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Feature (gene) selection

• Prior to dimensionality reduction, genes with highest expression variability 
(with enough read counts/above background) are identified.

• Typical input: Data normalized with the total expression in each cell, multiplied 
by a factor (e.g., 10,000)  and log-transformed (not scaled data).

• 1000-5000 genes with the highest expression variability are selected

• In robust workflows (e.g., Seurat and Scanpy), downstream analysis is not very 
sensitive to the exact number of selected genes.

• Expanded selection can help identify novel clusters with the risk of introducing 
additional noise into downstream analysis.

• Ideally, gene selection is done after batch correction.

• The goal is making sure genes variable only among batches (rather than cell 
groups within batches) do not dominate downstream results.



Dimensionality reduction of scRNA-Seq data
• scRNA-Seq data is inherently low-dimensional. 

• Information in the data (expression variability among genes/cells) can 
be reduced from the number of total genes (1000s) to a much lower 
number of dimensions (10s).

• Dimensionality reduction generates linear/non-linear combinations of 
gene expression vectors for clustering & visualization.

• Major dimensionality reduction techniques for scRNA-Seq: 

– Principal component analysis (PCA)
– Most commonly used ones: UMAP and t-SNE (inputs: PCA 

results)
– UMAPs typically preserve more of  global structure with shorter 

run times
– Other alternatives:  Diffusion Maps & force-directed layout with 

k-nearest neighbors 



Scaling normalized data & performing PCA

• PCA is performed on the scaled data.

• Scaled data represented as z-scores.

• Mean=0 & variance=1 for each gene.

• z-scoring makes sure that highly-expressed 
genes do not dominate.

Elbow plots show the number 
of PCs to include moving forward
(URD tool in R can automatically

detect the elbow). Jackstraw analysis generates a  p-value 
(significance) of each PC 1% of the data is 
randomly permuted, PCA is rerun, ‘null 
distribution’ of gene scores constructed 
(these steps repeated many times). 

‘Significant’ PCs have a strong enrichment 
of low p-value genes.

PC score plots show genes 
that dominate each PC

PC heatmaps visualize 
anti-correlated gene sets

(yellow: higher expression)



The effect of regressing out cell cycle phase scores 
on PCA results 

• What if majority of variance in top PCs are dominated by a specific set of genes that are not of 
biological interest?

• Example: Cell cycle heterogeneity in a murine hematopoietic progenitor data set.

• Scores computed for each phase based on canonical markers.

• Each cell mapped to a cell cycle phase (highest scoring phase)

• To differentiate between cycling and non-cycling cells, |G2/M-S| score difference is regressed out.

Nothing regressed out
Cells separated with respect 

to cell cycle phase 

G1, G2/M and S phase 
scores regressed out

Difference between  G2/M  & 
S phase scores regressed out



t-SNE: t-Distributed Stochastic Neighbor Embedding
• One of the two most commonly used nonlinear dimensionality reduction techniques

• Used for embedding high-dimensional data for onto a low-dimensional space of 2 or 3 dimensions

• Can reveal local data structures efficiently without overcrowding

• t-SNE creates a probability distribution using the Gaussian distribution (defines the relationships 
between points in high-dimensional space).

• Uses the Student t-distribution to recreate the probability distribution in low-dimensional space. 

• This prevents the crowding problem (points tend to get crowded in low-dimensional space/curse of 
dimensionality).

• t-SNE optimizes the embeddings directly using gradient descent. 

• Cost function is non-convex with risk of getting stuck in local minima (t-SNE avoids poor local minima).

• Perplexity parameter serves as a knob that sets the number of nearest neighbors

t-SNE can capture 
capture non-linear 

dependencies in the 
data, PCA can’t.

t-SNE tries to recreate a low dimensional space that follows the probability distribution 
dictating the relationships between various neighboring points in higher dimensions



• UMAP is another manifold learning technique for dimensionality reduction 
• Four major UMAP parameters control its topology

Number of  neighbors per cell on the UMAP
• Balances local vs global structure in the data by constraining the size of the 

local neighborhood
• Low values force UMAP to concentrate on very local structure (potentially to 

the detriment of the big picture), 
• Large values will push UMAP to look at larger neighborhoods of each point 

when estimating the manifold structure of the data, losing fine detail 
structure 

Minimum distance between cells on the UMAP
• Controls how tightly cells are packed together
• Effective minimum distance between embedded points
• Low values lead to clumped nearby cells (finer topological structure)
• High values prevent packing points together (clusters get closer) 
• High values preserves broad topological structure at the expense of finer 

topological details

UMAP: Uniform Manifold Approximation and Projection 



Number of UMAP dimensions 

• Reduced data can be embedded 
into 2, 3, or higher dimensions

UMAP distance metric (cell to cell)

• The metric used to measure distance between 
cells in the input space

• Examples: Euclidean, Manhattan, and Minkowski

• Angular metric: Cosine similarity 

• Pearson and Spearman correlation based metrics

More UMAP parameters

Cosine similarity & Pearson/Spearman 
correlation are scale invariant (driven by 
relative differences between cells, robust 

to library or cell size differences)



Diffusion map: Each DC (diffusion map 
dimension) highlights the heterogeneity 
of a different cell population.

Connectivity  ~ probability of walking 
between the points in one step of a 
random walk (diffusion)

Force-directed graph layout via ForceAtlas2
Nodes repulse each other like charged particles, 

while edges attract their nodes, like springs.

Various dimensionality
reduction methods applied 

to mouse intestinal 
epithelium data

Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Molecular systems biology (2019).



Clustering cells with similar expression profiles together

• Unsupervised machine learning problem 
– Input: distance matrix (cell-cell distances)
– Output: Cluster membership of cells

• Cells grouped based on the similarity of their gene expression profiles
– Distance measured in dimensionality-reduced gene expression space (scaled data)

• k-means clustering divides cells into k clusters 
– Determines cluster centroids 
– Assigns cells to the nearest cluster centroid
– Centroid positions iteratively optimized (MacQueen, 1967).
– Input: number of expected clusters (heuristically calibrated)

• k-means can be utilized with different distance metrics
• Alternatives to standard Euclidean distance: 

– Cosine similarity (Haghverdi et al, 2018) 
– Correlation-based distance metrics (Kim et al, 2018)
– SIMLR method learns a distance metric using Gaussian kernels (Wang et al, 2017)



Using community detection & modularity optimization 
for finding clusters

• Community detection methods utilize graph 
representation derived from k-nearest 
neighbors (kNN)

• Then, the modularity function is optimized to 
determine clusters.

• Typical range of k is 5-100

• Densely sampled regions of expression space 
are represented as densely connected regions 
of the graph.

• Community detection is often faster than 
clustering as only neighboring cell pairs have to 
be considered as belonging to the same cluster.

• Optimized modularity function includes a 
resolution parameter, which allows the user to 
determine the scale of the cluster partition.

k=5

k=10



Number of clusters and biological context
• Number of clusters is a function of the resolution parameter.

• Multiple resolution values can be explored to see the interplay between 
resolution and UMAP or t-SNE plots for a given data set.

• Biological context can be used for guidance.

• Examples: Expected number of major cell types or subtypes.

• Isolating a cluster to identify sub-clusters can generate useful biological 
insights (e.g., differential expression between cellular subtypes in a 
cluster).

• If cluster-specific markers for multiple clusters overlap (e.g., ribosomal 
genes), these clusters can be merged without losing much information 
regarding cell subtypes.



Clustering methods for scRNA-Seq data

Kiselev, Vladimir Yu, Tallulah S. Andrews, and 
Martin Hemberg. "Challenges in unsupervised 
clustering of single-cell RNA-seq data." 
Nature Reviews Genetics (2019).

Each method with own strengths & limitations.

Seurat, Phenograph, and scanpy are the most
popular methods  (only limitation: accuracy for 
small data sets)

Other methods are mainly limited in their 
scalability, stability (stochastic), and
ability to handle very noisy data.



Differential expression approaches for marker identification:
• Wilcoxon rank sum test and student’s t-test
• Logistic regression
• DESeq2: Negative binomial generalized linear models (read counts) & Wald 

test for significance.
• MAST : GLMs in which cellular detection rate is treated as a covariate
• GLMs are flexible and do not make assumptions (homogenous distributions of 

residuals/fitting errors or normally distributed variances).

Marker gene identification

Classifier based approach for marker identification:
• Classifiers built with normalized expression levels (one classifier 

per gene).  
• Genes ranked with respect to their ability of each gene to 

distinguish between two groups of cells (e.g. KO vs WT, cluster 1 
vs 2, or cluster 1 vs all clusters). 

• Area under each ROC curve represents the predictive power of 
the gene.

Butler et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature biotechnology. 2018 May;36(5):411.



MAST (Model-based Analysis of Single-cell Transcriptomics)

• Accounts for the fact that the number of cells expressing a gene varies 
from gene to gene.

• The fraction of genes expressed, or cellular detection rate (CDR) correlates 
with top PCs of of variation.

• Modeling CDR as a covariate controls for differences in abundance due to 
cell size and other extrinsic biological and technical effects.

• MAST has been tested against differential expression methods developed 
for bulk RNA-Seq (limma, edgeR, and DESeq) in Finak et al (2015).

• MAST was found to generate GO enrichment profiles biologically more 
relevant  to mucosal-associated invariant T cell activation and LPS-
stimulated myeloid dendritic cells in Finak et al (2015).

Finak et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing 
heterogeneity in single-cell RNA sequencing data. Genome biology. 2015 Dec;16(1):278.



• Identifying “markers” of clusters using ROC analysis.
• For each gene, a classifier built on that gene alone to classify 

between two groups of cells.

• Classifier performance evaluated using AUC. 
• TP, FP, TN,  and FN are computed at different expression thresholds.
• An AUC value of 1 means that expression values for this gene alone 

can perfectly classify the two groupings.
• All cells in C1 exhibit higher expression than all cells in C2 (AUC=1).
• A value of 0.5 implies that the gene has no predictive power to 

classify the two clusters.

Cluster 1 vs Cluster 2
Positive class:C1, Negative class:C2

True positive (TP)
True membership: C1, Prediction: C1

False positive (FP)
True membership: C2, Prediction: C1

Can the expression level 
of a gene correctly predict the 

cluster membership at 
different expression thresholds?

Classifier based-approaches for marker identification



A closer look at the ROC calculations

Cluster 1 vs Cluster 2
Positive class:C1, Negative class:C2

True positive (TP)
True membership: C1, Prediction: C1

False positive (FP)
True membership: C2, Prediction: C1



A typical differential expression analysis output

• Marker identification can take time with thousands of cells and genes
• Prefiltering cells and genes can reduce the computational time significantly
• Genes rarely detected in either group of cells, are not likely to be differentially expressed
• Genes with small fold-change can also be excluded
• Typically, only upregulated genes (>1 FC) are relevant for cluster-specific marker discovery 

Tips for marker identification

Average log FC
Ratio of expression in 
log-space

pct.1= percent of cells in 
Cluster 1 in which the 
gene is detected

pct.2=percent of cells in 
Cluster 2

p_val_adj=FDR

Comparing gene expression 
in different cell groups:

Cluster 1 vs Cluster 2
Cluster 1 vs all other clusters
Cluster1_KO vs Cluster1_WT 

Classifier based marker 
identification: AUC values 
replace the p-values



Visualization with violin plots, heatmaps, and ridgeline plots

Subsampling of cells: choosing a subset of the whole cell 
population to avoid having to draw extremely large heatmaps

Violin plots show
smoothed probability

density distributions of
expression

Ridgeline plots visualize
finer details (bimodality) of

expression distributions

Heatmaps visualize significant expression differences
between clusters through contrasting colors



Visualization with dot plots and feature plots

Dot plots show the average expression levels

• Visualizing scaled vs normalized expression levels

• Scaled data typically magnifies the differences 
between clusters

• Size of dots proportional to the percentage of cells 
that express the gene 

Feature plots 

• Visualizing how the expression of the gene is 
distributed among cells in the reduced space

• Can choose cells to plot, reduction method to 
use (PCA, t-SNE, or UMAP), or a quantile 
expression cut-off. 



Visualization with dot plots and feature plots

Feature plots split by different
experimental conditions & clusters

Feature plots split by different 
experimental conditions



More ways to visualize cluster-specific expression patterns

Visualizing co-expression 
among gene pairs 

Changes in average 
expression in different 

clusters or varying 
experimental conditions

Cluster–specific co-expression of genes can provide insights 
regarding activation or inhibition of pathways in cell subpopulationsViolin plots split by clusters 

and  experimental conditions



Visualization of differential expression & enrichment results

Volcano plot
Dot plot
(Clusterprofiler in R) 

https://galaxyproject.github.io/training-material/topics/transcriptomics
/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html

log2FC vs. significance (-log10(p-value))

Cluster-specific enriched pathways or GO terms
(circle size ~ fraction of cluster-specific markers in the enriched pathway) 



Wrapping-up

• Feature (gene) selection

– Identifying genes with high expression variance

• Dimensionality reduction (PCA, UMAP, and t-SNE)

• Clustering

– K-nearest neighbors, community detection, and modularity 
optimization

• Marker gene identification

– Differential expression and classifier based approaches

• Visualization

– Violin plots, dot plots, heatmaps, volcano plots, and 

scatter plots with the t-SNE/UMAP coordinates of cells

Acknowledgements: 

NIAID Collaborative Bioinformatics Resource (NCBR)

Justin Lack (Lead), Arun Boddapati, Susan Huse, Vasu Kuram, Tovah Markowitz, Paul Schaughency


