
CCR Collaborative Bioinformatics Resource (CCBR)

INTRODUCTION TO NGS DATA ANALYSIS BTEP SERIES 2017

bioinformatics.cancer.gov

Research (FNLCR) and the Center for Biomedical Informatics and Information Technology (CBIIT). The CCBR may also direct projects to other available CCR bioinformaticians as needs demand. Requests for any type of Bioinformatics support should be through the CCBR Project Submission Form.

CCBR support includes:

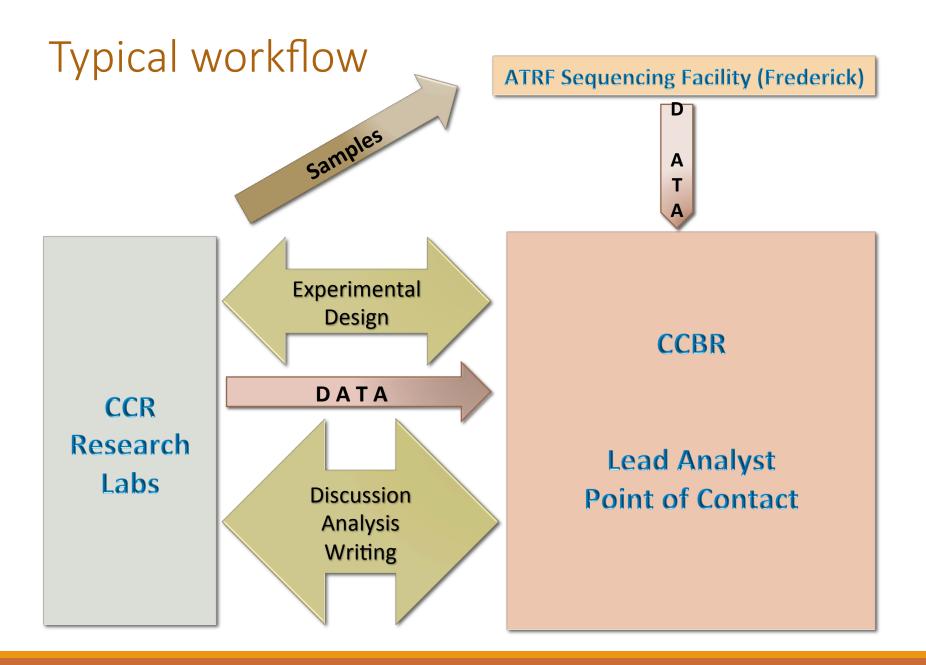
Consulting on experimental design, help with analysis and interpretation of biological data produced by large-scale genomics technologies including Next-generation sequencing (RNA-Seq, Exome-Seq, ChIP-Seq, Whole genome Sequencing), and microarrays

Support for the development of methods for new technologies provided by the Office of Science and Technology Resources (OSTR)

Provide training classes to CCR scientists focusing on software used in the analysis of their own data

CCBR Members

Office of Science and Technology Resources (OSTR)


Maggie Cam (Head)

Center for Biomedical Informatics and Information Technology (CBIIT)

> Chunhua Yan Ying Hu Richard Finney

Frederick National Laboratory of Cancer Research (Leidos) Parthav Jailwala (Manager) Fathi Flloumi Justin Lack Bong-Hyun Kim George Nelson Alexei Lobanov Jack Chen Ashley Walton Vishal Koparde

Soon to be part of CDSL (CCR Cancer Data Science Lab)

CCBR Functional Areas

1. Project Support (Experimental design & analysis) 2. Benchmarking & Pipeline development, New technologies support

3. Scientific tools & Web applications development

4. Bioinformatics Training & Education

1. Project Support

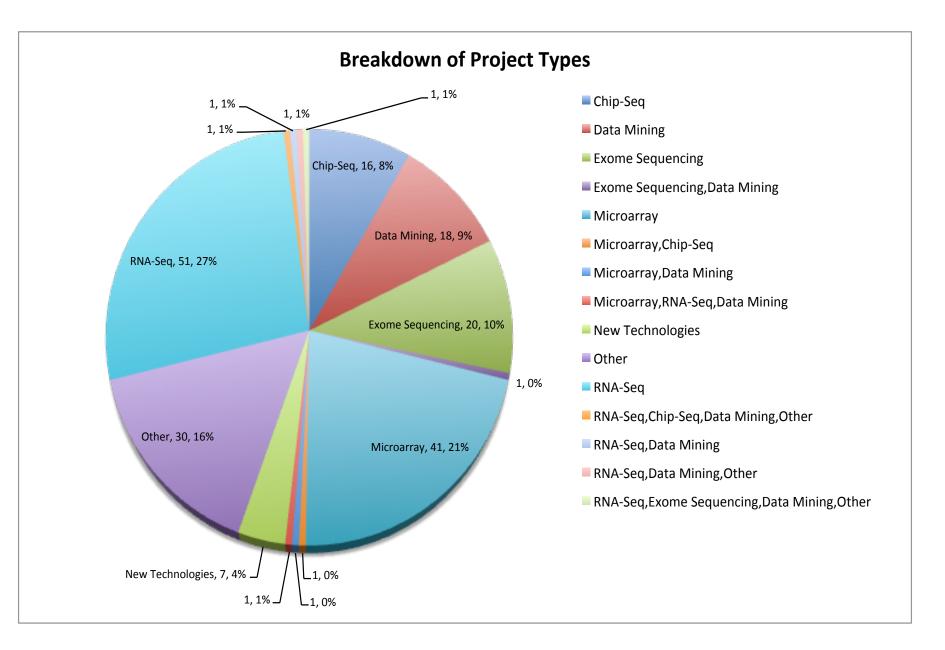
Current CCBR Projects

Total Number of	Total Number
Principal Investigators	95
Projects	189

Data Mining:

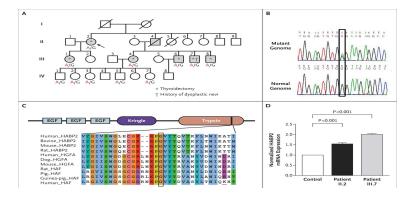
Analyzing public microarray data for Merkel cell carcinoma

Basic/Bench Research:

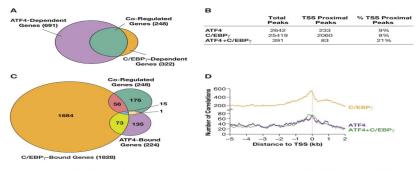

Study of alternative splicing function of Rbfox1 in knock out and transgenic mice Disruption of Pol II Elongation with O-GlcNAcylation Inhibitors

Translational Research:

Genomic characterization of mouse model for GBM Gene expression analysis of Kras-induced lung cancer mouse model

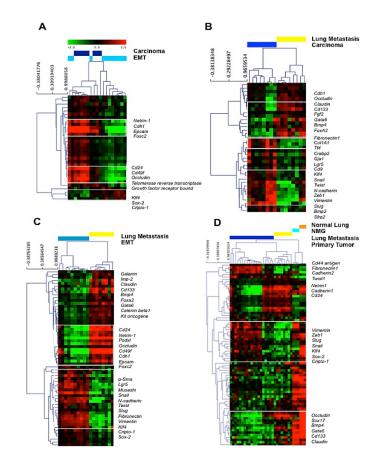

Clinical Research:

Germline Exome-Seq analysis of Familial Non-Medullary Thyroid Cancer Exome-Seq analysis of adrenocortical cancer germ line and tumor DNA

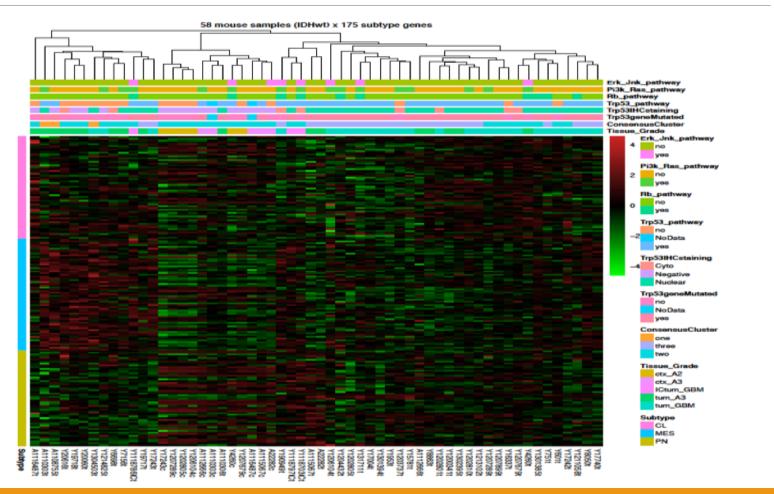


Some Projects

Germline mutations – Exome Seq Analysis

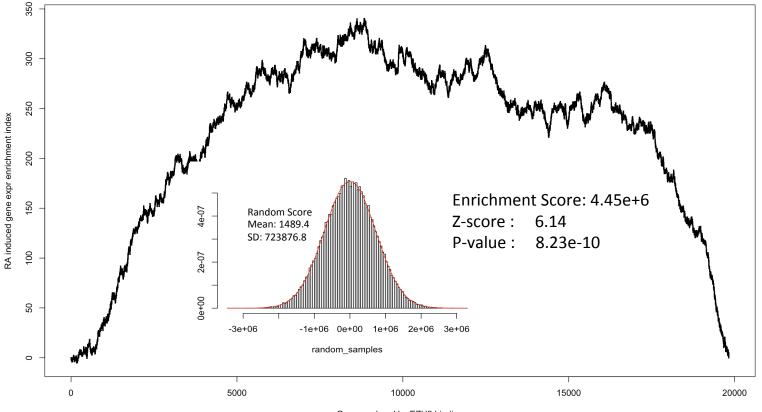


Integrated ChIP-Seq & Microarray Analysis

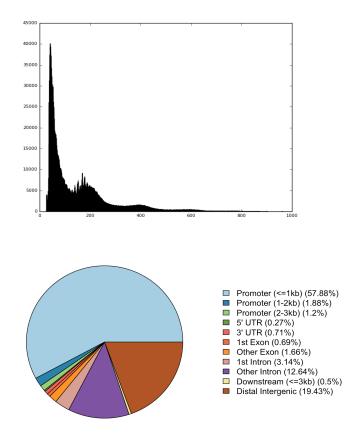


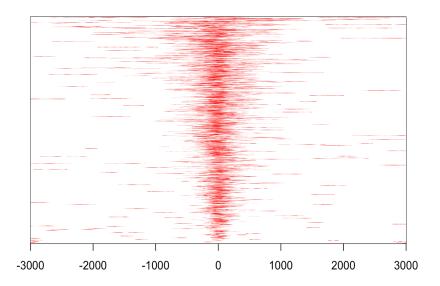
E	Total Peaks	No. CARE-Containing Peaks (No. of Matches)	% CARE-Containing Peaks	No. TSS-Proximal Peaks	No. CARE-Containing TSS-Proximal Peaks (No. of Matches)	% TSS-Proximal CARE-Containing Peaks
ATF4	2642	391 (451)	14.7%	233	74 (88)	31.7%
C/EBPy	25419	4033 (4486)	15.8%	2060	472 (526)	22.9%

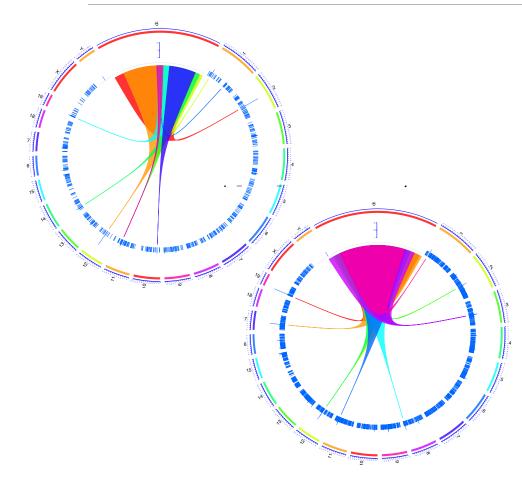

Gene Expression Analysis


Classification of Mouse Glioma

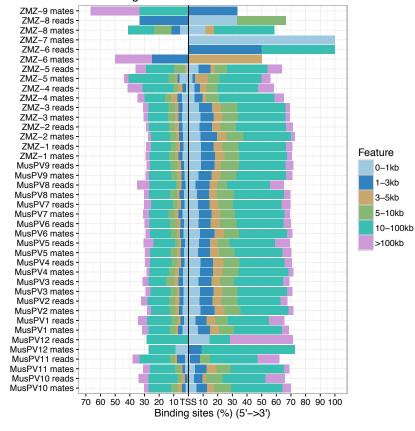
Splice Variant Analysis




Integrated ChIP-Seq/RNA-Seq Analysis


Genes ordered by EZH2 binding

Chip-Seq/ATAC-Seq Project



Virus Integration Analysis

Integration sites distances to the TSS

Collaboration Website: iMeetCentral

CCBR Q Search for Workspaces and Files					Cre	eate - Cu	stom Menu 👻	Maggie	Cam 👻
Dashboard 👜 Workspaces 🔻									
CCBR-769 Home Project Details Communications Results Uplo	oad and View Files – 🚫 P	roject Management –	Settings –	People	Properties	+ Add Tab			
CBR-769 Home									Optic
NASeq Analysis of Inherited Kidney Cancer									
CCBR-769 People	Manage	Recent activity	n "CCBR-76	69" 💋					
	More								
o send email messages to members, start new or select topic in Comm		Hi Cl PCA of yo	Next meetin hris, Martin, As p plot, to decide w ur RNA-Seq sam vailable	per our last r	neeting, we deo desired contrast	cided to review ts are meaning	ul to carry out.	We have resume	d analysi
o send email messages to members, start new or select topic in Comm		Hi Cl PCA of yo	nris, Martin, As j plot, to decide w ur RNA-Seq sam	per our last r hich of the o ples and we	neeting, we deo desired contrast	cided to review ts are meaning	ul to carry out.	We have resume	d analysis
• • •	New Nov 28, 2016 So a PCA plot, to decide -Seq samples and we should now about we have a meeting	Hi Cl PCA of yo	nris, Martin, As p plot, to decide w ur RNA-Seq sam vailable Christopher Ric	per our last r which of the o pples and we cketts	neeting, we deo desired contrast	cided to review ts are meaning	ul to carry out.	We have resume	d analysi
Communications Next meeting: Discuss RNASeq results Hi Chris, Martin, As per our last meeting, we decided to review the clustering of samples by group which of the desired contrasts are meaningful to carry out. We have resumed analysis of your RNA- was be ready to review the PCA results by the end of this week. If you are available this Friday (12/02), r to discuss the project further? I am available either 10 am or 11am, so please let me know whatever	Nov 28, 2016 So a PCA plot, to decide -Seq samples and we should now about we have a meeting r works at your end. Th Oct 12, 2016 out we have a meeting to ready at 3 pm to discuss these	Hi Ci PCA of yc are a	nris, Martin, As j plot, to decide w ur RNA-Seq sam vallable Christopher Ric more 1 month ago Parthay Jailwali more 1 month ago Parthay Jailwali Hi Chris, Attached is the s	er our last r hich of the en sples and we cketts a a a sample metad static status),	meeting, we dec lesired contrast should be read at a spreadsheet. as well as any o	cided to review ts are meaning dy to review the dy to review the . Please add infr ther information	ful to carry out. PCA results by PCA results by about specific g	We have resume the end of this v ype of cell-line/san oups, that is relev	d analysi week. If y nple

CCBR Publications

Home » CCBR Publications

2016

A

- McCullen MV, Li H, Cam M, Sen S, McVicar DW, Anderson SK. Ly49 Pro1 element activity is associated with gene activation, not gene expression: Pro 1 does not function as an enhancer in the Ly49 genes and Pro1 transcripts are not present in mature Ly49-expressing NK cells. Genes and Immunity advance online publication 28 July 2016; doi: 10.1038/gene.2016.31
- Weyemi U, Redon CE, Sethi TK, Burrell AS, Jailwala P, Kasoji M, Abrams N, Merchant A, Bonner WM. Twist1 and Slug mediate H2AX-regulated Epithelial-Mesenchymal Transition in breast cells. Cell Cycle. 2016 Jun 17:0. [Epub ahead of print]
- Matter MS, Marquardt JU, Andersen JB, Quintavalle C, Korokhov N, Stauffer JK, Kaji K, Decaens T, Quagliata L, Elloumi F, Hoang T, Molinolo A, Conner EA, Weber A, Heikenwalder M, Factor VM, Thorgeirsson SS. Oncogenic driver genes and the inflammatory microenvironment dictate liver tumor phenotype. Hepatology. 2016 Jun;63(6):1888-99. doi: 10.1002/hep.28487. Epub 2016 Mar 15.
- Mendoza-Villanueva D, Balamurugan K, Ali HR, Kim SR, Sharan S, Johnson RC, Merchant AS, Caldas C, Landberg G, Sterneck E. The C/EBP6 protein is stabilized by estrogen receptor a activity, inhibits SNAI2 expression and associates with good prognosis in breast cancer. P Oncogene. 2016 May 16. doi: 10.1038/onc.2016.156. [Epub ahead of print].
- Bae HR, Leung PS, Tsuneyama K, Valencia JC, Hodge DL, Kim S, Back T, Karwan M, Merchant AS, Baba N, Feng D, Park O, Gao B, Yang GX, Eric Gershwin M, Young HA. Chronic Expression of Interferon Gamma Leads to Murine Autoimmune Cholangitis with a Female Predominance. Hepatology. 2016 May 14. doi: 10.1002/hep.28641. [Epub ahead of print].
- Rothermel LD, Sabesan AC, Stephens DJ, Chandran SS, Paria BC, Srivastava AK, Somerville R, Wunderlich JR, Lee CC, Xi L, Pham TH, Raffeld M, Jailwala P, Kasoji M, Kammula US. Identification of an Immunogenic Subset of Metastatic Uveal Melanoma. Clin Cancer Res. 22:2237-49, 2016.
- Kennedy MW, Chalamalasetty RB, Thomas S, Garriock RJ, Jailwala P, Yamaguchi TP. Sp5 and Sp8 recruit β-catenin and Tcf1-Lef1 to select enhancers to activate Wnt target gene transcription. Proc Natl Acad Sci U S A. 113:3545-50, 2016.
- Weyemi U, Redon CE, Choudhuri R, Aziz T, Maeda D, Boufraqech M, Parekh PR, Sethi TK, Kasoji M, Abrams N, Merchant A, Rajapakse VN, Bonner WM. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun 7:10711, 2016.
- Dine JL, O'Sullivan CC, Voeller D, Greer YE, Chavez KJ, Conway CM, Sinclair S, Stone B, Amiri-Kordestani L, Merchant AS, Hewitt SM, Steinberg SM, Swain SM, Lipkowitz S. The TRAIL receptor agonist drozitumab targets basal B triple-negative breast cancer cells that express vimentin and AxL P Breast Cancer Res Treat. 155:235-51, 2016.
- Castro NP, Merchant AS, Saylor KL, Anver MR, Salomon DS, Golubeva YG. Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies. PLoS One. 11:e0153270, 2016.

How to get started

Contact maggie.cam@nih.gov or CCBR@mail.nih.gov

Drop by: Bldg 37, Rm 3041 (office hours 10-12am)

For significant help, trigger project request: Bioinformatics.cancer.gov ("Ask for Help")

Appointment: Discuss experimental design, analysis, goals and timelines

After data arrives: analyst is assigned to project and additional meeting(s) for further discussion

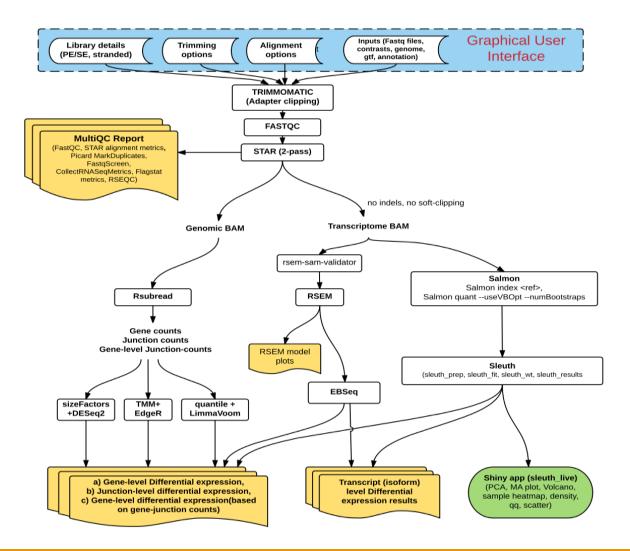
2. Research & Development

R&D

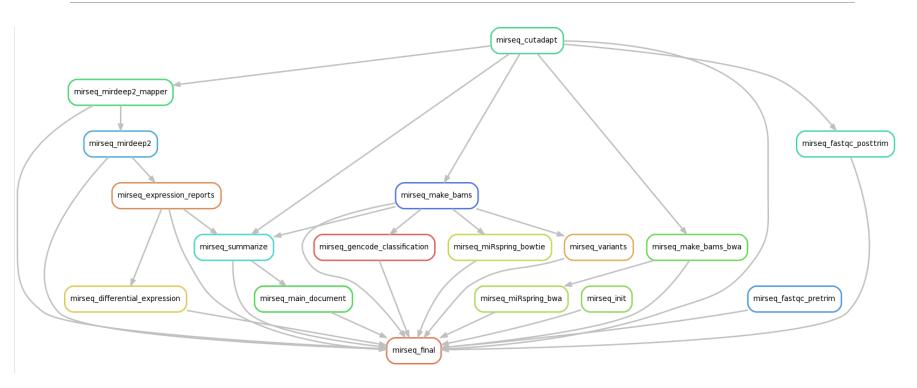
Joint effort of ATRF Sequencing Facility Bioinformatics Team and CCBR

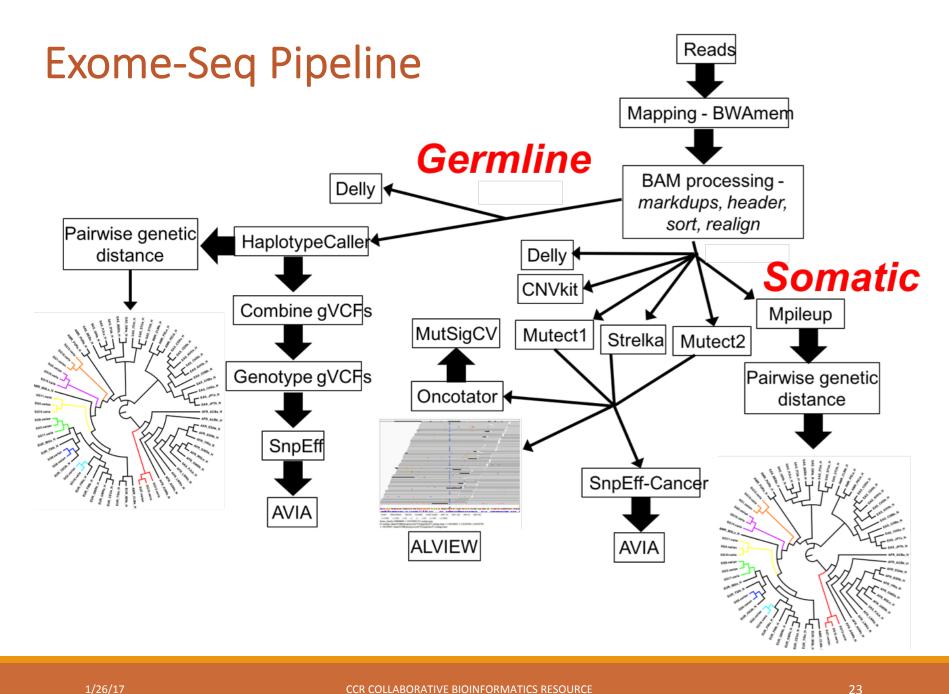
Benchmarking of current and new algorithms for routine use

Exome-seq, RNA-Seq, ChIP-Seq, miR-Seq

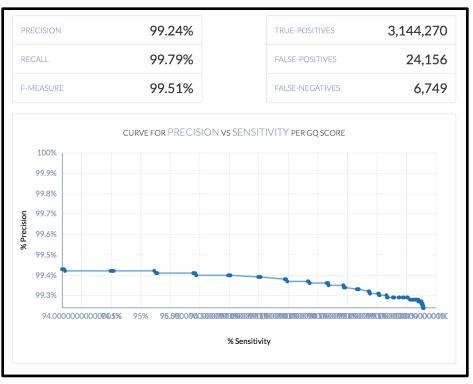

Pipeline development

- Methods for standard workflows selected based on benchmarking
- Streamline upstream QC methods from ATRF and downstream analysis
- Standardize methods for reproducibility, updated versions as needed
- Publish in GitHub for CCR/NIH, also useful for others

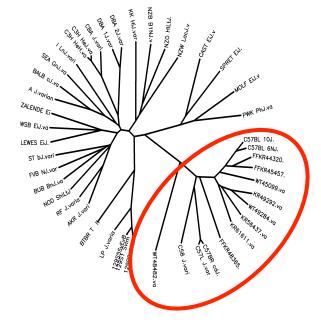

Additional tool development

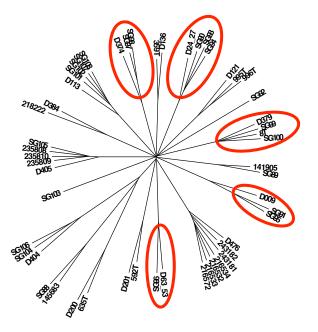

- Novel tools and algorithms arising from collaborative projects
- Published in GitHub and/or made available through web application

RNA-Seq Pipeline

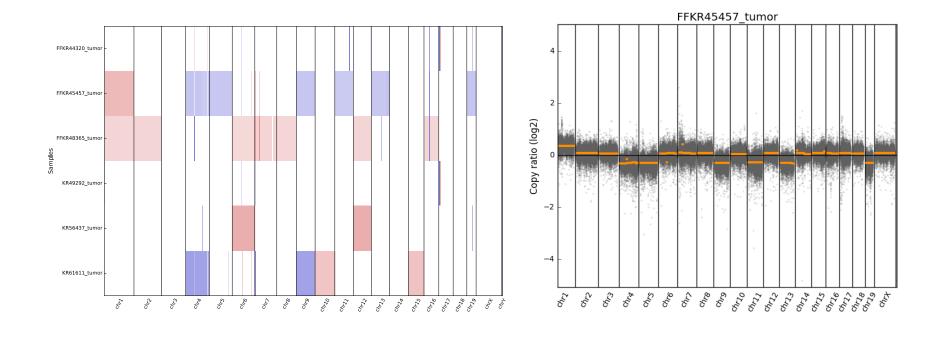

miR-Seq Pipeline (coming soon)

Precision FDA Challenge

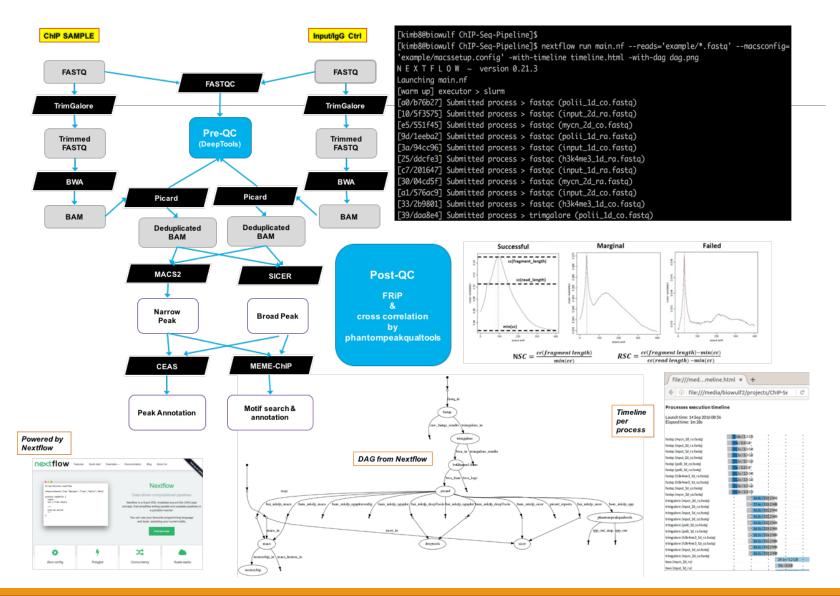

Old, GRCh37 reference genome



New, hs37d5 reference genome



QC – Sample Identification

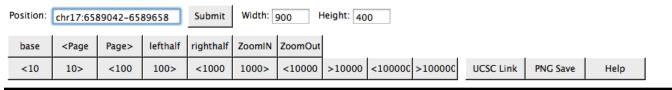


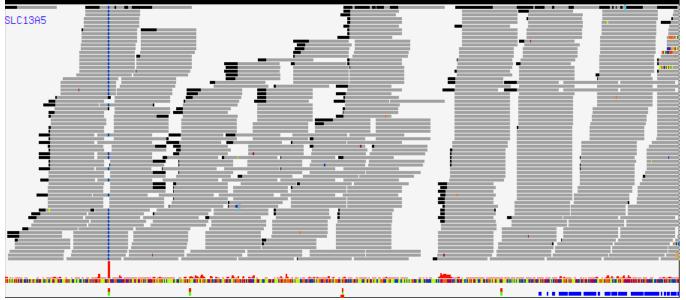
CNVkit – amplification/deletion detection

ChIP-Seq Pipeline (coming soon)

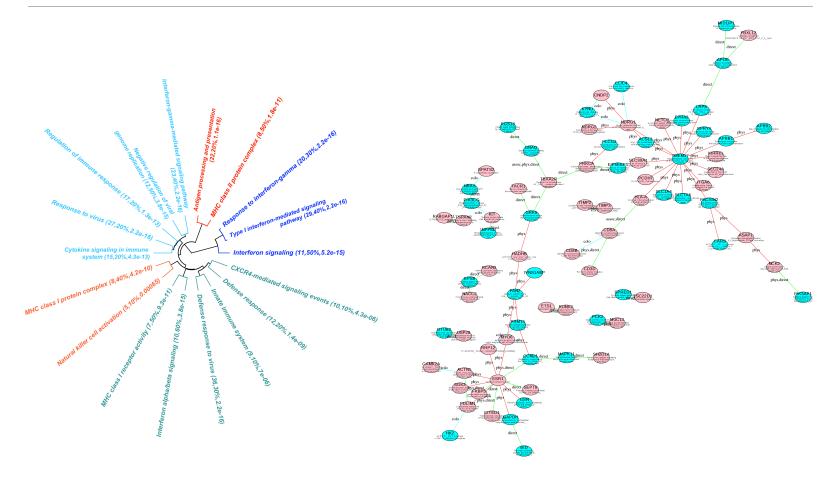
Microarray Analysis App (coming soon)

CCBR Microarray analysis workflow

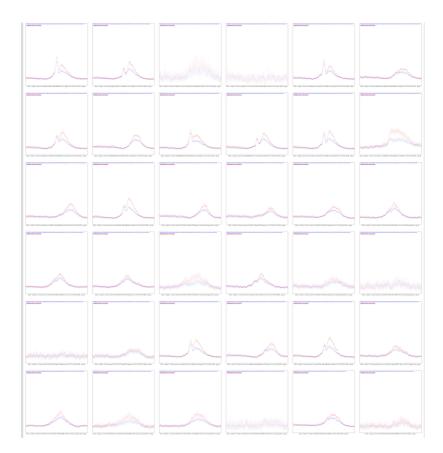

(For Affymetrix human and mouse data)


Project ID:	Select CEL files Choose Files no files selected	Choose phenotype file Choose File no file selected	Choose contrast file Choose File no file selected	KEGG/GO Enrichment Pvalue threshold
Start Generate Report	2 Download Report		Which contrast to show	KEGG/GO Enrichment logFC threshold
Microarray Results	Pre-normalization QC plots - Histogram Maplots Boxplots RLE NUSE	Post-normalization plots - DEG-Enrichments-ta	ables - Help -	

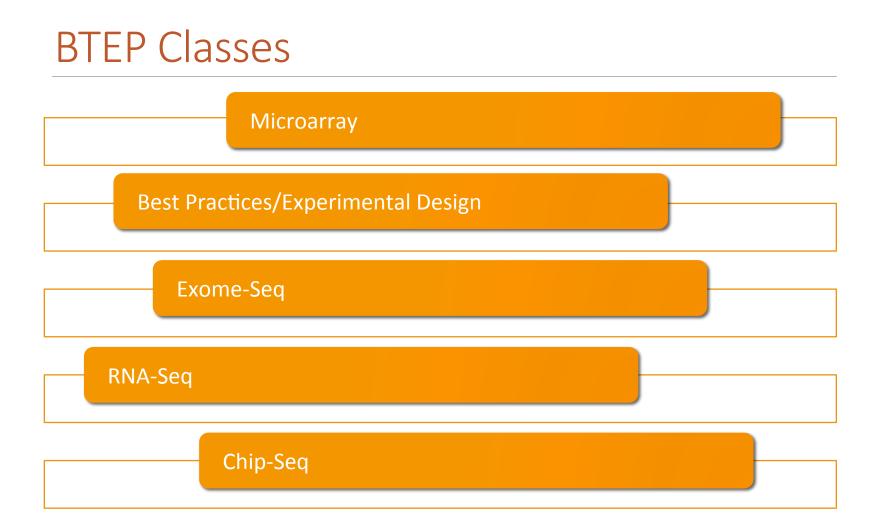
3. Tool and web applications development


Alview: bam file viewer

Alview - Use Menu to Select BAM File to View - enter genome position (or gene name)



Pathway Analysis Tool: Pathway Enrichment/Network


Pathway Analysis Tool: Encode Miner

cBioPortal for Mouse Cancer Models

								You are logged in as nci_user nci. Sign ou
DME DATA SETS RESUL	TS TUTORIALS F	Q NEWS	TOOLS ABOUT	VISUALIZE YOUR DAT	A			
Madife Quant								
Modify Query								
Overview Mutations Ex	pression Download	Bookmark						
	,							
TRP53								
TRP53:								
	(dup							
A135V/K136_T137	'dup							
A135V/K136_T137	dup							
A135V/K136_T137	dup							
A135V/K136_T137	rdup							
A135V/K136_T137	••••	T T				3D Structure »		
		1 1 600	800		1200 1348 aa	3D Structure »		
	••••	•		1000		3D Structure »		
A135V/K136_T137		ating 3 Oth		1000		3D Structure »		
A135V/K136_T137 support 0 53 Missense 2 Show / hide columns	0 400 In-frame 12 Trunc	ating 3 Oth Showi	ner ng 73 mutation(s)		1200 1348 aa	Search:		
A135V/K136_T137		ating 3 Oth Showi	ner	1000	1200 1348 aa	Search:	#Mut in Sample ♀	
A135V/K136_T137 support 0 53 Missense 2 Show / hide columns	0 400 In-frame 12 Trunc	ating 3 Oth Showi \$ A	ner ng 73 mutation(s)		1200 1348 aa	Search:	#Mut in Sample ≎ 53	

4. Bioinformatics Training

Training on CCBR Pipeliner

Small groups (max 6-7 people)

Biowulf account

Some command line knowledge

https://ccbr.github.io/Pipeliner/

mail: ccbr@mail.nih.gov

CCBR Pipeliner

Welcome to the **CCBR Pipeliner**.

Pipeliner provides access to some of the NGS data analysis pipelines used by CCBR on the NIH *Biowulf* Linux Cluster. The program provides a graphical interface for configuring and executing NGS workflows.

Pipeliner is designed to work on NIH Biowulf Linux Cluster with its prerequisite software (i.e.Snakemake, slurm, component software and others).

At this time, support can only be provided for those who have access to NIH *Biowulf* Linux Cluster. More details can be obtained by going to CCBR's GitHub Webpage

Goto Pipeliner GitHub Page »

Pipeliner Manual »

Some NGS Best Practices

RNA-Seq

Exome-Seq: Justin Lack

Chip-Seq: Bong-Hyun Kim

Intro and Best Practices: RNA-Seq

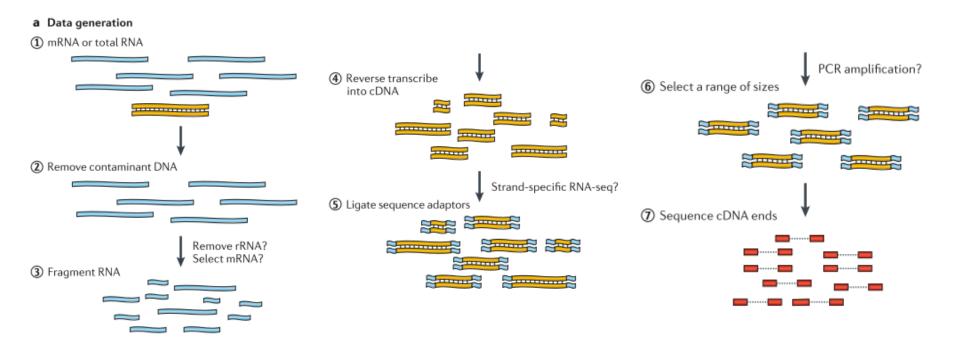
RNA-Seq Applications

Differential Gene Expression

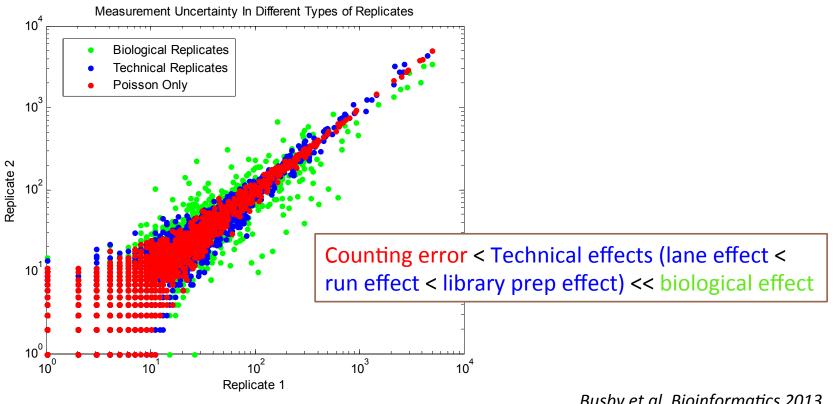
- Looks at genes that are at least at the detection limit of microarrays
- Most straightforward, requires less read depth (10-30 M reads)
- Can be more cost-effective than microarrays

Differential Transcript Expression (Isoform switching)

- Still confined to known transcripts / isoforms
- Complexity is in the assignment of exons to particular isoforms
- Many algorithms can differ in results

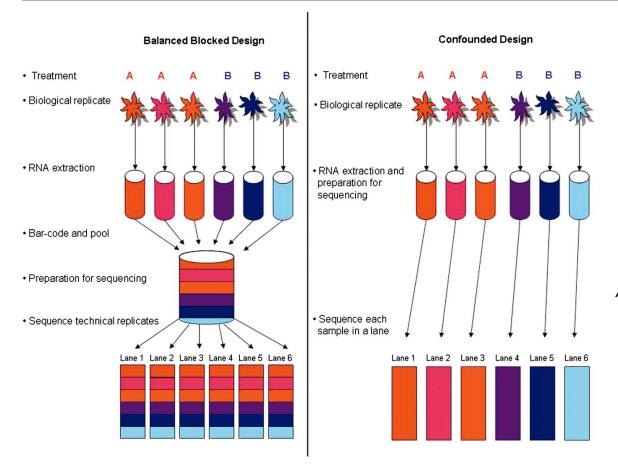

Transcript Discovery / Whole Transcriptome Profiling

- Interest is in looking for new isoforms or unannotated genes
- More complex in terms of bioinformatics analysis
- Can find false positives, depending on leniency of algorithm


Others

• SNP/Somatic Variant/Gene Fusion Detection

Method – Preparation



Types of variance

Busby et al, Bioinformatics 2013 Marioni et al, Genome Res 2008

Experimental Design: avoiding lane effects

- does not permit partitioning of batch and lane effects from the estimate of withingroup biological variability

Auer and Doerge, Genetics 2010

Best Practices

1. Factor in at least 3 replicates (absolute minimum), but 4 if possible (optimum minimum). Biological replicates are recommended rather than technical replicates.

2. Always process your RNA extractions at the same time. Extractions done at different times lead to unwanted batch effects.

3. There are 2 major considerations for RNA-Seq libraries:

If you are interested in coding mRNA, you can select to use the mRNA library prep. The recommended sequencing depth is between 10-20M paired-end (PE) reads. Your RNA has to be high quality (RIN > 8).

If you are interested in long noncoding RNA as well, you can select the total RNA method, with sequencing depth ~25-60M PE reads. This is also an option if your RNA is degraded.

4. Ideally to avoid lane batch effects, all samples would need to be multiplexed together and run on the same lane. This may require an initial MiSeq run for library balancing. Additional lanes can be run if more sequencing depth is needed.

5. If you are unable to process all your RNA samples together and need to process them in batches, make sure that replicates for each condition are in each batch so that the batch effects can be measured and removed bioinformatically.

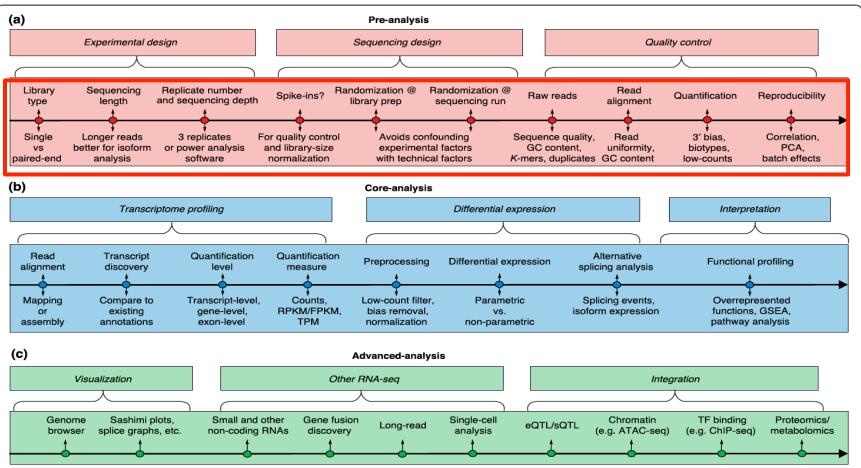
https://bioinformatics.cancer.gov/content/rna-seq

A good review:

Conesa *et al. Genome Biology* (2016) 17:13 DOI 10.1186/s13059-016-0881-8

REVIEW

Open Access


CrossMark

Genome Biology

Ana Conesa^{1,2*}, Pedro Madrigal^{3,4*}, Sonia Tarazona^{2,5}, David Gomez-Cabrero^{6,7,8,9}, Alejandra Cervera¹⁰, Andrew McPherson¹¹, Michał Wojciech Szcześniak¹², Daniel J. Gaffney³, Laura L. Elo¹³, Xuegong Zhang^{14,15} and Ali Mortazavi^{16,17*}

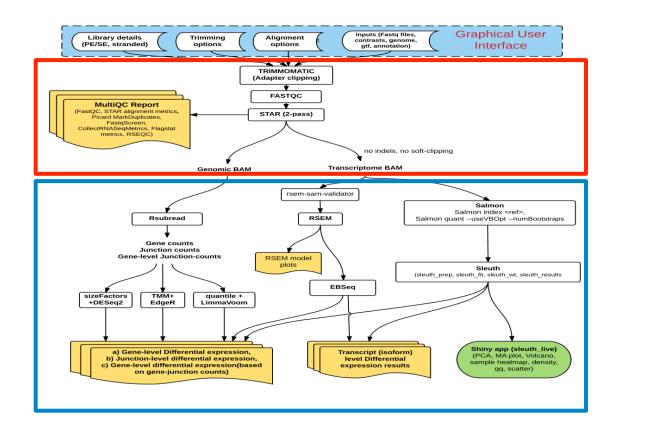
Generic roadmap for expt design & analysis

Fig. 1 A generic roadmap for RNA-seq computational analyses. The major analysis steps are listed above the lines for pre-analysis, core analysis and advanced analysis. The key analysis issues for each step that are listed below the lines are discussed in the text. **a** Preprocessing includes experimental design, sequencing design, and quality control steps. **b** Core analyses include transcriptome profiling, differential gene expression, and functional profiling. **c** Advanced analysis includes visualization, other RNA-seq technologies, and data integration. Abbreviations: *ChIP-seq* Chromatin immunoprecipitation sequencing, *eQTL* Expression quantitative loci, *FPKM* Fragments per kilobase of exon model per million mapped reads, *GSEA* Gene set enrichment analysis, *PCA* Principal component analysis, *RPKM* Reads per kilobase of exon model per million reads, *sQTL* Splicing quantitative trait loci, *TF* Transcription factor, *TPM* Transcripts per million

Samples vs Read depth

If on a tight budget, deciding between number of replicates vs sequencing depth, always higher replicates with lower sequencing depth leads to higher statistical power

- 3M reads x 10 replicates = 30M reads yields 52% power
- 10mil reads x 3 replicates = 30M reads yields 33% power

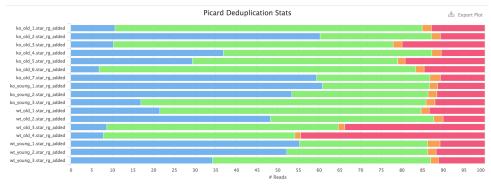

Table 1 Statistical power to detect differential expression varies

 with effect size, sequencing depth and number of replicates

	Replicates pe	Replicates per group				
	3	5	10			
Effect size (fold change)						
1.25	17 %	25 %	44 %			
1.5	43 %	64 %	91 %			
2	87 %	98 %	100 %			
Sequencing depth (millions of reads)						
3	19 %	29 %	52 %			
10	33 %	51 %	80 %			
15	38 %	57 %	85 %			

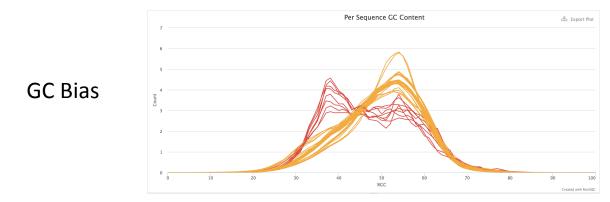
Example of calculations for the probability of detecting differential expression in a single test at a significance level of 5 %, for a two-group comparison using a Negative Binomial model, as computed by the RNASeqPower package of Hart et al. [190]. For a fixed within-group variance (package default value), the statistical power increases with the difference between the two groups (effect size), the sequencing depth, and the number of replicates per group. This table shows the statistical power for a gene with 70 aligned reads, which was the median coverage for a protein-coding gene for one whole-blood RNA-seq sample with 30 million aligned reads from the GTEx Project [214]

RNA-Seq Pipeline Workflow

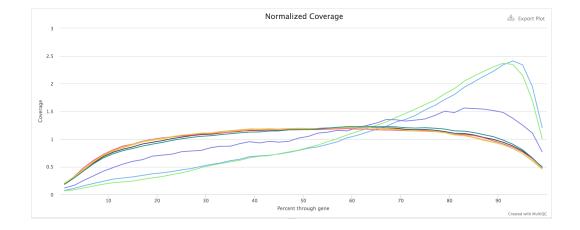

STEP1: INITIAL QC

STEP2: COUNTING & DEG

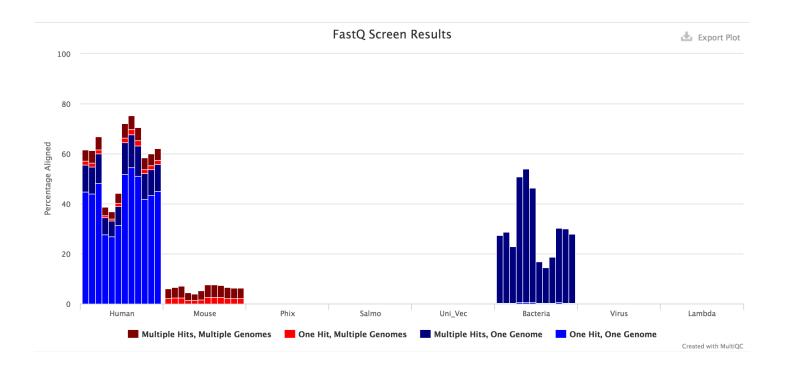
CCBR Pipeliner (QC Report, DEG Analysis)


-Project Information						
Project Id	project	(Examples: CCBR-n	nn,Labname c	r short project name)		
Email address	(Mandatory field: must use @nih.gov email address)					
Flow Cell ID	stats	(Examples: FlowCel	IID, Labname,	date or short project name)		
Global Settings						
Genome: hg19 — Pipeline Family: maseq — Set a pipeline						
Project Description 🗙 RNAseq 🗙						
Data Directory:				Open Directory		
FastQ files Found: 0						
Working Directory:				Initialize Directory		
			Dry Run	Run		
Options						
Pipeline	initialqcrnaseq 😑					
	Read Length is 100 😐					
	0, Reads are Unstranded	-				
Low Abundance Gene Thresholds						
Filter out ge	enes < 5 read counts in	i< 2 samples				
-Sample Infor	mation					
Set Groups	Set Contrasts					

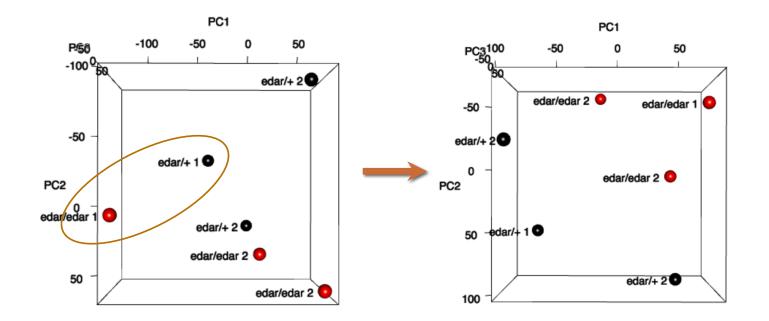
QC: Low RNA input (0.1 – 1 ug total RNA or 10 - 100 ng isolated mRNA)


High duplication rates

📕 Read Pair Unique 📕 Unpaired Read Unique 📄 Read Pair Not Optical Duplicates 📒 Read Pair Optical Duplicates 📲 Unpaired Read Duplicates 📕 Unmapped Reads


Clontech: 250pg – 10 ng RNA

QC: Poor RNA Quality (RIN > 7, for FFPE or degraded, use ribominus)



Degraded RNA showing 3' bias in coverage

QC: Contamination

QC: Batch Effects

Litter effect: used batch removal

Take Home Message:

While you are planning your RNA-Seq experiment (not after), please come talk to us.

CCBR@mail.nih.gov