

scRNA-seq preprocessing and quality control

Nathan Wong (CCBR) and Vicky Chen (CCR-SF Bioinformatics Group)

Cell Ranger

- Used to process FASTQ files for 10X samples
- Generates UMI expression matrices, basic sample statistics, and interactive analysis platform

Summary Analysis				
3,974 Estimated Number of Cells 25,445 2,250 Mean Reads per Cell Median Genes per	5 er Cell	Cells ⑦ Barcode Rank Plot	Cells — Cells — Background	
Sequencing (?) Number of Reads 101	117.641	1 100 10k Barcodes		
Valid Barcodes	96.2%	Estimated Number of Cells	3,974	
Valid UMIs	100.0%	Fraction Reads in Cells	88.4%	
Sequencing Saturation	22.4%	Mean Reads per Cell	25,445	
Q30 Bases in Barcode	96.3%	Median Genes per Cell	2,256	
Q30 Bases in RNA Read	82.7%	Total Genes Detected	21,295	
Q30 Bases in Sample Index	93.7%	Median UMI Counts per Cell	8,614	
Q30 Bases in UMI	95.7%			
		Sample		
Mapping 💿		Sample ID Fixed_M_HCC13	95BL-95_HCC1395-5	
Reads Mapped to Genome	91.1%	Sample Description		
Reads Mapped Confidently to Genome	86.3%	Chemistry	Single Cell 3' v2	
Reads Mapped Confidently to Intergenic Regions	2.5%	Transcriptome	GRCh38-3.0.0	
Reads Mapped Confidently to Intronic Regions	10.8%	Pipeline Version	3.1.0	
Reads Mapped Confidently to Exonic Regions	73.0%			
Reads Mapped Confidently to Transcriptome	69.4%			
Reads Mapped Antisense to Gene	1.0%			

Frederick

Laboratory for Cancer Research

National

Cell Ranger

- Barcode Rank Plot (Knee plot) can be used to determine sample quality
- Cell Ranger 3 increased sensitivity for low UMI cell populations

Cell Filtering

- Useful because low quality cells or doublets/multiplets might be included in data
- Doublet/Multiplets are when more than one cell is captured and labeled with the same cell barcode
- Low quality cells include dying cells or cells with broken membranes
 - Contains lower amounts of genes
 - Has a higher expression of mitochondrial genes

- Low quality cells or doublets/multiplets might be included in data
- Filtering is used to remove the excess noise to have a clean analysis
- Stringent filters risk losing useful data
- Loose filters risk leaving in noise

Cell Filtering

- Different cell types have different expression levels
- Filtering based on <u>UMI count, gene</u> <u>count</u>, and mitochondrial gene expression
- UMI count and gene count filters based on negative binomial distribution
- Other distribution and statistical methods can be used

Cell Filtering

http://cole-trapnell-lab.github.io/monocle-release/docs/#getting-started-with-monocle

Cell Filtering

- Different cell types have different expression levels
- Filtering based on <u>UMI count, gene</u> <u>count</u>, and mitochondrial gene expression
- UMI count and gene count filters based on negative binomial distribution

Cell Filtering

- Filtering based on UMI count, gene count, and <u>mitochondrial gene</u> <u>expression</u>
- Mitochondrial gene expression threshold is 4 median absolute deviation above median
- Mitochondrial fraction is linked to cell death, which may influence normalization
- Different cell types have different expression levels

Finding Doublets

- Doublets (or multiplets) are a technical byproduct of single-cell droplet sequencing
- Doublets can interfere with downstream analysis by including high read counts per "cell" and changing cluster identities
- There is no current method to identify transcripts associated with the individual cells in doublets
- Doublets can be homotypic (same cell type) or heterotypic (different cell types)

Finding Doublets

National Laboratory for Cancer Research

Frederick

- Statistical removal of doublets:
 - UMI count and gene count based filters
- Algorithmic removal of doublets:
 - DoubletFinder (McGinnis, Murrow and Gartner 2019)
 - Scrublet (Wolock, Lopez, and Klein 2018)
- The estimated doublet rate as provided by 10x Genomics is:
 - Doublet Fraction = $0.008 \times \frac{n_{Cells}}{1000}$

Removal of doublets allows for downstream re-clustering

Normalization

- Aim is to remove technical effects while retaining biological variation
 - Differences in detected gene expression can be due to sequencing depth of cell
- Many different normalization techniques available
- Seurat has different normalization algorithms available
 - NormalizeData, ScaleData
 - NormalizeData Default normalization is log normalize. Each cell divided by total counts, multiplied by scale factor, and natural log transformed
 - ScaleData Scales and centers features in the data. Can optionally regress out effects of variables (i.e. mitochondrial expression, cell cycle)
 - scTransform combined NormalizeData, FindVariableFeatures, ScaleData

Seurat log Normalize vs scTransform

Expression Plot v2

Expression Plot – v3 scTransform

Cell Cycle

- Cell cycle can introduce bias or obscure differences in expression by cell types
- Cell cycle can be identified using available tools, including:
 - Seurat: CellCycleScoring
 - Scran: Cyclone
- A variety of tools and techniques are available that can be used to remove effect
 - ccRemover (Li and Barron 2017)
 - Seurat ScaleData can be used to regress out effects after labelling cell cycle

Cell Cycle

- Cell cycle can introduce bias or obscure differences in expression by cell types
- Cell cycle can be identified using available tools, including:
 - Seurat: CellCycleScoring
 - Scran: Cyclone
- A variety of tools and techniques are available that can be used to remove effect
 - ccRemover (Li and Barron 2017)
 - Seurat ScaleData can be used to regress out effects after labelling cell cycle

Regressing out cell cycle effects

- Different numbers of clusters can be used to group cells within a sample
- Can be difficult to determine appropriate number of clusters without prior knowledge
- Metrics can be used to measure the quality of the clusters
 - Silhouette score, Rand index, Davies-Bouldin index
- Cluster size that results in best score indicates an appropriate number of clusters

Silhouette Plots – After Seurat Clustering

Imputation

- Noise and signal dropout are (currently) unavoidable errors in single cell RNA-Seq
- Characterized by zero count genes in individual cells
 - 10x Genomics v3 captures 30-32% of mRNA transcripts per cell
- Imputation attempts to fill in those zeros based on:
 - Count distribution
 - Overdispersion
 - Sparsity of the data
 - Noise modeling
 - Gene-gene dependencies

Available imputation tools include:

- dca (Deep count autoencoder) (Erslan, et al. 2019)
- SCRABBLE (Peng, et al. 2019)
- SAVER (Huang, et al. 2018)
- DrImpute (Gong, et al. 2018)
- scImpute (Li and Li 2018)
- bayNorm (Tang, et al. 2018)
- knn-smooth (Wagner, Yan and Yanai 2018)
- MAGIC (van Dijk, et al. 2017)
- CIDR (Lin, Troup, and Ho 2017)

Imputation effects on clusters

Imputation effects on gene expression

