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ChIP-Seq Data Analysis: 
Probing DNA-Protein Interactions
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Schedule
9:30 - 10:15 Introduction to ChIP-Seq
10:15 - 10:30 Q&A
10:30 - 11:20 QC, Alignment, and Visualization
11:20 - 12:00 Peak Calling and Follow Up Analysis
12:00 - 12:30 Q&A

1

ChIP-seq Considerations

QC, Alignment, and Visualization

Peak Calling and Follow Up Analysis
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QC, Alignment, and Visualization

QC and Alignment

Visualization

Pipelines
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Cloud-based

ChIP-seq Pipelines

CCBR/NCI

…

• Cost (Ingress/Egress/Compute/Storage)
• Secure (FISMA-Moderate)
• Share-able outside NIH
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Biowulf-based
ChIP-seq Pipelines

CCBR/NCBR

Genomes supported
• hg19
• hg38
• mm9
• mm10
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QC, Alignment, and Visualization

Pipelines

Visualization

QC and Alignment
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Pipeline: Basic bioinformatics concepts

Genome

Sequencing Reads

PCR Duplicates

Base quality trimming 
+

Adapter removal

Alignment or “Mapping” Deduplication or 
Duplicate removal

CutAdapt BWA Picardtools or MACS2
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Blacklists

• ChIP-Seq blacklists contain 
genomic regions that 
frequently produce artifacts 
and noise in ChIP-Seq 
experiments.

• Remove reads to these 
regions to improve signal-
to-noise ratio

• Reference genome specific 
lists are calculated in a 
manually curated + 
automated manner
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Blacklists

“A comprehensive collection of signal artifact blacklist regions in the human genome”, by Anshul Kundaje
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“BirdsEye” View

“Pipeline”
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General Stats

MultiQC report

Key parameters:
• Number of reads
• GC
• Mapping percentage
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Sequence-related metrics à FASTQC

MultiQC report
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Sequence-related metrics à FASTQC

MultiQC report
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Sequence-related metrics à FASTQC
MultiQC report

Other metrics:
• Over-represented 

sequences
• Adapter Content

14
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FastQ screen

MultiQC report:
Contaminants

Kraken + Krona
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Fingerprint plot

MultiQC report

• Answers the question “Did my ChIP work?”
• Input close to 450 as possible
• Input above IP
• Broad histones à farther away from 450

16
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ChIPSeq specific metrics

MultiQC report

Quantifying library complexity
• NRF: Number of distinct mapping reads after 

removing duplicates/total number of reads

Quantifying library complexity
• NRF: Number of distinct mapping reads after 

removing duplicates/total number of reads
• PBC1: Number of genomic locations where 

exactly one read maps uniquely/number of 
distinct genomic locations to which one read 
maps uniquely

Quantifying library complexity
• NRF: Number of distinct mapping reads after 

removing duplicates/total number of reads
• PBC1: Number of genomic locations where 

exactly one read maps uniquely/number of 
distinct genomic locations to which one read 
maps uniquely

• PBC2: Number of genomic locations where only 
one read maps uniquely/number of genomic 
locations where two reads map uniquely

Quantifying library complexity
• NRF: Number of distinct mapping reads after 

removing duplicates/total number of reads
• PBC1: Number of genomic locations where 

exactly one read maps uniquely/number of 
distinct genomic locations to which one read 
maps uniquely

• PBC2: Number of genomic locations where only 
one read maps uniquely/number of genomic 
locations where two reads map uniquely

Quantifying CrossCorrelation
• NSC: cross-correlation value/minimum cross-

correlation

Quantifying library complexity
• NRF: Number of distinct mapping reads after 

removing duplicates/total number of reads
• PBC1: Number of genomic locations where 

exactly one read maps uniquely/number of 
distinct genomic locations to which one read 
maps uniquely

• PBC2: Number of genomic locations where only 
one read maps uniquely/number of genomic 
locations where two reads map uniquely

Quantifying CrossCorrelation
• NSC: cross-correlation value/minimum cross-

correlation
• RSC: (cross-correlation value - minimum cross-

correlation) / (correlation at phantom peak -
minimum cross-correlation)

• Qtag: Overall Quality score

17

Library Complexity

ENCODE guidelines

18
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Cross correlation

TFBS

size 
selected 
fragments

sequencing 
reads

strandshift

Phantom Peak

ChIP Peak

Landt et al 2012. Genome Res

19

Sample 1

Sample 2

Sample 3

Cross correlation

NSC à Normalized Strand Co-efficient
RSC à Relative Strand Co-efficient
Qtag à is a thresholded version of RSC (-2:veryLow, -1:Low, 0:Medium, 1:High, 2:veryHigh)

20
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Preseq

MultiQC report:
More library complexity

• Answers the question: Do 
“more” sequences mean “new” 
sequences?

• Inputs are expected to be closer 
to the dotted line than 
corresponding IP-ed sample

21

Deeptools PCA

MultiQC report:
inter-sample comparison

• “Inputs” are generally together
• Verify replicate concordance

Deeptools Heatmap

22
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Deeptools correlation plot

MultiQC report:
inter-sample comparison
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Deeptools metagene heatmap

Assess Enrichment

• X-axis: Normalized to all protein-coding 
genes

• Y-axis: Normalized to 1x genome-wide 
coverage

• Expect enrichment around TSS for IP-ed 
samples

INPUTS IP-ed samples

24
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QC, Alignment, and Visualization

QC and Alignment

Visualization

Pipelines

Duplication

BigWigs

Normalization

25

Duplication

Landt et. al. Genome Res. 2012

26
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Do you need to remove duplicates?

No DuplicatesAll reads

27

Two ways to remove duplicates

• Partial duplicate removal
• Uses a binomial distribution of read 

numbers across the entire genome 
and removes the upper quantile.

• Remove all duplicates
• If reads map to the same start and 

end position, remove all but one of 
the reads.

Wikipedia. 2020.

28
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Effect of partial/total duplicate removal

No Duplicates PartialAll reads

29

Effect of partial/total duplicate removal

No Duplicates Partial

30
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QC, Alignment, and Visualization

QC and Alignment

Visualization

Pipelines

Duplication

BigWigs

Normalization

31

BigWig generation: 
Read extension for single end sequencing data

Wilbanks et. al. PLOS ONE. 2010.

32
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Calculating the read extension

33

QC, Alignment, and Visualization

QC and Alignment

Visualization

Pipelines

Duplication

BigWigs

Normalization

34
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Normalization for library size

• RPKM:
• reads per kilobase per million reads
• defined as: 

• RPKM (per bin) = # of reads per bin / (# of mapped reads (in millions) * bin length (kb))

• RPGC:
• reads per genomic content
• used to normalize reads to 1x depth of coverage
• defined as: 

• RPGC = (total # of mapped reads * fragment length) / effective genome size

35

Input Subtracted Visualization

Input

ChIP

Subtraction

36
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ChIP-seq Considerations

QC, Alignment, and Visualization

Peak Calling and Follow Up Analysis

37

Peak Calling and Follow Up Analysis

Different Types of Peaks

Peak Calling

Annotations

Motifs

Differential Binding

38
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Proteins bind in different ways

• Transcription factor
• Tight, high peaks

• RNA Pol II
• Enriched at TSS but bound throughout the gene 

body

• Histones
• Some are sharper and located near TSS
• Some are broader and spread out across the 

length of active or inactive genes

BROAD PEAKS NARROW PEAKS

H3F3A H2AFZ

H3K27me3 H3ac

H3K36me3 H3K27ac

H3K4me1 H3K4me2

H3K79me2 H3K4me3

H3K79me3 H3K9ac

H3K9me1

H3K9me2

H4K20me1

39

Proteins bind in different ways

Park et al 2009. Nat Rev Genet
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What causes these different shapes?

Wilbanks et al 2010. PLOS ONE

41

Peak Calling and Follow Up Analysis

Different Types of Peaks

Peak Calling

Annotations

Motifs

Differential Binding

42
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How are peaks called?

Mahoney and Pugh et al 2015. Criti Rev Biochemi and MolBio

43

General concept of most peak callers

Count the number of reads within a window and determine 
whether this number is above background

Mahoney and Pugh et al 2015. Criti Rev Biochemi and MolBio
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There are many peak callers out there…

GEM CCAT Fseq Hotspot spp-msp
BCP ChIPDiff QuEST Qeseq Sole-Search
MUSIC ERANGE RSEG Hpeak CisGenome
MACS2 PeakSeq TPIC BayesPeak Gene Track
ZINBA SICER W-ChIPPekas spp-wtd FindPeaks
Genrich SISSRs PolyPeak spp-mtc etc…

Thomas et al 2017. Briefings in Bioinformatics

45

Each peak caller has different 
methods and benefits

Wilbanks et al 2010. PLOS ONE

46



5/27/20

24

Peak calling: things to keep in mind

• Peak callers are designed to deal with different types of peaks
• Pay attention to what they’re designed to handle

• Peak callers are optimized for a specific type of peak/dataset
• Tuning the parameters is often important
• Including the p-value, q-value, and/or FDR

• Peaks will not completely overlap across replicates or tools

47

MACS works well for narrow peaks
while SICER is designed for broad peaks

Xu et al 2014. Methods Mol Biol

MACS

48
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Model-based Analysis of ChIP-Seq (MACS)

• Extend reads and scale to library size
• Call candidate peaks relative to: 
• control sample
• genome background
• large local region
• small local region

• Calculate FDR by calling peaks in the control relative to the ChIP

Feng et al 2012. Nature Protocols
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Spatial Clustering for Identification of 
ChIP-Enriched Regions (SICER)

• Uses windows and gaps to 
identify ”islands” of 
enrichment
• Gaps allow for short regions 

lacking binding within an 
island, more pattern 
variability across island
• Compares to a randomized 

background and control 
background to calculate FDR

G=3

W=200

Xu et al 2014. Methods Mol Biol

50
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Output file formats
• https://genome.ucsc.edu/FAQ/FAQformat.html
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FRiP (Fraction of Reads in Peaks)

• Measures global ChIP enrichment
• Quick understanding of quality of 

the IP and peak calling algorithm
• Good quality FRiP for a transcription 

factor: > 5%

de Santiago, Carroll 2017. Chromatin Immunoprecipitation

52
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Peak Calling and Follow Up Analysis

Different Types of Peaks

Peak Calling

Annotations

Motifs

Differential Binding

53

Annotations: questions to ask

• Is this protein enriched around promoters?
• Many tools are biased towards promoters/TSS sites

• What is a gene?
• Do you have a reason to include pseudogenes, lincRNAs, etc?

• Do you care about introns/alternative transcripts?

• What happens if a peak overlaps multiple genes?

54
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Annotation tools

HOMER
• Straight-forward to use
• Only protein coding genes
• Focused on nearest TSS
• One annotation per peak

UROPA
• More complicated to set up
• Takes any gene list input
• Focuses where the user decides
• Creates two tables: one of top 

annotation per peak, and one of 
all possible annotations given 
the input conditions

Heinz et al 2010. Mol Cell

Kondili et al 2017. Scientific Reports
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Annotation tools: example HOMER output table

Heinz et al 2010. Mol Cell

56
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UROPA output figures

Kondili et al 2017. Scientific Reports
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Annotation tools

PAVIS
• Online tool
• Annotates based on nearest TSS
• Has an “intuitive” interface
manticore.niehs.nih.gov/pavis2

GREAT
• Online tool
• Annotates based on nearest TSS
• Each peak can be associated with 

up to two genes (one in each 
direction)
• Only works with four reference 

genomes (human and mouse)
• Also includes functional 

enrichment analyses
http://great.stanford.edu/

Huang W et al 2013. Bioinformatics
McLean CY et al 2010. Comp Biol
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https://manticore.niehs.nih.gov/pavis2
http://great.stanford.edu/public/html/index.php
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Peak Calling and Follow Up Analysis

Different Types of Peaks

Peak Calling

Annotations

Motifs

Differential Binding

59

Motifs: things to consider

• Transcription factor motifs:
• Tends to be small and robust; often centrally located in peaks

• Other proteins:
• More varied, degenerated motifs, if any at all
• Rarely centrally located

• Motifs are identified as enriched in peaks relative to some 
background: should it be the entire genome, just promoters, or 
something else?
• Search for known motifs or novel motifs?

MYC

60
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Motif Calling Tools

MEME Suite
• MEME-ChIP: novel motifs

MEME
DREME: small, robust motifs
Centrimo: centrally enriched motifs

• AME: known motifs

HOMER
• Runs for both known and novel 

motifs simultaneously

Bailey et al 2009. Nucleic Acids Research
Heinz et al 2010. Mol Cell
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MEME: meme-suite.org
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MEME-ChIP output

Machaniak et al 2011. Bioinformatics
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Motif seach: tabular outputs

AME output

HOMER output

64



5/27/20

33

Peak Calling and Follow Up Analysis

Different Types of Peaks

Peak Calling

Annotations

Motifs

Differential Binding

65

Key assumption of differential peak calling:
most peaks are similar across conditions

Wu et al 2015. Front Genet

66
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Differential peak calling is dependent on 
peak calling quality

Yang et al 2014. Comput Struct Biotechnol J

67

Differential peak calling

Steinhauser et al 2016. Brief Bioinformatics

68
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Differential peak calling tools

MANORM
• Cannot handle replicates
• Lacks statistical power
• Needs peaks to be defined from 

an outside source
• Works for both narrow and 

broad peaks

DIFFBIND
• Requires replicates of all 

conditions
• Has a statistical framework
• Needs peaks to be defined from 

an outside source
• Works for both narrow and 

broad peaks

Shao et al 2012. Genome Biology
Ross-Innes et al 2012. Nature
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Comparing your data to other ChIP-seq data

• ENCODE (Encyclopedia of DNA Elements)
• www.encodeproject.org
• Visualizations and peak analyses of mouse, human, Drosophila, and C. elegans data 

in healthy control conditions. Data types include ChIP-seq, DNase-seq, ATAC-seq, HiC, 
and more.

• Cistrome
• cistrome.org
• Cistrome Analysis Pipeline, Cistrome Data Browser, Cistrome Cancer, Cistrome-GO, 

CistromeDB Toolkit, Landscape In Silico deletion Analysis
• Visualizations and peak analyses of many public mouse and human ChIP-seq, DNase-

seq, and ATAC-seq datasets reanalyzed using their pipeline
• GTRD (Gene Transcription Regulation Database)

• gtrd.biouml.org
• Used DNase-seq, ChIP-seq, and motif databases to identify transcription factor 

binding sites for human and mouse genomes

70

https://www.encodeproject.org/
http://cistrome.org/
http://gtrd.biouml.org/


5/27/20

36

Conclusions

•ChIP-seq is not trivial.

•Every experiment is unique.

•Experimental design is critical for ChIP-seq.

71
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