3
aoy=-
W
&
* ldentifying “markers” of clusters using ROC analysis. T o2-
* For each gene, a classifier built on that gene alone to classify :
between two groups of cells. R : : : : :
o ) 0.0 02 ou 0.6 0.8 10
* Classifier performance evaluated using AUC. FALSE POSITIVE RATE
« TP, FP, TN, and FN are computed at different expression thresholds.
* An AUC value of 1 means that expression values for this gene alone predcied— | Clacs pos Class_neg . TP
can perfectly classify the two groupings. M TPR (sensitivity) = 55—+
. L . . Class_pos TP FN
* All cells in C1 exhibit higher expression than all cells in C2 (AUC=1). FPR(1 ficity) FP
. . . L. Class_neg FP TN -speciticity) =
* Avalue of 0.5 implies that the gene has no predictive power to IN+FP

classify the two clusters.
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“positive” test cut-off value

True negatives

True positives
Cluster 1 vs Cluster 2
Positive class:C1, Negative class:C2

True positive (TP)
True membership: C1, Prediction: C1

False positive (FP)
True membership: C2, Prediction: C1

False negatives (i.e. those
members of the “positive”
population who tested negative
because their test results
happened to be lower than the
positive cut-off threshold)

False positives (i.e. those
members of the “negative”
population who tested positive
because their test results
happened to be higher than the
positive cut-off threshold)



Frederick

- - - - - National
A typical differential expression analysis output L
aboratory
for Cancer Research
p_val avg_logFC pct.1 pct.2 p_val_adj Average /og EC
Ratio of expression in
_ _ S100A9 0 3.860873 0.996 0.215 0 Ioa-space

Comparing gene expression g-sp

in different cell groups: S100A8 0 3.796640 0.975 0.121 0 pct.1= percent of cells in
Cluster 1 in which the

Cluster 1 vs Cluster 2 LGALS2 0 2.634295 0.908 0.059 0 gene is detected

Cluster 1 vs all other clusters

Cluster1l_KO vs Clusterl WT FCNT 0 2.352693 0.952 0.151 0 pct.2=percent of cells in

- — Cluster 2
CD14 0 1.951644 0.667 0.028 0
p_val_adj=FDR
TYROBP 0 2.111879 0.994 0.265 0
=5 . . . . . Classifier based marker
1A g Tips for marker identification dentification: AUC values
i "l T m . replace the p-values
§ o e Marker identification can take time with thousands of cells and genes

Prefiltering cells and genes can reduce the computational time significantly

Genes rarely detected in either group of cells, are not likely to be differentially expressed

Genes with small fold-change can also be excluded

Typically, only upregulated genes (>1 FC) are relevant for cluster-specific marker discovery

0
logFC



Visualization with violin plots, heatmaps, and ridgeline plots
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Violin plots show
smoothed probability
density distributions of
expression
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Expression Level

Ridgeline plots visualize

finer details (bimodality) of
expression distributions

LYz

CCLS

IL32 Identity
Naive CD4 T
PTPRCAP Memory CD4 T
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B

cDsT
FCGR3A+ Mono
NK

* DC

FCGR3A
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N

® Platelet

Heatmaps visualize significant expression differences
between clusters through contrasting colors

Subsampling of cells: choosing a subset of the whole cell
population to avoid having to draw extremely large heatmaps
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Platelet{ @ PY s PTPRCAP
el P Pér;ent Expressed . %
NK o o o o ; ;g 10
5. FCGR3A+ Mono [ ] ® 75 6
= ® 100 o~ i 5
‘5 CD8 T [ ] o O . o 5 l4
b’ Average Expression < 3
2 B e} '2 % 0 ! %
CD14+ Mono [ J 1 !-"q. .;h;r,.,g‘\. 0
Memory CD4 T { 0 e} ° - ‘5‘4;2*,";?'3
Naive CD4 T4 o) ° ‘5.{% 4
& «&&" é\&&‘ g & 10 8 AP 1 10
Features
Dot plots show the average expression levels Feature plots
» Visualizing scaled vs normalized expression levels « Visualizing how the expression of the gene is

distributed among cells in the reduced space

» Scaled data typically magnifies the differences
between clusters « Can choose cells to plot, reduction method to
use (PCA, t-SNE, or UMAP), or a quantile

» Size of dots proportional to the percentage of cells expression cut-off.

that express the gene
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Feature plots split by different Feature plots split by different

experimental conditions experimental conditions & clusters
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Cluster—specific co-expression of genes can provide insights

Violin plots split by clusters . . N : :
P PIE DY regarding activation or inhibition of pathways in cell subpopulations

and experimental conditions
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‘ nervous system development (32) - .
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cell cycle (77) ' @ o038
cell cycle process (65) - [ ) @ 10
protein phosphorylation (62) - .
cell cycle phase (58) - .
N mitotic cell cycle (56) - [ )
response to stress (181) - @ o
-10 -5 0 5 negative regulation of cellular process (178) - @ o
logFC response to chemical stimulus (178) - @ o
. . small molecule metabolic process (159) - @ o
log2FC vs. significance (-log10(p-value)) process (199

C1 C2 C3 C4 C5 C6 C7 C8
https://galaxyproject.github.io/training-material/topics/transcriptomics Cluster-specific enriched pathways or GO terms
/tutorials/rna-seqg-viz-with-volcanoplot/tutorial.html

(circle size ~ fraction of cluster-specific markers in the enriched pathway)
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» Feature (gene) selection
— ldentifying genes with high expression variance
+ Dimensionality reduction (PCA, UMAP, and t-SNE)

100 —

«  Clustering 5
— K-nearest neighbors, community detection, and modularity H N
optimization :
- Marker gene identification le-02  1es01  1e+04
— Differential expression and classifier based approaches eacs
*  Visualization . PTPRCAP

— Violin plots, dot plots, heatmaps, volcano plots, and
scatter plots with the t-SNE/UMAP coordinates of cells
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