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.
-xperimental Design




. Experimental Design: Overview

Hypothesis-driven
Addresses a well thought-out quantifiable question

Considerations:
Library Construction: mRNA versus total RNA
Single-end versus Paired-end Sequencing
Sequencing Depth: quantifying gene-level or transcript-level expression
Number of Replicates: statistical-power and ability drop a bad sample
Reducing Batch Effects



. Experimental Design: Library Construction

Total RNA contains high-levels of ribosomal RNA (rRNA): 80%

mRNA
poly(A) selection ~ standard profiling for gene expression
Low RIN may results in 3’ bias
Total RNA
rRNA depletion
mRNA + non-coding RNA species (IncRNA)
Prokaryotic samples



. Experimental Design: Sequencing Depth

mRNA: poly(A)-selection
Recommended Sequencing Depth: 10-20M paired-end reads (or 20-40M reads)
RNA must be high quality (RIN > 8)

Total RNA: rRNA depletion
Recommended Sequencing Depth: 25-60M paired-end reads (or 50-120M reads)
RNA must be high quality (RIN > 8)

* Differential Isoform regulation or alternative splicing events. > 100M paired-end reads



. Experimental Design: Number of Replicates

Recommended
Biological Replicates > Technical Replicates
Number of Replicates: 4
Peace-of-mind: Ability drop a bad sample without compromising statistical power
Bare Minimum
Biological Replicates > Technical Replicates

Number of Replicates: 3



. Experimental Design: Reducing Batch Effects

Sample Name Group Batch Batch*
Unwanted sources of technical variation

Treatment_r1 KO 1 1

Decrease batch effects by uniform processing Lol b . ;
Protocol-driven S —_— . . ]
Different Lab Technicians Treatment_r& KO 2 1
Different processing times Cntrl_r1 wT 1 2
Different Reagent Lots Cntrl_r2 wT 2 2
Sequencing Cntrl_r3 wT 1 2
Cntrl_ré4 WT P P

Lane effect

* Confounded Groups and Batches!






I, Quality-control: Overview

No need to reinvent the wheel... but there are a lot of wheels!

Pre-alignment Quality-control
Sequencing Quality
Contamination Screening

Post-alignment Quality-control
Alignment Quality

Aggregation and Interpretation
MultiQC Report

QC metric guidelines



|, Quality-control: Pre-alignment

Sequencing Quality
FastQC: run twice on raw and trimmed data

Contamination Screening

FastQ Screen FastQC raw FastQC trimmed
Kraken e /O\O/
. {
BioBloom Adapter Trimming Contamination
Screening
\\ N
|



I, Quality-control: Pre-alignment

e o R

FastQC
Identify potential problems that can arise during sequencing or library prep
Run on raw reads (pre-adapter removal) and trimmed reads (post-adapter removal)
Summarizes:
- Per base and per sequence quality scores
- Per sequence GC content
- Per sequence adapter content
- Per sequence read lengths

- Overrepresented sequences



I Quality-control: FastQC

FastQC: Per Sequence GC Content

FastQC: Per Sequence GC Content
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I, Quality-control: Pre-alignment

FastQ Screen
Aligns to Human, Mouse, Fungi, Bacteria, Viral references
Easy to interpret and important QC step
Kraken
Taxonomic composition of microbial contamination
- Archaea
- Bacteria
- Plasmid

- Viral
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I:aStQ S C re e ﬂ Contamination Screening
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HCEC_1KT_control_P7_S1_R1_001_trim_paired_screen - Bacteria
Multiple Hits, One Genome: 15.2%
Total Alignment: 16.42%

Human Phix Salmo Uni_Vec Bacteria i Lambda

Il Multiple Hits, Multiple Genomes [l One Hit, Multiple Genomes [l Multiple Hits, One Genome [l One Hit, One Genome



Kraken + Krona

9 more

Rhizopium legurm
7 more -
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Microbial Taxonomic Composition

%p seusBoojey sepioioioeg

Bacteria
Root

Bacteria

768124
123620
2

Rank: superkingdom

1% of
Root

x

Cyanobacteria 0.6% [

Chiorobiaceae 0.3% [
Acidobacteriaceae 0.2% [

Chlamydiia 0.2% [

Aquificae 0.2% [

Planctomycetes 0.2% [
‘Thermodesulfobacterium geofontis 0.1% [
Deinococci  0.1% [

Verrucomicrobia 0.1% [l

Chiorofiexi 0.03% [

Caldisericum exile 0.02% [l

Nitrospiraceae 0.007% [l

Fusobacteriales 0.003% [l

Thermotogae 0.002% [l

Synergistaceae 0.002% [l
Gemmatimonas aurantiaca 0.002% [l
uncultured Termite group 1 bacterium 0.0009% [l
Deferribacteraceae 0.0008% [l
Chthonomonas calidirosea 0.0004% [l

Fibrobacter succinogenes subsp. succinogenes 0.0003% [l

Desulfurispiillum indicum 0.0001% [l



I Quality-control: Post-alignment

Preseq
Estimates library complexity
Picard RNAseqMetrics
Number of reads that align to coding, intronic, UTR, intergenic, ribosomal regions
Normalize gene coverage across a meta-gene body
- Identify 5’ or 3' bias
RSeQC
Suite of tools to assess various post-alignment quality
- Calculate distribution of Insert Size
- Junction Annotation (% Known, % Novel read spanning splice junctions)
- BAM to BigWig (Visual Inspection with IGV)
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CollectRnasegMetrics mignment summary

Treatment_S25
Treatment_S26

Treatment_S27

control_S24

)

50
Percentages

Coding @ UTR Intronic Intergenic @ Ribosomal @ PF not aligned

Sample10

Samplell

Samplel

Sample2

sample3

Sample4

Samples

Sample6

Sample72

Sample82

Sample92
45 50 55

Number of reads

® Ribosomal @ PF not aligned

Coding @ UTR Intronic Intergenic




Picard CollectRnasegMetriCS normaiized Gene coverage

Normalized Coverage

Normalized Coverage
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I, Quality-control: Aggregation

MultiQC
HTML report that aggregates information across all samples
- Plots, filtering, and highlighting
Highly customizable with great documentation
- Add text and embed custom figures
- Create your own module to extend missing functionality

Supports over 73 commonly-used open source bioinformatics tools
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QC Metric Guidelines
RNA Type(s)
RIN

Single-end vs Paired-end

Recommended Sequencing
Depth

FastQC

Percent Aligned to Reference
Million Reads Aligned Reference

Percent Aligned to rRNA
Picard RNAsegMetrics

Picard RNAsegMetrics

mMRNA
Coding
>8 [low RIN = 3’ bias]

Paired-end
10-20M PE reads

Q30 > 70%
> 70%

> 7M PE reads (or > 14M reads)

< 5%
Coding > 50%

Intronic + Intergenic < 25%

total RNA
Coding + non-coding
> 8
Paired-end

25-60M PE reads

Q30> 70%
> 65%

> 16.5M PE reads (or > 33M reads)

< 15%
Coding > 35%

Intronic + Intergenic < 40%
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[Il. Processing Pipeline conceptual biagram

Adapters are composed of Counting the number of reads
synthetic sequences and should that align to particular feature of
be removed prior to alignment interest (genes, isoforms, etc)

Adapter Trimming Quantification

o
Raw data
FastQ files ®

Alignment Differential Expression

Adding biological context to your Summarizing differences
data, find where reads align to between two groups or
the reference genome conditions (KO vs. WT)




1. Processing Pipeling eractica exampte

FastQC: Pre- and post- trimming
Cutadapt: Remove adapters

FastQ Screen: Run twice on different set of references

STAR: Splice-aware aligner
RSEM: Generates gene and isoform counts

MultiQC: Aggregates everything into an HTML report

Data Genome
Paired-end FASTQ (hg19, hg19_KSHV, hg38, hg38_HPV16,
Files mm9, mm10, Mmul_8.0.1)

FastQC (Raw FASTQ Files)
Cutadapt
(Adapter clipping)

FastQC (Trimmed FASTQ Files) STAR

Genomic and Transcripiomic BAM
(RG-added, sorted, dups marked)

RSEM Merge
Raw Counts, TPM and FPKM
Matrices

Interactive MultiQC
HTML Report

FastQ files to raw counts matrix

l FastQ Screen (2-passes)
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Il. Processing Pipeline: Reproducibility

Workflow management systems

Snakemake, Nextflow

Package management
No active management: rat's nest of interdependencies prone to break
Python: virtual environments
Conda: Python, R, Scala, Java, C/C++, FORTRAN
Docker or Singularity: Portability and high reproducibility
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Downstream Analysis




/. Downstream Analysis

Raw data
FastQ files

Adapter Trimming

Step 1: Think
Step 2: Analyze

Step 3: QC
279?

Step 4: Nobel Prize!

Quantification

O
o

Alignment

Answer Biological

Questions
—

o—

Differential Expression
A



V. Downstream Analysis

Principal Components Analysis (PCA)

Data summarization, visualization, and QC tool

Differential Expression

Find genes that are different between groups of interest

Pathway Enrichment

Analyze for broader biological patterns
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V. Downstream Analysis: PCA

Principal Components Analysis (PCA)

s Dimensionality reduction technique Se '{ {m Petal
= (Captures patterns of variance into singular values & =1 A
= Visualizes global transcriptomic patterns

Iris Versicolor Iris Setosa Iris Virginica

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

R groups ® setosa @ versicolor e virginica

4.9 3 3 .7 virginica

4.4 . i .2 setosa
4.8 d 3 .1 setosa
5.1 g : .4 setosa
5.7 J . .3 setosa
6.3 4 5 .9 virginica
6.3 % d .5 virginica

5.4 x : .2 setosa

6.4 . J .8 virginica

PC2 (5.3% explained var.)

6.1 H 4 .4 versicolor 0 2

PC1 (92.5% explained var.)




V. Downstream Analysis: PCA

Principal Components Analysis (PCA)

s Dimensionality reduction technique
= (Captures patterns of variance into singular values
= Visualizes global transcriptomic patterns
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V. Downstream Analysis: PCA

PCA can help drive biological insights...
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V. Downstream Analysis: PCA

PCA can help drive biological insights...

PCA plot (n=80, 20592 genes)

condition
@® ccL
@® CHcL
@® cLDXx
FHCL
FHM
FHNK
FHT
FNCL
KCL
NCL
NNK

PC2: 10% variance

Sample.Source
@ Cellline

A Vetastatic tumor
Il Normal kidney
—l— Primary tumor
X Xenograph

0 50
PC1: 30% variance




8
¥
&
-
g
>
R
o
z
g

V. Downstream Analysis: PCA

... or be used as a QC tool

Outliers Removed

PCA plot (n=10, 30785 genes)

Original

PCA plot (n=12, 31170 genes)

condition
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®
S
S
®
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100
PC1: 33% vanance

condition

® FHNK
A Fur
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/. Downstream Analysis: Differential Expression

Goal: Identify genes or transcripts that vary due to
biological effects

Sqrt( standard deviation )

Question: Can't | just use a t-test to do that?
Answer: Sure. But data are noisy... bad idea

c
=
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So we apply normalization and/or employ
specialized statistical tests. 0 10 200 0 200 10 20

log2( count size + 0.5 ) log2( count size + 0.5 ) log2( count size + 0.5 )

Law, C. W., et al. (2014). "voom: Precision weights unlock linear model analysis tools
for RNA-seq read counts." Genome Biol 15(2): R29.
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V. Downstream Analysis: Differential Expression

Table 1:

Software packages for detecting differential expression

Method Version Reference Normalization? Read count Differential expression test
distribution
assumption
TMM/Upper quartile/RLE (DESeq-like)/None ~ Negative binomial Exact test
(all scaling factors are set to be one) distribution
DESeq sizeFactors Negative binomial Exact test
distribution
Scaling factors (quantile/TMM/total) Negative binomial Assesses the posterior probabilities of models for differentially and non-differentially
distribution expressed genes via empirical Bayesian methods and then compares these posterior
likelihoods
NOlIseq % i RPKM/TMM/Upper quartile Nonparametric Contrasts fold changes and absolute differences within a condition to determine the null
method distribution and then compares the observed differences to this null
SAMseq i 8 SAMseq specialized method based on the mean Nonparametric Wilcoxon rank statistic and a resampling strategy
(samr) read count over the null features of the data set method
Limma T™MM voom Empirical Bayes method
transformation of
counts
Cuffdiff2  2.0.2- Geometric (DESeq-like)/quartile/classic-fpkm  Beta negative t-test
(Cufflinks) beta binomial
distribution

EBSeq A2 11 DESeq median normalization Negative binomial Evaluates the posterior probability of differentially and non-differentially expressed entities

distribution (genes or isoforms) via empirical Bayesian methods

In case of availability of several normalization methods, the default one is underlined.

Seyednasrollah, F., et al. (2015). "Comparison of software packages for detecting
differential expression in RNA-seq studies." Brief Bioinform 16(1): 59-70.
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V. Downstream Analysis: Differential Expression
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Seyednasrollah, F., et al. (2015). "Comparison of software packages for detecting
differential expression in RNA-seq studies." Brief Bioinform 16(1): 59-70.



/. Downstream Analysis: Differential Expression

Practical Rules of Thumb
Limma, DESeq2, and EdgeR will work be very similarly in most cases

- Consensus or intersection of the three is sometimes used
Limma works better with larger cohorts ( 7 or more samples per group)

DESeq2 works better with small cohorts ( 3 or less per group)

- May also be more sensitive for low depth data

EdgeR provides convenience functions for converting to various normalized values
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V. Downstream Analysis: Differential Expression

Output

Ul B Differential Expression

Home Insert Draw Page Layout Formulas Data Review View

o 0 Calibri (Body) v 12 A = v 25 wrap Text v General
@~
BY I U v | v Merge & Center v $ v9% 9

gene_id
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\'.gene_svmbol MbaseMeat| IongoIddl| IfcSE ‘LI stat \'lpvalue \ padj ‘L\
ENSG00000175287.18 PHYHD1 105.506727 -8.8636152 0.40719938 -21.767261 1.12E-100
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ENSG00000154783.11 FGD5 124.02576 -8.5168071 0.9158096 -9.2997573 1.96E-17
ENSG00000074211.13 PPP2R2C 956.880491 5.7899375 0.63226125 9.15750811 6.99E-17
ENSG00000154764.5 WNT7A 157.383259 -9.8669148 1.07831546 -9.1503045 7.08E-17
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V. Downstream Analysis: Differential Expression
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/. Downstream Analysis: Pathway Enrichment

Gene annotation and network databases capture biological meaning
Manual curation, text mining

Gene function and/or interactions

Dozens of databases and hundreds of tools

Depends on how you want to look at gene-pathway relationships
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V. Downstream Analysis: Pathway Enrichment

Enrichment of all significant genes
(n=450)

Types of pathway analysis

Simple enrichment test: Qualitative

Extracellular matrix organization

Metabolism of steroids

S Phase

_ F | S h e r’S Exact Te St Regulation of cholesterol biosynthesis by SREBP (SREBF)

Activation of gene expression by SREBF (SREBP)

- Hypergeometric test

Cholesterol biosynthesis
DAG and IP3 signaling

Enrichment algorithms: Quantitative Telomers G-t (Laging ) Syrnesis

Lagging Strand Synthesis

- G S EA ( B rO ad I n Stitu te) Processive synthesis on the lagging strand .

0.04
GeneRatio

Network Analysis

Commercial vs. open source



V. Downstream Analysis

Types of pathway analysis
Simple enrichment test: Qualitative
- Fisher’s Exact Test

- Hypergeometric test

Enrichment algorithms: Quantitative
- GSEA (Broad Institute)

Network Analysis

Commercial vs. open source

. Pathway Enrichment

Enrichment plot:
REACTOME_AMINO_ACID_TRANSPORT_ACROSS_THE_
PLASMA_MEMBRANE

10,000 20,000

'FHNK' (negatively correlated)

30,000

40,000 50,000

Rank in Ordered Dataset

~— Enrichment profile — Hits

Ranking metric scores

60,009
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/. Downstream Analysis: Pathway Enrichment

Types of pathway analysis
Simple enrichment test: Qualitative
- Fisher’s Exact Test

- Hypergeometric test

Enrichment algorithms: Quantitative
- GSEA (Broad Institute)

© 2000-2019 QIAGEN. All rights reserved.

Network Analysis

Commercial vs. open source



V. Downstream Analysis: Pathway Enrichment

Types of pathway analysis

Enrichment Test

Enrichment Scoring Algorithm
Network Analysis
Graphical Interface

34
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V. Visualizations of RNA-Seq Data

Group comparisons of pathway enrichment
Heatmaps
Visualizing Set Overlap
Dotplots
Sashimi plots
Alternative Splicing
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\/. Visualizations: Group Enrichment

Group comparison of pathway enrichment: Simple Enrichment Test

Pathway enrichment among DE genes

Metabolism Metabolism of proteins Cell Cycle Hemostasis Disease Signal Transduction Immune System

Beta-oxidation of very long chain fatty acids -

Bile acid and bile salt metabolism -

Biological oxidations 4

Biotin transport and metabolism 4

Branched-chain amino acid catabolism 4
Cytochrome P450 — arranged by substrate type - Count
Degradation of cysteine and homocysteine - ® 20
Mitochondrial translation 4 . 40

Mitochondrial translation elongation - . 60

Mitochondrial translation initiation - . 80

Mitochondrial translation termination 4

Description

Activation of ATR in response to replication stress 4 . .
direction

Activation of the pre-replicative complex -

. v down

Cell Cycle Checkpoints

A

Cell surface interactions at the vascular wall b

Platelet activation, signaling and aggregation -
Defects in vitamin and cofactor metabolism - A v
Diseases of metabolism - A v

Rho GTPase cycle 4

Antigen activates B Cell Receptor (BCR) leading to generation of second messengers 4 A v

T T T T T T T T T T T T T T T T T T T T T T

A 2 3 A A 9 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A A 2 3 A
QUSRS E( s s et (s s qust st s st s s st s s e st USSPl e s e Rs s~

contrast




\/. Visualizations: Expression Heatmap

Groups 2 Groups
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\/. VIisualizations: Set Intersection

Tg-Cntrl N KO-Cntrl

Isoform Regulation
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\/. Visualizations: Pathway enrichment

Enrichment Scores for REACTOME pathways
*p < 0.001

TCA Cycle And Respiratory Electron Transport 2 Category
Respiratory Electron Transport Gell Cycle

Respiratory Electron Transport ATP Synthesis By Chemiosmotic Coupling And Heat Production By Uncoupling Proteins Disease

Nuclear Receptor Transcription Pathway
| Lipid Digestion Mobilization And Transport

Metabolism Of Amino Acids And Derivatives

Transport Of Inorganic Cations Anions And Amino Acids Oligopeptides.

Phase Functionalization Of Compounds

Latent Infection Of Homo Sapiens With Mycobacterium Tuberculosis

SLC Mediated Transmembrane Transport

Formation Of Fibrin Clot Clotting Cascade

Transmembrane Transport Of Small Molecules

| Transport Of Glucose And Other Sugars Bile Salts And Organic Acids Metal lons And Amine Compounds

Mrma Processing

Processing Of Capped Intron Containing Pre Mrma

E2f Mediated Regulation Of DNA Repiication

Activation Of Atr In Response To Replication Stress

G2 M Checkpoints

Cell Cycle

Mitotic G1 G1 S Phases.

M G1 Transition

| Synthesis Of DNA
| Cell Cycle Checkpoints
G1 8 Transition

| Activation Of The Pre Replicative Complex
| DNA Strand Elongation
| DNA Replication

Mitotic M M G1 Phases

Gell Cycle Mitotic
Mitotic Prometaphase
| Immunoregulatory Interactions Between A Lymphoid And A Non Lymphoid Cell
TCR Signaling

Influenza Viral RNA Transcription And Replication

3 UTR Mediated Translational Regulation

Peptide Chain Elongation

Nonsense Mediated Decay Enhanced By The Exon Junction Complex

SRP Dependent Cotranslational Protein Targeting To Membrane

Formation Of The Ternary Complex And Subsequently The 43s Complex
| Packaging Of Telomere Ends
RNA Pol | Promoter Opening
| RNA Pol | Transcription
Chromosome Maintenance
" Offactory Signaling Pathway
Assembly Of The Pre Replicative Complex
Deposition Of New Cenpa Containing Nucleosomes At The Centromere
Meiotic Recombination
Telomere Maintenance

DNA Replication
Gene expression (Transcription)
Hemostasis

Immune System

Metabolism

Metabolism of proteins
Metabolism of RNA

Signal Transduction

Transport of small molecules
Unclassified




\/. VVIsualizations: Sashimi Plot
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Conclusions

Think BEFORE you sequence!
This is a three-way partnership: bench — sequencing — analysis
- Everyone should agree on experimental design, platform, approach
QC is extremely important!
There is no need to reinvent the wheel... but there are a lot of wheels
Garbage in, Garbage out!
- Only some problems can be fixed bioinformatically
There will always be significant changes detected

Interpretation must be cautious and deliberate
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MiSeq NextSeq HiSeq 4000 Novaseq
. ~13 - 44
COSt_ Be n eflt Run Time 4-55 hours| 12-30 hours < 1-3.5 days
hours
Considerations o Gutput | TS G5 | 120G | 150066 | 6000 Gb
Max Reads Per - . . .
Caveats: . 25 million | 400 million 5 billion 20 billion
Expected reads/sample based on maximum Lanes 1 1 8 4
possible yield
Maximum Read 2x300bp 2x150bp 2x150b 2 x 250
. . . X X X wx
Typical runs likely yield 80% of max Length P P P X
Different platforms may have different turnaround | cost from SF T $623 $1956 $1007/lane = $4382/lane
times depending on queue length and popularity

Library Prep cost is not included here:
$50-84 depending on type of kit

https://emea.illumina.com/systems/sequencing-platforms.html?langsel=/ch/
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