

Applications of Single Cell Sequencing: CITE-Seq

Nathan Wong

CCBR

2019 October 10

DEPARTMENT OF HEALTH AND HUMAN SERVICES • National Institutes of Health • National Cancer Institute The Frederick National Laboratory is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc., for the National Cancer Institute

- "<u>Cellular Indexing of Transcriptomes and Epitopes by Sequencing</u>"
- Short definition: Including surface protein antibodies with single cell sequencing
- Purpose: Show that the antibody cell sorting often used prior to single cell sequencing is replicated after sequencing
- Need came up because the single cell transcript data does not always resemble the expected surface protein profile

CITE-Seq, courtesy of the Satija lab

nature methods

Brief Communication | Published: 31 July 2017

Simultaneous epitope and transcriptome measurement in single cells

Marlon Stoeckius [™], Christoph Hafemeister, William Stephenson, Brian Houck-Loomis, Pratip K Chattopadhyay, Harold Swerdlow, Rahul Satija & Peter Smibert

Nature Methods 14, 865–868 (2017) Download Citation 🚽

Methodology

 Specific antibodies with sequence tags are bound to cells prior to single cell encapsulation

- Each droplet contains both the cell and the bound antibody tag
- mRNA and antibody oligos hybridize to RT oligos and are indexed with cell barcode
- Standard scRNASeq is performed for mRNAs
- Antibody tags are isolated by size selection

CITE-Seq is comparable to initial flow cytometry

Frederick National Laboratory for Cancer Research

Antibody-based identification can be projected onto RNA-Seq based clustering

- Initial reference image is processed using "standard" scRNA-Seq protocol
- Labels for this image were assigned by the Satija group based on prior knowledge of the dataset
- CITE-Seq protein markers for this dataset include:
 - CD3, CD4, CD11c, CD14, CD16, CD19 CD34, CD45RA, and CD56

Frederick

Laboratory for Cancer Research

Antibody-based identification can be projected onto RNA-Seq based clustering

- Top: Protein markers
- Bottom: Associated gene IDs
- Using combined biological knowledge and protein expression allows for the confirmation of individual cell types in scRNA-Seq
- Cell surface markers can confirm the RNA-Seq-based cell typing

Frederick National Laboratory for Cancer Research

Visualizing protein surface marker binding can confirm cell identities

Frederick National Laboratory for Cancer Research

Scatter plots and correlation analysis can be used to show "protein vs. protein" and "protein vs. RNA"

 Interest in surface protein expression can show positive, negative, or null correlation

- The previous image for surface protein vs. transcript expression can be indicated with scatter plots as well
 - Note that the gene expression has more zero values than the protein marker

Frederick

Laboratory for Cancer Research

Protein markers can improve cell typing

- CD4 and CD8 markers are projected for T-cells
- Some cells identified transcriptomically as CD4+ T-cells are being shown in the CD8+ protein marker population
- Biologically, this is not unexpected, because naïve CD4+ T-cells and CD8+ T-cells have similar transcriptomes
- This could have larger effects on downstream analysis without CITE-Seq reinforcement

Clustering can be performed directly on the protein expression profile

- Many of the analyses performed based on scRNASeq (transcriptome) can be performed based on CITESeq
- The more markers that are used, the better the profiling/clustering that can be extracted

Frederick

Laboratory for Cancer Research

Clustering between scRNA-Seq and CITE-Seq/protein markers generate similar results

- Cluster positions in this image are based on the protein signal
- The labels on the left are based on the scRNA signal, the labels on the right based on protein signal
- Advantage: The CD4+ and CD8+ T cells are more clearly defined on the protein signal
- Disadvantage: Some cell types with poor/absent markers (e.g. erythrocytes) are lost

Frederick

Laboratory

for Cancer Research

Surface marker profiles are representative of the cell types

- The ridge plot can show the relative expression of the proteins for each cluster ID
- Based on these results, it would be similar to using FACS in determining cell typing

"Live" application of CITE-Seq

- Short background: Human PBMCs from 11 different samples
- Interest in CD33 and CD14 as potential surface markers
- The initial transcript based cell-clustering and cell typing with SingleR showed the majority of cells as:
 - B-cells (top)
 - T-cells and NK-cells (bottom left)
 - Monocytes (bottom right)

CD33 and CD14 are strong correlative markers for monocytes

CITESeq indicates a discrepancy between transcription and surface protein accessibility

- Protein profiles (left) showed more noticeably "antibody responsive" markers in monocytes
- The difference is less pronounced at the transcription level (right), especially for CD33
- This is even more apparent when observing the scatter plots (insets)

Frederick National Laboratory

CITESeq for identifying sample groups

- Samples were split into two categories.
- Group 1 showed more definite CD33 surface protein
- CD14 was confirmed as a less readily usable marker in defining the two groups

- CITE-Seq is an excellent tool for integrating traditional antibody cell sorting with scRNA-Seq
- This can help synchronize the FACS results with scRNA-Seq
- Word of warning: Understand the underlying biology
- Per the Hitchhiker's Guide to the Galaxy: Don't Panic

References

- Seurat Guided Analyses. Satija R, et al. <u>https://satijalab.org/seurat/vignettes.html</u>
- Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Swerdlow H, Satija R, Smibert P. 2017. <u>Simultaneous measurement of epitopes and transcriptomes in single</u> <u>cells.</u> *Nature Methods*.
- Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. 2018. <u>Integrating single-cell</u> <u>transcriptomic data across different conditions, technologies, and species</u>. *Nature Biotechnology*.
- Stuart T, Satija R. 2019. Integrative single-cell analysis. Nature Reviews Genetics.
- Stuart T*, Butler A*, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R. 2019. <u>Comprehensive Integration of Single-Cell Data</u>. *Cell*.