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COURSE OUTLINE
Day 1

e Design and Analysis Overview (9:30 - 12:30)

e Genomatix (The basics & Data Import and Mapping) - (1:30 - 4:30)

Day 2
e Genomatix (Workflows & Biological Perspective) - (9:30 - 12:30)

e CISTROME (1:30 -4:30)



COURSE REWARD
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Upon Successful Completion of Module 1 of the
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COURSE GOALS

* Provide some basic knowledge on how to generate and interpret
ChIPSeq data.

e Equip you with the fundamental knowledge required to understand
what the data analysis entails.

e Impart enough understanding of the analytic process to enable you to
establish strategic partnership with bioinformatician collaborators.

e Provide hands-on experience with both a Commercial (Genomatix)
and an Open Source Tool (Cistrome)









ChIP-SEQ
Background
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WHAT CAN BE DONE WITH
THIS TECHNIQUE

Can be use to interrogate ANY DNA-binding protein
physically associated with a DNA segment on a genome
wide basis.

e Transcription factors (p53, STAT1)
e Basal transcription machinery (Pol II)
e Histones and modified histones (H3 ml4)

¢ Chromatin modifying enzymes (histone acetylase)

Imported Author Today, 3:18 PM

The first action of a transcription factor is to find and to bind DNA segments and ChIP-seq allows the binding
sites of transcription factors to be identified across entire genomes. The DNA sequence motif that is recognized
by the binding protein can be computed; the precise regulatory sites in the genome for any transcription factor
can be identified; the direct downstream targets of any transcription factor can be determined; and the clustering
of transcription-regulatory proteins at specific DNA sites can be assessed.



TRANSCRIPTION FACTORS

The first action of a transcription factor 1s to find and to bind DNA
segments and ChIP-seq allows the binding sites of transcription
factors to be identified across entire genomes. The DNA sequence
motif that is recognized by the binding protein can be computed; the
precise regulatory sites in the genome for any transcription factor
can be identified; the direct downstream targets of any transcription
factor can be determined; and the clustering of transcription-

regulatory proteins at specific DNA sites can be assessed.



SUBSET OF TECHNIQUES

ChIPSeq

ChIPExo

FAIRE-Seq(Formaldehyde-Assisted Isolation of Regulatory Elements)
DNase Hypersensitivity

DNase Footprinting



DIFFERENT VARIATIONS

Native ChIP (N-ChIP)

Cross link protein and DNA (Formaldehyde) (X-ChIP)

Protein-Protein cross linking (disuccinimidyl g’

utarate)

and formaldehyde (HDAC- chromatin remode

ers)

Sonication (Fragmentation ...200-300bp)
Enzymatic digestion (Micrococcal nuclease)
Enzymatic digestion (DN Aase)

Enzymatic digestion (Exonuclease)



SUBSET OF TECHNIQUES
CHIP-EXO
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SUBSET OF TECHNIQUES
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Whoops!

DNase Footprint Signatures Are Dictated by Factor Dynamics and DNA Sequence

Myong-Hee Sung, - Michael J. Guertin, -~ Songjoon Baek, -~ and Gordon L. Hager"
ILaboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD 20892, USA

Molecular Cell 56, 275-285, October 23, 2014

Genomic footprinting has emerged as an unbiased discovery method for
transcription factor (TF) occupancy at cognate DNA 1n vivo. A basic premise of
footprinting 1s that sequence-specific TF-DNA interactions are associated with
localized resistance to nucleases, leaving observable signatures of cleavage within
accessible chromatin. This phenomenon is interpreted to imply protection of the
critical nucleotides by the stably bound protein factor. However, this model conflicts
with previous reports of many TFs exchanging with specific binding sites in living
cells on a timescale of seconds. We show that TFs with short DNA residence times
have no footprints at bound motif elements. Moreover, the nuclease cleavage profile
within a footprint originates from the DNA sequence in the factor-binding site,
rather than from the protein occupying specific nucleotides. These findings suggest
a revised understanding of TF footprinting and reveal limitations in comprehensive
reconstruction of the TF regulatory network using this approach.



Workshop on Reproducibility of Data
Collection and Analysis

Modern Technologies in Cell Biology:
Potentials and Pitfalls

Monday November 24th
8:30 a.m. to 4:30 p.m.
Lipsett Amphitheater, Building 10.



On the surface ChIP-SEQ is a very
simple straightforward technique with

lots of potential...

Unfortunately, a number of technical
and biological issues often make it a
very challenging endeavor !



Comparison to
ChIP-Chip



COMPARISON TO CHIP-CHIP

e Nucleic acid hybridization is complex and is
dependent on many factors including the GC-
content, length, concentration, and secondary
structure of both the target and probe sequences.
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Figure 2. Comparison of ChiP-seq and ChIP-chip. Representative
signals from ChiP-seq (solid line) and ChIP-chip (dashed line) show
both greater dynamic range and higher resolution with ChiIP-seq.
Whereas three binding peaks are identified using ChIP-seq, only one
L broad peak is detected using ChiIP-chip.




COMPARISON OF

CHIP-CHIP AND CHIP-SEQ

Resolution

Coverage

Cost

Source of platform noise

Experimental design

Cost-effective cases

Required amount of ChIP DNA

Dynamic range

Amplification

Multiplexing

ChIP-chip

Array-specific, generally 30—100bp

Limited by sequences on the array; repetitive regions
usually masked out

$400-$800 per array (1-6 million probes); multiple
arrays may be needed for large genomes

Cross-hybridization between probes and non-specific

targets

Single- or double-channel, depending on platform

Large fraction enriched (broad binding), profiling of
selected regions

High (few pg)

Lower detection limit, saturation at high signal

More required

Not possible

ChIP-Seq

Single nucleotide

Limited only by alignability of reads to the genome;
increases with read length; many repetitive regions
can be covered

$1000-$2000 per Illumina lane (6—15 million reads

prior to alignment)

Some GC-bias may be present

Single channel

Small fraction enriched (sharp binding), large
genomes

Low (10-50 ng)

Not limited

Less required; single molecule sequencing without
amplification is available

Possible



Experimental
Design



STEPS IN CHIP-SEQ

Wet Lab Experiment

Generate Sequences Data

MAP sequences to genome

Identity “peaks”

Find motifs

s
[Cbrary construction]  [Sequencing
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Figure 1. Flow scheme of the central steps in the ChiP-seq

procedure.

Correlate peaks/motifs with biology

Differential studies



CHIP-SEQ
BEFORE YOU START

e Do you need really need to do the experiment ?
e [s there existing data ?

e [s there similar data...same factor different
conditions/ cell type/organism

e |s there similar data...different but similar

factor

e Do you have a plan on how to analyze the data.



CHIP-SEQ DESIGN ISSUES

Antibody Selection

® Probably the most critical experiment decision
DNA Control

Depth of Sequencing (How many reads)
Replicates

Experimental Goals (Positive control)

Algorithm choices - mapping and peak-calling



ITS ALL ABOUT THE
ANTIBODY

e Must have specificity for target molecule

e Must immunoprecipitate the target
(Must ChIP well!)

e Do you have Quality control metric to access
the quality of your antibody (don’t rely on
vendor)

(Western blots, Chip PCR)



ITS ALL ABOUT THE
ANTIBODY

“Having a third party validate every batch would be a fabulous
thing,” says Peter Park, a computational biologist at Harvard

Medical School.

He notes that the consortium behind ENCODE — a project
aimed at identifying all the functional elements in the human
genome — tested more than 200 antibodies targeting
modifications to proteins called histones and found that
more than 25% failed to target the advertised modification.

BIOMEDICINE: NATURE NEWS | 1 AUGUST 2013 | VOL 500 | NATURE | 15



CONTROL

Its alway best to have one!

There are three commonly used choices for this control:

e input DNA (that is, DNA prior to immunoprecipitation, IP)
[solubility, shearing, amplification]

e mock IP (treated the same as the IP but without any antibody)
[low level of pull down DNA]

e non-specific IP (that is, using an antibody against a protein not
known to be involved in DNA binding or chromatin

modification, such as IgG).
[low level of pull down DNA]

No consensus although most use input DNA... control not necessarily
needed for differential binding experiments



WHY YOU NEED
A CONTROL

Preferential sequencing of G+C rich regions

Repeat regions

Genomic Amplifications

Genomic Landmarks (TSS) higher than normal in control

Chromatin structure - shearing is different: euchromatin vs
heterochromatin, active vs silenced genes

PCR biased amplification (remove identical reads)

Correction or Masking??



Overlapping mapped DNA fragments
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SEQUENCING

There are three commonly used choices for this step:
HiSeq e MiSeq o SOEID

Paired-end vs single end reads
Increased mappability - especially in repeat region
Double the costs

Usually not worth the extra cost, except for special circumstances



SEQUENCING

How many reads and how long ?
Normally short reads (36bp) are sufficient

Human - Sharp peak=20M - Broad peak=40M
high frequency elements (nucleosomes) need more.

® Prominent peaks are identified with fewer
reads, while weaker peaks require more reads.

® The number of putative target regions (peaks)
increases as a function of read depth...may not
plateau.



REPLICATES

Having replicates is ALWAYS good, and many times its

essential.

In general Biological replicates are more useful than technical

replicates.

The need for replicates and the appropriate number is largely
dependent on experimental goals (general or specific) and the
quality of the data (which may have its basis in biology rather
than technique).



EXPERIMENTAL GOALS

® Make sure your experimental design is appropriate to meet

your desired goals.

® Talk to the people who are going to analyze the data BEFORE

you do the experiment.



Snapshot of ENCODE Recommendations

EXPERIMENTAL DESIGN

GUIDELINES
¢ »> At least 2 replicates
Really good a.ntlbody to start > Input Control for each condition
with! > Reproducibility
» Library complexity
» Adequate Sequencing depth to
capture events across genome
DATA QUALITY ASSESSMENT DATA REPORTING GUIDELINES
> Metrics at everv stage possible to » Minimal Information for Chip-seq
! V 1 p ! Experiment (MICE)
assess quality of experiment
> Cross-correlation for stranded > Analysis Details
reads » High-throughput sequencing data

» lrreproducible Discovery Rate
(IDR) for peak concordance in
replicates




ENCODE Recommendations - Part | CR

« Antibody characterization -
— Primary: immunoblot (cross-reactivity) and immunostain (location)
— Secondary (any of the following validation methods)

« Knockdown or knockout of the target protein

IP followed by mass spectrometry

IP with multiple antibodies against different parts of the target protein or
members of the same complex

IP with an epitope-tagged version of the protein

Motif enrichment (For ENCODE data to be submitted, motifs should be enriched
at least fourfold compared with all accessible regions (e.g., DNase
hypersensitive regions) and present in >10% of analyzed peaks)



IFX

ENCODE Recommendations - Part Il

ChIP experimental design guidelines

Sequencing and library complexity

> ENCODE’s goal is to obtain =10 million uniquely mapping reads per replicate experiment

> Target NRF (non-redundancy fraction) >0.8 for 10 million reads - NRF is defined as the
ratio between the Number of positions in the genome that unique reads map to / Total
number of uniquely mappable reads

Control libraries

> ENCODE generates and sequences a control ChiP library for each cell type, tissue, or
embryo collection and sequences the library to the appropriate depth

> |Importantly, a new control is always performed if the culture conditions, treatments,
chromatin shearing protocol, or instrumentation is significantly modified

Reproducibility

> Experiments are performed at least twice to ensure reproducibility
> Concordance is determined from analysis using the IDR methodology (next slide)

MATICS



ENCODE Recommendations - Part llI CR

ChiIP-seq quality assessment guidelines

« A set of data quality thresholds established for submission of ChlP-seq data sets.
— Balancing data quality with practical attainability

1.Cross-correlation analysis
— Calculate and report NSC and RSC for each experiment

— The NSC (Normalized strand cross-correlation) and RSC (relative strand cross-
correlation) metrics use cross-correlation of stranded read density profiles to measure
enrichment independently of peak calling

— If NSC values < 1.05 and RSC values < 0.8 > ENCODE recommends additional
replicate be attempted or the experiment explained in the data submission

2. lIrreproducible discovery rate (IDR) - established for mammalian cells - point source
features

— Biological replicates are performed for each ChlP-seq data set and subjected to peak
calling

— IDR analysis is then performed with a 1% threshold



ENCODE Recommendations - Part IV

Data reporting guidelines (similar to GEO)

1. Metadata - minimal information

Investigator, organism, or cell line, experimental protocol
Indication as to whether an experiment is a technical or biological replicate

Precise source of the antibody; Catalog and lot number for any antibody used
Information used to characterize the antibody

Analysis Details

Peak calling algorithm and parameters used, including threshold and reference genome used to map peaks
A summary of the number of reads and number of targets for each replicate and for the merged data set
Criteria that were used to validate the quality of the resultant ChIP-seq data (i.e., overlap results or IDR29)
Experimental validation results (e.g., qPCR) and link to the control track that was used

An explanation if the experiment fails to meet any of the standards.

3. High-throughput sequencing data

Raw data (FASTQ files) should be submitted to both GEO and SRA
Each replicate should be submitted independently

Target region and peak calling results

ATICS



Data Analysis



ANALYSIS PIPELINE

Aligners

Peak finders
Motif finders
GSEA

Pathway analysis
Diftterential etfects

Visualizers

Which program/
method you use at
each step will be
influenced by many
factors



Good data is always more
robust to analytical choices
than poor data.



Read Quality
Great!

Quality scores across all bases {Sanger / lllumina 1.9 encoding}
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File Formats



FILE FORMATS
e Fastq

e SAM/BAM
e BED

e GFF/GTF
e WIG

http: / / genome.ucsc.edu /FAQ /FAQformat.html



http://genome.ucsc.edu/FAQ/FAQformat.html#

@HWUSI-EAS100R:6:73:941:1973#0/1

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
PP U2 ((((***+))38%++) (3883) . 1***_4*" ') ) **55CCF>>>>>>CCCCCCCHS5

FILE FORMATS
FASTA

>HWI-ST398_0092:1:1:5372:2486#0/1
[TTTTCGTTCTTTTCATGTACCGCTTTTTGTTCGGTTAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGAT

FASTQ

@HWI-ST398_0092:6:73:5372:2486
[TTTTCGTTCTTTTCATGTACCGCTTTTTGTTCGGTTAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGAT
+HWI-ST398_0092:1:1:5372:2486#0/1
ffffeedfcedffffeffdefff_fffffdccfdZzdeeadefecZedaecdbRdTYAZYT ~_T _Abc_Wceaal

6 - Flowcell lane

73 - Tile number

5372 :24806 - 'x',’y’-coordinates of the cluster within the tile
#0 - index number for a multiplexed sample (0 for no indexing)

/1 - the member of a pair, /1 or /2 (paired-end or mate-pair reads only)



FILE FORMATS

FASITC)
Phred Quality Scores
Phred quality score Prob.ablhty il Accuracy of the base call

is called wrong

10 1in 10 90%

20 11in 100 99%

30 11in 1,000 99.9%

40 1 in 10,000 99.99%

50 1 1n 100,000 99.999%



FILE FORMATS SAM

SAM (Sequence Alignment/Map) format is a generic format for storing large
nucleotide sequence alignments. SAM aims to be a format that:

m |s flexible enough to store all the alignment information generated by various
alignment programs,

® |s simple enough to be easily generated by alignment programs or converted
from existing alignment formats;

B |s compact in file size;

® Allows most of operations on the alignment to work on a stream without
loading the whole alignment into memory;

®m Allows the file to be indexed by genomic position to efficiently retrieve all
reads aligning to a locus.

SAM Tools provide various utilities for manipulating alignments in the SAM format,
including sorting, merging, indexing and generating alignments in a per-position
format.

What Information is in the SAM/BAM Header

The SAM/BAM header is not required, but if it is there, it contains generic information for the SAM/BAM file.

The header may contain the version information for the SAM/BAM file and information regarding whether or not and how the file is sorted.
It also contains supplemental information for alignment records like information about the reference sequences, the processing that was
used to generate the various reads in the file, and the programs that have been used to process the different reads. The alignment records
may then point to this supplemental information identifying which ones the specific alighment is associated with.

For example, a group of reads in the SAM/BAM file may all be assigned to the same reference sequence. Rather than every alignment
containing information about the reference sequence, this information is put in the header, and the alignment "points" to the appropriate
reference sequence in the header via the RNAME field. The header contains generic information about this reference like its length.

The SAM/BAM Header also may contain comments which are free-form text lines that can contain any information.

Header lines start with an '@".

Example SAM
Example Header Lines



FILE FORMATS- SAM

8 100_10000_12419 163 chrVII 271183 255 40M = 271294 151 TGGTGTATTATACGCTACCGTGCGGTGCCGGGGGCAACCG bbbabbbbbbbbbbbbbbbbcbbbbcbbbbbbbbbbbbbb XA:31:0 MD:Z:40 NM:i:0

TGGTGTATTAT | bbbabbbbbbbbb | XA:i:0 MD:Z:40

8_100_10000_12419 | 163 chr7 271183 255 40M R 271294 151 ACCeTACtT e
QNAME FLAG RNAME POS MAPQ CIGAR MRNM MPOS TLEN SEQ QUAL OPT
Col Field Description
1| QNAME Query template/pair NAME
2 FLAG bitwise FLAG
3 RNAME Reference sequence NAME
4| POS 1-based leftmost POSition/coordinate of clipped sequence
5| MAPQ MAPping Quality (Phred-scaled)
6 | CIGAR extended CIGAR string
7 | MBRNM Mate Reference sequence NaMe (‘=’ if same as RNAME)
8 MPOS 1-based Mate POSistion
9| TLEN inferred Template LENgth (insert size)
10| SEQ query SEQuence on the same strand as the reference
11 QUAL query QUALIty (ASCII-33 gives the Phred base quality)
12+ OPT variable OPTional fields in the format TAG:VTYPE:VALUE



FILE FORMATS- SAM

8_100_10000_12419 163 chrVII 271183 255 40M

271294 151

TGGTGTATTATACGCTACCGTGCGGTGCCGGGGGCAACCG

bbbabbbbbbbbbbbbbbbbcbbbbcbbbbbbbbbbbbbb

XA:1:0 MD:Z:40 NM:i:0

http: / / picard.sourceforge.net/explain-flags.html

Flag

0x0001

0x0002

0x0004

0x0008

0x0010

0x0020

0x0040

0x0080

0x0100

0x0200

0x0400

0x0800

Chr

Description

the read is paired in sequencing

the read is mapped in a proper pair

the query sequence itself is unmapped

the mate is unmapped

strand of the query (1 for reverse)

strand of the mate

the read is the first read in a pair

the read is the second read in a pair

the alignment is not primary

the read fails platform/vendor quality checks

the read is either a PCR or an optical duplicate

supplementary alignment


http://picard.sourceforge.net/explain-flags.html

FILE FORMATS BAM

BAM is the compressed binary version of the Sequence Alignment/
Map (SAM) format, a compact and index-able representation of
nucleotide sequence alignments. BAM is compressed in the BGZF
format. BGZF files support random access through the BAM file
index.

BGZEF is block compression implemented on top of the standard gzip file
format. The goal of BGZF 1s to provide good compression while allowing
efficient random access to the BAM file for indexed queries. The BGZF format
1s ‘qunzip compatible’, in the sense that a compliant gunzip utility can
decompress a BGZF compressed file.


http://samtools.sourceforge.net/

FILE FORMATS BED

BED files are tab delimited text files BED lines have three required fields and nine additional optional fields. The number of fields per
line must be consistent throughout any single set of data in an annotation track.

The first three required BED fields are: (UCSC-definitions)

1. chrom - The name of the chromosome (e.g. chr3, chrY, chr2_random) or scaffold (e.g. scaffold10671).

2. chromsStart - The starting position of the feature in the chromosome or scaffold.
The first base in a chromosome is numbered 0.

3. chromEnd - The ending position of the feature in the chromosome or scaffold. The chromEnd base is not included in the display
of the feature. For example, the first 100 bases of a chromosome are defined as chromStart=0, chromEnd=100, and span the
bases numbered 0-99.

4. name - Defines the name of the BED line. This label is displayed to the left of the BED line in the Genome Browser window
when the track is open to full display mode or directly to the left of the item in pack mode.

5. score - A score (between 0 and 1000).

6. strand - Defines the strand - either '+' or '-'.

7. thickStart - The starting position at which the feature is drawn thickly (for example, the start codon in gene displays).

8. thickEnd - The ending position at which the feature is drawn thickly (for example, the stop codon in gene displays).

9. itemRgb - An RGB value of the form R,G,B (e.g. 255,0,0). If the track line itemRgb attribute is set to "On", this RBG value will

determine the display color of the data contained in this BED line. NOTE: It is recommended that a simple color scheme (eight
colors or less) be used with this attribute to avoid overwhelming the color resources of the Genome Browser and your Internet
browser.

10. blockCount - The number of blocks (exons) in the BED line.

11. blockSizes - A comma-separated list of the block sizes. The number of items in this list should correspond to blockCount.

12. blockStarts - A comma-separated list of block starts. All of the blockStart positions should be calculated relative to chromStart.
The number of items in this list should correspond to blockCount.



FILE FORMATS WIG

Line oriented text file with two options:
® Variable step
® Fixed step

variableStep chrom=chrl span=2

o 11 3 5555
variableStep chrom=chrl span=1
1000 3 t t t
variableStep chrom=chrl span=4 100 1000 10000
10000 5
fixedStep chrom=chrl start=100 step=100 span=2 11 22 G
1 | |
3 100 200 300

3 )



FILE FORMATS GFF/GTF

® GFF (General Feature Format)
® GTF (Gene Transfer Format)

segname - The name of the sequence. Must be a chromosome or scaffold.

source - The program that generated this feature.

feature - The name of this type of feature. Some examples of standard feature types are "CDS", "start_codon", "stop_codon",
and "exon".

start - The starting position of the feature in the sequence. The first base is numbered 1.

end - The ending position of the feature (inclusive).

score - A score between 0 and 1000. If the track line useScore attribute is set to 1 for this annotation data set, the score
value will determine the level of gray in which this feature is displayed (higher numbers = darker gray). If there is no score
value, enter ".".

strand - Valid entries include '+', -, or ".' (for don't know/don't care).

frame - If the feature is a coding exon, frame should be a number between 0-2 that represents the reading frame of the first
base. If the feature is not a coding exon, the value should be ".".

9. group - All lines with the same group are linked together into a single item.

GTF is a refined form of the GFF with group attributes

« gene_id value - A globally unique identifier for the genomic source of the sequence.
» transcript_id value - A globally unique identifier for the predicted transcript.

SR

ORI

go

GFE3 http: / / www.sequenceontology.org / resources / gff3.html



http://www.sequenceontology.org/resources/gff3.html

Mapping



MAPPING
WHICH GENOME VERSION?

e Which version of the genome do you want/need to
use. (Record and report it!!)
Considerations

* Genome annotation
e Parallel experiments
e Experiments you want to compare it too.

e Available browsers



MAPPING BIAS

Not all the genome is “available” for mapping

Organism Genome size (Mb)
Caenorhabditis elegans 100.28

Drosophila melanogaster 168.74

Mus musculus 2,654.91

Homo sapiens 3,080.44

*Calculated based on 30nt sequence tags

Rozowsky, 2009

Nonrepetitive sequence

Size (Mb)

87.01
117.45
1,438.61
1,462.69

Percentage

86.8%
69.6%
54.2%
47.5%

Mappable sequence

Size (Mb)

93.26
121.40
2,150.57
2,451.96

Percentage

93.0%
71.9%
81.0%
79.6%



MAPPING BIAS

e Effects of repetitive DNA
e Length of reads
e Many choices of mappers

e How important is the mapper you use ?

e Bowtie e BFAST e ELAND

e BWA * Novoalign e STAR



MAPPING

Bowtie is an ultrafast, memory-efficient short read aligner. It aligns short DNA sequences (reads) to the human genome
at a rate of over 25 million 35-bp reads per hour. Bowtie indexes the genome with a Burrows-Wheeler index to keep its
memory footprint small: typically about 2.2 GB for the human genome (2.9 GB for paired-end).

Bowtie 2 is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences. It is
particularly good at aligning reads of about 50 up to 100s or 1,000s of characters, and particularly good at aligning to
relatively long (e.g. mammalian) genomes. Bowtie 2 indexes the genome with an FM Index to keep its memory
footprint small: for the human genome, its memory footprint is typically around 3.2 GB. Bowtie 2 supports gapped,
local, and paired-end alignment modes.

Aligner less critical than some for other NGS
applications... most important is how they handle
repeat regions and PCR amplification products and
mismatches (indels)



Mapping Quality
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PEAK-Calling



PEAK CALLING

What is the ultimate goal of peak calling?

It is to determine if and where there is
enrichment compare to a control



genomic ONA

Forward
density profile
Reversa
-t:lansi‘tyr profile
Combined
. -clansit:,.r profile
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PEAK CALLING

Read Shifting

Background estimation (uses control)

Artifact removal

Significance cutoff (FDR)

Multiple Programs with differing ability

No consensus

Often effected by parameter selection



TYPES OF PEAKS

Peaks have different
shapes (characteristic of
the protein?) and each

presents its own challenges

Figure 2 | chiP profiles. a | Examples of the profiles generated
byNcahtruorme Raetivnieiwmsml| uGneonpetriec-s cipitation followed
by sequencing (ChIP—seq) or by microarray (ChlP—chip). Shown is a
section of the binding profiles of the chromodomain protein
Chromator, as measured by ChIP—chip (unlogged intensity ratio;
blue) and ChlP—seq (tag density; red) in the Drosophila
melanogaster S2 cell line. The tag density profile obtained by ChIP—
seq reveals specific positions of Chromator binding with higher
spatial resolution and sensitivity. The ChIP—seq input DNA (control
experiment) tag density is shown in grey for comparison. b |
Examples of different types of ChIP—seq tag density profiles in
human T cells. Profiles for different types of proteins and histone
marks can have different types of features, such as: sharp binding
sites, as shown for the insulator binding protein CTCF (CCCTC-
binding factor; red); a mixture of shapes, as shown for RNA
polymerase Il (orange), which has a sharp peak followed by a broad
region of enrichment; medium size broad peaks, as shown for
histone H3 trimethylated at lysine 36 (H3K36me3; green), which is
associated with transcription elongation over the gene; or large
domains, as shown for histone H3 trimethylated at lysine 27
(H3K27me3; blue), which is a repressive mark that is indicative of
Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick
disease, type C1; Pros35, proteasome 35 kDa subunit; SYN3,
synapsin Ill. Data for part b are from Ref. 25.

Sharp
Mixed
Medium
Broad

a
ChlIP—chip

__Jhn.__iillt__d“l.__

ChlIP-seq

Y R T

ChlIP—seq input DNA

Pros35 CG4908 eEFIo
HEHe = — -
HHHat—= HHH—s e - H
NPCI CG5708 CG5694
T T T ‘ T T T T ‘ T T T T T ‘ T T ‘
10,220,000 10,225,000 10,230,000
b
CTCF

AR A AAN JLLM.; PR . P an PR TR Ann

RNA polymerase II

H3K36me3

FBXO7

— L e
BPIL2 SYN3

30 TR PP s LR AT AT [ LT LI (S il PN T T

31,200,000 31,220,000 31,240,000 31,260,000




YPES OF PEAKS

A Ba Not statistically significant
Enrichment
ratio: 1.5
B e iR
Considering all Considering only peaks > .
statistically with fold enrichment But 1S lt
significant peaks above a threshold €315 e L O
55 1 [ I Bb Statistically significant b 1 O 1 O gl C a.l].y
5 -
0 2
o N2l Enrichment Enrichment relev ant
) R ratio: 4 ratio: 1.5
= .
& 2
“— & ChiP 20 150
0 L R R e o e e e e e S
(& ’
QO ’
= )
5 | 5
L 4 Control 100
e e S SR (R ey e AR A SRS
0 1

Fraction of reads sampled from the data

Figure 3 | Depth of sequencing. A | To determine whether enough tags have been sequenced, a simulation can be carried out to characterize the fraction of the peaks that would be recovered if a smaller number of tags had been

Nature Reviews | Genetics sequenced. In many cases, new statistically significant peaks are discovered at a steady rate with an increasing number

of tags (solid curve) — that is, there is no saturation of binding sites. However, when a minimum threshold is imposed for the enrichment ratio between chromatin immunoprecipitation (ChlP) and input DNA peaks, the rate at which new peaks
are discovered slows down (dashed curve) — that is, saturation of detected binding sites can occur when only sufficiently prominent binding positions are considered. For a given data set, multiple curves corresponding to different thresholds
can be examined to identify the threshold at which the curve becomes sulfficiently flat to meet the desired saturation criteria (defined by the intersection of the orange lines on the graph). We refer to such a threshold as the minimum saturation
enrichment ratio (MSER). The MSER can serve as a measure for the depth of sequencing achieved in a data set: a high MSER, for example, might indicate that the data set was undersampled, as only the more prominent peaks were
saturated (see Ref. 48 for details). Ba | A peak that is not statistically significant — the enrichment ratio between the ChIP and control experiments is low (1.5) and the number of tag counts (shown under the peaks) is also low. Bb | Two ways in
which a peak can be statistically significant. On the left, although the number of tag counts is low, the enrichment ratio between the ChIP and control experiments is high (4). On the right, the peaks have the same enrichment ratio as those in
a but have a larger number of tag counts; this example shows that continued sequencing might lead to less prominent peaks becoming statistically significant and that there might not necessarily be a saturation point after which no further
binding sites are discovered.



Different Peak
Callers



PEAK CALLING BIAS

e Potentially the most critical, especially for
“poor quality experiments”

* MACS e SICER o CCAI
e 5I55Rs e Useq s SPI°
* PeakSeq  (CisGenome e NGSA

Ditferent models, call ditferent numbers of peaks, different
sized peaks, optimized for different shaped peaks



PEAK CALLING BIAS

Testing of ChIP-Seq Algorithms

be':‘
&) <° >
& > 2 &
‘;‘{-' \b'b o
/ é\‘&(} ob@
& O &
Q R
My
-'f}'
N >
Program Qd‘" X
. conditional
CisGenome X X X X binomial model
Minimal ChipSeq
16 |2.0.1
Peak Finder X X X
E-RANGE| 27 | 3.1 X X X X chromsome scale
} ' Poisson dist.
MACS| 13 |1.3.5 X X X X local Poisson dist.
- chromsome scale
QuEST| 14 | 2.3 X X X X Poisson dist.
HPeak| 29 | 1.1 X X X Hidden Markov Model
Sole-Search| 23| 1 | X | X X X X One sample t-test
conditional
.01
PeakSeq| 21 [1.0 X X X binomial model
SISSRS| 32 | 14 b 4 X X
spp package 31|17 :
(wtd & mic) X X X X X
Generating density Peak Adjustments w. Significance relative to
profiles assignment control data control data

X* = Windows-only GUI or cross-platform command line interface

X** = optional if sufficient data is available to split control data

X' = method exludes putative duplicated regions, no treatment of deletions



Peak calling program

PEAK CALLING BIAS

MACS
SISSRS

spp mtc

spp wtd
QUEST
Hpeak
PeakSeq
ERANGE b | GABP

MCPF | “ FoxA1
- NRSF

Sole-Search.....
CisGenome —

Core peaks .
0 5 10 15 20

Number of Peaks (thousands)



PEAK CALLING

27 Coni

B 8-
o
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>
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MACS_ MACSC — e —,
Hpeak e
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CisGenome ————
CisGenomeC e
SISSRs, SISSRsC S—

GeneTrack ® ® ®

QuEST -

Binding motif - -

Imported Author Today, 3:18 PM

While some packages simply aggregate
mapped tags without regard to strand,
others use strand information to locate the
peaks more sensitively. Some peak-calling
algorithms require the user to supply a
control library whereas others can work
without one, but there are several known
sources of bias in sequencing reads with
ChIP-seq, so that the estimation of
confidence in the peaks without a control
library is highly unreliable and should be
avoided [6]. Confidence in the peaks is
quantified using measures such as P-value

Imported Author Today, 3:18 PM
STAT6
http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2804666/figure/F5/



http: / /encodeproject.org/ENCODE /
encodeTools.html

ChIP-seq Peak Callers

MACS

A widely-used, fast, robust ChIP-seq peak-finding algorithm that accounts for the offset in forward-strand and reverse-strand reads to
improve resolution and uses a dynamic Poisson distribution to effectively capture local biases in the genome. MACS 1.4 is being used for the
current uniform peak calling pipeline.

Feng J, Liu T, Zhang Y. Using MACS to identify peaks from ChIP-Seq data. Curr Protoc Bioinformatics. 2011 Jun;Chapter 2:Unit 2.14.

Zhang Y, Liu T, Meyer CA, Eeckhoute ], Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W et al. Model-based analysis of
ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

PeakSeq

Identifies enriched regions in ChIP-seq type experiments and explicitly compares signal experiments to control experiments.

Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB. PeakSeq enables systematic
scoring of ChIP-seq experiments relative to controls. Nat Biotechnol. 2009 Jan;27(1):66-75.

SPP

A ChIP-seq peak calling algorithm, implemented as an R package, that accounts for the offset in forward-strand and reverse-strand reads to
improve resolution, compares enrichment in signal to background or control experiments, and can also estimate whether the available
number of reads is sufficient to achieve saturation, meaning that additional reads would not allow identification of additional peaks.
Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol. 2008 Dec;
26(12):1351-9.


http://liulab.dfci.harvard.edu/MACS/
http://www.ncbi.nlm.nih.gov/pubmed/21633945
http://www.ncbi.nlm.nih.gov/pubmed/18798982
http://info.gersteinlab.org/PeakSeq
http://www.ncbi.nlm.nih.gov/pubmed/19122651
http://compbio.med.harvard.edu/Supplements/ChIP-seq/
http://www.ncbi.nlm.nih.gov/pubmed/19029915
http://encodeproject.org/ENCODE/encodeTools.html

MACS



MODEL-BASED ANALYSIS OF
CHIP-SEQ
MACS

Model-based Analysis of ChlP-Seq (MACS)

Yong Zhangx*, Tao Liux*, Clifford A Meyer*, Jérome Eeckhoutet, David S Johnson#, Bradley E
Bernstein§Y, Chad Nusbaum9, Richard M Myers¥, Myles Brownt, Wei Li# and X Shirley Liu*

Genome Biology 2008, 9:R 137 (doi:10.1186/gb-2008-9-9-r137)

We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer. MACS
empirically models the shift size of ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also uses a dynamic Poisson distribution
to effectively capture local biases in the genome, allowing for more robust predictions. MACS compares favorably to existing ChlP-Seq peak-finding algorithms, and is

freely available.



PEAK CALLERS - MACS

MACS is (for Transcription Factor binding) one of the most popular
peak callers, it is also one of the oldest and this probably
contributes to its success. It is a good method, good enough for
many experimental conditions and requires very little justification if
cited as the tool used in a publication. MACS performs removal of
redundant reads, read-shifting to account for the offset in forward
or reverse strand reads. It uses control samples and local statistics to

minimize bias and calculates an empirical FDR.



MODEL-BASED ANALYSIS OF
CHIP-SEQ
MACS

® Most widely used
® Robust, provided your data fits the model
® [gnores PCR artifacts
® Does NOT do much QC for you
(garbage in garbage out)
® Python based - many dependencies
® Availability:Helix/Biowulf, Genomatix and Galaxy

® Two common versions (1.4.2 and 2.0.10)



MACS
READ SHIFTING

e MACS takes advantage of the expected bimodal distribution pattern to empirically
model the shifting size to better locate the precise binding sites.

e 1000 high quality peaks where > mfold-enrichment relative to random tag distribution

(a)

Watson (+) S

Crick (-) —
—

—
—

—

® Define distance d, and shifts all tags d/2 distance towards the 3’ end



MACS
PEAK DETECTION

e |inearly scales the total control tag count to the same and the ChIP tag count
e Removes duplicate tags in excess of what is expected by the sequencing depth

(binomial distribution p-value <10-)
® Tag distribution is modeled by a Poisson distribution, and using a 2d window to find

peaks with a significant tag enrichment (Poisson distribution p-value based on Az,

default 10).
® Overlapping enriched tags are merges and each tag position is extended d bases from

its center.
® The location (summit) of the highest fragment pileup is predicted to be the precise

binding location

P(k;x,) Sk }\.k e—k
k!

A captures both the mean and the variance of the distribution.

e is a constant (natural log)=2.71828



MACS

PEAK DETECTION EXTRAS

Background

Instead of using a uniform background (Asg) from the whole

genome they use a dynamic parameter, Aiocal for eac
candidate peak where:

7¥local = maXO\BGa [}\11(,] 7\'Sk: 7\10k)

gl

where A1k, Asx and Aok are A estimated from the 1 kb, 5 kb or

10 kb window centered at the peak location in the control

sample...where no control sample available then Ak is not

used.



MACS
PEAK DETECTION EXTRAS

Background

Nocal captures the influence of local biases, and is robust
against occasional low tag counts at small local regions.
MACS uses Aiocal to calculate the p-value of each candidate
peak and removes potential false positives due to local biases
(that is, peaks significantly under Asg, but not under Aiocal).
Candidate peaks with p-values below a user-defined
threshold p-value (default 1075) are called, and the ratio
between the ChIP-Seq tag count and Aiocal is reported as the
fold enrichment.



MACS
PRACTICAL USE

Output files

1. NAME_peaks.xls is a tabular file which contains information about called peaks. You can open it in excel and sort/filter using excel
functions. Information include: chromosome name, start position of peak, end position of peak, length of peak region, peak summit
position related to the start position of peak region, number of tags in peak region, -10*log10(pvalue) for the peak region (e.g. pvalue
=1e-10, then this value should be 100), fold enrichment for this region against random Poisson distribution with local lambda, FDR in
percentage. Coordinates in XLS is 1-based which is different with BED format.

2. NAME_peaks.bed is BED format file which contains the peak locations. You can load it to UCSC genome browser or Affymetrix IGB
software. The 5th column in this file is the -10*log10pvalue of peak region.

3. NAME_summits.bed is in BED format, which contains the peak summits locations for every peaks. The 5th column in this file is the
summit height of fragment pileup. If you want to find the motifs at the binding sites, this file is recommended.

4. NAME_negative_peaks.xls is a tabular file which contains information about negative peaks. Negative peaks are called by swapping
the ChlIP-seq and control channel.

5. NAME_model.r is an R script which you can use to produce a PDF image about the model based on your data. Load it to R by:
R --vanilla < NAME_model.r

Then a pdf file NAME_model.pdf will be generated in your current directory. Note, R is required to draw this figure.

6. NAME_treat/control_afterfiting.wig.gz files in NAME_MACS_wiggle directory are wiggle format files which can be imported to UCSC
genome browser/GMOD/Affy IGB. The .bdg.gz files are in bedGraph format which can also be imported to UCSC genome browser
or be converted into even smaller bigWig files.



PEAK CALLING

When do you know a ChIP-seq is not working?

[f there is a control library, a ChIP-seq that is not working should
result in few called peaks, and side-by-side inspection of selected
genomic loci in the ChIP and control libraries should show poor
enrichment. However, even when two identical libraries are
sequenced, there will be several areas that may show significant count
differences (as part of an FDR). The ultimate test would be the
quantitative PCR validation of selected ChIP-seq peaks. For some
transcription factors with well characterized motifs it can make sense
to check for the occurrence of the motif in a significant fraction of the

called peaks.



MACS
PRACTICAL USE

Macs come 1n two version
® Differences poorly documented
® Different syntax
® 1.4 used pvalues 2.0 uses qvalues (FDR)

Using macs for peak calling in unix:
* macsi4 —t test.bam —c control.oam —f BAM —n name —g hs —w -bdg

* macs2 callpeak -t test.bam -c control.bam -f BAM -g hs —n name -B -q 0.01



Quality Control
on the called
PEAKS



QC OF OUTPUT (ENCODE)

® Visual Inspection
(known positive control - similar dataset)

e Measure global ChIP enrichment (FRIP) >1%
e Cross Correlation analysis (two peaks)

e Consistency for replicates (Analysis using IDR)

In layman's terms, the IDR method compares a pair of ranked lists of identifications (such as ChIP-seq peaks). These ranked lists
should not be pre-thresholded i.e. they should provide identifications across the entire spectrum of high confidence/enrichment (signal)
and low confidence/enrichment (noise). The IDR method then fits the bivariate rank distributions over the replicates in order to separate
signal from noise based on a defined confidence of rank consistency and reproducibility of identifications i.e the IDR threshold.



QC OF OUTPUT (ENCODE)

Thus far, the most successful point-source factor experiments for
ENCODE have FRiP values of 0.2-0.5 (factors such as REST,
GABP, and CTCF) and NSC/RSC values of 5-12. Although
these quality scores and characteristics were routinely obtained
for the best-performing factor/antibody combinations, they are
not the rule; for most transcription factors, the ChIP quality

metrics were substantially lower and more variable.

ERiP - Fraction of reads in the Peaks
NSC - Normalized Strand Correlation
RSC - Relative Strand Correlation
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CROSS CORRELATION

PLOTS
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WHAT QUALITY IS NEED FOR
FOR FURTHER ANALYSIS

Motif Analysis (low)

Discovering regions to test for biological
function such as transcriptional enhancement,
silencing, or insulation (Medium - High)

Deducing and mapping combinatoric occupancy
(High)

Integrative analysis (High)



Functional Analysis



FUNCTION ANALYSIS

Analysis downstream to peak calling

Visualization - genome browser: Ensembl, UCSC, IGB

Peak Annotation - finding interesting features surrounding peak regions:
Correlation with expression data

Discovery of binding sequence motifs

Split peaks

Fetch summit sequences

Run motif prediction tool

Gene Ontology analysis on genes that bind the same factor or have the same
modification

Correlation with SNP data to find allele-specific binding



FUNCTION ANALYSIS

Visualization

e IGV & IGB

e UCSC Genome

e Heatmaps

Cis-regulatory Element Annotations System (CEAS)
Homer

MEME

GREAT predicts functions of cis-regulatory regions



REPLICATES/CONTROLS

Replicates

e Nature of the biological sample

e (ell line vs Tissue

Controls

e Comparative studies
e Time courses
e (Cancer vs Normal



ENCODE ChIP-Seq peaks are screened against a specially curated
empirical blacklist of regions in the human genome and peaks

overlapping the blacklisted regions were discarded.

(http://hgdownload.cse.ucsc.edu/

EncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz)

These artifact regions typically show the following characteristics:

Unstructured and extreme artifactual high signal in sequenced input-DNA
and control datasets as well as open chromatin datasets irrespective of cell
type 1dentity.

An extreme ratio of multi-mapping to unique mapping reads from
sequencing experiments.

Overlap with pathological repeat regions such as centromeric, telomeric
and satellite repeats that often have few unique mappable locations

interspersed 1n repeats.


http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz

Where to Find
ChIPSeq Data



TYPES OF CHIPSEQ DATA

e NCBI (GEO) (SRA -tabular)

e UCSC (various - bam,bed, fastqg,other)
8 FNC ODE (various - bigBed (bb) and bigWIC (b |

e ChIPBase (CSV)

e (Cistrome Browser



http://ncbi.nlm.nih.gov/
http://genome.ucsc.edu/
http://encode.org/
http://deepbase.sysu.edu.cn/chipbase
http://cistrome.org/dc

* http://deepbase.sysu.edu.cn/chipbase/ (CHIP-BASE)

=

millions of TFESs .
y Different sequencing
*x¥ ¥ “"‘ . platforms and different
1% *f L tissues and cell lines

Gene-centered annotation HE: !
™{ Gene Ontologles, KEGG ChIPBase - |
and Biocarta pathways MvSQL

long non-coding RNA genes
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ChiPBase, an integrated resource and platform for decoding transcription factor binding maps, expression
profiles and transcriptional regulation of long non-coding RNAs (IncRNAs, lincRNAs), microRNAs, other
ncRNAs(snoRNAs, tRNAs, snRNAs, etc.) and protein-coding genes from ChIP-Seq data. ChIPBase currently
includes millions of transcription factor binding sites (TFBSs) among 6 species. ChiPBase provides several web-

based tools and browsers to explore TF-IncRNA, TF-miRNA, TF-mRNA, TF-ncRNA and TF-miRNA-mRNA regulatory
networks.(Release 1.1: 1 November 2012, Tutorial)


http://deepbase.sysu.edu.cn/chipbase/
http://deepbase.sysu.edu.cn/chipbase/expression.php
http://deepbase.sysu.edu.cn/chipbase/news.php
http://deepbase.sysu.edu.cn/chipbase/tutorial.php

Visualization
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Overlapping mapped DNA fragments
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TYPES OF PEAKS

Peaks have different
shapes (characteristic of
the protein?) and each

presents its own challenges

Figure 2 | chiP profiles. a | Examples of the profiles generated
byNcahtruorme Raetivnieiwmsml| uGneonpetriec-s cipitation followed
by sequencing (ChIP—seq) or by microarray (ChlP—chip). Shown is a
section of the binding profiles of the chromodomain protein
Chromator, as measured by ChIP—chip (unlogged intensity ratio;
blue) and ChlP—seq (tag density; red) in the Drosophila
melanogaster S2 cell line. The tag density profile obtained by ChIP—
seq reveals specific positions of Chromator binding with higher
spatial resolution and sensitivity. The ChIP—seq input DNA (control
experiment) tag density is shown in grey for comparison. b |
Examples of different types of ChIP—seq tag density profiles in
human T cells. Profiles for different types of proteins and histone
marks can have different types of features, such as: sharp binding
sites, as shown for the insulator binding protein CTCF (CCCTC-
binding factor; red); a mixture of shapes, as shown for RNA
polymerase Il (orange), which has a sharp peak followed by a broad
region of enrichment; medium size broad peaks, as shown for
histone H3 trimethylated at lysine 36 (H3K36me3; green), which is
associated with transcription elongation over the gene; or large
domains, as shown for histone H3 trimethylated at lysine 27
(H3K27me3; blue), which is a repressive mark that is indicative of
Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick
disease, type C1; Pros35, proteasome 35 kDa subunit; SYN3,
synapsin Ill. Data for part b are from Ref. 25.
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VISUALIZATION

Nothing can match the insight
obtained by looking at your data

e IGV

e UCSC Genome Browser

e Heatmaps

e NGS-plot



Heat Maps



Yeast as Model Organism
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Signal Intensity

\

Nucleosome Signal
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Sorted by nearest neighbour
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TAKE HOME MESSAGE

® Think about what the data may be telling you
and explore different ways of looking at the
same data.

® Be wary of summation plots/ statistics... they
may be “correct” but they can lead you astray
or hide the better story.



Motif Analysis



Motit Analysis

e Known Motifs
® Novel Motif finding programs

The MEME Suite

Motif-based sequence analysis tools

http:/ /meme.nbcr.net/ meme/

MEME-ChIP uses a combination of motif discovery using MEME (good for wide
motifs) and DREME (good for shorter motifs) and comparison of both found
motifs and the sequence data against databases of known motifs.

Results-link



http://meme.nbcr.net/meme/
http://nbcr-222.ucsd.edu/meme_4.9.1/cgi-bin/querystatus.cgi?jobid=appMEMECHIP_4.9.11385088987246-553826929&service=MEMECHIP

COURSE OUTLINE
Day 1

e Design and Analysis Overview (9:30 - 12:30)

e Genomatix (The basics & Data Import and Mapping) - (1:30 - 4:30)

Day 2
e Genomatix (Workflows & Biological Perspective) - (9:30 - 12:30)

e CISTROME (1:30 -4:30)
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http: / / www.slideshare.net/ COST-events / chipseq-data-analysis (SLIDES)

http:/ /bbcf.epfl.ch /bbcflib / tutorial _chipseq.html

http: / /www.biocodershub.net/community / get-the-most-of-your-chip-seg-experiments/

http: / / collaboratory.lifesci.ucla.edu/node /35 (Course)

https/ [ github.com /songlab/chance (QC suite...interesting)



http://www.slideshare.net/COST-events/chipseq-data-analysis
http://bbcf.epfl.ch/bbcflib/tutorial_chipseq.html
http://www.biocodershub.net/community/get-the-most-of-your-chip-seq-experiments/
http://collaboratory.lifesci.ucla.edu/node/35
https://github.com/songlab/chance

http:/ /ccg.vital-it.ch/chipseq/ AND http:/ /chip-seq.sourceforge.net

http: / / www.youtube.com / watch?v=40FdS9EN9Pk

http: / /www.ebi.ac.uk/training / online / course / ebi-next-generation-sequencing-practical-course / chip-seg-analysis / chip-seq-practical

http:/ /medias01-web.embl.de/Mediasite / Play / 94ec103b215c4b45a397400fde4029421d (VIDEO)

http:/ /liulab.dfci.harvard.edu /MACS/

http:/ / gettinggeneticsdone.blogspot.com /2013 /06 / encode-chip-seg-significance-tool-which.html

https:/ /usegalaxy.org/u/james/p/exercise-chip-seq

http:/ /sissrs.rajajothi.com

http: / /meme.nbcr.net/ meme /doc/ meme-chip.html (MEME_CHIP)

https: / /sites.google.com /a/brown.edu /genomics-club / guidance / peak-callers (list of sites)



http://ccg.vital-it.ch/chipseq/
http://www.youtube.com/watch?v=4oFdS9EN9Pk
http://liulab.dfci.harvard.edu/MACS/
http://gettinggeneticsdone.blogspot.com/2013/06/encode-chip-seq-significance-tool-which.html
https://usegalaxy.org/u/james/p/exercise-chip-seq
http://sissrs.rajajothi.com
http://meme.nbcr.net/meme/doc/meme-chip.html
https://sites.google.com/a/brown.edu/genomics-club/guidance/peak-callers

