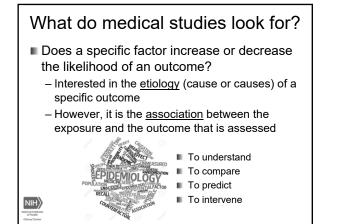
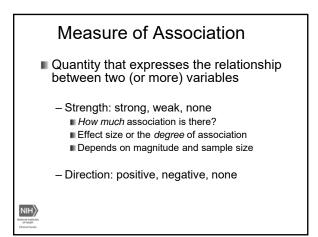
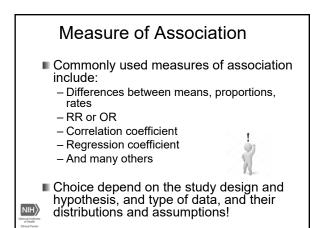
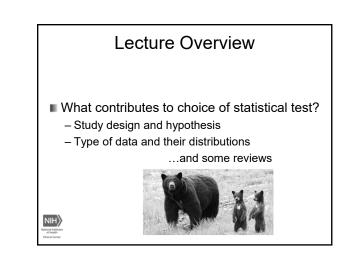
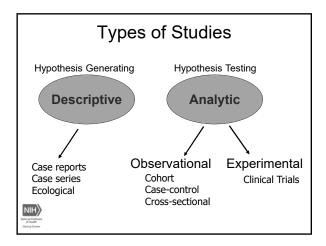

MH parametric tests

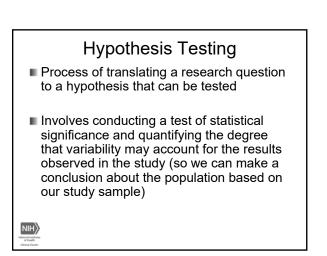

Institutes Nath Contor

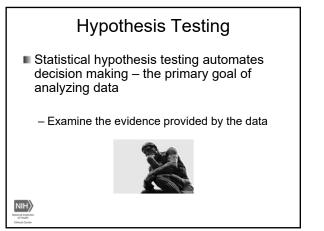


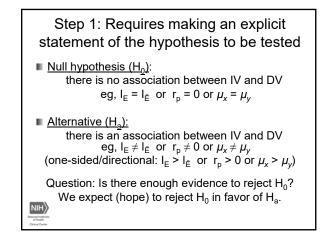








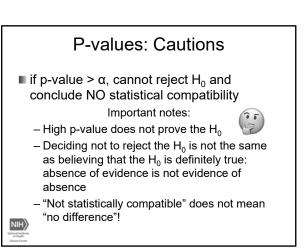




Step 2: Once H₀ and H_a specified, test of statistical significance can be performed
 ■ Choice of test depends on the hypothesis and type of data → construct a test statistic from our data

Tests lead to a probability statement or p-value

-<u>P-value</u> = the probability of obtaining a result as extreme or more extreme than the one observed, *if* H₀ is actually true

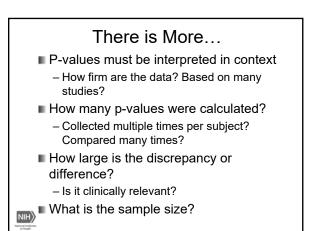

NIH NIH

P-values

- How do we use p-values in relation to our hypothesis?
 - if p-value $\leq \alpha$ (alpha), reject H₀ and conclude statistical compatibility
 - -if p-value > α , cannot reject H₀ and conclude NO statistical compatibility
- Commonly used α values: 0.05, 0.01, or even 0.1 depending on study purpose

P-values: Cautions if p-value ≤ α (alpha), reject H₀ and conclude statistical compatibility means results are surprising and would not commonly occur if H₀ were true means the number (n value) we explained

 means the number (p-value) we calculated from data is smaller than a threshold we had previously set → that's it!



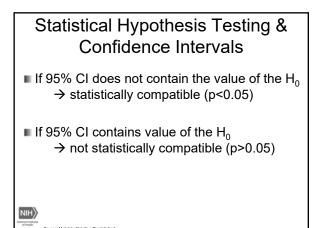
P-values

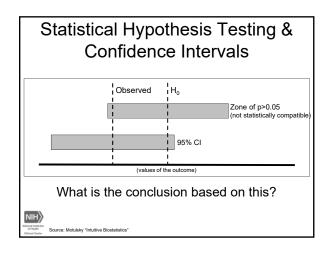
- Important reminders:
 - P-values do not measure the probability that the study hypothesis is *true*
 - Decisions should not be <u>only</u> on whether a p-value passes a specific threshold
 - A p-value or statistical "significance" does not measure the size of an effect or importance of a result
 - By itself, a p-value is not sufficient evidence regarding a study, methodology, or hypothesis
 Statistical "significance" does not mean clinical
- NIH importance

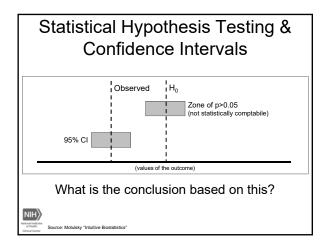
il Institutes Health

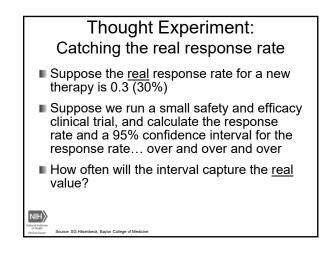
NIH

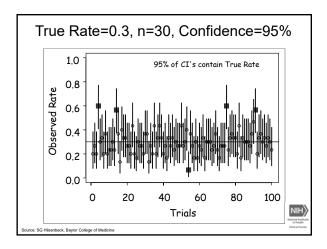
Sample Size and P-value

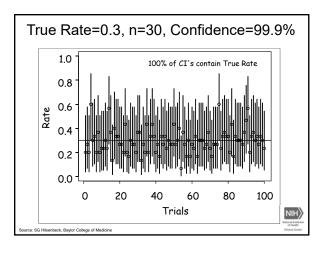

- As sample size increases, so does the power of the significance test
 - Larger sample sizes narrow the distribution of the test statistic (hypothesized and true hypothesis become more distinct from one another)
 - Is the observed difference meaningful?
- P-values are not enough to describe a result!
 - Must always also assess the size of the
 - observed difference (effect size)

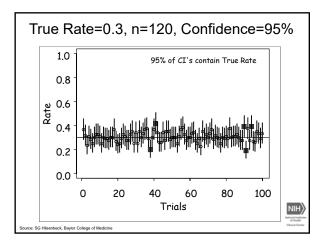

Statistical Hypothesis Testing & Confidence Intervals

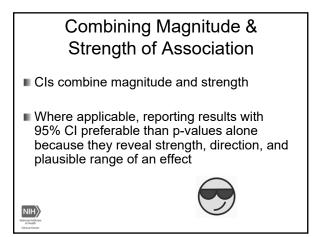

- Hypothesis testing computes a range (95% sure if α=0.05) that would contain experimental results if H₀ is true (so any result in this range is not statistically compatible, outside of it is)
- Confidence intervals compute a range (eg, 95% sure) that contains the population value

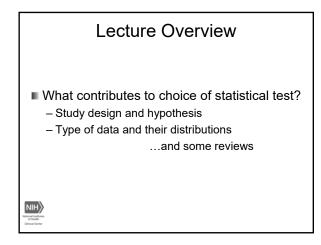

NIH

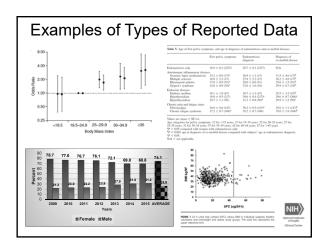

Based on same statistical theory and assumptions

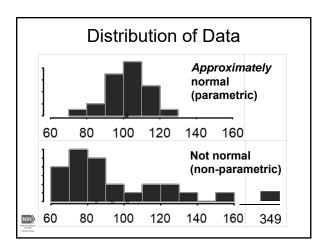


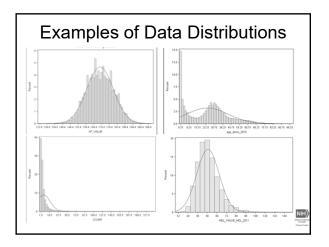


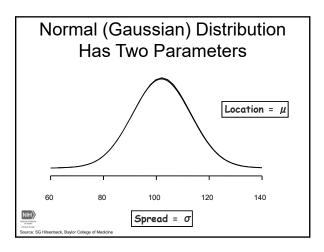


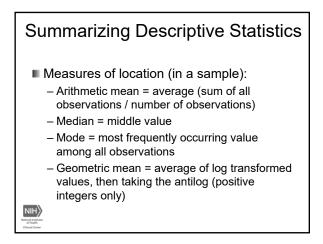


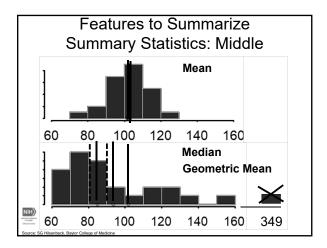


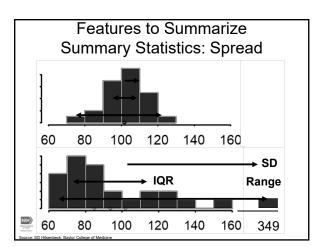


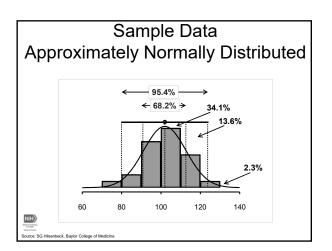


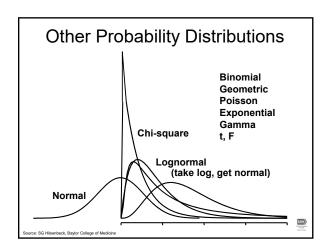


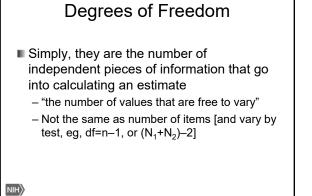

Types of Data						
Scale	Exan	Summary Statistics				
Continuous (continuum, scale)	age HDL anxiety s	VAS BMI core	mean, median, SD, etc			
Nominal (Binary or 2+ categories, no ordering, discrete)	gender group treatment	race response	frequency count & percentage, response rate			
Ordinal (2+ categories, clear ordering, discrete)	stage severity performar	duration VAS nce	frequency count & percentage, median			

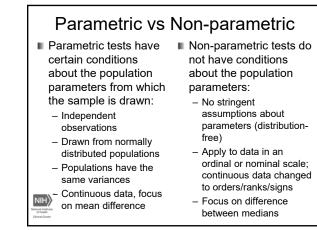


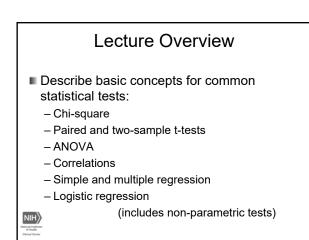


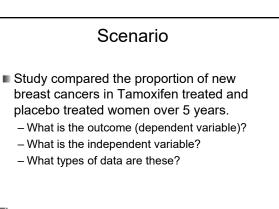


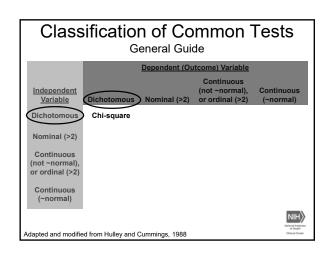


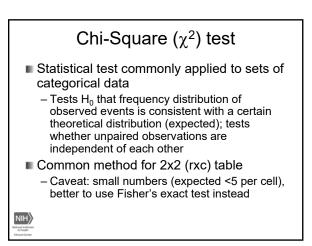


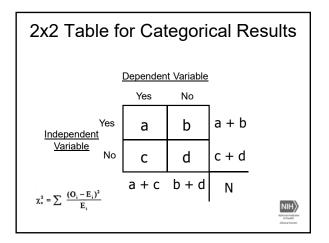


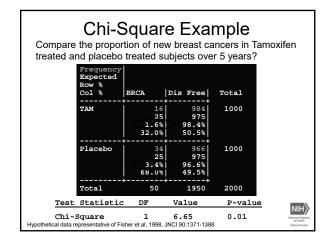


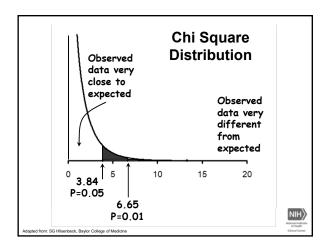


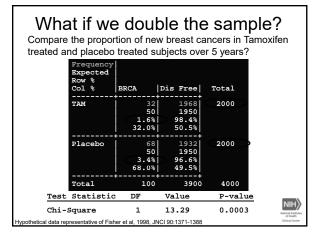


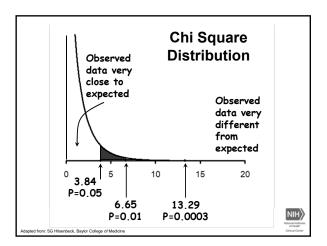


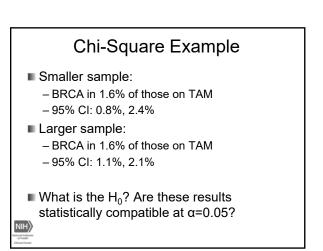


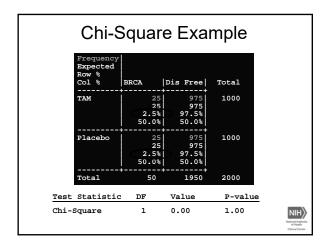


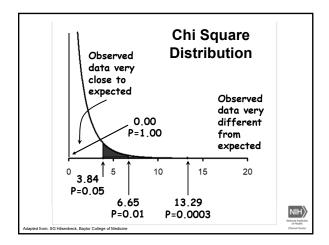


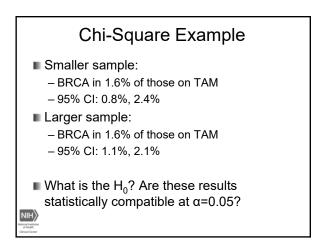


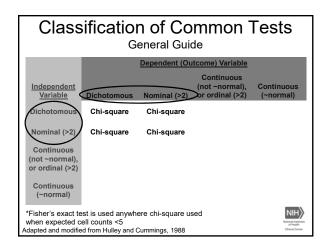


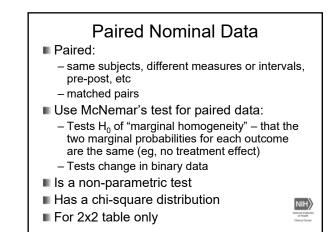


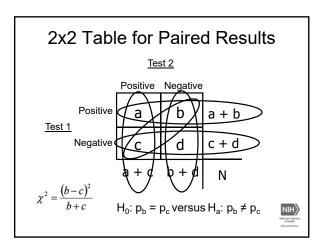




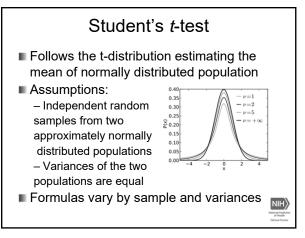


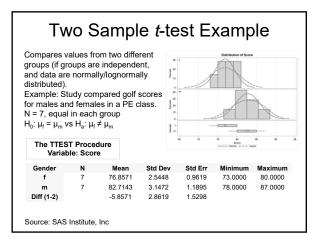


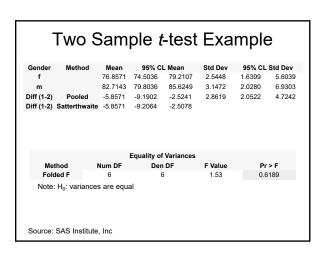


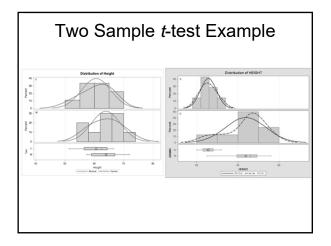


Scenario

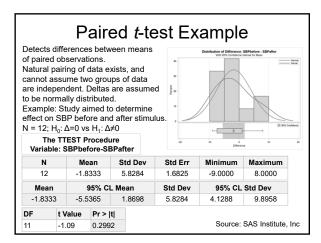

- Study compared golf scores for males and females in a PE class.
 - What is the outcome (dependent variable)?
 - What is the independent variable?
 - What types of data are these?

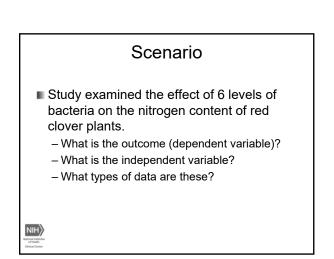

Classification of Common Tests General Guide Dependent (Outcome) Variable Continuou (not ~norma Continuou Independent or ordinal (>2) Variable (~normal) Dichotomou t-test Nominal (>2) Continuous (not ~normal), or ordinal (>2) Continuous (~normal) NIH dapted and modified from Hulley and Cummings, 1988


Student's *t*-test

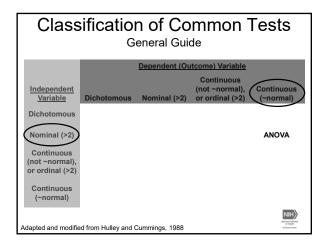

- Used to test hypotheses about equality of means:
 - One-sample: tests if mean of study sample has a specified value in the null hypothesis (H₀: μ_x =0)
 - Two-sample: tests if means of two study samples are equal (H₀: $\mu_x = \mu_y$)
 - Paired: tests if difference between two responses in the same subject (or matched-pairs) has a mean of 0 (H_0 : Δ =0)

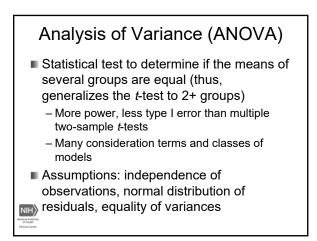
NIH

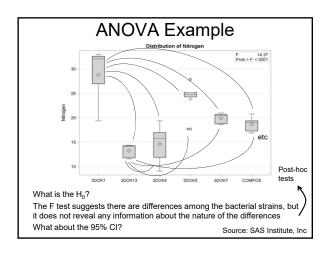


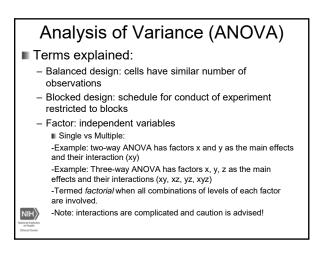

	Method	Mean	95% C	L Mean	Std Dev	95% CL	Std Dev	
f		76.8571	74.5036	79.2107	2.5448	1.6399	5.6039	
m		82.7143	79.8036	85.6249	3.1472	2.0280	6.9303	
Diff (1-2)	Pooled	-5.8571	-9.1902	-2.5241	2.8619	2.0522	4.7242	
Diff (1-2) S	atterthwaite	-5.8571	-9.2064	-2.5078				
Metho	od V	ariances	D	F	t Value	Pr	> t	
Poole	ed	Equal	1	2	-3.83	0.0	024	
Satterth	waite	Unequal	11.4	496	-3.83	0.0	026	
			Equality of	Variances				
Metho	bd	Num DF	Den	DF	F Value	Pr	> F	
Folder	1 F	6	6	6	1.53	0.6	189	
Note: H _o : variances are equal								
	What is the H₀?							

Student's *t*-test Used to test hypotheses about equality of means: One-sample: tests if mean of study sample has a specified value in the null hypothesis (H₀: µ_x=0) Two-sample: tests if means of two study samples are equal (H₀: µ_x=µ_y) Paired: tests if difference between two responses


 Paired: tests if difference between two responses in the same subject (or matched-pairs) has a mean of 0 (H₀: Δ=0)

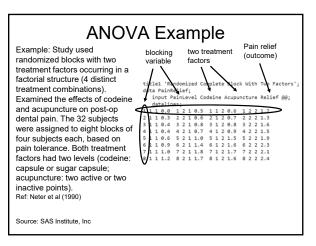

One Sample t-test Example Compares a sample mean to a given Normal value (not always 0). Example: Study tested if the mean length of a certain type of court case was more than 80 days. N = 20 randomly selected cases H₀: mean=80d vs H_a: mean>80d The TTEST Procedure Variable: time Mean Ν Std Dev Std Err Minimum Maximum 89.8500 19.1456 43.0000 121.0 20 4.2811 Mean 90% CL Mean Std Dev 90% CL Std Dev 89.8500 19.1456 15.2002 26.2374 84.1659 Inftv DF t Value Pr>t Source: SAS Institute, Inc Ref: Huntsberger and Billingsley, 1989 0.0164 19 2.30

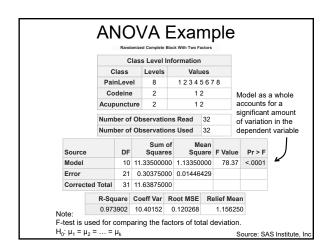

N. Sinaii (BCES/CC/NIH)



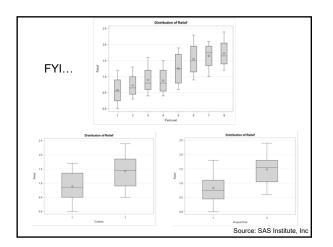
ANOVA Example							
Considers one treatment factor with 2+ treatment levels. Goal is to test for differences among the means of the levels and to quantify these differences.							
Example: Study examined the effect of bacteria on the nitrogen content of red clover plants. Treatment factor is bacteria strain (6 levels). Red clover plants are inoculated with the treatments. Nitrogen content is measured at the	data clc input data] 3D0K5 1 3D0K5 1 3D0K4 1 3D0K7 2 3D0K13 1	over; t Strain \$ 1 lines; 19.4 3DOK1 17.7 3DOK5 17.0 3DOK4 20.7 3DOK7 14.3 3DOK13	Nitrogen @@; 32.6 3DOK1 24.8 3DOK5 19.4 3DOK4 21.0 3DOK7 14.4 3DOK13	d Clover Pla 27.0 3D0K1 27.9 3D0K5 9.1 3D0K4 20.5 3D0K7 11.8 3D0K13 19.1 COMPOS	32.1 3D0K1 25.2 3D0K5 11.9 3D0K4 18.8 3D0K7 11.6 3D0K13	15.8 18.6 14.2	
end of the study.	Class L	evel Info	ormation				
Ref: Erdman (1946); Steel	Class	Levels	Values				
and Torrie (1980).	Strain	6		3DOK13 3 COMPOS		DOK5	
Number of Observations Read Source: SAS Institute, Inc Number of Observations Used					30 30		

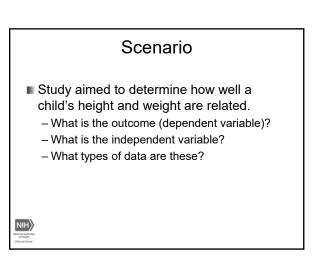
	A	VOV	/A E	xam	ole	accour	as a whe its for a ant amo	
Source		Sum of quares	Mean Square	F Value	Pr > F		ation in t dent vari	
Model	5 847.	046667 16	9.409333	14.37	<.0001	depend		abie
Error	24 282.	928000 1	1.788667			\sim		
Corrected Total	29 1129	9.97466 7						
R-Squa	re	Coeff Va	r	Root MSE	Nitrogen	Mean		
0.7496	16	17.26515	5	3.433463	19.	88667		
Source	DF	Anov	a SS	Mean Square	F Valu	e	Pr > F	
Strain	5	847.046	6667 16	9.4093333	14.3	7	<.0001	
Strain5847.0466667169.409333314.37<.0001Note: F-lest is used for comparing the factors of total deviation. $H_0: \mu_1 = \mu_2 = = \mu_k$ Some contrast between the means for the different strains is different from zeroSource: SAS Institute, Inc								

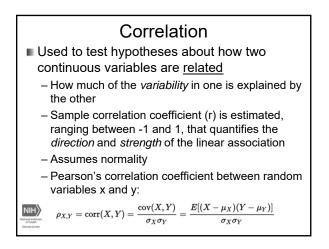


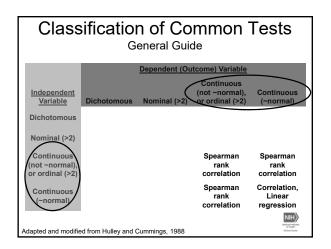


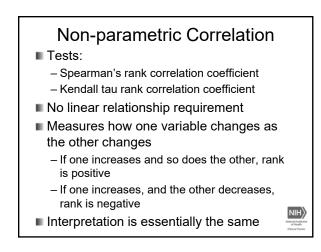
Scenario

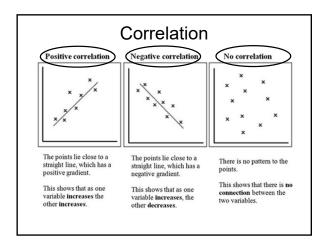

- Study examined the effects of codeine and acupuncture on post-op dental pain.
 - What is the outcome (dependent variable)?
 - What is/are the independent variable(s)?
 - What types of data are these?

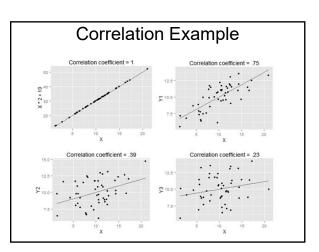

 $|\mathsf{N}|\mathsf{H}\rangle$

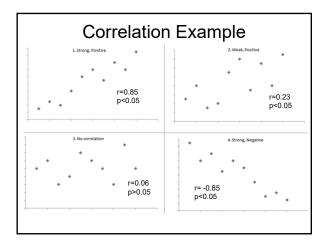


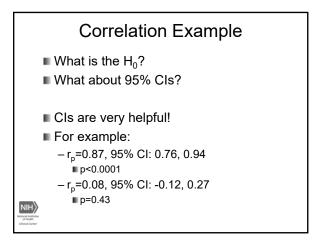

ANOVA Example								
Dependent Variable: Rilef								
Source	DF	Anova SS	Mean Square	F Value	Pr > F			
PainLevel	7	5.59875000	0.79982143	55.30	<.0001			
Codeine	1	2.31125000	2.31125000	159.79	<.0001			
Acupuncture	1	3.38000000	3.38000000	233.68	<.0001			
Codeine*Acupuncture	1	0.04500000	0.04500000	3.11	0.0923			
■ What is the H ₀ ? Note: F-test is used for comparing the factors of total deviation. H ₀ : µ ₁ = µ ₂ = = µ _k								
■ What about 95% CIs								
0.1 .2	• K	5% Cls						

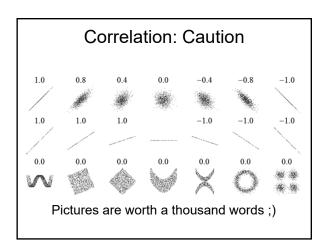


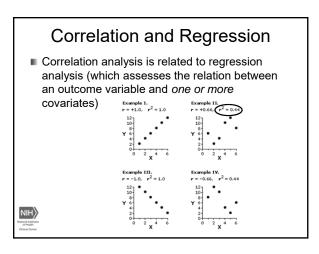


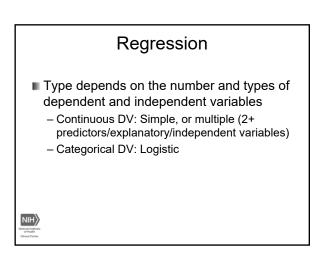

Classification of Common Tests General Guide								
		Dependent (Ou	<u>itcome) Variable</u>					
Independent Variable	Dichotomous	Nominal (>2)	Continuous (not ~normal), or ordinal (>2)	Continuous (~normal)				
Dichotomous								
Nominal (>2) Continuous (not ~normal), or ordinal (>2)								
Continuous (~normal)				Correlation, Linear regression				
Adapted and modifie	ed from Hulley and (Cummings, 1988		NICH States				

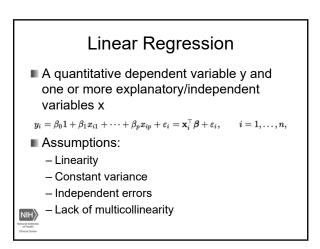


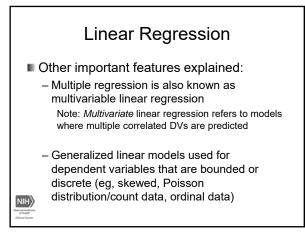


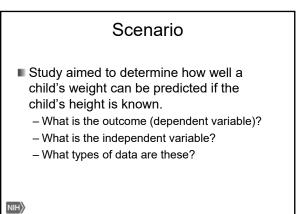


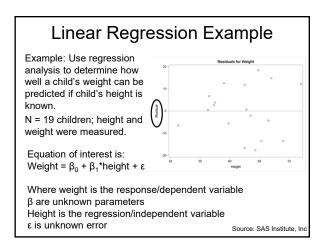


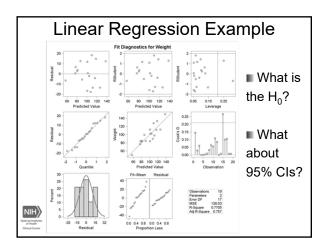


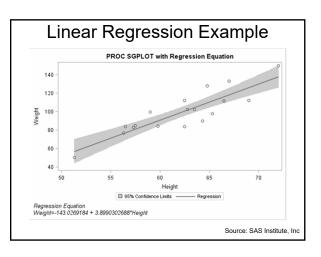




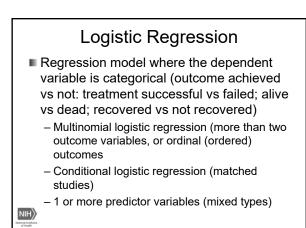


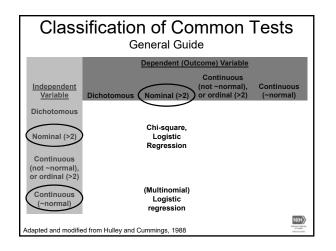


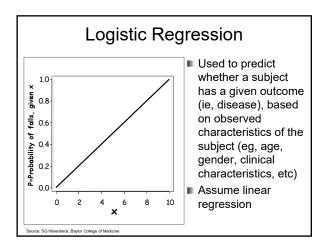


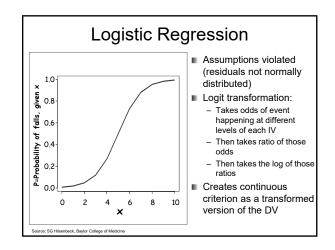


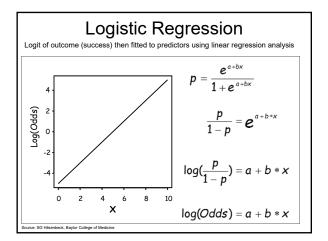
Lin	Linear Regression Example								
Source	Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F								
Model	1		7193.24912	7193.24912	57.08	3	<.0001		
Error	17		2142.48772	126.02869					
Corrected Total	18		9335.73684						
Root MS Dependent I	-	11.22625 100.02632 11.22330		R-Square Adj R-Sq			705 570 r ²		
Coeff Va	ır				77% of variability in Y				
			Parameter	Estimates	explai	ned by v	ariability in X		
Variable		DF	Parameter Estimate	Standard Error	t۱	/alue	Pr > t		
Intercept		1	-143.02692	32.27459		-4.43	0.0004		
Height		1	3.89903	0.51609		7.55	<.0001		
From the parameter estimates, the fitted model is: Weight = -143.0 + 3.9*height Source: SAS Institute, Inc									

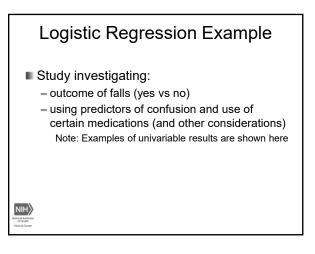


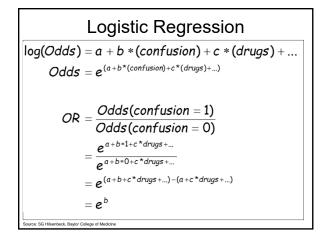


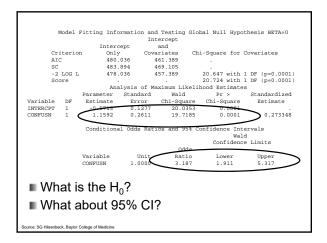

Scenario

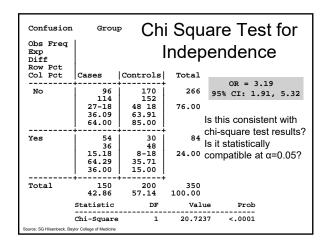

- Study investigated the role of confusion and use of certain medications to predict falls in the elderly.
 - What is the outcome (dependent variable)?
 - What is/are the independent variable(s)?
 - What types of data are these?



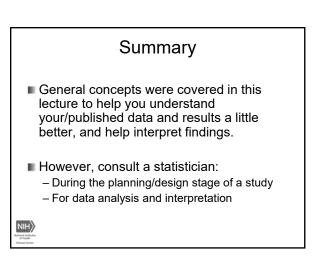


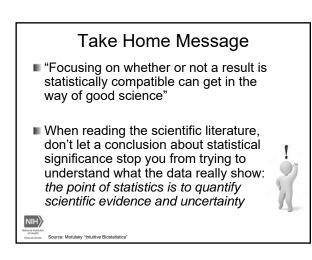


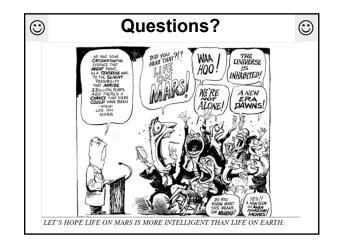




r								
Chi Square Test for Independence								
Obs Freq Exp Diff Row Pct	G	Group						
Col Pct	Cases	Controls	Total					
No	96	+ 170 152	266					
Confusion	27-18	48 18	76.00					
Yes	54	+ 30 48	- 84					
	15.18	8-18	24.00					
Total	150 42.86	200 57.14	⊦ 350 100.00					
Statistic	DF	Value	Prob					
Chi-Square Source: SG Hilsenbeck, Baylor College of Medicine	1	20.7237	<.0001					






Classification of Common Tests General Guide									
	Dependent (Outcome) Variable								
Independent Variable	Dichotomous	Nominal (>2)	Continuous (not ~normal), or ordinal (>2)	Continuous (~normal)					
Dichotomous			Wilcoxon rank sum						
Nominal (>2)			Kruskal- Wallis						
Continuous (not ~normal), or ordinal (>2)	Wilcoxon rank sum	Kruskal- Wallis	Spearman rank correlation	Spearman rank correlation					
Continuous (~normal)			Spearman rank correlation						
Adapted and modifie	Adapted and modified from Hulley and Cummings, 1988								

Other Non-Parametric Tests Wilcoxon rank-sum tests (same as Mann-Whitney U test) → two-sample t-test Wilcoxon signed-rank test → paired t-test Kruskal-Wallis → ANOVA (or singly-ordered contingency table) Jonckheere-Terpstra for doubly-ordered data Spearman's correlation/Kendall's tau → Pearson's correlation

	Classification of Common Tests General Guide								
	Dependent (Outcome) Variable								
	Independent Variable	Dichotomous	Nominal (>2)	Continuous (not ~normal), or ordinal (>2)	Continuous (~normal)				
	Dichotomous	Chi-square	Chi-square	Wilcoxon rank sum	t-test				
	Nominal (>2)	Chi-square	Chi-square	Kruskal- Wallis	ANOVA				
	Continuous (not ~normal), or ordinal (>2)	Wilcoxon rank sum	Kruskal- Wallis	Spearman rank correlation	Spearman rank correlation				
	Continuous (~normal)	Logistic regression	Logistic regression	Spearman rank correlation	Correlation, Linear regression				
4	Adapted and modified from Hulley and Cummings, 1988								

