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Lab goals

To make high-throughput life science data as usable
as possible for scientific labs, especially small ones
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Public summaries of sequencing data

Table 5| Summarized data sets, services and resources

Name
ArrayExpress®
Beacon

Bravo

Expression Atlas'!
PCAWG

recount2®’
RNASeq-er”

Snaptron

Tatlow-Piccolo®

Toil*?

Xena™*

Website
www.ebi.ac.uk/arrayexpress
beacon-network.org
bravo.sph.umich.edu
www.ebi.ac.uk/gxa

docs.icgc.org/pcawg

jhubiostatistics.shinyapps.
io/recount

www.ebi.ac.uk/fg/rnaseq/api

snaptron.cs.jhu.edu
osf.io/gqrz9

xenabrowser.net/data-
pages/?host=https://toil.
xenahubs.net

xena.ucsc.edu

Notes

Archives processed data from high-throughput functional genomics experiments
Platform for sharing genetic mutations across web services called ‘beacons’

TOPMed data browser for accessing alleles across over 60,000 whole genomes

Gene expression information across 3,000 transcriptomic experiments from ArrayExpress

Called germline and somatic variants, including structural variants, from over 5,600 tumour
and normal samples across ICGC projects

Web and R/Bioconductor resource for accessing genome coverage data from over 70,000
archived human RNA-seq samples, including publicly available SRA, TCGA and GTEx samples

Provides programmatic access to processed outputs for all archived publicly available
RNA-seq samples

Allows rapid querying of splice junctions, splicing patterns and metadata from recount2
Quantified transcripts across TCGA and CCLE
Processed outputs from over 20,000 RNA-seq samples including TCGA and GTEx

Visualizes investigators’ new functional genomics data next to publicly available data

CCLE, Cancer Cell Line Encyclopedia; GTEx, Genotype-Tissue Expression Project; ICGC, International Cancer Genome Consortium; PCAWG, Pan-Cancer Analysis
of Whole Genomes; RNA-seq, RNA sequencing; SRA, Sequence Read Archive; TCGA, The Cancer Genome Atlas; TOPMed, Trans-Omics for Precision Medicine.

Langmead B, Nellore A. Cloud computing for genomic data
analysis and collaboration. Nat Rev Genet. 2018 May;19(5):325.



Search engine for RNA-seg

il Snaptron £

hlrecount2

Index & query engine w/ REST API
snaptron.cs.jhu.edu
doi:10.1093/bioinformatics/btx547

Clean summaries of data, metadata,
packaged as R objects
jhubiostatistics.shinyapps.io/recount/
doi:10.1038/nbt.3838

Scalable, cloud-based spliced alignment
of archived RNA-seq datasets

rail.bio
doi:10.1093/bioinformatics/btw575
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TReads
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Clean summaries of data, metadata,
packaged as R objects
jhubiostatistics.shinyapps.io/recount/
doi:10.1038/nbt.3838

Scalable, cloud-based spliced alignment
of archived RNA-seq datasets

rail.bio
doi:10.1093/bioinformatics/btw575
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e Much of the work is
in the "last mile"




Short read is split by Abhinav Jeﬂ: Leekl
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Nellore A, Collado-Torres L, Jaffe AE, Alquicira-Hernandez J, Wilks
C, Pritt J, Morton J, Leek JT, Langmead B. Rail-RNA: scalable

http :// I'a || . blO analysis of RNA-seq splicing and coverage. Bioinformatics.

33(24):4033-4040, Dec 2017


http://rail.bio
https://commons.wikimedia.org/wiki/File:RNA-Seq-alignment.png

Spliced RNA-seq aligner for analyzing many samples at once

Nellore A, Collado-Torres L, Jaffe AE, Alquicira-Hernandez J, Wilks
C, Pritt J, Morton J, Leek JT, Langmead B. Rail-RNA: scalable

http :// I'a || . blO analysis of RNA-seq splicing and coverage. Bioinformatics.

33(24):4033-4040, Dec 2017
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Spliced RNA-seq aligner for analyzing many samples at once

e (Group across samples to borrow strength and
eliminate redundant alignment work

Nellore A, Collado-Torres L, Jaffe AE, Alquicira-Hernandez J, Wilks
C, Pritt J, Morton J, Leek JT, Langmead B. Rail-RNA: scalable

http :// ra || . blO analysis of RNA-seq splicing and coverage. Bioinformatics.

33(24):4033-4040, Dec 2017
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Spliced RNA-seq aligner for analyzing many samples at once

e (Group across samples to borrow strength and
eliminate redundant alignment work

e |et data prune false junction calls, not annotation

Nellore A, Collado-Torres L, Jaffe AE, Alquicira-Hernandez J, Wilks
C, Pritt J, Morton J, Leek JT, Langmead B. Rail-RNA: scalable

http :// I'a || . b|0 analysis of RNA-seq splicing and coverage. Bioinformatics.

33(24):4033-4040, Dec 2017
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Spliced RNA-seq aligner for analyzing many samples at once

e (Group across samples to borrow strength and
eliminate redundant alignment work

e |et data prune false junction calls, not annotation

e (Concise outputs: junctions & coverage vectors;
no alignments, unless asked for

Nellore A, Collado-Torres L, Jaffe AE, Alquicira-Hernandez J, Wilks
C, Pritt J, Morton J, Leek JT, Langmead B. Rail-RNA: scalable

http :// I'a || . b|0 analysis of RNA-seq splicing and coverage. Bioinformatics.

33(24):4033-4040, Dec 2017
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Spliced RNA-seq aligner for analyzing many samples at once

e (Group across samples to borrow strength and
eliminate redundant alignment work

e |et data prune false junction calls, not annotation

e (Concise outputs: junctions & coverage vectors;
no alignments, unless asked for

e Runs easily on commercial AWS cloud

Nellore A, Collado-Torres L, Jaffe AE, Alquicira-Hernandez J, Wilks
C, Pritt J, Morton J, Leek JT, Langmead B. Rail-RNA: scalable

http :// ra || . blO analysis of RNA-seq splicing and coverage. Bioinformatics.

33(24):4033-4040, Dec 2017
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Intropolis

e Analyzed ~21,500 human RNA-seg
samples with Rail-RNA; about 62 Tbp

Samples (21.5K)

Exon-exon
junctions
(10s of millions)

NN

Nellore A, et al. Human splicing diversity and the extent of

http ://intropo“s_ rail.bio unannotated splice junctions across human RNA-seq samples on
the Sequence Read Archive. Genome Biol. 2016 Dec 30;17(1):266.
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Annotations: UCSC, GENCODE v19 & v24, RefSeq,
CCDS, MGC, lincRNAs, SIB genes, AceView, Vega

700000
320000~
600000 | | :

| B |

| 300000 . .

: I~ I
™ 500000 . ]
- i - |
S 280000 _ | ]
8 I - 56,861 jx :

L - l 4
— 4000007 - 85.8% I Alternative donor/acceptor
X VW 200000 T | ]

L [ I B |
g 300 000? / L 814% ! _____ : Exon skip |
© 240000 | ]
% I L : Fully annotated
= 2000007 900 1000 1100 1200 ]

100000 ]
O I | | | | | | | | | | | | | | | | | | | | | | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000

Minimum number S of samples in which jx is called

Nellore A, et al. Human splicing diversity and the extent of
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the Sequence Read Archive. Genome Biol. 2016 Dec 30;17(1):266.
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With >50K samples and comparing to GENCODE v24
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With >50K samples and comparing to GENCODE v24
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With >50K samples and comparing to GENCODE v24
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recount?2

e >50K human RNA-seq samples from SRA (open)
e >10K human RNA-seqg samples from TCGA (dbGaP)

o) oouoR DOMDR

Matched tumor & normal tissues from more than 11,000 patients, representing 33 cancer types.
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Image: https://www.sevenbridges.com/welcome-to-the-cancer-genomics-cloud-2/ =% aumai, ~RoEEE - - Ganes Kasper
Image: doi:10.1038/ng.2653 Hansen

e >10K human RNA-seq
from GTEx (dbGaP)

e Total: ~4.4 trillion reads,

Andrew

Abhinay  Leo
100s of terabases Nellore  Collado S Leek - Jaffe

Torres

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE,
Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature
Biotechnology. 2017 Apr 11;35(4):319-321.



recount?2

Summarized at levels of genes, exons,
junctions, and coverage vectors + more

Genes Junctions
}
|
Isoform 1 — — : }
Isoform 2 Ll { } S
RNA-Seqreads === e == - é —_:—_'__: :_:z
EXons Coverage

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE,
Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature
Biotechnology. 2017 Apr 11;35(4):319-321.




recount?2

jhubiostatistics.shinyapps.io

Show 10 % entries
number
of
accession samples |7 species abstract gene
All All All All

SRP045500 134 human This study compared whole transcriptome signatures of 6 immune cell RSE v2
subsets and whole blood from patients with an array of immune-associated counts
diseases. Fresh blood samples were collected from healthy subjects and v2 RSE
subjects diagnosed type 1 diabetes, amyotrophic lateral sclerosis, and vi
sepsis, as well as multiple sclerosis patients before and 24 hours after the counts
first treatment with IFN-beta. At the time of blood draw, an aliquot of whole vi
blood was collected into a Tempus tube (Invitrogen), while the remainder of
the primary fresh blood sample was processed to highly pure populations of
neutrophils, monocytes, B cells, CD4 T cells, CD8 T cells, and natural killer
cells. RNA was extracted from each of these cell subsets, as well as the
whole blood samples, and processed into RNA sequencing (RNAseq)
libraries (lllumina TruSeq). Sequencing libraries were analyzed on an lllumina
HiScan, with a target read depth of ~20M reads. Reads were demultiplexed,
mapped to human gene models (ENSEMBL), and tabulated using HTSeq.

Read count data were normalized by the TMM procedure (edgeR package).
Overall design: We performed whole genome RNAseq profiling of immune
cell subsets and whole blood from subjects with an array of immune-
associated diseases.

SRP018853 80 human Type 1 diabetes (T1D) is an autoimmune disease characterized by the RSE v2
destruction of pancreatic insulin-producing AY cells. CD4+ T cells are counts
integral to the pathogenesis of T1D, but biomarkers that define their v2 RSE
pathogenic status in T1D are lacking. miRNAs have essential functions in a vi
wide range of tissues/organs, including the immune system. We reasoned counts
that CD4+ T cells from individuals at high risk for T1D (pre-T1D) might be vi

exon

RSE v2
counts
v2 RSE
vi
counts
vi

RSE v2
counts
v2 RSE
vi
counts
vi

junctions

All

RSE jx_bed
jx_cov
counts

RSE jx_bed
jx_cov
counts

transcripts

All

RSE v2 RSE
vi

RSE v2 RSE
vi

Search: diabetes

files FANTOM-
phenotype info CAT
All All
link v2 vi RSE
link v2 vi RSE

U
bit.ly/recount2 (jhubiostatistics.shinyapps.io/recount/)

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE,
Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature

Biotechnology. 2017 Apr 11;35(4):319-321.
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jhubiostatistics.shinyapps.io

Show 10 4 entries E n t e r Se a rC h - > Search: = diabetes

number
of
accession samples |5 species abstract gene
All All All All

SRP045500 134 human This study compared whole transcriptome signatures of 6 immune cell RSE v2
subsets and whole blood from patients with an array of immune-associated counts
diseases. Fresh blood samples were collected from healthy subjects and v2 RSE
subjects diagnosed type 1 diabetes, amyotrophic lateral sclerosis, and vi
sepsis, as well as multiple sclerosis patients before and 24 hours after the counts
first treatment with IFN-beta. At the time of blood draw, an aliquot of whole vi
blood was collected into a Tempus tube (Invitrogen), while the remainder of
the primary fresh blood sample was processed to highly pure populations of
neutrophils, monocytes, B cells, CD4 T cells, CD8 T cells, and natural killer
cells. RNA was extracted from each of these cell subsets, as well as the
whole blood samples, and processed into RNA sequencing (RNAseq)
libraries (lllumina TruSeq). Sequencing libraries were analyzed on an lllumina
HiScan, with a target read depth of ~20M reads. Reads were demultiplexed,
mapped to human gene models (ENSEMBL), and tabulated using HTSeq.

Read count data were normalized by the TMM procedure (edgeR package).
Overall design: We performed whole genome RNAseq profiling of immune
cell subsets and whole blood from subjects with an array of immune-
associated diseases.

SRP018853 80 human Type 1 diabetes (T1D) is an autoimmune disease characterized by the RSE v2
destruction of pancreatic insulin-producing AY cells. CD4+ T cells are counts
integral to the pathogenesis of T1D, but biomarkers that define their v2 RSE
pathogenic status in T1D are lacking. miRNAs have essential functions in a vi
wide range of tissues/organs, including the immune system. We reasoned counts
that CD4+ T cells from individuals at high risk for T1D (pre-T1D) might be vi

exon

RSE v2
counts
v2 RSE
vi
counts
vi

RSE v2
counts
v2 RSE
vi
counts
vi

junctions

All

RSE jx_bed
jx_cov
counts

RSE jx_bed
jx_cov
counts

transcripts

All

RSE v2 RSE
vi

RSE v2 RSE
vi

files FANTOM-
phenotype info CAT
All All
link v2 vi RSE
link v2 vi RSE

bit.ly/recount2 (jhubiostatistics.shinyapps.io/recount/)

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE,
Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature

Biotechnology. 2017 Apr 11;35(4):319-321.
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Show = 10 4 entries E n t e r S e a rC h - > Search: diabetes
number
of files FANTOM-
accession samples |5 species abstract gene exon junctions transcripts phenotype info CAT
All All All All All All All All
SRP045500 134 human This study compared whole transcriptome signatures of 6 immune cell RSE v2 RSE v2 RSE jx_bed RSE v2 RSE link v2 vi RSE
subsets and whole blood from patients with an array of immune-associated counts counts jx_cov vi
diseases. Fresh blood samples were collected from healthy subjects and v2 RSE v2 RSE counts
subjects diagnosed type 1 amyotrophic lateral sclerosis, and vi vi
1s well as multiple sclerosis patients before and 24 hours after the counts counts
S t u d y I i St i S tment with IFN-beta. At the time of blood draw, an aliquot of whole vi vi
as collected into a Tempus tube (Invitrogen), while the remainder of
. ary fresh blood sample was processed to highly pure populations of
I n St a n t I y 1ils, monocytes, B cells, CD4 T cells, CD8 T cells, and natural killer
|A was extracted from each of these cell subsets, as well as the
. ood samples, and processed into RNA sequencing (RNAseq)
fl I te re d (Ilumina TruSeq). Sequencing libraries were analyzed on an lllumina
with a target read depth of ~20M reads. Reads were demultiplexed,
mapped to human gene models (ENSEMBL), and tabulated using HTSeq.
Read count data were normalized by the TMM procedure (edgeR package).
Overall design: We performed whole genome RNAseq profiling of immune
cell subsets and whole blood from subjects with an array of immune-
associated diseases.
SRP018853 80 human Type 1 1D) is an autoimmune disease characterized by the RSEv2 RSEv2  RSE jx_bed RSE v2 RSE link v2 vi RSE
destruction of pancreatic insulin-producing AY cells. CD4+ T cells are counts counts jx_cov vi
integral to the pathogenesis of T1D, but biomarkers that define their v2RSE v2 RSE counts
pathogenic status in T1D are lacking. miRNAs have essential functions in a vi vi
wide range of tissues/organs, including the immune system. We reasoned counts counts
that CD4+ T cells from individuals at high risk for T1D (pre-T1D) might be vi vi

bit.ly/recount2 (jhubiostatistics.shinyapps.io/recount/)

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE,
Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature

Biotechnology. 2017 Apr 11;35(4):319-321.
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Show 10 4 entries E n t e r Se a rC h - > Search: | diabetes

number
of files FANTOM-
accession samples |5 species abstract gene exon junctions transcripts phenotype info CAT
All All All All All All All All

SRP045500 134 human This study compared whole transcriptome signatures of 6 immune cell RSE v2 RSE v2 RSE jx_bed RSE v2 RSE link v2 vi RSE
subsets and whole blood from patients with an array of immune-associated counts counts jx_cov vi
diseases. Fresh blood samples were collected from healthy subjects and v2 RSE v2 RSE counts
subjects diagnosed type 1 amyotrophic lateral sclerosis, and vi vi

1s well as multiple sclerosis patients before and 24 hours after the counts counts

S t u d I i St i S tment with IFN-beta. At the time of blood draw, an aliquot of whole | v1 vi
y as collected into a Tempus tube (Invitrogen), while the remainder of
ary fresh blood sample was processed to highly pure populations of L i n k S t O d a t a

n
I n St a n t I ils, monocytes, B cells, CD4 T cells, CD8 T cells, and natural killer
y |A was extracted from each of these cell subsets, as well as the

. ood samples, and processed into RNA sequencing (RNAseq) =

fl I te re d (Ilumina TruSeq). Sequencing libraries were analyzed on an lllumina O bJ e Ct S
with a target read depth of ~20M reads. Reads were demultiplexed,

mapped to human gene models (ENSEMBL), and tabulated using HTSeq.

Read count data were normalized by the TMM procedure (edgeR package).

Overall design: We performed whole genome RNAseq profiling of immune

cell subsets and whole blood from subjects with an array of immune-

associated diseases.

SRP018853 80 human Type 1 1D) is an autoimmune disease characterized by the RSEv2 RSEv2  RSE jx_bed RSE v2 RSE link v2 vi RSE
destruction of pancreatic insulin-producing AY cells. CD4+ T cells are counts counts jx_cov vi
integral to the pathogenesis of T1D, but biomarkers that define their v2 RSE v2 RSE counts
pathogenic status in T1D are lacking. miRNAs have essential functions in a vi vi
wide range of tissues/organs, including the immune system. We reasoned counts counts
that CD4+ T cells from individuals at high risk for T1D (pre-T1D) might be vi vi

bit.ly/recount2 (jhubiostatistics.shinyapps.io/recount/)

Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE,
Langmead B, Leek JT. Reproducible RNA-seq analysis using recount2. Nature
Biotechnology. 2017 Apr 11;35(4):319-321.
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. Fxarnpc WS1 Qurics RESTful Web Services Interface Quickstart

Previous topic First, we will present an example query and then break it down ta allow the impatient users to get
Sosptoon Reference Tibles on with their research and skip the longer explanation of the details:
This Page curl "http://snaptron.cs. jhu.edu/srav2/snaptron?regions=chr5:1-514015&r¥i1tel
Show Source The above command uses cURT. to query the Snaptron web service for all junctions that overlap

the coordinate range of 1-514015 on chromosome 6 and that have 1 or more reads coverage in
exactly 100 samples (for CGT parsing reasons the ... is used instead of .=. as a range aperator). The
return format Is a TAB delimited text stream of junction records, one per line inciuding a header

as [he first bne Lo explain the columns refurnad.

Quick search

Gn

Enter seareh terms or & moduls, class Gene symbols {exact HGNC gene symbols) can also be used inslead of chromosome coordinates:

ur lunction oame

curl "http://snaptron.cs. jhu.edufsravi/snaptron?regions=C(D99&rfilter=samples

3

Command-line tool and REST API for querying junctions.
New: Also genes, exons and coverage vectors

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114-116.
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http://snaptron.cs.jhu.edu

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114-116.
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e For each junction in a gene, what is its read
support in each of 50K SRA samples?

http://snaptron.cs.jhu.edu

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114-116.
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e For each junction in a gene, what is its read
support in each of 50K SRA samples?

e What is a junction's tissue specificity in GTEx?

http://snaptron.cs.jhu.edu

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114-116.
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e For each junction in a gene, what is its read
support in each of 50K SRA samples?

e What is a junction's tissue specificity in GTEx?

e In which samples is splicing pattern A
overrepresented relative to pattern B?

http://snaptron.cs.jhu.edu

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114-116.
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e Goldstein et al searched for novel cassette
exons in Illumina BodyMap 2.0 RNA-seq
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Case study

e Goldstein et al searched for novel cassette
exons in Illumina BodyMap 2.0 RNA-seq

o Identified 249 within known genes, not
overlapping a RefSeg-annotated exon

e Validated 216 out of 249 in independent
sample via RNA-seq

O PLOS | one

Prediction and Quantification of Splice Events
from RNA-Seq Data

Leonard D. Goldstein'2*, Yi Cao', Gregoire Pau’, Michael Lawrence', Thomas D. Wu',
Somasekar Seshagiri’, Robert Gentleman'®

1 Department of Bioinformatics and Computational Biolegy, Genentech Inc., South San Francisco, CA,
United States of America, 2 Department of Molecular Biology, Genentech Inc., South San Francisco, CA,

United States of America
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e Of the 249 novel exons, 236
(94.8%) occurred in GTEXx
(one shown above)

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing
across tens of thousands of RNA-seq samples. Bioinformatics. 2018 34(1), 114-116.
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Case study

Snaptron for hypothesis generation
& study design

dataset

e Snaptron for discovery:.
e Snaptron for prioritization
[

what exists? what's
prevalent? what's specific?

of potential discoveries:
what discoveries are best
supported?

Snaptron for validation:
Independent — Validation what discoveries have
dataset support in public data?
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Ling JP, Wilks C, Charles R, Leavey PJ, Ghosh D, Jiang L, Santiago CP, Pang B, Venkataraman A,
Clark BS, Nellore A, Langmead B, and Blackshaw S. ASCOT identifies key regulators of neuronal
subtype-specific splicing. Nature Communications, 11(1):137, Jan 2020
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Rods and retinal cells have
1. characteristic exon-usage
patterns
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Up-regulating those factors
induces rod-like splicing in
a human cell line
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Exon usage can be a cell-type sighature;
sometimes invisible at gene level
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: fles FANTOM. more NcRNA-rich
junctions transcripts phenotype info
FANTOM-CAT
All All All All annOtathn
RSE jx_bed RSE v2 RSE link v2 vi RSE
X_COV vi

counts

Imada, EL, Sanchez DF, Collado-
Torres L, Wilks C, Matam T,
Dinalankara W, Stupnikov A et al.
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Tec *\ } - "Recounting the FANTOM Cage
Collado Luh'.g' | ELd‘f'('je' Associated Transcriptome."
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Imada doi:10.1101/659490.




Cancer & ncRNAs

e We also quantified all
of recount2 using the

Search: ' diabetes

: tles | FANTOM. more NcRNA-rich
junctions transcripts phenotype info
FANTOM-CAT
All All All All annOtathn
RSE jx_bed RSE v2 RSE link v2 vi RSE
X_COV vi

counts

Imada, EL, Sanchez DF, Collado-
Torres L, Wilks C, Matam T,
Dinalankara W, Stupnikov A et al.

e
¢ . F
y;
' ( '4

Tec *\ } - "Recounting the FANTOM Cage
Collado Luh'.g' | ELd‘f'('je' Associated Transcriptome."
onn PN |
Torres | aremonnt LUidy BioRxiv (2019):

Imada doi:10.1101/659490.




Cancer & ncRNAs

e Enhancer with
prognostic
value for kidney
cancer

Chen H, Li C, Peng X, Zhou
Z, Weinstein JN; Cancer
Genome Atlas Research
Network, Liang H. A Pan-
Cancer Analysis of Enhancer
Expression in Nearly 9000
Patient Samples. Cell. 2018
Apr 5;173(2):386-399.e12.
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snapcount in Bioconductor
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Future: public data

Rod photoreceptor study involved >90K public

datasets

Used public data only, up to HepG2 experiment

Desire: querying public data as an everyday

activity in bio research

MEGHNA ABRAHAM

WORLD VIEW.........

to waste

date with what colleagues are working on is to attend confer-

ences. But on recent trips I have noticed a problem. Too few
researchers are consulting and using publicly available data — my own
included. What is going on?

Massive amounts of biological information are being accumu-
lated using high-throughput sequencing techniques. Many scientists
have used some of those resources, such as the Encyclopedia of DNA
Elements (ENCODE) launched by the US National Human Genome
Research Institute. But many more laboratories in neuroscience and
other subdisciplines of cell and molecular biology generate their
own data sets. These data are piling up in community databases and
offer information on cene exnression and reculation Unless this

O ne of the best ways for a neuroscientist like me to keep up to

Don’t let useful data go

 Researchers must seek out others’ deposited biological sequences in
A community databases, urges Franziska Denk.

discrepancy, and propose a biologically valid reason for it.

Why are so many bench biologists overlooking this wealth of
cell-type-specific expression data?

My hunch is there are two reasons. First, researchers underestimate
how many of these data have been published over the past few years
because they are being generated across so many different fields.
Second, they are wary of the data. Because you need bioinformatics
knowledge to generate and analyse sequencing results, people assume
that they also need such expertise to locate and interpret them.

Not so. In the past five years, improvements in technology, together
with stricter deposition guidelines, mean that simple Excel files com-
monly accompany papers. These can be downloaded in minutes from
the Supnlementarv Information of a relevant naner. or from the ‘GEO




Future: data science

Public data quickly challenges us with technical
confounders & missing/incorrect metadata

One All of
dataset <4 SRA
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What questions can we answer robustly?
At what points on the spectrum?

Ellis SE, Collado-Torres L, Jaffe A, Leek JT.
Improving the value of public RNA-seq
expression data by phenotype prediction.
Nucleic Acids Res. 2018 May 18;46(9):e54.

Is metadata fixable?
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Future: data science

Public data quickly challenges us with technical
confounders & missing/incorrect metadata
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Is metadata fixable?



O s .
pEE R,

& LA ¥

Abhinav Leo r|s Rone Kasp'e'r Jeff Leek Seth Jonathan
Nellore Collado wilks Charles Hansen Blackshaw  Ling
Torres

; ‘;‘.‘. - \ W
Margaret Shannon  Kai Jamie JOS€  Andrew  Jacob Luigi Eddie-
Taub Ellis Kammers Morton Alauicira- g cc. Pritt Marchionni Luidy
Hernandez Imada

e NIH RO1GM118568 (Langmead)
e NIH RO1GM121459 (Hansen) £ -
Nnadin
e NSF CAREER IIS-1349906 (Langmead) IS[ZiISEeSr\feerEd unding
e NIH RO1GM105705 (Leek) SIS C X
e NIH Cloud Credits, CCREQ-2017-03-00086 (Langmead) =¢/=€rVer Lompute
e NSF XSEDE projects (TG-CIE170020, TG-DEB180021)
L%
langmead-lab.org, @BenLangmead JOFINS HOPKINS - JOFINS FIOPKINS

of ENGINEERING of PUBLIC HEALTH


http://www.langmead-lab.org
https://twitter.com/BenLangmead

Cloud computing

Cloud computing is a natural fit for reanalyzing
public data and for far-flung collaborations

(@ coMPUTATIONAL TOOLS

Cloud computing for genomic data
analysis and collaboration

Ben Langmead' and Abhinav Nellore?

privacy-protected data.

Next-generation sequencing (NGS) technologies have
been improving rapidly and have become the work-
horse technology for studying nucleic acids. NGS plat-
forms work by collecting information on a large array
of polymerase reactions working in parallel, up to bil-
lions at a time inside a single sequencer'. The speed
and decreasing cost of NGS have led to the rapid accu-
mulation of raw sequencing data (sequencing reads),
used in published studies, in public archives® such as
the Sequence Read Archive (SRA)**, which is hosted by
the US National Center for Biotechnology Information
(NCBI), and the European Nucleotide Archive (ENA)?,
which is hosted by the European Molecular Biology
T aboratorv at the Furovean Bioinformatics Institute

Abstract | Next-generation sequencing has made major strides in the past decade. Studies based
on large sequencing data sets are growing in number, and public archives for raw sequencing
data have been doubling in size every 18 months. Leveraging these data requires researchers to
use large-scale computational resources. Cloud computing, a model whereby users rent
computers and storage from large data centres, is a solution that is gaining traction in genomics
research. Here, we describe how cloud computing is used in genomics for research and
large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make
itideally suited for the large-scale reanalysis of publicly available archived data, including

programme'’, among others (TABLE 1). gnomAD now
spans over 120,000 exomes and over 15,000 whole
genomes. ICGC encompasses over 70 subprojects target-
ing distinct cancer types, which are conducted in more
than a dozen countries and have already collected sam-
ples from more than 20,000 donors. Aligned sequenc-
ing reads for ICGC require over 1 petabyte (PB; that
is, a million GB) of storage. The TOPMed programme,
which plans to sequence more than 120,000 genomes"’,
has already deposited more than 18,000 human whole-
genome sequencing data sets in the SRA, comprising
approximately 2.3 petabases or about 16.5% of the
entire archive. Large observational studies currently in
nrooress. such as the Precision Medicine Initiative!® and

namre
REVIEWS

GENETICS

Langmead B, Nellore A. Cloud
computing for genomic data analysis
and collaboration. Nature Reviews
Genetics. 2018 Apr;19(4):208-219.



Rods: single-cell

Same exon usage patterns also seen in
full-transcript single-cell RNA-seq data

Sptan1
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Gene Expression
NALIC)
II lllll

Ling JP, Wilks C, Charles R, Ghosh D, Jiang L, Santiago CP, Pang B,
Venkataraman A, Clark BS, Nellore A, Langmead B, Blackshaw S. ASCOT
identifies key regulators of photoreceptor-specific splicing. In preparation.



UAG Motif Frequency (%)

Rods: MSI1 binding
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— GENCODE.v28 protein coding exons UAG enrichment ZOObp
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Rods: proposed mechanism
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Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT.
Reproducible RNA-seq analysis using recount2. Nature Biotechnology. 2017 Apr 11;35(4):319-321.



Snaptron vignette 2

Darby MM, Leek JT, Langmead B, Yolken RH, Sabunciyan S. Widespread splicing of repetitive element
loci into coding regions of gene transcripts. Hum Mol Genet. 2016 Nov 15;25(22):4962-4982.

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing across tens
of thousands of RNA-seq samples. Bioinformatics. 2017 Sep 1. btx547.



Snaptron vignette 2

e Darby et al studied prevalence of repeat element (RE)
expression in the human orbitofrontal cortex

Darby MM, Leek JT, Langmead B, Yolken RH, Sabunciyan S. Widespread splicing of repetitive element
loci into coding regions of gene transcripts. Hum Mol Genet. 2016 Nov 15;25(22):4962-4982.

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing across tens
of thousands of RNA-seq samples. Bioinformatics. 2017 Sep 1. btx547.



Snaptron vignette 2

e Darby et al studied prevalence of repeat element (RE)
expression in the human orbitofrontal cortex

e Used RNA-seq to find junctions linking annotated exons
to REs in annotated introns, indicating exonization

Darby MM, Leek JT, Langmead B, Yolken RH, Sabunciyan S. Widespread splicing of repetitive element
loci into coding regions of gene transcripts. Hum Mol Genet. 2016 Nov 15;25(22):4962-4982.

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing across tens
of thousands of RNA-seq samples. Bioinformatics. 2017 Sep 1. btx547.



Snaptron vignette 2

e Darby et al studied prevalence of repeat element (RE)
expression in the human orbitofrontal cortex

e Used RNA-seq to find junctions linking annotated exons
to REs in annotated introns, indicating exonization

e They supplied us 5 events where RE exon was
unannotated; Snaptron SSC query confirmed all 5
occurred at least 35 times in SRAv2 & GTEX

Darby MM, Leek JT, Langmead B, Yolken RH, Sabunciyan S. Widespread splicing of repetitive element
loci into coding regions of gene transcripts. Hum Mol Genet. 2016 Nov 15;25(22):4962-4982.

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing across tens
of thousands of RNA-seq samples. Bioinformatics. 2017 Sep 1. btx547.



Snaptron vignette 2

e One of the 5 shown here (arrow 2)

KMT2E

1

105,063k 105.064k 105.065k 105.066k 105067k 105068k 105069k 105070k 105071k 105072k 105073k 105.074k

e Tissue specificity query showed all 5 events were expressed
in a tissue-specific pattern in GTEx (Kruskal-Wallis P < 0.01)

Wilks C, Gaddipati P, Nellore A, Langmead B. Snaptron: querying and visualizing splicing
across tens of thousands of RNA-seq samples. Bioinformatics. 2017 Sep 1. btx547.



% called junctions that are annotated
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A third way

Spliced Rail-RNA: accurate,
alignment annotation-agnostic

bigWigs
! Differentially

‘ expressed derfinder: region-based,
region finder annotation-agnostic

= , &

Vo _ _.

“’s"‘.l Collado-Torres L, Nellore A, Frazee AC, Wilks C, Love MI, Langmead B,
b Irizarry RA, Leek JT, Jaffe AE. Flexible expressed region analysis for

RNA-seq with derfinder. Nucleic Acids Res. 2017 Jan 25;45(2):e9.




Boiler: RNA-seq alignment compression

Coverage Length tallies  Co-occurrence patterns
aaan,

&l

e As big as bigWigs & 1-2 orders of
magnitude smaller than sorted BAMs

e Usable with Cufflinks, StringTie ’

Jacob Pritt

Pritt J, Langmead B. Boiler: lossy compression of RNA-seq alignments
using coverage vectors. Nucleic Acids Res. 2016 Sep 19;44(16):e133.



Intropolis

e Discovery of novel splicing events has leveled off

e Good time to put effort into a more complete
annotation
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Nellore A, et al. Human splicing diversity and the extent of unannotated splice
junctions across human RNA-seq samples on the Sequence Read Archive. Genome
Biol. 2016 Dec 30;17(1):266.



False discovery rate
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False discovery rate
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Intropolis
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Nellore A, et al. Human splicing diversity and the extent of unannotated splice
junctions across human RNA-seq samples on the Sequence Read Archive. Genome

Biol. 2016 Dec 30;17(1):266.



Pass 1: align to genome, make junction calls

Reads:



Pass 1: align to genome, make junction calls
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Pass 1: align to genome, make junction calls

Reads:
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Pass 1: align to genome, make junction calls

Reads:
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Pass 1: align to genome, make junction calls

Reads:
Readlets; == T e T T

Ref: m ——m-o— o o e



Pass 1: align to genome, make junction calls

Reads:
Readlets; == T e T T
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Pass 1: align to genome, make junction calls

Reads:
Readlets; == T e T T
Ref: s — . —

Pass 2: re-align to genome with putative junctions
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A third way
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Collado-Torres L, Nellore A, Frazee AC, Wilks C, Love MI, Langmead B,
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Indexing raw sequencing data

Sequence Bloom Trees. Solomon B, Kingsford C. Fast
search of thousands of short-read sequencing

Sim [ [TTTTTITTT

Rem IR experiments. Nat Biotechnol. 2016 Mar;34(3):300-2.
ss susssall T
s T . Solomon B, Kingsford C. Improved Search of Large
—/’ | h H [T EID/ \.]:1 Transcriptomic Sequencing Databases Using Split
= ~ /'—. Sequence Bloom Trees. J Comput Biol. 2018 Mar 12.
_mun - 0 Tm

Sun C, Harris RS, Chikhi R, Medvedev P. AllSome
Sequence Bloom Trees. J Comput Biol. 2018

| from Split SBT
mage from Split SBT paper May;25(5):467-479.

Mantis. Ferdman, M., Johnson, R., & Patro, R. Mantis: A Fast, [nput Experiments CQF
Small, and Exact Large-Scale Sequence-Search Index. In E, || B2 || Bs || E kemer |Color ID ] o1 class (able
Research in Computational Molecular Biology (p. 271). Springer. e A= - :EITG ‘ ;MT,T ('—,‘
BIGSI: Bradley, P, den Bakker, H., Rocha, E., McVean, G., & s f_::f S8 —> ;TTFS ? ; : ("
Igbal, Z. (2017). Real-time search of all bacterial and viral Geat leearliGear ccGt 111 alo (i
genomic data. bioRxiv, 234955. AGCC|| AGCC AGCC
_ x70? Image from Mantis paper
| Z Z Gortectnaroncs |
““l LO/RLO
§a O T 1000 Genomes FM Index: Dolle DD, Liu Z, Cotten M,
; 15 Simpson JT, Igbal Z, Durbin R, McCarthy SA, Keane TM.
2 10 e Using reference-free compressed data structures to
"/,,:;’_:_ analyze sequencing reads from thousands of human
- U’;if”, : x10°  genomes. Genome Res. 2017 Feb;27(2):300-309.
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* Viirtual Private Cloud (VPC)
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dbGaP security best practices addressed

W encryption at rest/n transit cuthound traffic unrestricted;
BN firewalls limiting inSound access  inhound traffic only from essential web services
BN logging of account access/actions

Nellore A, Wilks C, Hansen KD, Leek JT, Langmead B. Rail-dbGaP:

http://docs.rail.bio/dbgap/ analyzing dbGaP-protected data in the cloud with Amazon Elastic
MapReduce. Bioinformatics. 2016 Aug 15;32(16):2551-3.



Splicing factors

Ao o L
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M
Gene Mouse (mm9) Genomic Sequence
Hgsnat  GUCAGUAAAUACACUCUGCUUAUAUUCGGGCAGUAUAAAAUGGUGAAG..ACAAGAUUGCUUUUAGUAAGAAAUAUGAUUGUGUCUCGUGUGUGUGUGUG
Cluh CGGCCCUGCCACCUUCUGGUUCUCUUGUCCUAGACGUUCCUGUGCGGC..AGAGCGCAAGUUGGGGUGUGUGUGUGUGUGUGUUAUUGGGGUGGGUUGUC
Sars AUAAAGGGAAGAGAUUUUACUUUUUUCAAACAGGGUCUCAUGUAGUCC.. ACAGCAGGCUUAAAGGUAUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUU

Ptcd2 GUGGUCAAAUACCUACUGUUUUUGUCUGUGCAGUGACCUGAUUGCCCA.. AGGAGUUUAUGAAGGGUGUGUGUGUGAGUGCAUGUGUGUUUGUGUGUGUG
Adnp2 GCAAAAAGAAAAGAAAAGUGACCUCUGUUUUAGGAGAAAAAGAAAGCA...UUCUCUUGACUGACAGUGAGUUUGUGUGUGUGUGUGUGUGUGUGUGUGUG
Usp15 UGUCUUAAUUUUUUUUCCUUCAUAAAAUAAAAGUAUCCUAGUGUACUC..AAACAGAAUUUAGAGGUGUGUGUGUGUGUGUGUGUGUGUCUGUGUGUUGU

Synj2bp  UGUGUGUGUGUGUGUGUGUGUGUAUGUGUGUAGGGUGAAAUGUACACA..UAAGACUUUUAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Adipor2 UGUGUGUAUGACAUGUGUGUCUUAUGCUUUCAGAGGCUUGAAGAGGGU.. AUUGUGAAUCAC CAUGUAGGUGCUGGGACUUGAACCCAGGUUCUCUGUAA

Smg5 GUGUAUCUGUGUACGUGUGUGUCUGUGUUUCAGAAUGGAGAGAUGAAG...CUCCUCUGGCCUCAGGUGUGUGUGUGUGUGCUGUUUCAAAGCAUUUGCCC

A230046K03Rik UGUCAUCUGAUUGUUGUGUGUGUGUGUUGCUAGAGAGAACCCAAACUG..AAGGGACAGUGACAGGUAAGGACAACAUAGUUGCCAGCAGUGUGGACCTT
Tecprl AGCCCCUUGCCAGCUCCUUCUUCCAUUUCCUAGGAGCAUUGUGGGUGU...GUGGAUAGACUGAUGGUGUGUGUCUAGAUGGUGGUGGUGGGUAUAUGAAU
Spata7 UGCUCAUGUUUCUAUUUGUGUUUAAAAUUUUAGGUGUCUAUAUUGGGG...CAAGUGUGUAUUCAGGUGCGUAUGAAUGUGUGUGUAUGCAUAUAGAAGUC
Wbscr22 UGACCAGAAUGAAGCCCGGAAAUACGUUCGCAAGUGAGGAGAGCAUGG...AAUUUGGGAGUGUGUGUGAGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUG
Sptbn4 UUUUUUUUUUUUUUUUUUUCCUGGAGGGAGGAGGAGGAUCUUGUGACU...AUUACCUUAGCUUGGGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGCU

p——— 5’ Upstream (Intron) ——— —>5' Cryptic Exon— - =3’ Cryptic Exon— |————3' Downstream (Intron) ————

Ling JP, Pletnikova O, Troncoso JC, Wong PC. TDP-43 repression of nonconserved
cryptic exons is compromised in ALS-FTD. Science. 2015 Aug 7;349(6248):650-5.



Splicing annotation

Mouse Cassette Exons (mm10)
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Ling JP, Wilks C, Charles R, Ghosh D, Jiang L, Santiago CP, Pang B, Venkataraman
A, Clark BS, Nellore A, Langmead B, Blackshaw S. ASCOT identifies key regulators
of photoreceptor-specific splicing. bioRxiv doi:10.1101/501882.



Splicing annotation

] Unannotated
Bl Annotated

Human Cassette Exons (hg38)

Percentage
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Ling JP, Wilks C, Charles R, Ghosh D, Jiang L, Santiago CP, Pang B, Venkataraman
A, Clark BS, Nellore A, Langmead B, Blackshaw S. ASCOT identifies key regulators
of photoreceptor-specific splicing. bioRxiv doi:10.1101/501882.



