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Bowtie 1&2, Dashing, Kraken 2 
applied algorithms, text indexing, 
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parallel & high-performance computing, 
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To make high-throughput life science data as usable 
as possible for scientific labs, especially small ones

Qtip, FORGe, r-index 
modeling mapping quality, graph-
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Sequence Read Archive

Langmead B, Nellore A. Cloud computing for genomic 
data analysis and collaboration. Nat Rev Genet. 2018 
May;19(5):325.



Sequence Read Archive

Currently ~ 34 petabases
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1.9 to 3.8 PB
in 18.8 months

3.8 to 7.5 PB
in 15.0 months

7.5 to 15 PB
in 16.0 months

15 to 30 PB
in 17.9 months

http://bit.ly/sra-growth

http://bit.ly/sra-growth
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Public summaries of sequencing data

Langmead B, Nellore A. Cloud computing for genomic data 
analysis and collaboration. Nat Rev Genet. 2018 May;19(5):325.



Search engine for RNA-seq

Snaptron
Index & query engine w/ REST API 
snaptron.cs.jhu.edu 
doi:10.1093/bioinformatics/btx547

Clean summaries of data, metadata, 
packaged as R objects 
jhubiostatistics.shinyapps.io/recount/ 
doi:10.1038/nbt.3838

Scalable, cloud-based spliced alignment 
of archived RNA-seq datasets 
rail.bio 
doi:10.1093/bioinformatics/btw575

http://snaptron.cs.jhu.edu
https://doi.org/10.1093/bioinformatics/btx547
https://jhubiostatistics.shinyapps.io/recount/
https://doi.org/10.1038/nbt.3838
http://rail.bio
https://doi.org/10.1093/bioinformatics/btw575
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Reads

Summarize

Index summaries
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Themes

• Clouds & grids are 
natural fits for public 
data

• Think outside the 
gene annotation

• Much of the work is 
in the "last mile"



Abhinav 
Nellore 
OHSU

Jeff Leek, 
JHU

http://rail.bio
Nellore A, Collado-Torres L, Jaffe AE, Alquicira-Hernández J, Wilks 
C, Pritt J, Morton J, Leek JT, Langmead B. Rail-RNA: scalable 
analysis of RNA-seq splicing and coverage. Bioinformatics. 
33(24):4033–4040, Dec 2017

Image by Rgocs

http://rail.bio
https://commons.wikimedia.org/wiki/File:RNA-Seq-alignment.png


Spliced RNA-seq aligner for analyzing many samples at once

http://rail.bio
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C, Pritt J, Morton J, Leek JT, Langmead B. Rail-RNA: scalable 
analysis of RNA-seq splicing and coverage. Bioinformatics. 
33(24):4033–4040, Dec 2017
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Spliced RNA-seq aligner for analyzing many samples at once
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• Let data prune false junction calls, not annotation

• Concise outputs: junctions & coverage vectors; 
no alignments, unless asked for
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Spliced RNA-seq aligner for analyzing many samples at once

• Group across samples to borrow strength and 
eliminate redundant alignment work

• Let data prune false junction calls, not annotation

• Concise outputs: junctions & coverage vectors; 
no alignments, unless asked for

• Runs easily on commercial AWS cloud

http://rail.bio
Nellore A, Collado-Torres L, Jaffe AE, Alquicira-Hernández J, Wilks 
C, Pritt J, Morton J, Leek JT, Langmead B. Rail-RNA: scalable 
analysis of RNA-seq splicing and coverage. Bioinformatics. 
33(24):4033–4040, Dec 2017

http://rail.bio


Intropolis

• Analyzed ~21,500 human RNA-seq 
samples with Rail-RNA; about 62 Tbp

Exon-exon 
junctions 

(10s of millions)

Samples (21.5K)

http://intropolis.rail.bio
Nellore A, et al. Human splicing diversity and the extent of 
unannotated splice junctions across human RNA-seq samples on 
the Sequence Read Archive. Genome Biol. 2016 Dec 30;17(1):266.

Counts

http://intropolis.rail.bio
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http://intropolis.rail.bio
Nellore A, et al. Human splicing diversity and the extent of 
unannotated splice junctions across human RNA-seq samples on 
the Sequence Read Archive. Genome Biol. 2016 Dec 30;17(1):266.

http://intropolis.rail.bio


With >50K samples and comparing to GENCODE v24

https://github.com/BenLangmead/cgsi18 (jx1.Rmd)
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With >50K samples and comparing to GENCODE v24

https://github.com/BenLangmead/cgsi18 (jx1.Rmd)

97.2%

86.9%

84.6%

100%15.4% of 
junctions 

appearing in 
10% (~5K) of 
samples not 
annotated

https://github.com/BenLangmead/cgsi18


recount2

• >50K human RNA-seq samples from SRA (open) 

• >10K human RNA-seq samples from TCGA (dbGaP)

Image: https://www.sevenbridges.com/welcome-to-the-cancer-genomics-cloud-2/

• >10K human RNA-seq 
from GTEx (dbGaP) 

• Total: ~4.4 trillion reads, 
100s of terabases 

Image: doi:10.1038/ng.2653

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, 
Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature 
Biotechnology. 2017 Apr 11;35(4):319-321.

Jeff LeekAbhinav 
Nellore

Leo 
Collado 
Torres

Andrew 
Jaffe

Kasper 
Hansen



recount2

JunctionsGenes

CoverageExons

Summarized at levels of genes, exons, 
junctions, and coverage vectors + more

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, 
Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature 
Biotechnology. 2017 Apr 11;35(4):319-321.



Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, 
Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature 
Biotechnology. 2017 Apr 11;35(4):319-321.

bit.ly/recount2 (jhubiostatistics.shinyapps.io/recount/)

recount2

http://bit.ly/recount2
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instantly 
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bit.ly/recount2 (jhubiostatistics.shinyapps.io/recount/)

recount2

Enter search ->

Study list is 
instantly 
filtered

Links to data 
objects

http://bit.ly/recount2
https://jhubiostatistics.shinyapps.io/recount/


Search engine for RNA-seq

Snaptron



Snaptron

Query planner breaks down queries, delegates 
to appropriate systems (sqlite, tabix, Lucene) 
and indexes (R-tree, B-tree, inverted index)

Chris Wilks
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Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing 
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114–116.



Snaptron

Command-line tool and REST API for querying junctions.  
New: Also genes, exons and coverage vectors

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing 
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114–116.



Snaptron

http://snaptron.cs.jhu.edu

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing 
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114–116.



Snaptron

• For each junction in a gene, what is its read 
support in each of 50K SRA samples?

http://snaptron.cs.jhu.edu

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing 
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114–116.



Snaptron

• For each junction in a gene, what is its read 
support in each of 50K SRA samples?

• What is a junction's tissue specificity in GTEx?

http://snaptron.cs.jhu.edu

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing 
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114–116.



Snaptron

• For each junction in a gene, what is its read 
support in each of 50K SRA samples?

• What is a junction's tissue specificity in GTEx?

• In which samples is splicing pattern A 
overrepresented relative to pattern B?

http://snaptron.cs.jhu.edu

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing 
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114–116.
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Case study

• Goldstein et al searched for novel cassette 
exons in Illumina BodyMap 2.0 RNA-seq

• Identified 249 within known genes, not 
overlapping a RefSeq-annotated exon

• Validated 216 out of 249 in independent 
sample via RNA-seq



Case study
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how likely novel exons were 
to validate (right)
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RNA-seq 
dataset

Discovery

Case study

ValidationIndependent 
dataset

• Snaptron for validation: 
what discoveries have 
support in public data?

Snaptron for hypothesis generation 
& study design

• Snaptron for discovery: 
what exists? what's 
prevalent? what's specific?

• Snaptron for prioritization 
of potential discoveries: 
what discoveries are best 
supported?



Rod photoreceptors

Jonathan 
Ling

Seth 
Blackshaw

• Detect light & transduce signal 
to brain 

• Degeneration is main cause of 
hereditary blindness; few  
treatments

Can we find rod-specific 
patterns & splicing factors, 
to create a rod-like model 
from a human cell line?

Ling JP, Wilks C, Charles R, Leavey PJ, Ghosh D, Jiang L, Santiago CP, Pang B, Venkataraman A, 
Clark BS, Nellore A, Langmead B, and Blackshaw S. ASCOT identifies key regulators of neuronal 
subtype-specific splicing. Nature Communications, 11(1):137, Jan 2020  
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Rod photoreceptors

Rods and retinal cells have 
characteristic exon-usage 
patterns

1.

Purified tissue 
(FACS/affinity)

Certain exons are utilized 
only in rods

2.

Purified 
tissue

Certain splicing factors 
work specifically in rods

3.

GTEx 
(+retinal)

Purified tissue

ENCODE

Up-regulating those factors 
induces rod-like splicing in 
a human cell line

4.

New data, 
HepG2 cell line



Rod photoreceptors

Ling JP, Wilks C, Charles R, Leavey PJ, Ghosh D, Jiang L, Santiago CP, Pang B, Venkataraman A, 
Clark BS, Nellore A, Langmead B, and Blackshaw S. ASCOT identifies key regulators of neuronal 
subtype-specific splicing. Nature Communications, 11(1):137, Jan 2020  



Rods have 
characteristic 
patterns of 
exon usage

Rod photoreceptors

Ling JP, Wilks C, Charles R, Leavey PJ, Ghosh D, Jiang L, Santiago CP, Pang B, Venkataraman A, 
Clark BS, Nellore A, Langmead B, and Blackshaw S. ASCOT identifies key regulators of neuronal 
subtype-specific splicing. Nature Communications, 11(1):137, Jan 2020  



Rod photoreceptors

Exon usage can be a cell-type signature; 
sometimes invisible at gene level

Cochlear 
Hair Cells

Pyramidal 
Neurons

Sptan Gene Sptan Cassette 
chr2:29982166-29982234

Cnih1 Gene Cnih1 Cassette 
chr14:46783826-46783873

Ling JP, Wilks C, Charles R, Leavey PJ, Ghosh D, Jiang L, Santiago CP, Pang B, Venkataraman A, 
Clark BS, Nellore A, Langmead B, and Blackshaw S. ASCOT identifies key regulators of neuronal 
subtype-specific splicing. Nature Communications, 11(1):137, Jan 2020  
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"We found many 
examples of cell type-
specific exons, of which 
~70% (168/239) were 
entirely unannotated in 
GENCODE release M20" 
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Certain exons are 
used only in rods

Rod photoreceptors
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Certain splicing factors 
are specific. Do they drive 

rod-specific splicing?

Rod photoreceptors

Ling JP, Wilks C, Charles R, Leavey PJ, Ghosh D, Jiang L, Santiago CP, Pang B, Venkataraman A, 
Clark BS, Nellore A, Langmead B, and Blackshaw S. ASCOT identifies key regulators of neuronal 
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Up-regulating those splicing factors recovers rod-like splicing 
in HepG2 cells
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ASCOT

• Explore alternative 
splicing events in same 
datasets we used

http://ascot.cs.jhu.edu

• Mouse purified tissues, 
Smart-seq in mouse & 
human, ENCODE knockdowns

Ling JP, Wilks C, Charles R, Leavey PJ, Ghosh D, Jiang L, Santiago CP, Pang B, Venkataraman A, 
Clark BS, Nellore A, Langmead B, and Blackshaw S. ASCOT identifies key regulators of neuronal 
subtype-specific splicing. Nature Communications, 11(1):137, Jan 2020  
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Cancer & ncRNAs

Imada, EL, Sanchez DF, Collado-
Torres L, Wilks C, Matam T, 
Dinalankara W, Stupnikov A et al. 
"Recounting the FANTOM Cage 
Associated Transcriptome." 
BioRxiv (2019): 
doi:10.1101/659490.

• We also quantified all 
of recount2 using the 
more ncRNA-rich 
FANTOM-CAT 
annotation

Leo 
Collado 
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Luigi 
Marchionni
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Leo 
Collado 
Torres

Luigi 
Marchionni

Eddie-
Luidy 
Imada



Cancer & ncRNAs

• Enhancer with 
prognostic 
value for kidney 
cancer

Chen H, Li C, Peng X, Zhou 
Z, Weinstein JN; Cancer 
Genome Atlas Research 
Network, Liang H. A Pan-
Cancer Analysis of Enhancer 
Expression in Nearly 9000 
Patient Samples. Cell. 2018 
Apr 5;173(2):386-399.e12.



snapcount in Bioconductor
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Charles



Future: public data 

Rod photoreceptor study involved >90K public 
datasets 

Used public data only, up to HepG2 experiment 

Desire: querying public data as an everyday 
activity in bio research

One of the best ways for a neuroscientist like me to keep up to 
date with what colleagues are working on is to attend confer-
ences. But on recent trips I have noticed a problem. Too few 

researchers are consulting and using publicly available data — my own 
included. What is going on? 

Massive amounts of biological information are being accumu-
lated using high-throughput sequencing techniques. Many scientists 
have used some of those resources, such as the Encyclopedia of DNA  
Elements (ENCODE) launched by the US National Human Genome 
Research Institute. But many more laboratories in neuroscience and 
other subdisciplines of cell and molecular biology generate their 
own data sets. These data are piling up in community databases and 
offer information on gene expression and regulation. Unless this  
information is used, it is wasted. 

For instance, I study brain cells thought to be 
important for the maintenance of chronic pain. 
Called microglia, these cells are also investi-
gated by immunologists interested in the cells’ 
role in, say, multiple sclerosis. Together, these 
results provide a full profile of which genes 
these cells express. 

For such studies to be published, the data must 
be put in a public repository for anyone to down-
load. In the case of sequencing data, it is usually 
the Gene Expression Omnibus (GEO) website 
run by the US National Center for Biotechnology 
Information (NCBI). This means that any biolo-
gist can find out what microglia should look like 
from a molecular perspective. The same is true 
for many other kinds of cell, including neurons 
and the cell types found in human blood. 

This is useful information. Knowing whether 
your favourite gene is active in a certain cell 
provides crucial clues about how to proceed with your research. That’s 
why funders and journals have worked so hard over the past decade to 
ensure that researchers don’t hoard their results jealously. 

Hence my surprise when sitting through long discussions at confer-
ences about whether gene X is found in microglia, when I can open a 
public database there and then on my laptop and see that it is absent 
from this cell type in the relevant RNA-sequencing data sets. Similarly, 
many papers I read or review make claims about which proteins are 
expressed in the cell, but these don’t match publicly available results. 

Of course, people should not take others’ data as gospel. Sequenc-
ing data can be wrong. There can be systemic technical artefacts. And 
known biases are associated with certain approaches, for example 
single-cell data sets can miss more than half the transcripts in indi-
vidual samples. But simply taking no notice of deposited data is akin 
to ignoring several independently published replication experiments. 
If your results don’t agree, you should, at the very least, discuss the 

discrepancy, and propose a biologically valid reason for it. 
Why are so many bench biologists overlooking this wealth of  

cell-type-specific expression data? 
My hunch is there are two reasons. First, researchers under estimate 

how many of these data have been published over the past few years 
because they are being generated across so many different fields. 
Second, they are wary of the data. Because you need bioinformatics 
knowledge to generate and analyse sequencing results, people assume 
that they also need such expertise to locate and interpret them. 

Not so. In the past five years, improvements in technology, together 
with stricter deposition guidelines, mean that simple Excel files com-
monly accompany papers. These can be downloaded in minutes from 
the Supplementary Information of a relevant paper, or from the ‘GEO 

Datasets’ tab on the NCBI website using search 
terms. It is like PubMed for spreadsheets. They 
require minimal knowledge to browse. 

It is often difficult to share big data in science.  
Sequencing data are fairly unusual, in that it 
is easy to standardize, display and judge them 
from the outside. This is not the case for many 
other kinds of scientific output. For instance, 
resources for data sharing in brain imaging or 
engineering are less well developed. Obstacles 
include the high cost of storage — although  
valiant efforts have been made to overcome this, 
for instance in 3D neuronal anatomy.

More researchers need to be aware that they 
can profit from a vast library of material. To 
that end, I’ve made a step-by-step guide and a 
video on how to access public sequencing data 
(see go.nature.com/2lbvcts). This includes links 
to purpose-built browsers, such as Blueprint, 
where researchers can enter the name of a gene 

and get cell-type-specific transcriptional data. 
Journals could also help, by requiring scientists to state that they 

have checked their own claims about gene expression against several 
publicly available sequencing results. And reviewers could verify these 
statements: spending 15 minutes searching for a few spreadsheets on 
GEO is not much different from spending 15 minutes on PubMed to 
confirm other types of statements on prior literature. 

People might argue that this problem is age-old. Have we not always 
missed papers, gone up blind alleys and repeated work while the 
answer was in the library all along? Yes. But it has never been easier to 
avoid doing so. The data are a mouse-click away, and many more are 
to come. All we have to do is access them. ■

Franziska Denk is about to open a neuroscience research laboratory 
at King’s College London.
e-mail: franziska.denk@kcl.ac.uk

TAKING  
NO NOTICE  
OF DEPOSITED 

DATA IS AKIN TO 
IGNORING SEVERAL 

INDEPENDENTLY 
PUBLISHED 

REPLICATION 
EXPERIMENTS.

Don’t let useful data go  
to waste
Researchers must seek out others’ deposited biological sequences in 
community databases, urges Franziska Denk.
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Future: data science

One 
dataset

All of 
SRA

Public data quickly challenges us with technical 
confounders & missing/incorrect metadata

What questions can we answer robustly? 
At what points on the spectrum?

Is metadata fixable?
Ellis SE, Collado-Torres L, Jaffe A, Leek JT. 
Improving the value of public RNA-seq 
expression data by phenotype prediction. 
Nucleic Acids Res. 2018 May 18;46(9):e54.
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Cloud computing

Cloud computing is a natural fit for reanalyzing 
public data and for far-flung collaborations 

Next-generation sequencing (NGS) technologies have 
been improving rapidly and have become the work-
horse technology for studying nucleic acids. NGS plat-
forms work by collecting information on a large array 
of poly merase reactions working in parallel, up to bil-
lions at a time inside a single sequencer1. The speed 
and decreasing cost of NGS have led to the rapid accu-
mulation of raw sequencing data (sequencing reads), 
used in published studies, in public archives2 such as 
the Sequence Read Archive (SRA)3,4, which is hosted by 
the US National Center for Biotechnology Information 
(NCBI), and the European Nucleotide Archive (ENA)5, 
which is hosted by the European Molecular Biology 
Laboratory at the European Bioinformatics Institute 
(EMBL–EBI). The SRA now holds about 14 petabases 
(millions of billions of bases) and has been doubling in 
size every 10–20 months (FIG. 1). Genomics researchers 
can use these archived data for various scientific pur-
poses6. For example, in the microarray era, researchers 
combined and reanalysed large collections of archived 
data for platform comparisons7 to improve meth-
ods8,9, conduct meta-analyses10,11 or find clinical pre-
dictors12. Sequencing data archives can democratize 
access to valuable data, which in turn can improve our  
understanding of biology, genetics and disease.
NGS is also fuelling ever-larger collaborations that gen-
erate vast sequencing data sets, including the Genome 
Aggregation Database (gnomAD), which in its first 
release contained exclusively exome data and was known 
as the Exome Aggregation Consortium (ExAC)13, the 
International Cancer Genome Consortium (ICGC)14, 
the Genotype–Tissue Expression (GTEx) Project15,16 
and the Trans-Omics for Precision Medicine (TOPMed) 

programme17, among others (TABLE 1). gnomAD now 
spans over 120,000 exomes and over 15,000 whole 
genomes. ICGC encompasses over 70 subprojects target-
ing distinct cancer types, which are conducted in more 
than a dozen countries and have already collected sam-
ples from more than 20,000 donors. Aligned sequenc-
ing reads for ICGC require over 1 petabyte (PB; that 
is, a million GB) of storage. The TOPMed programme, 
which plans to sequence more than 120,000 genomes17, 
has already deposited more than 18,000 human whole- 
genome sequencing data sets in the SRA, comprising 
approximately 2.3 petabases or about 16.5% of the 
entire archive. Large observational studies currently in 
progress, such as the Precision Medicine Initiative18 and 
Million Veterans Project19, will drive up the totals yet 
more rapidly.
While advances in NGS have increased opportunities 
for reuse and collaboration, they have also created new 
computational problems. To convert raw sequencing 
data to scientific results requires coordinated computa-
tion, storage and data movement. Computer processors 
are required to solve the various computational problems 
encountered along the way, for example, read alignment, 
de novo assembly, variant calling and quantification. 
Storage is needed to hold raw data, processed data and 
data from the computational steps in between. A perspec-
tive on data set sizes, relating size in bytes to number of 
nucleotides and amount of computational power needed 
to analyse, is presented in TABLE 2. Sometimes the resource 
requirements are modest enough to fit within the com-
puter cluster of research laboratories and small institutions. 
But as NGS throughput and archives continue to grow and 
as projects grow larger, the resources required will more 

1Department of Computer 
Science, Center for 
Computational Biology, 
Johns Hopkins University, 
Baltimore, MD, USA.
2Department of Biomedical 
Engineering, Department of 
Surgery, Computational 
Biology Program, Oregon 
Health and Science 
University,  
Portland, OR, USA.
e-mail: langmea@cs.jhu.edu; 
anellore@gmail.com

doi:10.1038/nrg.2017.113
Published online 30 Jan 2018

Sequencing reads
Snippets of DNA sequence as 
reported by a DNA sequencer.

Storage
A component of a computer 
that stores data.

Processors
A central component of a 
computer in which the 
computation takes place.

Computer cluster
A collection of connected 
computers that are able to 
work in a coordinated fashion 
to analyse data.

Cloud computing for genomic data 
analysis and collaboration
Ben Langmead1 and Abhinav Nellore2

Abstract | Next-generation sequencing has made major strides in the past decade. Studies based 
on large sequencing data sets are growing in number, and public archives for raw sequencing 
FCVC�JCXG�DGGP�FQWDNKPI�KP�UK\G�GXGT[���|OQPVJU��.GXGTCIKPI�VJGUG�FCVC�TGSWKTGU�TGUGCTEJGTU�VQ�
use large-scale computational resources. Cloud computing, a model whereby users rent 
computers and storage from large data centres, is a solution that is gaining traction in genomics 
research. Here, we describe how cloud computing is used in genomics for research and 
large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make 
it ideally suited for the large-scale reanalysis of publicly available archived data, including 
privacy-protected data.
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Rods: single-cell

Same exon usage patterns also seen in 
full-transcript single-cell RNA-seq data

Ling JP, Wilks C, Charles R, Ghosh D, Jiang L, Santiago CP, Pang B, 
Venkataraman A, Clark BS, Nellore A, Langmead B, Blackshaw S. ASCOT 
identifies key regulators of photoreceptor-specific splicing.  In preparation.



Rods: MSI1 binding

UAG -- consensus MSI1 binding site -- is enriched in 
downstream intron near MSI1-regulated exon 



Rods: proposed mechanism



recount2

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT. 
Reproducible RNA-seq analysis using recount2. Nature Biotechnology. 2017 Apr 11;35(4):319-321.

http://bit.ly/recount_sciserver



Snaptron vignette 2

Darby MM, Leek JT, Langmead B, Yolken RH, Sabunciyan S. Widespread splicing of repetitive element 
loci into coding regions of gene transcripts. Hum Mol Genet. 2016 Nov 15;25(22):4962-4982.

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing across tens 
of thousands of RNA-seq samples. Bioinformatics. 2017 Sep 1. btx547.
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Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing across tens 
of thousands of RNA-seq samples. Bioinformatics. 2017 Sep 1. btx547.



Snaptron vignette 2

Darby MM, Leek JT, Langmead B, Yolken RH, Sabunciyan S. Widespread splicing of repetitive element 
loci into coding regions of gene transcripts. Hum Mol Genet. 2016 Nov 15;25(22):4962-4982.

• Darby et al studied prevalence of repeat element (RE) 
expression in the human orbitofrontal cortex

• Used RNA-seq to find junctions linking annotated exons 
to REs in annotated introns, indicating exonization

• They supplied us 5 events where RE exon was 
unannotated; Snaptron SSC query confirmed all 5 
occurred at least 35 times in SRAv2 & GTEx

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing across tens 
of thousands of RNA-seq samples. Bioinformatics. 2017 Sep 1. btx547.



Snaptron vignette 2

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing 
across tens of thousands of RNA-seq samples. Bioinformatics. 2017 Sep 1. btx547.

• Tissue specificity query showed all 5 events were expressed 
in a tissue-specific pattern in GTEx (Kruskal-Wallis P < 0.01)
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A third way

Spliced 
alignment

Rail-RNA: accurate, 
annotation-agnostic

Differentially 
expressed 
region finder

derfinder: region-based, 
annotation-agnostic

bigWigs

Collado-Torres L, Nellore A, Frazee AC, Wilks C, Love MI, Langmead B, 
Irizarry RA, Leek JT, Jaffe AE. Flexible expressed region analysis for 
RNA-seq with derfinder. Nucleic Acids Res. 2017 Jan 25;45(2):e9.



Boiler: RNA-seq alignment compression

• As big as bigWigs & 1-2 orders of 
magnitude smaller than sorted BAMs 

• Usable with Cufflinks, StringTie

Pritt J, Langmead B. Boiler: lossy compression of RNA-seq alignments 
using coverage vectors. Nucleic Acids Res. 2016 Sep 19;44(16):e133.

F

R1 R2

Coverage Length tallies Co-occurrence patterns

Jacob Pritt



Intropolis

• Discovery of novel splicing events has leveled off 

• Good time to put effort into a more complete 
annotation

Nellore A, et al. Human splicing diversity and the extent of unannotated splice 
junctions across human RNA-seq samples on the Sequence Read Archive. Genome 
Biol. 2016 Dec 30;17(1):266.
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Nellore A, et al. Human splicing diversity and the extent of unannotated splice 
junctions across human RNA-seq samples on the Sequence Read Archive. Genome 
Biol. 2016 Dec 30;17(1):266.



Pass 1: align to genome, make junction calls

Reads:
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Pass 1: align to genome, make junction calls

Pass 2: re-align to genome with putative junctions

Reads:

Ref:

Readlets:



Collado-Torres L, Nellore A, Frazee AC, Wilks C, Love MI, Langmead B, 
Irizarry RA, Leek JT, Jaffe AE. Flexible expressed region analysis for RNA-
seq with derfinder. Nucleic Acids Res. 2017 Jan 25;45(2):e9.

A third way



Indexing raw sequencing data

Mantis. Ferdman, M., Johnson, R., & Patro, R. Mantis: A Fast, 
Small, and Exact Large-Scale Sequence-Search Index. In 
Research in Computational Molecular Biology (p. 271). Springer.

BIGSI: Bradley, P., den Bakker, H., Rocha, E., McVean, G., & 
Iqbal, Z. (2017). Real-time search of all bacterial and viral 
genomic data. bioRxiv, 234955.

Image from Mantis paper

Image from Split SBT paper

Sequence Bloom Trees. Solomon B, Kingsford C. Fast 
search of thousands of short-read sequencing 
experiments. Nat Biotechnol. 2016 Mar;34(3):300-2.

Solomon B, Kingsford C. Improved Search of Large 
Transcriptomic Sequencing Databases Using Split 
Sequence Bloom Trees. J Comput Biol. 2018 Mar 12. 

Sun C, Harris RS, Chikhi R, Medvedev P. AllSome 
Sequence Bloom Trees. J Comput Biol. 2018 
May;25(5):467-479. 

1000 Genomes FM Index: Dolle DD, Liu Z, Cotten M, 
Simpson JT, Iqbal Z, Durbin R, McCarthy SA, Keane TM. 
Using reference-free compressed data structures to 
analyze sequencing reads from thousands of human 
genomes. Genome Res. 2017 Feb;27(2):300-309.



dbGaP

http://docs.rail.bio/dbgap/
Nellore A, Wilks C, Hansen KD, Leek JT, Langmead B. Rail-dbGaP: 
analyzing dbGaP-protected data in the cloud with Amazon Elastic 
MapReduce. Bioinformatics. 2016 Aug 15;32(16):2551-3.



Splicing factors

Ling JP, Pletnikova O, Troncoso JC, Wong PC. TDP-43 repression of nonconserved 
cryptic exons is compromised in ALS-FTD. Science. 2015 Aug 7;349(6248):650-5.



Splicing annotation

Ling JP, Wilks C, Charles R, Ghosh D, Jiang L, Santiago CP, Pang B, Venkataraman 
A, Clark BS, Nellore A, Langmead B, Blackshaw S. ASCOT identifies key regulators 
of photoreceptor-specific splicing.  bioRxiv doi:10.1101/501882.
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