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COURSE OUTLINE
Day 1

e |Introduction - Design and Analysis Overview (9:30 - 11:30 am)

e An Overview on Experimental Subtypes and Variations of ChIP-Seq (11:30 - 12:30 pm)
Alexei Lobanov

e Analysis of ChIP-Seq data: Raw Data to Results (1:00 pm — 4:00 pm)
Bong-Hyun Kim

Day 2

e Hands-on Tutorial for Analysis of ChIP-Seq data with the Genomatix Genome
Analyzer (GGA)(9:30 - 12:30 pm)

e Mining ChIP-Seq data from Public Databases (1:00 - 4:0 pm)
Bong-Hyun Kim

e TN



TALK OUTLINE

e Introduction/Background
e Comparison to ChIP-chip
 Experimental Design

e Data analysis

® Analysis in Detail

* Functional Analysis

* Visualization

e File Formats



COURSE GOALS

* Provide some basic knowledge on how to generate and interpret
ChIPSeq data.

e Equip you with the fundamental knowledge required to understand
what the data analysis entails.

e Impart enough understanding of the analytic process to enable you to
establish strategic partnership with bioinformatician collaborators.

* Provide hands-on experience with both a commercial (Genomatix)
and an Open Source Tool (MACS, SICER, MEME)

e TN






CHIP-SEQ
BACKGROUND



CHIPSEQ

Chromatin
ImmunoPrecipitation (ChIP)
and massively parallel
sequencing (SEQ)

First reported by several
groups in 2007... now the most
widely used technique for
analyzing DN A:Protein
interactions
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WHAT CAN BE DONE WITH
THIS TECHNIQUE

Can be use to interrogate ANY DNA-binding protein
physically associated with a DNA segment on a genome
wide basis.

e Transcription factors (p53, STAT1)
e Basal transcription machinery (Pol II)
e Histones and modified histones (H3 ml4)

e Chromatin modifying enzymes (histone acetylase)



TRANSCRIPTION FACTORS

The first action of a transcription factor 1s to find and to bind DNA
segments and ChIP-seq allows the binding sites of transcription
factors to be identified across entire genomes. The DNA sequence
motif that is recognized by the binding protein can be computed; the
precise regulatory sites in the genome for any transcription factor
can be identified; the direct downstream targets of any transcription
factor can be determined; and the clustering of transcription-

regulatory proteins at specific DNA sites can be assessed.

e TN



TRANSCRIPTION FACTORS

transcription factors
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TRANSCRIPTION FACTORS

protein—protein
interaction (PPI)

protein-DNA
interaction (PDI)

b-zip protein

Histone Core

TATA-box Binding Fretein (TBP)

3
o




SUBSET OF TECHNIQUES

e ChIPSeq

s ChIPExo

e DNase Hypersensitivity
e DNase Footprinting

e ATAC-5eq

e MNase-5eq



DIFFERENT VARIATIONS
e Native ChIP (N-ChIP)
e (Cross link protein and DNA (Formaldehyde) (X-ChIP)

e Protein-Protein cross linking (disuccinimidyl glutarate) and
formaldehyde (HDAC- chromatin remodelers)

* Sonication (Fragmentation ...200-300bp)
e Enzymatic digestion (Micrococcal nuclease)
e Enzymatic digestion (DN Aase)

e Enzymatic digestion (Exonuclease)



CHIP-EXO
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DNASE FOOTPRINT

Conservation (phyloP)
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Whoops!

DNase Footprint Signatures Are Dictated by Factor Dynamics and DNA Sequence

Myong-Hee Sung,'” Michael J. Guertin,'* Songjoon Baek,'- and Gordon L. Hager'+*
ILaboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD 20892, USA

Molecular Cell 56, 275-285, October 23, 2014

Genomic footprinting has emerged as an unbiased discovery method for
transcription factor (TF) occupancy at cognate DNA 1n vivo. A basic premise of
footprinting 1s that sequence-specific TF-DNA interactions are associated with
localized resistance to nucleases, leaving observable signatures of cleavage within
accessible chromatin. This phenomenon is interpreted to imply protection of the
critical nucleotides by the stably bound protein factor. However, this model conflicts
with previous reports of many TFs exchanging with specific binding sites in living
cells on a timescale of seconds. We show that TFs with short DNA residence times
have no footprints at bound motif elements. Moreover, the nuclease cleavage profile
within a footprint originates from the DNA sequence in the factor-binding site,
rather than from the protein occupying specific nucleotides. These findings suggest
a revised understanding of TF footprinting and reveal limitations in comprehensive
reconstruction of the TF regulatory network using this approach.

e TN
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Figure 1. Flow scheme of the central steps in the ChIP-seq

procedure.
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e Alignment
e Peak Calling - Motif discovery - Visualization

e (Correlating peaks/motifs with biology



On the surface ChIP-SEQ is a very
simple straightforward technique with

lots of potential...
Unfortunately, a number of technical

and biological issues often make it a
very challenging endeavor !



CONFOUNDING FACTORS
e Antibody “ChIP” efficiency
e Chromatin “fragile” sites
e Protein residence time
e Footprint of bound protein
e DNA repeat regions

e What is a real peak (signal to noise)



COMPARISON
TO
CHIP-CHIP



COMPARISON TO CHIP-CHIP

e Nucleic acid hybridization is complex and is
dependent on many factors including the GC-
content, length, concentration, and secondary
structure of both the target and probe sequences.

!

Chromosomal | position —_—)

Figure 2. Comparison of ChIP-seq and ChIP-chip. Representative

signals from ChlIP-seq (solid line) and ChiIP-chip (dashed line) show

both greater dynamic range and higher resolution with ChIP-seq.

Whereas three binding peaks are identified using ChIP-seq, only one
broad peak is detected using ChIP-chip.

\




Resolution

Coverage

Cost

Source of platform noise

Experimental design

Cost-effective cases

Required amount of ChIP DNA

Dynamic range

Amplification

Multiplexing

COMPARISON OF
CHIP-CHIP AND CHIP-SEQ

ChIP-chip

Array-specific, generally 30-100bp

Limited by sequences on the array; repetitive regions
usually masked out

$400-$800 per array (1—6 million probes); multiple
arrays may be needed for large genomes

Cross-hybridization between probes and non-specific
targets

Single- or double-channel, depending on platform

Large fraction enriched (broad binding), profiling of
selected regions

High (few ng)

Lower detection limit, saturation at high signal

More required

Not possible

ChIP-Seq

Single nucleotide

Limited only by alignability of reads to the genome;
increases with read length; many repetitive regions
can be covered

$1000-$2000 per Illumina lane (6—15 million reads

prior to alignment)

Some GC-bias may be present

Single channel

Small fraction enriched (sharp binding), large
genomes

Low (10-50 ng)

Not limited

Less required; single molecule sequencing without
amplification is available

Possible




EXPERIMENTAL
DESIGN



CHIP-SEQ
BEFORE YOU START

Do you need really need to do the experiment ?
e [s there existing data ?

e [s there similar data...same factor different
conditions/ cell type/organism

e [s there similar data...different but similar
factor

e Do you have a plan on how to analyze the data.



CHIP-SEQ DESIGN ISSUES

* Antibody Selection
® Probably the most critical experiment decision
e DNA Control
e Depth of Sequencing (How many reads)
e Replicates
e Experimental Goals (Positive control)

e Algorithm choices - mapping and peak-calling



ITS ALL ABOUT THE
ANTIBODY

e Must have specificity for target molecule

e Must immunoprecipitate the target
(Must ChIP well!)

e Do you have Quality control metric to access
the quality of your antibody (don’t rely on
vendor)

(Western blots, Chip PCR)



ITS ALL ABOUT THE
ANTIBODY

“Having a third party validate every batch would be a fabulous
thing,” says Peter Park, a computational biologist at Harvard

Medical School.

He notes that the consortium behind ENCODE — a project
aimed at identifying all the functional elements in the human
genome — tested more than 200 antibodies targeting
modifications to proteins called histones and found that
more than 25% failed to target the advertised modification.

BIOMEDICINE: NATURE NEWS | 1 AUGUST 2013 | VOL 500 | NATURE | 15

e TN



CONTROL

Its alway best to have one!

There are three commonly used choices for this control:

e input DNA (thatis, DNA prior to immunoprecipitation, IP)
[solubility, shearing, amplification]

e mock IP (treated the same as the IP but without any antibody)
[low level of pull down DNA]

e non-specific IP (that is, using an antibody against a protein not
known to be involved in DNA binding or chromatin

modification, such as IgG).
[low level of pull down DNA]

No consensus although most use input DNA... control not necessarily
needed for differential binding experiments



WHY YOU NEED
A CONTROL

e Preferential sequencing of G+C rich regions

* Repeat regions

e Genomic Amplifications

e Genomic Landmarks (TSS) higher than normal in control

e Chromatin structure - shearing is different: euchromatin vs
heterochromatin, active vs silenced genes

e PCR biased amplification (remove identical reads)
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SEQUENCING

These days it is almost always Illumina Sequencing

* HiSeq e MiSeq  NextSeq

Paired-end vs single end reads
* Increased mappability - especially in repeat region

e Double the costs

Usually not worth the extra cost, except for special
circumstances



SEQUENCING

How many reads and how long ?
Normally short reads (36bp) are sufficient

Human - Sharp peak=20M - Broad peak=40M
high frequency elements (nucleosomes) need more.

® Prominent peaks are identified with fewer
reads, while weaker peaks require more reads.

® The number of putative target regions (peaks)
increases as a function of read depth...may not
plateau.



SEQUENCING

Paired-end sequencing D>

$ Shear DNA

l Ligate adaptors

l Sequence ends &
align 1o genome

—» <




CHIP-SEQ TECHNICAL
PROBLEM POINTS

e How many reads are needed
e How much binding
e Saturation
* Hi vs low atfinity sites
e Minimal enrichment saturation ratio, MSER

* Can one library be compared quantitatively
with another on a site-by-site basis?



SEQUENCING BIASES

e Linker ligation
e PCR amplification Platform Biases

 Hydridization

Can be controlled for (to some degree) by
using input DNA to identify and correct for
“sequencing biases”.



REPLICATES

Having replicates is ALWAYS good, and many times its

essential.

In general Biological replicates are more useful than technical

replicates.

The need for replicates and the appropriate number is largely

dependent on experimental goals (general or specific) and the
quality of the data (which may have its basis in biology rather
than technique).



EXPERIMENTAL GOALS

® Make sure your experimental design is appropriate to

meet your desired goals.

e Talk to the people who are going to analyze the data
BEFORE you do the experiment.



Snapshot of ENCODE Recommendations

EXPERIMENTAL DESIGN

GUIDELINES
] > At least 2 replicates
Really good a_"t'bOdy to start > Input Control for each condition
with! > Reproducibility
> Library complexity
> Adequate Sequencing depth to
capture events across genome
DATA QUALITY ASSESSMENT DATA REPORTING GUIDELINES
> Metrics at every stage possible to > Minimal Information for Chip-seq
_ _ Experiment (MICE)
assess quality of experiment
> Cross-correlation for stranded > Analysis Details
reads > High-throughput sequencing data

> Irreproducible Discovery Rate
(IDR) for peak concordance in
replicates

e N




DATA ANALYSIS



ANALYSIS PIPELINE

e Sequencing Quality Control

e Mapping
e Peak finders Wthh program/
B el method you use at each

B tf Enders step will be influenced

by many factors
SREHEA

e Pathway analysis

e Differential effects



Read Quality (FastQC)

Quality scores across all bases {Sanger / lllumina 1.9 encoding)

- LTTT%TTTTTTTEETTTTTTTfTT

36

34
32
30
28
26
24
22
20
18
16
14
12
10

o N B O

1 2 3 4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30 32 34

QUi ¢ seeres aaresd Wl nias (Eaeger / Blawing | & eranding)

QUi ¢ senres aaoesd ol nias (Eaeger / Blawing | & eranding)
1 2] r — " — ——— —_— — p—
- - II III I
i i
u LA H-E Ll u
1 — — — Jm =T R - e o — - 1 1 1 -
el ) | [ —— el
30 30
wl® | %
) v S | A1 - ettt
""'—' = ™
| r
. - | 51
¥ ¥
1 r
0 0
it it
SNSRI L5 SRl S Sl LN SR el SR N S S SN IO Z9E N . S S - —
la la
i i
5 5
% de 3 —
. ' I I
—de Y -t L p— =S
] ]
' IR A N R R R N R EE Y R

$ 24 4 4 7 8 0TIV IS IRV ISI?P TN N MY T Y 0
Fosidae oy ‘ond lbg)

Fosidae oy ‘ond lbg)




Good quality sequence data
does not mean a successtul
ChIPSeq experiment.




MAPPING



MAPPING
WHICH GENOME VERSION?

e Which version of the genome do you want/need to
use. (Record and report it!!)
Considerations

 Genome annotation
e Parallel experiments
e Experiments you want to compare it too.

e Available browsers



MAPPING BIAS

Not all the genome is “available” for mapping

Nonrepetitive sequence Mappable sequence
Organism Genome size (Mb) Size (Mb) Percentage Size (Mb) Percentage
Caenorhabditis elegans 100.28 87.01 86.8% 93.26 93.0%
Drosophila melanogaster 168.74 117.45 69.6% 121.40 71.9%
Mus musculus 2,654.91 1,438.61 54.2% 2,150.57 81.0%
Homo sapiens 3,080.44 1,462.69 47.5% 2,451.96 79.6%

*Calculated based on 30nt sequence tags

Rozowsky, 2009



MAPPING BIAS

o Effects of repetitive DNA
e Length of reads
e Many choices of mappers

e How important is the mapper you use ?

e Bowtie o BFAST e ELAND

e BWA  Novoalign e STAR



MAPPING

Bowtie is an ultrafast, memory-efficient short read aligner. It aligns short DNA sequences (reads) to the human genome
at a rate of over 25 million 35-bp reads per hour. Bowtie indexes the genome with a Burrows-Wheeler index to keep its
memory footprint small: typically about 2.2 GB for the human genome (2.9 GB for paired-end).

Bowtie 2 is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences. It is
particularly good at aligning reads of about 50 up to 100s or 1,000s of characters, and particularly good at aligning to
relatively long (e.g. mammalian) genomes. Bowtie 2 indexes the genome with an FM Index to keep its memory
footprint small: for the human genome, its memory footprint is typically around 3.2 GB. Bowtie 2 supports gapped,
local, and paired-end alignment modes.

Aligner less critical than some for other NGS
applications... most important is how they handle
repeat regions and PCR amplification products and
mismatches (indels)



PEAK-CALLING



Good data is always more
robust to analytical choices

than poor data.




PEAK CALLING

What is the ultimate goal of peak calling?

It is to determine if and where there is

enrichment compare to a control
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PEAK CALLING
e Read Shifting

e Background estimation (uses control)

e Artifact removal

e Significance cutoff (FDR)

 Multiple Programs with differing ability
* No consensus

o (Often effected by parameter selection



TYPES OF PEAKS

Each has its own challenges

e Narrow (Sharp)
* Broad

e Nucleosome like



TYPES OF PEAKS

Peaks have different
shapes (characteristic of
the protein?) and each

presents its own challenges

Figure 2 | chiP profiles. a | Examples of the profiles generated
byNcahtruorme Raetivnieiwmsml| uGneonpetriec-s cipitation followed
by sequencing (ChIP—seq) or by microarray (ChlP—chip). Shown is a
section of the binding profiles of the chromodomain protein
Chromator, as measured by ChIP—chip (unlogged intensity ratio;
blue) and ChlP-seq (tag density; red) in the Drosophila
melanogaster S2 cell line. The tag density profile obtained by ChIP—
seq reveals specific positions of Chromator binding with higher
spatial resolution and sensitivity. The ChIP—seq input DNA (control
experiment) tag density is shown in grey for comparison. b |
Examples of different types of ChlP—seq tag density profiles in
human T cells. Profiles for different types of proteins and histone
marks can have different types of features, such as: sharp binding
sites, as shown for the insulator binding protein CTCF (CCCTC-
binding factor; red); a mixture of shapes, as shown for RNA
polymerase Il (orange), which has a sharp peak followed by a broad
region of enrichment; medium size broad peaks, as shown for
histone H3 trimethylated at lysine 36 (H3K36me3; green), which is
associated with transcription elongation over the gene; or large
domains, as shown for histone H3 trimethylated at lysine 27
(H3K27me3; blue), which is a repressive mark that is indicative of
Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick
disease, type C1; Pros35, proteasome 35 kDa subunit; SYN3,
synapsin Ill. Data for part b are from Ref. 25.
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YPES OF PEAKS

A Ba Not statistically significant
Enrichment
ratio: 1.5
ChiP __/ 15 \__
Considering all Considering only peaks . .
statistically with fold enrichment But IS lt
significant peaks above a threshold Control =——_ 10_ =" "=
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Figure 3 | Depth of sequencing. A | To determine whether enough tags have been sequenced, a simulation can be carried out to characterize the fraction of the peaks that would be recovered if a smaller number of tags had been

Nature Reviews | Genetics sequenced. In many cases, new statistically significant peaks are discovered at a steady rate with an increasing number

of tags (solid curve) — that is, there is no saturation of binding sites. However, when a minimum threshold is imposed for the enrichment ratio between chromatin immunoprecipitation (ChIP) and input DNA peaks, the rate at which new peaks
are discovered slows down (dashed curve) — that is, saturation of detected binding sites can occur when only sufficiently prominent binding positions are considered. For a given data set, multiple curves corresponding to different thresholds
can be examined to identify the threshold at which the curve becomes sulfficiently flat to meet the desired saturation criteria (defined by the intersection of the orange lines on the graph). We refer to such a threshold as the minimum saturation
enrichment ratio (MSER). The MSER can serve as a measure for the depth of sequencing achieved in a data set: a high MSER, for example, might indicate that the data set was undersampled, as only the more prominent peaks were
saturated (see Ref. 48 for details). Ba | A peak that is not statistically significant — the enrichment ratio between the ChIP and control experiments is low (1.5) and the number of tag counts (shown under the peaks) is also low. Bb | Two ways in
which a peak can be statistically significant. On the left, although the number of tag counts is low, the enrichment ratio between the ChIP and control experiments is high (4). On the right, the peaks have the same enrichment ratio as those in
a but have a larger number of tag counts; this example shows that continued sequencing might lead to less prominent peaks becoming statistically significant and that there might not necessarily be a saturation point after which no further
binding sites are discovered.




DIFFERENT
PEAK
CALLERS




PEAK CALLING BIAS

Potentially the most critical, especially for
“poor quality experiments”

* MACS * SICER o CCrulk
e 5I55Rs e Useq ¢ =Skils
* PeakSeq  (CisGenome e NGSA

Different models, call different numbers of peaks, different
sized peaks, optimized for different shaped peaks



PEAK CALLING BIAS
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PEAK CALLING
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http: / /encodeproject.org/ ENCODE/
encodeTools.html

ChIP-seq Peak Callers

MACS

A widely-used, fast, robust ChIP-seq peak-finding algorithm that accounts for the offset in forward-strand and reverse-strand reads to
improve resolution and uses a dynamic Poisson distribution to effectively capture local biases in the genome. MACS 1.4 is being used for the
current uniform peak calling pipeline.

Feng J, Liu T, Zhang Y. Using MACS to identify peaks from ChIP-Seq data. Curr Protoc Bioinformatics. 2011 Jun;Chapter 2:Unit 2.14.

Zhang Y, Liu T, Meyer CA, Eeckhoute ], Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W et al. Model-based analysis of
ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

PeakSeq

Identifies enriched regions in ChIP-seq type experiments and explicitly compares signal experiments to control experiments.

Rozowsky ], Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB. PeakSeq enables systematic
scoring of ChIP-seq experiments relative to controls. Nat Biotechnol. 2009 Jan;27(1):66-75.

PP
A ChlIP-seq peak calling algorithm, implemented as an R package, that accounts for the offset in forward-strand and reverse-strand reads to
improve resolution, compares enrichment in signal to background or control experiments, and can also estimate whether the available

number of reads is sufficient to achieve saturation, meaning that additional reads would not allow identification of additional peaks.
Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol. 2008 Dec;
26(12):1351-9.



http://liulab.dfci.harvard.edu/MACS/
http://www.ncbi.nlm.nih.gov/pubmed/21633945
http://www.ncbi.nlm.nih.gov/pubmed/18798982
http://www.ncbi.nlm.nih.gov/pubmed/18798982
http://info.gersteinlab.org/PeakSeq
http://www.ncbi.nlm.nih.gov/pubmed/19122651
http://www.ncbi.nlm.nih.gov/pubmed/19122651
http://compbio.med.harvard.edu/Supplements/ChIP-seq/
http://www.ncbi.nlm.nih.gov/pubmed/19029915
http://encodeproject.org/ENCODE/encodeTools.html
http://encodeproject.org/ENCODE/encodeTools.html

MACS
(PEAK CALLING)



MODEL-BASED ANALYSIS OF
CHIP-SEQ
MACS

Model-based Analysis of ChiP-Seq (MACS)

Yong Zhangx=*, Tao Liux*, Clifford A Meyer*, Jerome Eeckhoutet, David S

Johnson#*, Bradley E Bernsteing9, Chad Nusbaum¢, Richard M Myers¥, Myles
Brownt, Wei Li# and X Shirley Liu*

Genome Biology 2008, 9:R 137 (doi:10.1 186/gb-2008-9-9-r 137)

We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data
generated by short read sequencers such as Solexa's Genome Analyzer. MACS
empirically models the shift size of ChlP-Seq tags, and uses it to improve the spatial
resolution of predicted binding sites. MACS also uses a dynamic Poisson distribution to
effectively capture local biases in the genome, allowing for more robust predictions.

MACS compares favorably to existing ChlP-Seq peak-finding algorithms, and is freely
available.

e TN



PEAK CALLERS - MACS

MACS is (for Transcription Factor binding) one of the most popular
peak callers, it is also one of the oldest and this probably
contributes to its success. It is a good method, good enough for
many experimental conditions and requires very little justification if
cited as the tool used in a publication. MACS performs removal of
redundant reads, read-shifting to account for the offset in forward
or reverse strand reads. It uses control samples and local statistics to

minimize bias and calculates an empirical FDR.



MODEL-BASED ANALYSIS OF
CHIP-SEQ
MACS

® Most widely used
® Robust, provided your data fits the model
® Jenores PCR artifacts
® Does NOT do much QC for you
(garbage in garbage out)
® Python based - many dependencies
® Availability:Helix/Biowulf, Genomatix and Galaxy

® Two common versions (1.4.2 and 2.0.10)



MACS
READ SHIFTING

® MACS takes advantage of the expected bimodal distribution pattern to empirically
model the shifting size to better locate the precise binding sites.

® 1000 high quality peaks where > mfold-enrichment relative to random tag
distribution

(a)

Crick (-) —
—

<
<«—

—

® Define distance d, and shifts all tags d/2 distance towards the 3’ end



MACS
PEAK DETECTION

e Linearly scales the total control tag count to the same and the ChIP tag count
e Removes duplicate tags in excess of what is expected by the sequencing depth

(binomial distribution p-value <10-)
e Tag distribution is modeled by a Poisson distribution, and using a 2d window to find

peaks with a significant tag enrichment (Poisson distribution p-value based on Agg,

default 10).
e Overlapping enriched tags are merges and each tag position is extended d bases from

its center.
® The location (summit) of the highest fragment pileup is predicted to be the precise

binding location

. A
k!

A captures both the mean and the variance of the distribution.

e is a constant (natural log)=2.71828



MACS
PEAK DETECTION EXTRAS

Background

Instead of using a uniform background (Asg) from the whole

genome they use a dynamic parameter, Aiocal for each
candidate peak where:

Mocal = max(Asa, [Ak,] Ask, Mok)
where A1k, Asx and Aok are A estimated from the 1 kb, 5 kb or
10 kb window centered at the peak location in the control
sample...where no control sample available then Aixis not

used.

e TN



MACS
PEAK DETECTION EXTRAS

Background

Nocal captures the influence of local biases, and is robust
against occasional low tag counts at small local regions.
MACS uses Aiocal to calculate the p-value of each candidate
peak and removes potential false positives due to local biases
(that is, peaks significantly under Agg, but not under Aiocal).
Candidate peaks with p-values below a user-defined
threshold p-value (default 1075) are called, and the ratio
between the ChIP-Seq tag count and Aiocal 1s reported as the
fold enrichment.

e TN



MACS
PRACTICAL USE

OUTPUT

* NAME_peaks.xls

* NAME_peaks.bed

* NAME summits.bed

* NAME_negative_peaks.xls

* NAME model.r

* NAME_treat/control_aftershifting.wig.gz



PEAK CALLING

When do you know a ChIP-seq is not working?

[f there is a control library, a ChIP-seq that is not working should
result in few called peaks, and side-by-side inspection of selected
genomic loci in the ChIP and control libraries should show poor
enrichment. However, even when two identical libraries are
sequenced, there will be several areas that may show significant count
differences (as part of an FDR). The ultimate test would be the
quantitative PCR validation of selected ChIP-seq peaks. For some
transcription factors with well characterized motifs it can make sense
to check for the occurrence of the motif in a significant fraction of the

called peaks.



MACS
PRACTICAL USE

Macs come in two version
® Differences poorly documented
® Different syntax
® 1.4 used pvalues 2.0 uses qvalues (FDR)

Using macs for peak calling in unix:
* macs14 —t test.bam —c control.bam —f BAM —nh name —g hs —w -bdg

* macs2 callpeak -t test.bam -c control.bam -f BAM -g hs —n name -B -q 0.01

e TN



QUALITY
CONTROL
ON THE CALLED
PEAKS




QC OF OUTPUT (ENCODE)

® Visual Inspection
(known positive control - similar dataset)

® Measure global ChIP enrichment (FRIP) >1%
e Cross Correlation analysis (two peaks)

e Consistency for replicates (Analysis using IDR)

In layman's terms, the IDR method compares a pair of ranked lists of identifications (such as ChlP-seq peaks). These ranked lists
should not be pre-thresholded i.e. they should provide identifications across the entire spectrum of high confidence/enrichment (signal)
and low confidence/enrichment (noise). The IDR method then fits the bivariate rank distributions over the replicates in order to separate
signal from noise based on a defined confidence of rank consistency and reproducibility of identifications i.e the IDR threshold.



QC OF OUTPUT (ENCODE)

Thus far, the most successful point-source factor experiments for
ENCODE have FRiP values of 0.2-0.5 (factors such as REST,
GABP, and CTCF) and NSC/RSC values of 5-12. Although
these quality scores and characteristics were routinely obtained
for the best-performing factor/antibody combinations, they are
not the rule; for most transcription factors, the ChIP quality
metrics were substantially lower and more variable.

FRiP - Fraction of reads in the Peaks

NSC - Normalized Strand Correlation
RSC - Relative Strand Correlation



QC OF OUTPUT (ENCODE)
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CROSS CORRELATION

PLOTS

incodeBroadHistoneGm12878ControlStdAInRep1.bam.unique.t:

ol2bStdAlnRep1.bam.unique.tag.

codeBroadHistoneHelas3P

gEn

JEncodeBroadHistoneGm12878CtcfStdAlnRep1.bam.unique.tag

T T
300 400

155)

T
200

strand-shift (90,115
0.905761,rPhc=0.107258,Qtag=-2

T
100

O

T T T T T T
960°0 ¥60°0 2600 0600 8800 980°0
UOI}B|91100-SS010

400

300

strand—shift (185,200,320)
0.990118,rPhc=0.78839,Qtag

T T T T T T T
gvL'o <¢vlk'0  I¥L'0 Ovl'0 6€L0 8EL0 LELO 9€L0

UOI}B|91109—-SS010

T T T
200 300 400

strand-shift (170)

T
100

T T
020 810 91’0 ¥1L0 ZLo 010
UOI}B|91100-SS010

)

Phc=

=0

Phc=

=2

1.6073,rPhc=3.89717,Qtag

Phc=

Input

Poor




QUALITY CONTROL

« Clonal Tag Counts
« Sequencing Fragment Length Estimation (tag autocorrelation)
« Checking for Sequence Bias

As more pronounced binding positions are identified using smaller sequencing depth, an experiment of given
depth may saturate detection of the binding positions that exceed a certain tag enrichment ratio relative to the
background. We refer to this enrichment ratio as the minimal saturated enrichment ratio (MSER).
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e http://biowhat.ucsd.edu/homer/chipseq/gc.html#Sequencing_Fragment_Length_Estimation

e https:/ /sites.google.com/site/anshulkundaje/ projects/idr

e CHANCE



http://biowhat.ucsd.edu/homer/chipseq/qc.html#
https://sites.google.com/site/anshulkundaje/projects/idr

WHAT QUALITY IS NEED FOR
FOR FURTHER ANALYSIS

e Motif Analysis (low)

* Discovering regions to test for biological
function such as transcriptional enhancement,
silencing, or insulation (Medium - High)

* Deducing and mapping combinatoric occupancy
(High)

e Integrative analysis (High)



FUNCTIONAL
ANALYSIS



ANALYSIS DOWNSTREAM
TO PEAK CALLING

 Visualization - genome browser: Ensembl, UCSC, IGB

e Peak Annotation - finding interesting features surrounding peak
regions:

e Correlation with expression data
 Discovery of binding sequence motifs
e Split peaks

e Fetch summit sequences

* Run motif prediction tool

e Gene Ontology analysis on genes that bind the same factor or have the
same modification

g - = = ¥



FUNCTION ANALYSIS

* Visualization

e IGV & IGB

e UCSC Genome

e Heatmaps
e (Cis-regulatory Element Annotations System (CEAS)
e Homer

e MEME

* GREAT predicts functions of cis-regulatory regions



ENCODE ChIP-Seq peaks are screened against a specially curated
empirical blacklist of regions in the human genome. Peaks overlapping

the blacklisted regions were discarded.

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz)

These artifact regions typically show the following characteristics:

Unstructured and extreme artifactual high signal in sequenced input-DNA and
control datasets as well as open chromatin datasets irrespective of cell type
1dentity.

An extreme ratio of multi-mapping to unique mapping reads from sequencing
experiments.

Overlap with pathological repeat regions such as centromeric, telomeric and
satellite repeats that often have few unique mappable locations interspersed in
repeats.

e TN


http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz

MOTIF
ANALYSIS



MEME
MOTIF-BASED SEQUENCE

i " Mouse-over for information on
protein sequences MEME (de novo) databases Click to submit a job to the tool
, > DREME > B | or to view database details.
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http: / /meme-suite.org



http://meme-suite.org
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VWHERE TO
FIND
CHIPSEQ DATA




TYPES OF CHIPSEQ DATA

e NCBI (GEO) (SRA -tabular)

e UCSC (various - bam,bed, fastq,other)
BREINICEODE (various - bigBed (bb) and bigWiG (bl

e ChIPBase (CSV)

e (Cistrome Browser



http://ncbi.nlm.nih.gov/
http://genome.ucsc.edu/
http://www.encodeproject.org
http://deepbase.sysu.edu.cn/chipbase
http://cistrome.org/dc

VISUALIZATION
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Rozowsky, Nature Biotechnology, 2009




VISUALIZATION

Nothing can match the insight
obtained by looking at your data

e IGV
e UCSC Genome Browser

e Heatmaps

e NGS-plot



HEAT MAPS
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Yeast as Model Organism

Steps of converting the
seqguencing reads to
ta nucleosome positions
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* start site of all genes (~4000)
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TAKE HOME MESSAGE

® Think about what the data may be telling you
and explore different ways of looking at the
same data.

® Be wary of summation plots/statistics... they
may be “correct” but they can lead you astray
or hide the better story.
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e http://www.slideshare.net/ COST-events/chipseq-data-analysis
(SLIDES)

e http://bbcf.epfl.ch/bbcflib/tutorial chipseg.html

e http://www.biocodershub.net/community / get-the-most-of-your-

chip-seg-experiments /

e http://collaboratory.lifesci.ucla.edu/node/35 (Course)

e https://github.com/songlab/chance (QC suite...interesting)


http://www.slideshare.net/COST-events/chipseq-data-analysis
http://bbcf.epfl.ch/bbcflib/tutorial_chipseq.html
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https://github.com/songlab/chance

REFERENCES

e http://ccg.vital-it.ch/chipseq/ AND http://chip-seq.sourceforge.net

e http:/ /www.youtube.com /watch?v=40FdS9EN9Pk

e http:/ /www.ebi.ac.uk/training/online/course / ebi-next-generation-sequencing-
practical-course / chip-seg-analysis / chip-seg-practical

e http:/ /mediasOl-web.embl.de/Mediasite/Play/
94ec103b215¢4b45a397400fde4029421d (VIDEO)

e http:/ /liulab.dfci.harvard.edu/MACS/

e http://gettinggeneticsdone.blogspot.com /2013 /06 /encode-chip-seg-significance-
tool-which.html

e https:/ /usegalaxy.org/u/james/p/exercise-chip-seq

e http:/ /sissrs.rajajothi.com

e http://meme.nbcr.net/meme/doc/meme-chip.html (MEME_CHIP)

e hittps:/ /sites.google.com/a/brown.edu/genomics-club/guidance/peak-callers
(list of sites)
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