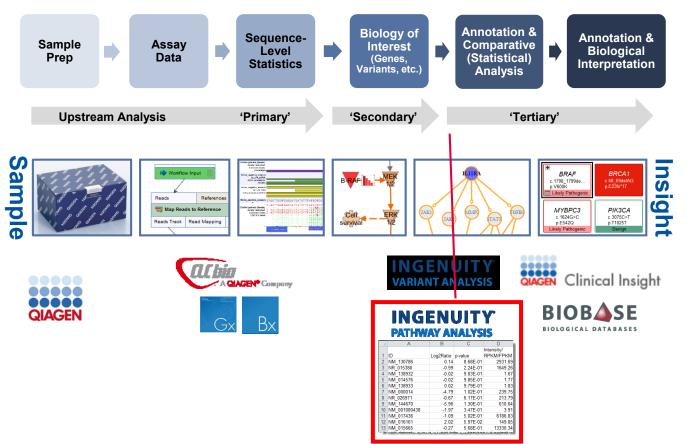


<u>Ingenuity Pathway Analysis (IPA)</u> : Maximizing the Biological Interpretation of Gene, Transcript & Protein Expression Data with IPA

Jennifer Poitras, Ph.D. Field Applications Scientist Qiagen Advanced Genomics Jennifer.Poitras@qiagen.com

With IPA you can:

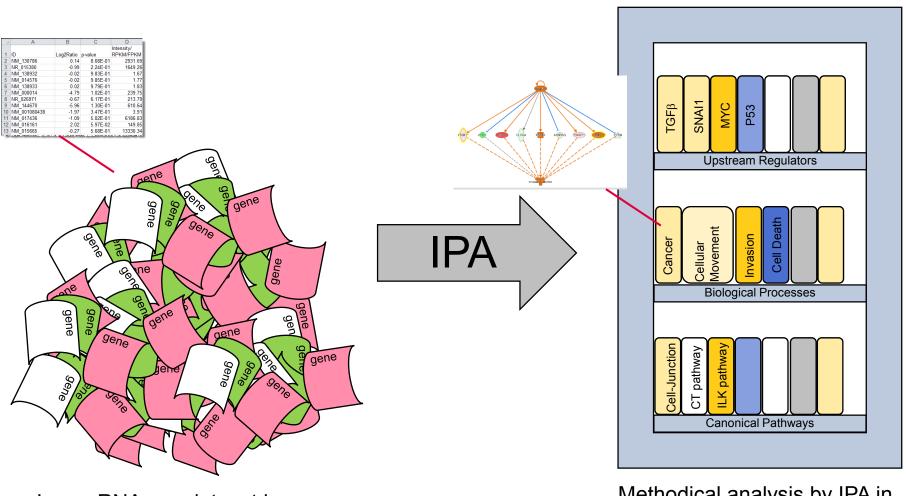
- Analyze and visually integrate multi-omics datasets
 - Identify pathway enrichment AND directionality
 - □ Predict upstream molecules that may be driving expression changes
 - Identify druggable targets
 - □ Link differentially expressed genes to your phenotype
- Mining the Knowledgebase: One stop shop
 - □ Look up all curated knowledge about gene/disease of interest
 - □ Explore and create pathways
 - □ Bioprofiler: identify actionable targets


Overview

- Introduction to IPA
- Large Dataset Analysis
 - Core Analysis
 - Comparison Analysis
- Newer IPA Functionalities
 - Overlay variant data
 - □ Phosphoproteomic analysis
 - miRNA Target Filter
 - □ Isoprofiler
 - □ Bioprofiler
 - □ Search and Explore
- Questions/Answer

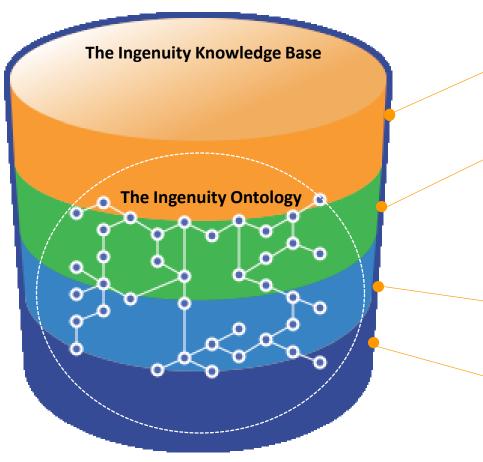
When do you use IPA?

QIAGEN Sample to Insight



What is Ingenuity Pathway Analysis?

What can IPA do?



Large RNA seq dataset in form of a huge pile of papers

Methodical analysis by IPA in form of organized binders on a bookshelf

Ingenuity Knowledge Base

Ingenuity Findings

Ingenuity® Expert Findings – Manually curated Findings that are reviewed, from the full-text, rich with contextual details, and are derived from top journals.

Ingenuity® ExpertAssist Findings –

Automated text Findings that are reviewed, from abstracts, timely, and cover a broad range of publications.

Ingenuity Modeled Knowledge

Ingenuity[®] Expert Knowledge – Content we model such as pathways, toxicity lists, etc.

Ingenuity[®] Supported Third Party

Information – Content areas include Protein-Protein, miRNA, biomarker, clinical trial information, and others

Species Supported

- Human, Mouse, Rat in full content
- IPA uses HomoloGene to map other identifiers to human/mouse/rat orthologs (though supporting content for the additional species will be specific to human, mouse, and rat)
 - Arabidopsis thaliana
 - Bos taurus (bovine)
 - Caenorhabditis elegans
 - □ Gallus gallus (chicken)
 - □ Pan troglodytes (chimpanzee)
 - □ Danio rerio (zebrafish)
 - □ Canis lupus familiaris (canine)
 - Drosophila melanogaster
 - □ Macaca mulatta (Rhesus Monkey)
 - Saccharomyces cerevisiae
 - □ Schizosaccharomyces pombe

IPA

- Deep pathway understanding of a single gene/protein
 - □ Drug/therapeutic target discovery
- Biological understanding of large data sets
 - Differential gene expression, array and RNAseq (transcriptomics)
 - □ Differential protein expression (proteomics)
 - Metabolomics
 - miRNA expression
 - □ Gene List
 - Chip-seq
 - siRNA screening
 - Sequence Variants (see also Ingenuity Variant Analysis)
 - □ Methylation
 - Protein phosphorylation

Biological understanding of large data sets

- Differential gene expression, array and RNAseq (transcriptomics)
- Differential protein expression (proteomics)
- Metabolomics
- □ miRNA expression
- Gene List
 - Chip-seq
 - siRNA screening
 - Sequence Variants (see also Ingenuity Variant Analysis)
- Methylation
- □ Protein phosphorylation

Biological understanding of large data sets

- Differential gene expression, array and RNAseq (transcriptomics)
- Differential protein expression (proteomics)
- Metabolomics
- □ miRNA expression
- Gene List
 - Chip-seq
 - siRNA screening
 - Sequence Variants (see also Ingenuity Variant Analysis)
- Methylation
- □ Protein phosphorylation

Deep pathway understanding of a single gene/protein

- What other molecules does it interact with?
- What processes is it associated with?
- □ What compounds affect its activity?

Genes and Chemicals Diseases and Functions Pathways and Tox Lists		
	<u>S</u> EARCH	A

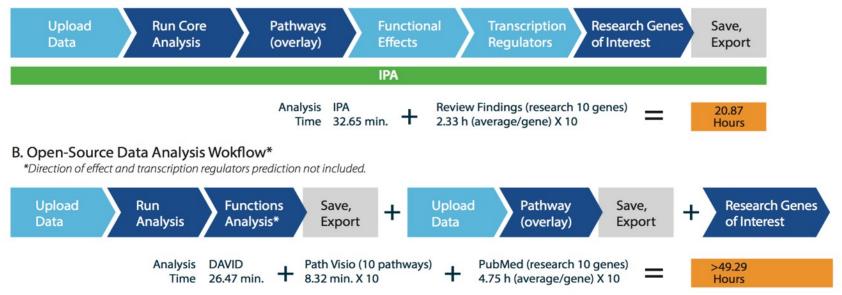
Biological understanding of large data sets

- Differential gene expression, array and RNAseq (transcriptomics)
- Differential protein expression (proteomics)
- Metabolomics
- □ miRNA expression
- Gene List
 - Chip-seq
 - siRNA screening
 - Sequence Variants (see also Ingenuity Variant Analysis)
- Methylation
- Protein phosphorylation

Deep pathway understanding of a single gene/protein

- What other molecules does it interact with?
- What processes is it associated with?
- □ What compounds affect its activity?

ſ	Genes and Chemicals	Diseases and Functions	Pathways and Tox Lists]
				<u>S</u> EARCH


Investigate a disease or process of interest

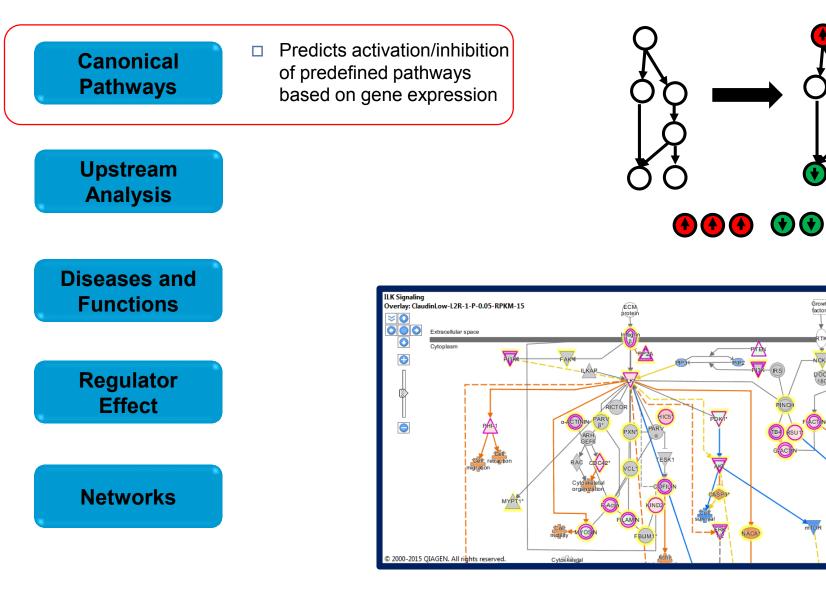
- □ Which genes/proteins/metabolites are good biomarker candidates?
- What are promising treatment targets?

Significant time savings vs open source tools

A. IPA Data Analysis Workflow

- Open source tools **do not** generally have directional content
- Many have woefully stale content: DAVID had no content updates for several years

IPA has directional content that is updated every week


Sample to Insight

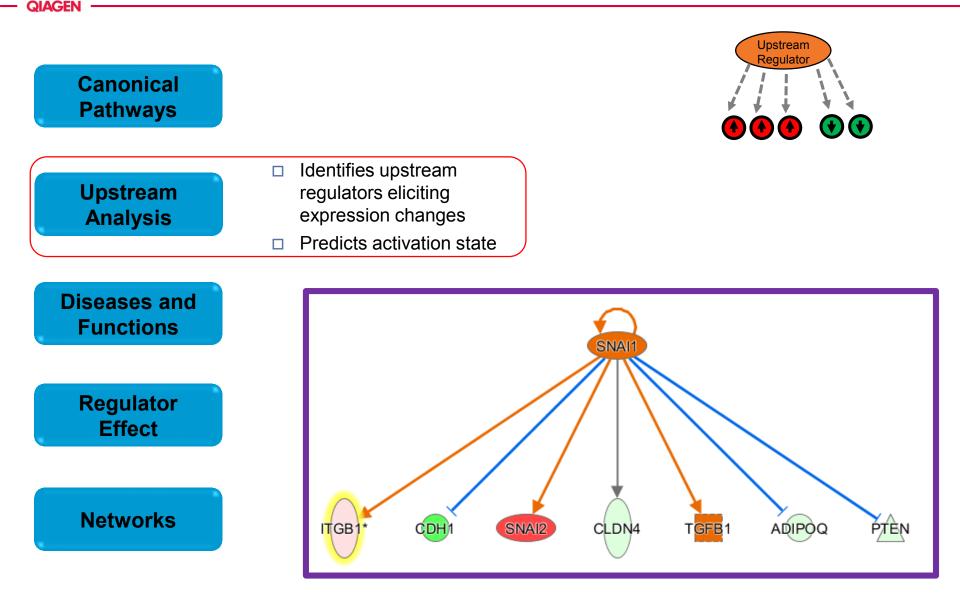
Overview

- Introduction to IPA
- Large Dataset Analysis
 - Core Analysis
 - Comparison Analysis
- Newer IPA Functionalities
 - Overlay variant data
 - □ Phosphoproteomic analysis
 - miRNA Target Filter
 - □ Isoprofiler
 - □ Bioprofiler
 - □ Search and Explore
- Questions/Answer

4

ECM

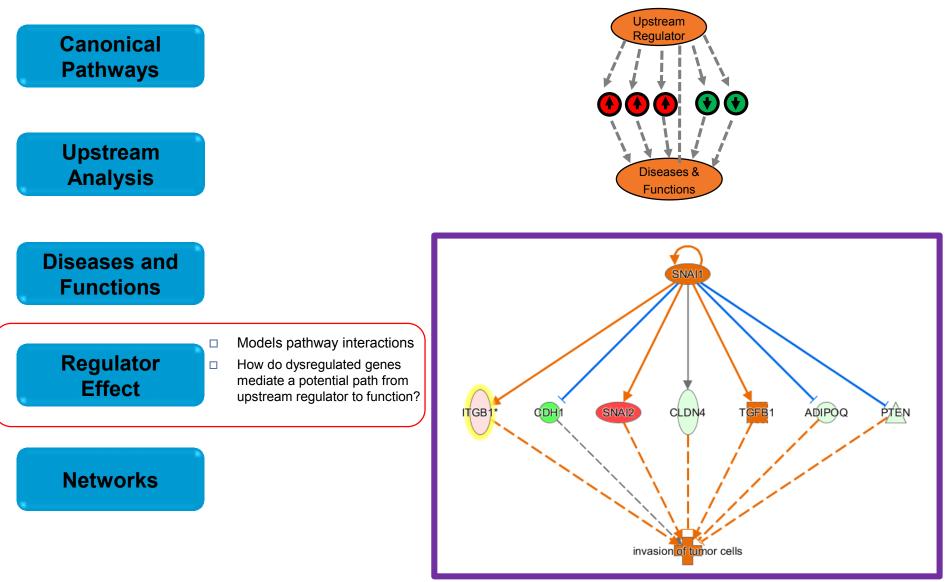
ERKMAPK

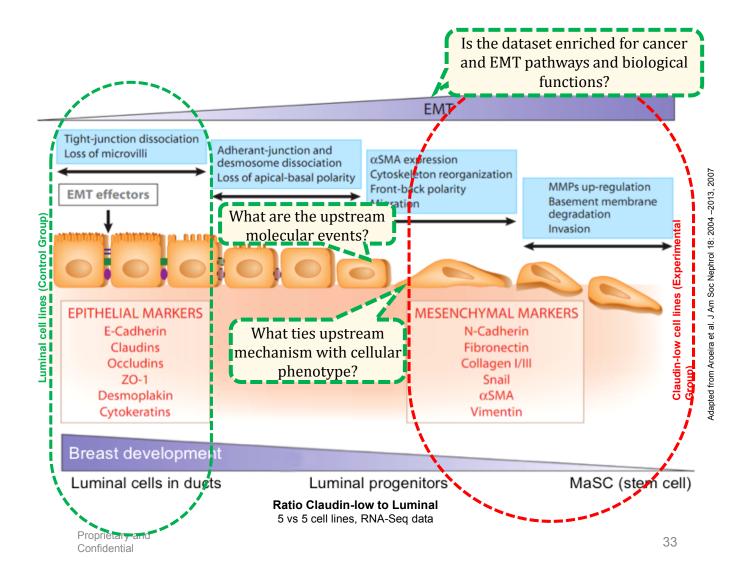

Signaling

meser

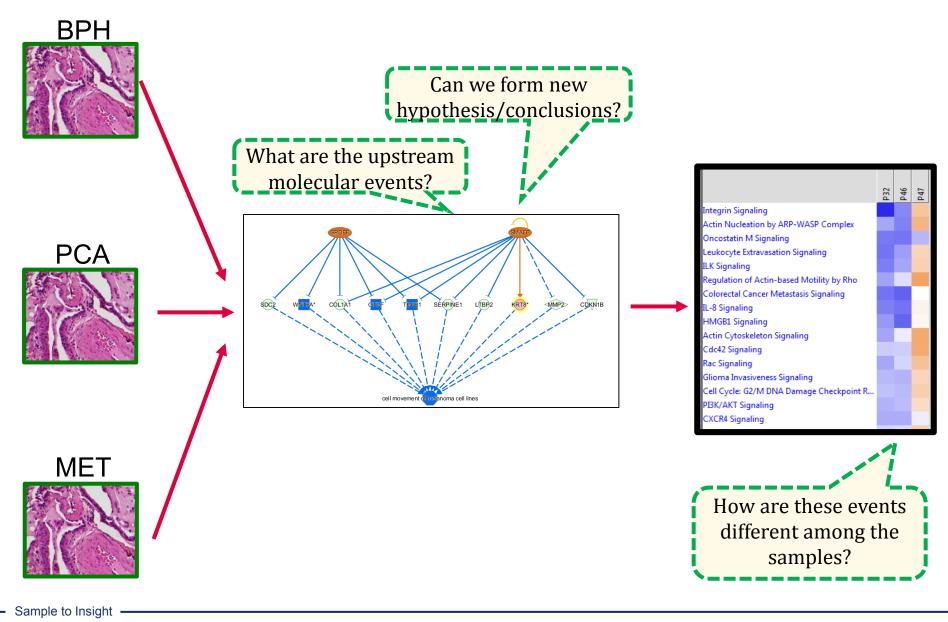
prote

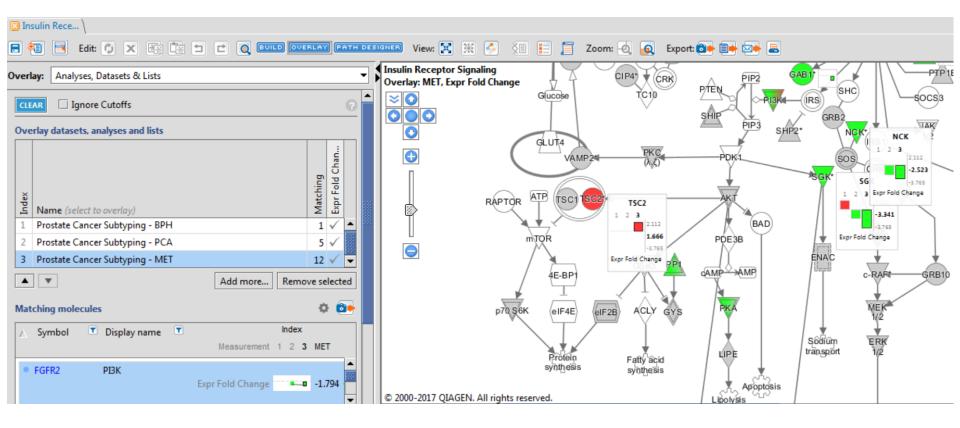
TB4 RSU1


Upstream Regulators, Mechanistic Networks and Causal Networks



Sample to Insight




Overview

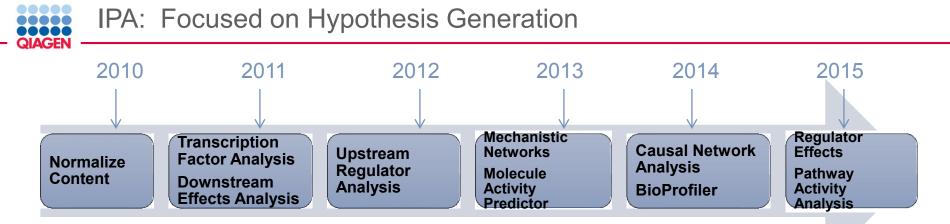
- Introduction to IPA
- Large Dataset Analysis
 - Core Analysis
 - □ Comparison Analysis
- Newer IPA Functionalities
 - Overlay variant data
 - □ Phosphoproteomic analysis
 - miRNA Target Filter
 - □ Isoprofiler
 - □ Bioprofiler
 - □ Search and Explore
- Questions/Answer

Overlay expression values for multiple experiments/disease conditions

Sample to Insight

00000

QIAGEN



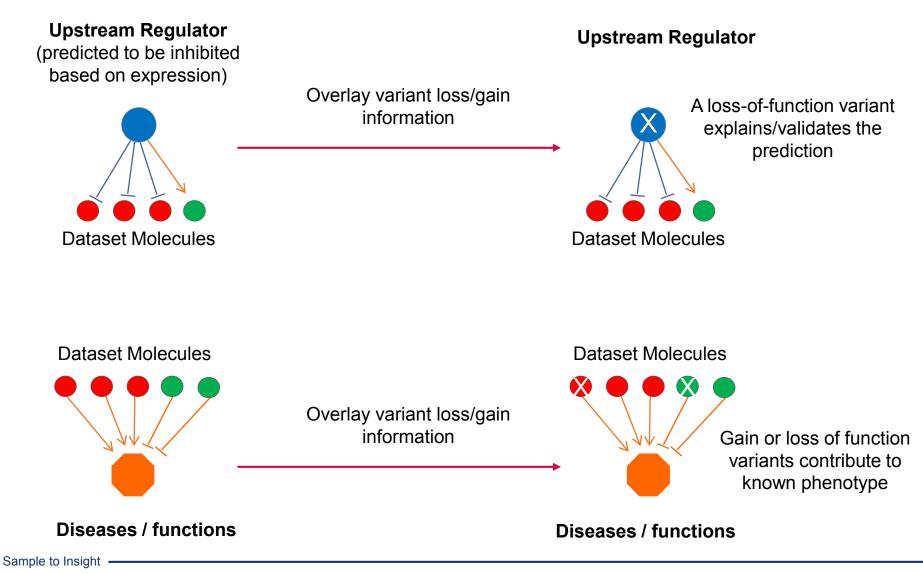
Overview

- Introduction to IPA
- Large Dataset Analysis
 - Core Analysis

Comparison Analysis

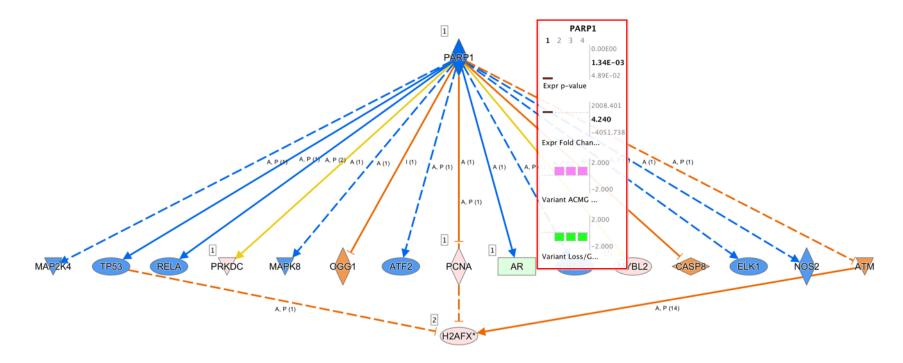
- Newer IPA Functionalities
 - Overlay variant data
 - □ Phosphoproteomic analysis
 - miRNA Target Filter
 - □ Isoprofiler
 - □ Bioprofiler
 - □ Search and Explore
- Questions/Answer

- ✓ Upstream Regulator Analysis
 - Predict upstream molecules which may be causing the observed gene expression changes
- ✓ Downstream Effects Analysis
 - Identify whether significant downstream biological processes are increased or decreased based on gene expression results
- ✓ Causal Network Analysis*
 - Uncover hidden connections in upstream regulators to generate
 plausible causal networks which explain observed expression changes
- ✓ Regulator Effects
 - Integrate Upstream Regulator results with Downstream Effects results predict what may occur upstream to cause phenotypic or functional outcomes downstream.



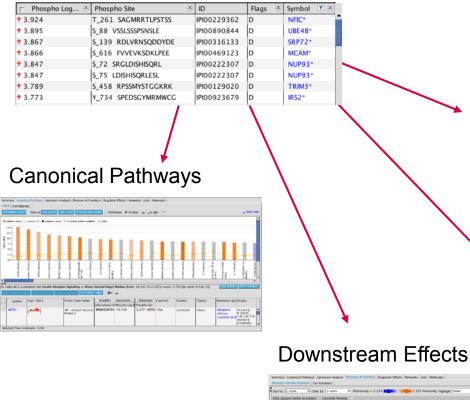
5 years of progress: IPA highlights 2012-2016

Capabilities	2012	2013	2014	2015	2016
Causal Content and Analysis	 Upstream Regulator Analysis Downstream Effects Analysis Mechanistic Networks Molecule Activity Predictor 	 BioProfiler Causal Network Analysis Diseases and functions on networks 	 Regulator Effects Diseases & Functions on Canonical Pathways Grow to Diseases and Functions Pathway Activity Analysis 		
Enterprise Support		 Batch dataset upload (with metadata) Dataset & analysis search My Findings spreadsheet 	My Findings graphical entry interfaceRelationship Export	IPA client Installer	
Comparison Analysis		Comparison analysis heatmaps trends, clusters	Filtering of heatmaps	Gene-level heatmaps	
RNA-seq Support	Isoform view for human	Overlay data in isoform view	 Ensembl support for Isoforms IPA Plugin for CLC 	 Isoform view for mouse IsoProfiler (v1) CuffDiff import 	 IsoProfiler (v2) Isoform names / heat maps on pathways Automated processing of data to IPA from CLC
Multi-omics Support				 Variant loss/gain & ACMG import Core Analysis Variant loss/gain Set color range on pathways 	 New bar charts on pathways Overlay multiple analyses / datasets of different types
Phospho- proteomics					 Phospho data import Initial Phospho analysis (CP, DEA) with flipped nodes Overlay phospho- sites on pathways



Variants can provide a mechanism to explain the observed biology

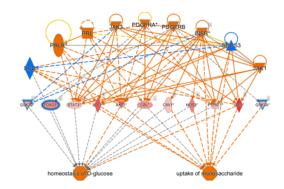
Integrate expression results with gene variant information



Example: HCC RNA-seq dataset and individual patient variant datasets overlaid on causal network.

- \rightarrow PARP1 is *upregulated* in the three patients but is likely *inactivated* by mutations.
- → The inactivation is correspondingly predicted from expression data as shown above
- → Some disease findings for PARp1 are only found in HGMD and Ingenuity Expert Mutation content

Phosphoproteomics dataset



Start (r | control | contr

Upstream phospho regulators and causal phospho networks (March 2017)

oprocess: reguesors	Causal Networks \							
ADD TO MY PATHERAY	LOD TO MY LIST DEPLAY	AS NETWORK CUSTOMIZE	TABLE MECHANISTIC NE	THORKS 😂 🕮 😕				
Upstream Reg 🝸 🗵	Phospho Log 🔳 🗵	Molecule Type 🛛 🖲	Predicted Activati X	T Activation z 8	p-value of overlap 🗵	Target molecu 👅 🗵	Mechanistic N 🝸 🤉	ŝ
ins1		other	Activated	3.532	4.47E-11	♦ABL1, ♥Aall 31	46 (11)	
EGF		growth factor	Activated	3.489	3.92E-10	+AKT1,+Aall 49	57 (9)	
INSR	† 4.856	kinase	Activated	3.458	4.74E-05	*AKT1,*Call 13	45 (11)	
IGF1R		transmembrane rece	Activated	3.227	3.68E-04	*AKT1,*8all 14	43 (8)	
EPO		cytokine	Activated	2.985	9.07E-06	*AKT1,*8all 13	40 (9)	
AKT1	† 3.549	kinase	Activated	2.910	3.23E-13	♦AKT1, ♦Aall 46	74 (7)	
ER882		kinase	Activated	2.816	1.41E-02	*AKT1,*Aall 12		
HGF		growth factor	Activated	2.812	5.438-03	*AKT1,+8all 13	39 (9)	
NGF		growth factor	Activated	2.764	4.02E-05	*AKT1,*8all 17	47 (9)	
SH281	↓-0.056	other	Activated	2.747	2.21E-06	*AKT1,*F0all 8	54 (5)	
CSF2		cytokine	Activated	2.665	9.07E-04	+AKT1,+Aall 12	49 (9)	
1.6		cytokine	Activated	2.624	3.15E-06	*AKT1,*8all 16	48 (10)	
JAK3		kinase	Activated	2.557	4.28E-03	*AKT1, *Gall 7	29 (8)	
sodium orthovanadate		chemical reagent	Activated	2.504	3.52E-03	♦A8L1, *Aall 14	43 (8)	
1.2		cytokine	Activated	2.494	2.25E-03	*8AD, *FOall 10	30 (9)	
EGFR	♦-0.567	kinase	Activated	2.413	1.17E-02	*AKT1,+8all 15		
CH1		growth factor	Activated	2.375	7.32E-19	*AHNAK,*all 45	55 (4)	
MET		kinase	Activated	2.356	1.99E-02	*AKT1,+8Call 7		
109		growth factor	Activated	2.325	4.55E-06	*AKT1,*Aall 14	53 (9)	
JAK2	1 0.457	kinase	Activated	2.303	2.08E-01	+IFNGR1, +Iall 8		
JAK1		kinase	Activated	2.280	1.04E-02	+IFNGR1, +Iall 8		
THPO		cytokine	Activated	2.278	4.21E-06	*AKT1.*Fall 10	33 (7)	

Phospho Regulator Effects (March 2017)

Sample to Insight

Overview

- Introduction to IPA
- Large Dataset Analysis
 - Core Analysis
 - Comparison Analysis
- Newer IPA Functionalities
 - Overlay variant data
 - □ Phosphoproteomic analysis
 - miRNA Target Filter
 - □ Isoprofiler
 - □ Bioprofiler
 - □ Search and Explore
- Questions/Answer

mic	roRNA Target Filter											- - 5
) microRNA families have tered to <u>51 microRNAs</u> t			LACE MRNA DA	TASET							
De	tails \ Summary \											
	DD TO MY PATHWAY		LIST 🛛 📄 🔳	± '.							Rows:	1-131 💌 < [
	microRNA dataset: me	elanoma_microRI	NA_data Add column(s) 💽	Relationship			Add column(s) 💽	mRNA data:	set: mRNA Meta:	stasis vs Normal - 2	2FC,0.05PV	Add column(;
	ID 🗶	🛆 Symbol	metastatic melanoma (Fold C	Source	T	Confidence	Expression Pairing 🛐 🚺	ID 🗙	Symbol	Fold Change 🔀	Molecular Type 🛛 🔀	Pathway 🚺
	hsa-let-7c	let-7	↓ -3.120	TargetScan Hu	man	High (predicted)	44	8072015	ADRBK2	↑ 3.394	kinase	Colorectal Cancer Met
	hsa-let-7c	let-7	↓ -3.120	TargetScan Hu	man	Moderate (predicted)	↓ ↑	8067167	AURKA	† 2.136	kinase	Molecular Mechanisms
	hsa-let-7c	let-7	↓ -3.120	TargetScan Hu	man	High (predicted)	↓ ↑	8105121	GHR	† 2.052	transmembrane receptor	Growth Hormone Signa
	hsa-let-7c	let-7	↓ -3.120	TargetScan Hu	man	Moderate (predicted)	++	7994131	PRKCB	† 4.995	kinase	Breast Cancer Regulat
	hsa-miR-206	mir-1	↑ 1.880	TargetScan Hu	man	Moderate (predicted)	+↓	7956301	LRP1	↓ -3.463	transmembrane receptor	Colorectal Cancer Met.
	hsa-miR-206	mir-1	↑ 1.880	TargetScan Hu	man	High (predicted)	+↓	8008201	NGFR	<mark>↓</mark> -2.917	transmembrane receptor	PTEN Signaling
	hsa-miR-122	mir-122	↑ 1.970	TargetScan Hu	man	High (predicted)	+↓	7963670	MAP3K12	<mark>↓</mark> -3.119	kinase	Germ Cell-Sertoli Cell J
	hsa-miR-122	mir-122	↑ 1.970	TargetScan Hu	man	Moderate (predicted)	+↓	8157524	TLR4	↓ -6.290	transmembrane receptor	Colorectal Cancer Met.
	hsa-miR-125a-5p	mir-125	↓ -1.450	TargetScan Hu		Moderate (predicted)	44	7985213	CHRNA5	↑ 2.965	transmembrane receptor	AMPK Signaling
	bca-miB-125a-5p		L_1 450					7004131		4 4 005		

miRNA data	miRNA Target Filter	Molecule Type	Pathways (Cancer/ Growth)	mRN	$A \downarrow \uparrow$?
88 data	13,690	1,090	333	39	32	
points	targets	targets	targets	targets	targets	

Use Pathway tools to build hypothesis for microRNA – target association to melanoma metastasis.

CEACAM1 has oppositely regulated transcripts in HCC, leading to same outcome

			ADD TO MY	PATHWAY	DD TO MY L	IST ISOPROF	ILER FIND	INGS CREATE	DATASET C	USTOMIZE TAB				Symbol AB	CB1 - PTP4A1	(p1 of 2) 🗸		I More I	Info
			A Symbol	Molecule				Gene-level Fi				×	Max Expr ×	Transcrip		× Isoform		soform-s	
5		p-value False Di Fold Ch Intensity	ABCB1	transpor		abnor				×			+-5.244			301 adv		4(_
Name	n-d		AGL	enzyme		abnorm	all 41		477	-0			† 2.933		2 5.5	58			
HCC EM pool Tumo	r vs_ Normal 2016-09	ANG	enzyme		activatio	all 53		226	-			↑ 2490.769		2 2510.2	89 Alzhei	all 1	1	1	
HCC EM pool Tumor vs_Normal 2016-09 $\checkmark \checkmark \checkmark \checkmark$			ASPH	enzyme		abnorm				00-0	(13 more 	† 387.876		6 400.4	23			
			BAIAP2	kinase		autopha				-0		9	† 4.839		2 8.6				
			C19orf43	other		endometr			3 -0-	-		nore	† 67.254		2 72.3	07			555
× V	Add more	Remove selected	CEACAM1	transpor	ter	abnor							+-47.085		2 50.3		all 4	(6
Filters		+	CENPX	other		activatio				- 0			↑11.843		2 16.2				
			CNBP	transcrip	tion reg	activatio				00			† 17.367		3 34.1				
Biotype		×	COTL1	other		antifungal			8 00				1 4.845		2 7.3				
			CRP	other		activati				- O X			† 5.307		2 9.3				
3prime overlapping ncRNA 3prime overlapping ncrna antisense			EIF4A1		on regula	acute m				0		16	+-201.918		2 210.6				
	FDFT1	enzyme		accumul				0		5	+-11.642		2 22.3						
		FKBP8	other		abnorm			90 00			- nore	+-17.076			32 apopt	all 1			
		-										/				-			-
		-	Selected row	ws 1 / 38															
Expression Patterns	ed in the dataset	A X	Tran 🗵	Protein 🗵	Sche 🗵	Amin	Nucl	APPRIS D	Biotype 🗵	TSL 🗵	Isoform-s	pecific Disease o	or Fun 🗵 Is		pool Tu	_	1 1	+	
■ Transcripts are both up and down regulated in the dataset				CEACAM	CEACAM	11	526	3519	PRINCIPA.	protein	TSL:1	anontosis	of colorectal car	call 4 4	ID ENST	E × E	× E ×	↑3.22 9.	172
			2	CEACAM	CEACAM		464	3427	ALTERN		TSL:1		f tumor cell lines			2.86E- 1.41			1.43
Describe the intensity column(s) in the dataset		3	CEACAM	CEACAM		461	1484		protein	TSL:1				21131		-			
 One intensity column that is the max intensity of expr't v control [fold change only] 			4	CEACAM	CEACAM		430	3170		protein	TSL:1						-		
			5	CEACAM	CEACAM		399	1342		protein	TSL:5						-		
			6	CEACAM	CEACAM	1	368	1263		protein	TSL:1						-		
One intensity column that is the avg intensity of expr't vs control [fold change only]		50	7	CEACAM	CEACAM	1	98	434		protein	TSL:5						-		
			8	CEACAM	CEACAM	1	93	417		protein	TSL:5						-		
			9	CEACAM				1773		retained	TSL:1						-		
			10	CEACAM				1778		retained	TSL:1						-		
			11	CEACAM				1619		retained	TSL:1						-		
			12	CEACAM		ll - h		678		retained	TSL:5						-		
			13	CEACAM		11		429		processe	TSL:3						-		
	Findings		13	CEACAM				429		processe	. TSL:3						-		
IsoProfiler F								000000000000000000000000000000000000000											2000
IsoProfiler F			E WORK I 🔎	. 💷															
ave	ATHWAY ADD TO MY L	LIST DISPLAY AS N									. III las:		tion Evidence						
ADD TO MY P. Molecule									dd/Remov			ase or Func							_
ADD TO MY P	ID 🗵 HCC E	. 🗵 HCC E 🗵	HCC E 🗵					Mo 🝸 🗵	Mo 🝸 🛛	🛛 Sp 🍸	🗵 Mo	TX Eff.	🝸 🗵 Disea					▼ Mu	
ADD TO MY P	ID X HCC E ENST0000 2.77E-0	. X HCC E X 02, 3.84E-01,	HCC E ⊠ ↑3.224,	9.172,	CEACA	all 4 CEAC	7 all 2 p	Mo 🝸 🗙 protein is		× Sp T r Human	Mo	Eff. sed dec	T 🗵 Disea	tosis of color	ectal cancer	cell lines		II 4 wild ty	pe
ADD TO MY P	ID 🗵 HCC E	HCC E X 02, 3.84E-01, 10 1.41E-07	HCC E 🗵		CEAC#		7 all 2 7 all 1	Mo 🝸 🗶 protein is	Mo 🝸 🛛	🛛 Sp 🍸	Mo	r × Eff. sed dec sed dec	reases invasi		ectal cancer cell lines		a		/pe /pe

Human

increased... increases invasion of tumor cell lines

CEAC# all 2 CEAC# all 1 protein is...

ENST00000 2.77E-02 3.84E-01 +3.224 9.172

i More Info

Dr... T X

not applic. not applic.

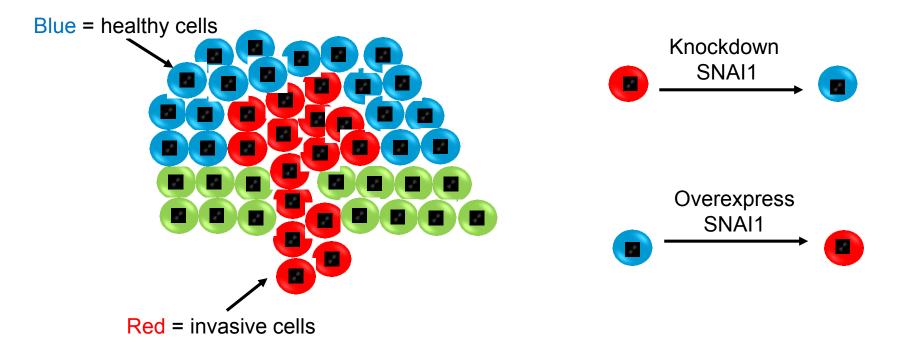
not applic.

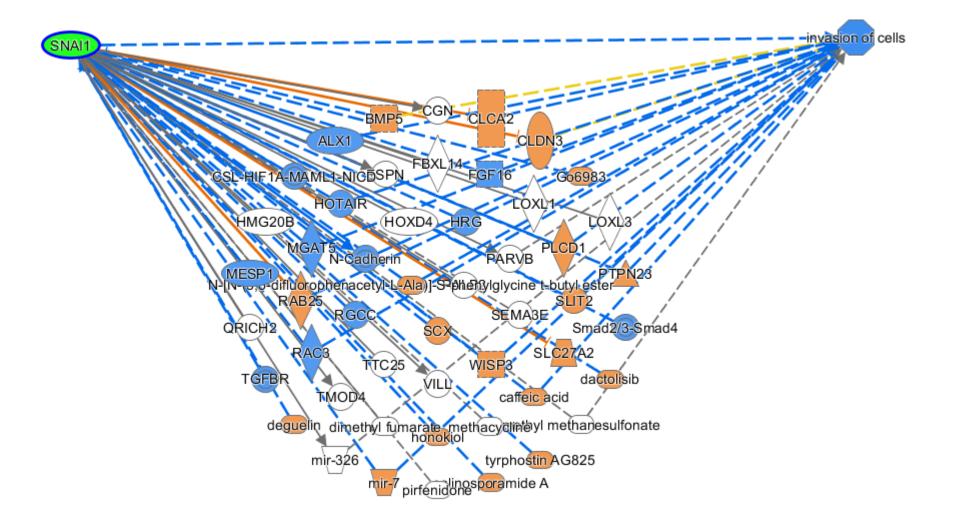
uman

uman

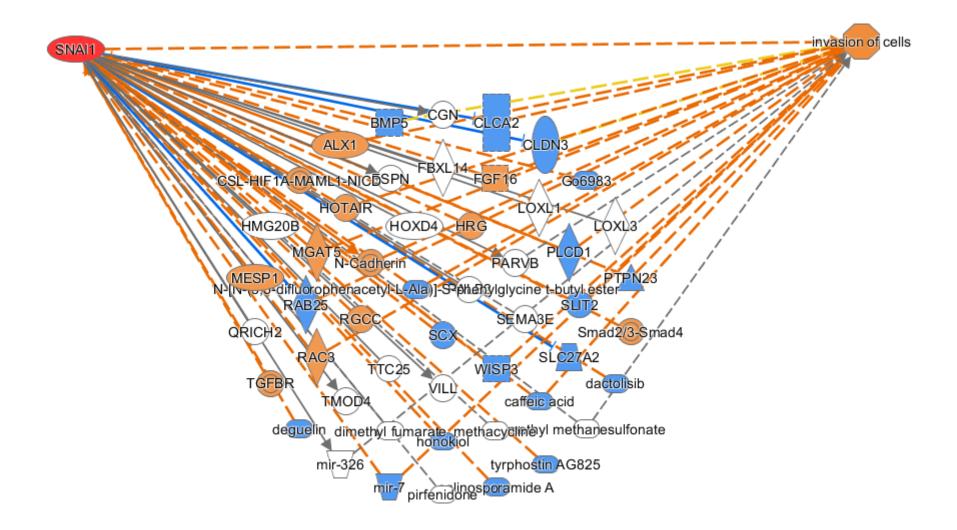
luman

not applic


all 1 wild type


Search and Explore (Data not required)

- Sample to Insight



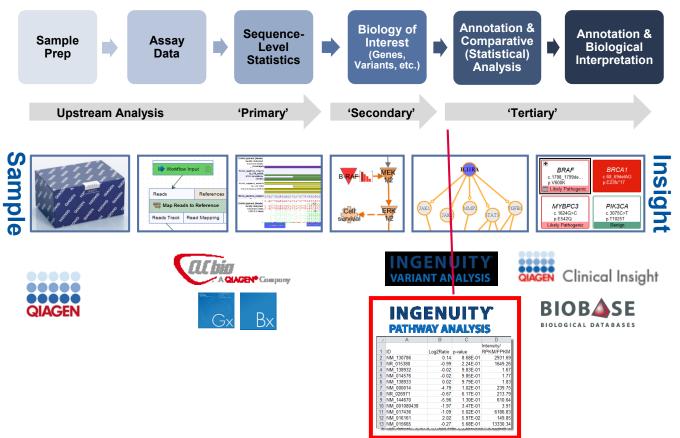
Identify genes known to be causally relevant as potential targets or identify targets of toxicity, associated known drugs, biomarkers and pathways

Molecule		Add	column(s)	E Disease & Evidence		((Â	d column(s) 📑
Symbol	Molecule Type		Disease	🗙 Disease	Mut 🝸 🔀	Effect on Disease/Function	T X	Spe 🝸 🔀	Causal or Correlated 👅 🕱	Molecule Activity 🝸 🕅	Findings
CE	peptidase		219	Alzheimer's disease	wild type	increases		Human	causal	increased activity	1
PBB2	other		55	Alzheimer's disease; late-onset Al	wild type	increases		Human	causal	increased activity	1
POE	transporter		920	Alzheimer's disease	wild type	increases		Human	causal	increased activity	1
РР	other		1134	Alzheimer's disease	wild type	increases		Human	causal	increased activity	2
LMH	peptidase		54	Alzheimer's disease	wild type	increases		Human	causal	increased activity	1
AXIP1	other		63	Alzheimer's disease	wild type	increases		Human	causal	increased activity	1
SEN1	peptidase		585	Alzheimer's disease	wild type	increases		Extracellular Space	2 Page	unknown (Interawyrii hydrochionthi	éle Marchingel
SEN2	peptidase		277	Alzheimer's disease	wild type	increases 🗰 🚥 📾	2-(2-@-fuaroethexy)ethoxy	(athony)pyrdin 5 y(viny) N methyllenzamile)		Re evaluarithric dipine	. Inivegity province in a sta
ORL1	transporter		49	Alzheimer's disease	wild type	increases		Plasma Membrane			The hydrodient hautein an
		-		known to be with Alzheimer's	i		R)-Butgerden				
Which genes when decreased in activity increase liver cholestasis?							etropha m etropha etropha etropha				

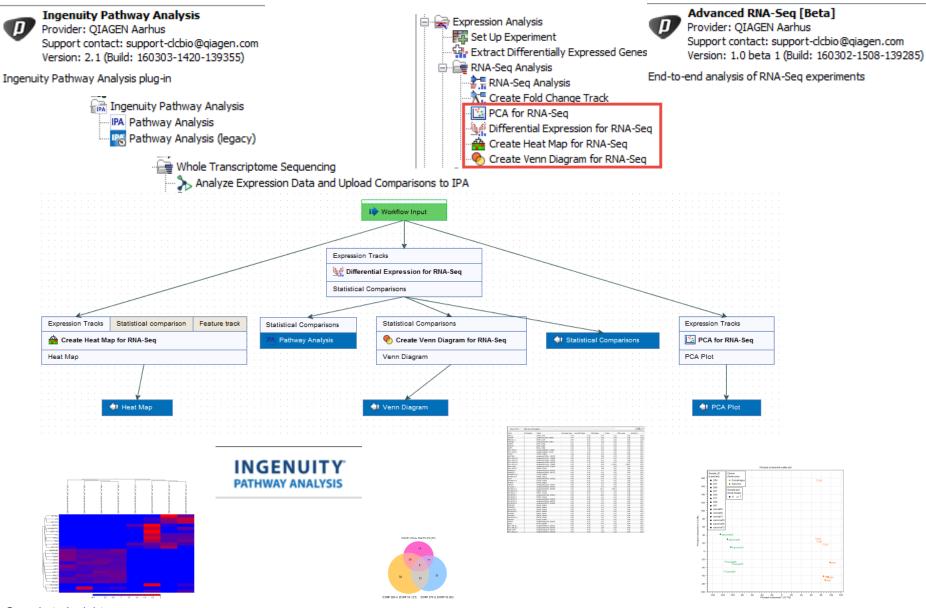
• What types of genetic evidence support this?

Demo Overview

- Introduction to IPA
- Large Dataset Analysis
 - Data upload
 - Core Analysis
 - Comparison Analysis
- Other IPA Functionalities
 - Search and Explore
 - miRNA Target Filter
 - □ Isoprofiler
 - Bioprofiler
- Questions/Answer


With IPA you can:

- Analyze and visually integrate multi-omics datasets
 - Identify pathway enrichment AND directionality
 - □ Predict upstream molecules that may be driving expression changes
 - Identify druggable targets
 - □ Link differentially expressed genes to your phenotype
- Mining the Knowledgebase: One stop shop
 - □ Look up all curated knowledge about drug/gene of interest
 - □ Explore and create pathways
 - □ Bioprofiler: identify actionable targets


When do you use IPA?

QIAGEN Sample to Insight

Sample to Insight

Working in BxWB to IPA

Map reads to reference

Provider: QIAGEN Aarhus Support contact: support-clcbio@qiagen.com Version: 1.0 beta 1 (Build: 160302-1508-139285)

End-to-end analysis of RNA-Seq experiments

Sample to Insight

Working in BxWB to IPA

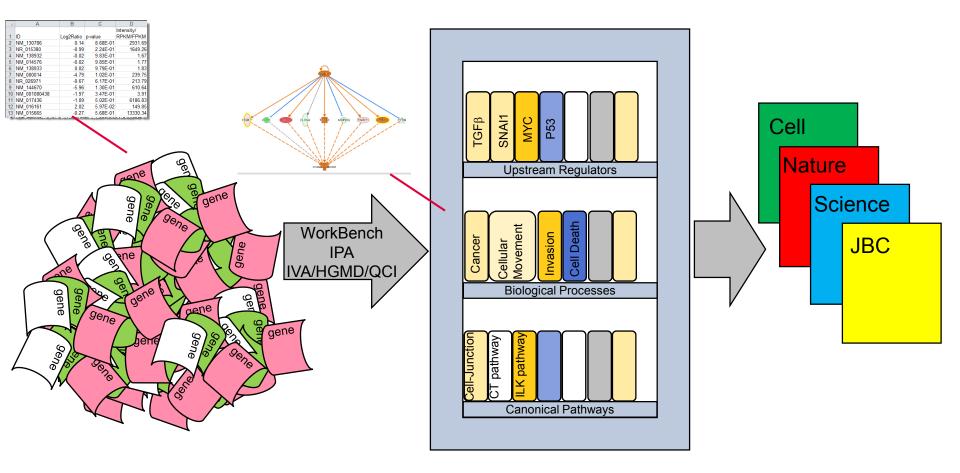
Bx	Map reads to reference	
Advanced RNA-Seq [Beta] Provider: QIAGEN Aarhus Support contact: support-dcbio@qiagen.com Version: 1.0 beta 1 (Build: 160302-1508-139285)		Exon A Exon B Exon C Processed mRNA
End-to-end analysis of RNA-Seq experiments		
Ingenuity Pathway Analysis		
Provider: QIAGEN Aarhus Support contact: support-clcbio@qiagen.com Version: 2.1 (Build: 160303-1420-139355)		

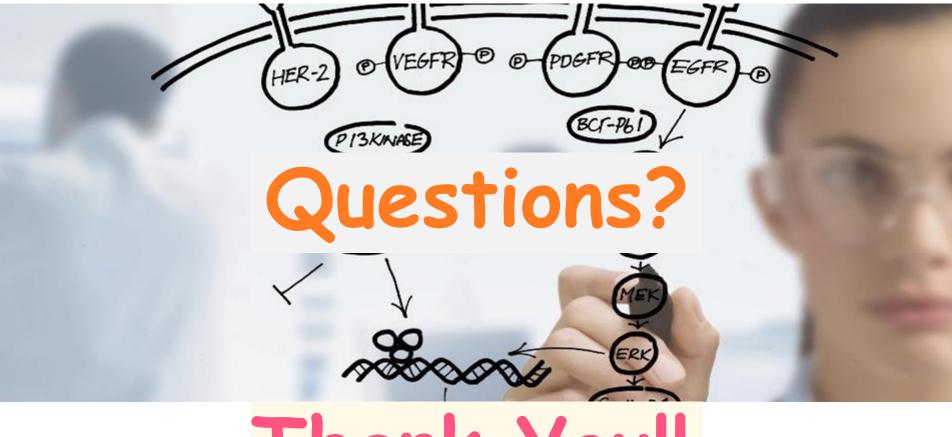
Ingenuity Pathway Analysis plug-in

- Sample to Insight

Working in BxWB to IPA

Advanced RNA-Seq [Beta] Provider: QIAGEN Aarhus Support contact: support-clcbio@qiagen.com Version: 1.0 beta 1 (Build: 160302-1508-139285) End-to-end analysis of RNA-Seq experiments	Map reads to reference
Ingenuity Pathway Analysis Provider: QIAGEN Aarhus Support contact: support-dcbio@qiagen.com Version: 2.1 (Build: 160303-1420-139355) Ingenuity Pathway Analysis plug-in	A B C D 1 D Log2Ratio p-value Intensity/ 2 NM_130786 0.14 8.68E-01 2931.69 3 NR_015380 0.99 2.24E-01 1649.26 4 NM_13932 0.02 9.85E-01 1.67 5 NM_014576 0.02 9.85E-01 1.77 6 NM_138933 0.02 9.79E-01 1.83 7 NM_00014 4.79 1.02E-01 233.76 8 NR_026971 -0.67 6.17E-01 213.77 9 NM_14470 -5.96 1.30E-01 6.106.64 11 NM_01080438 1.97 3.47E-01 3.91 12 NM_016161 2.02 5.97E-02 1.49.86 12 NM_016161 2.02 5.97E-02 1.49.86 13 NM_016655 -0.27 5.66E-01 1.3330.34


💰 IPA	Statute or	-	Pur Comparison, of the Supervise West Com-	Contraction of the second	the second in the laws				
<u>File Edit View W</u> indow	<u>H</u> elp				Pro	vide Feedback Support	Mr. Mistry Close IPA		
NEW X	Help and Suppo <u>T</u> utorials Wor <u>k</u> flows	rt F1. ▶	d Chemicals Diseases and Functions Pathways an		ARCH Advanced Search 🔽		QIAGEN		
Project Manager	Quick Start	Ctrl-9							
A-Z SORT SE	<u>L</u> egend	Ctrl-Slash							
Tiau Claudin-Low-Breast-Cancer	About IPA								
Ceratinocytes	What's new in IP	A							
Dataset Files Dataset Files SNAI2i-HGU144 universe SNAI2i_Keratinocytes									
Analyses SNAI2i-HGU144 universe-L2	D1 D 0 05								
SNAI2i_Keratinocytes-KC-or	nly								
SNAI2i_Keratinocytes L2R1_I Comparison Analyses	P0.05								
Biomarker Filter Results									
Biomarker Comparison Analyse MicroRNA Target Filter Results							$K \to Y$		
BioProfiler Results		Disc	over the Biology®				1. A.		INGENUITY°
My Pathways			iover the broney,						SYSTEMS
		IPA	[®] What is IPA?						
		Home	Help Customer Forum Fe	edback Support	Search			GO	
		Conta	t Support						
				I I alla and	10				
		Custome	r Support	Heip and	l Support				
		Phone: 6	50.381.5111						
🗿 ᢙ 📭			am-5pm(PST)						
		Monday-		ALL CONTRACTOR	************************************	····	TTELCTE		
		(Excludin	g Holidays)						
					Manual A	Customer F			
		support	@ingenuity.com	IPA Product	Mariuar	Customer F	orum		
			@ingenuity.com Customer Support any time by creating	IPA Product		Customer P	orum		
		Contact							
		Contact	Customer Support any time by creating	Training			nd Suggestions		


Resources: White Papers

INGENUITY PRODUCTS SCIENCE	BLOG LOGIN
INGEN VARIANTAI Custom Solutions	
The most comprehensive just got more comprehens	INGENUITY* PRODUCTS SCIENCE BLOG LOGIN
Preview Ingenuity Variant Analysis with HC	
LEARN MORE	CURRENT USER? LOGIN HERE ► INGENUITY PATHWAY ANALYSIS
Intuitive web-based applications for quick the biological meaning	SIGN UP FOR IPA
What kind of data are you analyzing? Select an option	WATCH A SHORT VIDEO
ACGTAATACC GTACAGTATC TATAGTATA CGTACATGGC ATACGTAGAT ACAGATACCA	OVERVIEW FEATURES ADVANCED APPLICATIONS WEBINARS TRAINING RESOURCES
Sequencing data Microarray Data	QIAGEN's Ingenuity Pathway Analysis (IPA) Support Documents
Broad support for sequencing Extensive support for microarray data types, from DNA to RNA gene expression analysis	
	The Basics
	IPA 2015 Spring Release IPA 2015 Spring Release INouse RNA-seq cardiomyocytes for Spring 2015 IPA release IPA Product Datastheet IPA 2014 Viniter Release IPA 2014 Fall Release IPA 2014 Fall Release IPA 2014 Summer Release IPA 2014 Summe
	IRA 2014 Spring Release Slides with Cardiomyocyte Use Case 🛓 IRA 2013 Winter Release 🕖 IRA 2013 Fail Release 🛓 IRA 2013 Fail Release 🛓 IRA 2013 Spring Release 🛓 IRA 2013 Spring Release 🛓

Thank You!!

Jennifer Poitras, Ph.D. Field Applications Scientist Jennifer.Poitras@qiagen.com

Sample to Insight