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Talk Outline

What will be covered?

® General principles of RNA-Seq

® Guidance on best practices for experimental design

® A walk-through of the steps involved in RNA-Seq data
analysis

® References to applicable file formats

® References to appropriate software tools and pipelines for

RNA-Seq data analysis
What will NOT be covered

® How to use individual software tools or pipelines

® How to analyze Single Cell RNA-Seq data



What is RNA-Seq ?

RNA-Seq (RNA sequencing), uses next-generation
sequencing (NGS) to reveal the presence and quantity of
RNA in a biological sample at a given moment (Wikipedia)

@ Strictly speaking, this could be any type of RNA (mMRNA,
rRNA, tRNA, snoRNA, miRNA) from any type of biological
sample

@ For the purpose of this talk we will be limiting ourselves to
MRNA

@ Technically, with a few exceptions, we are not actually
sequencing mRNA but rather cDNA

RNA-Seq is only valid within the context of Differential Expression
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Public sources of RNA-Seq data

@ Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo/)

2z Both microarray and sequencing data

@ Sequence Read Archive (SRA) (htip://www.ncbi.nlm.nih.gov/sra)

z All sequencing data (not necessarily RNA-Seq)

@ ArrayExpress (https://www.ebi.ac.uk/arrayexpress/)

2 European version of GEO

@ Homogenized data: MetaSRA, Toil, recount2, ARCHS4


http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/

RNA-Seq - WorkFlow

® Experimental Design

z What question am | asking”?

z How should | do it (does it need to be done)?
® Sample Preparation

z Sample Prep

z Library Prep

z Quality Assurance
® Sequencing

z Technology/Platform

@® Data Analysis (Computation)
[Starting point - fastqg (reads) or data-table (counts)]



Experimental Design




Only Sequence the RNA of interest

® Remember ~90% of RNA is ribosomal RNA
® Therefore enrich your total RNA sample by:
2 PolyA selection (oligodT affinity) of mRNA (eukaryote)

2 rBNA depletion - RiboZero is typically used (costs extra)




Remember

® RNA-Seq looks at steady state mRNA levels
which is the sum of transcription and degradation

® Protein levels are assumed to be driven by mRNA
levels

® RNA-Seqg can measure relative abundance not
absolute abundance

® RNA-Seq is really all about sequencing cDNA



What are the Goals of your Experiment

® What genes are expressed?

® What genes are differentially expressed?

® Are different splicing isoforms expressed?

® Are there novel genes or isoforms expressed?

® Should you be doing targeted long-read sequencing?

@ If this a standalone experiment, a pilot, or a “fishing trip” 7

The answers to these questions should guide you in the
sequencing technology to use and analytic roadmap to follow.



Read Choices
Read Depth

z More depth needed for lowly expressed genes
2z Detecting low fold ditterences need more depth
Read Length
2 Longer reads are more likely to map uniguely
2 Paired read help in mapping and junctions
Stranded Protocols
2z @Give clearer results
Replicates
2 Detecting subtle differences in expression needs more
replicates
2 Detecting novel genes or alternate iso-forms need more
replicates

Increasing depth, length, and/or replicates increase costs




Replicates
@ Technical Replicates
It's generally accepted that they are not necessary because
of the low technical variation in RNA-Seq experiments
Biological Replicates (Always useful/necessary)
2z Not strictly needed for the identification of novel transcripts
and transcriptome assembly
2 Essential for differential expression analysis - must have 3+
for statistical analysis
z Minimum number of replicates needed is variable and difficult
to determine:
3+ for cell lines
5+ for inbred samples
20+ for human samples (rarely possible)
More is always better

You need replicates




Batch Effects

Variations in samples NOT due to biological effects

©) leferences iIn sample treatment

2 Samples processed on different days/times

2 Samples processed by different people

& Samples sequenced at different times/lanes/machines
2 Samples are a mixture of different sexes

If all samples cannot be treated the same, never process all
treatment or control samples is a single “batch”

Avoid at All Costs !
p



Data Analysis Questions

® Where will the primary data be stored (fastq)?
Data Management Environment (DME)

® Where will the processed data be stored (bam)?
® Who will do the primary analysis?

® Who will do the secondary analysis?

® Where will the published data be deposited
and by whom? (what metadata will they require)

® Are you doing reproducible science”

Talk to the people who will be analyzing your data and the
sequencing Core BEFORE doing the experiment


https://hpcdmeweb.nci.nih.gov/

Sample Preparation




Costs (IMRNA total)

CCR Sequencing Facility (subsidized pricing)

Library Construction $87
. . PE2x75
lllumina HiSeq 4000 $1007/lane (all 8 lanes)
lllumina NovaSeg $4382/lane 1 x 100 bp
lllumina NextSeq High Output $1956 2x75bp (V2)
lllumina MiSeq $623 PE 2 x 75 bp (V3)



General Rules for Sample Preparation

® Prepare all samples at the same time or as close as possible. The
same person should prepare all samples

® Do not prepare “experiment” and “control” samples on different
days or by different people (Batch effects)

® Use high gquality means to determine sample quality (RNA Integrity
Number) (RIN >0.8) and quantity, and size (Tapestation, Qibit,
Bioanalyzer)

® Don’t assume everything will work the first time (do pilot
experiments) or every time (prepare extra samples)

Pilot experiments are your friends



Determining Library size distribution
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Sample Amounts

Minimum DNA/RNA  Recommended DNA/RNA _ Miaximum Sample

Type of Library Requirement for for Optimal Library Volume R?qulrement Additional Requirements
. . . for Library
Library Construction Construction .
Construction
. RIN should be at least 8.0,
mRNA Sequencing 100 ng 1 pug 50 uL DNase treated
mRNA ultralow RIN should be at least 8.0,
Clonetech 100 pe 10ng 10 pL DNase treated
microRNA
Sequencing 100 ng lue 6 uL
Total RNA 100 1 | 10 UL DNase treated, FFPE and
Sequencing & HE H degraded RNA can be used
Total RNA ultralow 10 ng | g 10 L DNase treated, FEPE and

degraded RNA can be used




ac metric Guidelines

MRNA

RNA-Seq Sample Recommendations (CCBR)

total RNA

RNA Type(s) Coding Coding + non-coding
RIN 8 [low RIN = 3' bias] > 8
Single-end vs Paired-end Paired-end Paired-end

Recommended Sequencing

10-20M PE reads

25-60M PE reads

Depth
FastQC Q30 > 70% Q30 > 70%
Percent Aligned to Reference 70% > 65%

Million Reads Aligned Reference

/M PE reads (or > 14M
reads)

16.5M PE reads (or > 33M
reads)

Percent Aligned to rRNA

< 5%

< 15%

Coding > 50%

Coding > 35%

Picard RNA-SeqMetrics

Intronic + Intergenic < 25%

Intronic + Intergenic < 40%




Best Practice Guidelines from Bioinformatic Core (CCBR):

1. Factor in at least 3 replicates (absolute minimum), but 4 if possible (optimum minimum). Biological
replicates are recommended rather than technical replicates.

2. Always process your RNA extractions at the same time. Extractions done at different times lead to
unwanted batch effects.

3. There are 2 major considerations for RNA-Seq libraries:

- If you are interested in coding mRNA, you can select to use the mRNA library prep. The recommended
sequencing depth is between 10-20M paired-end (PE) reads. Your RNA has to be high quality (RIN > 8).

- If you are interested in long noncoding RNA as well, you can select the total RNA method, with
sequencing depth ~25-60M PE reads. This is also an option if your RNA is degraded.

4. ldeally to avoid lane batch effects, all samples would need to be multiplexed together and run on the same
lane. This may require an initial MiSeq run for library balancing. Additional lanes can be run if more
sequencing depth is needed.

5. If you are unable to process all your RNA samples together and need to process them in batches, make
sure that replicates for each condition are in each batch so that the batch effects can be measured and
removed bioinformatically.

6. For sequence depth and machine requirements, visit lllumina Sequencing Coverage website

For cost estimates, visit Sequencing Facility pricing for NGS

For further assistance in planning your RNA-Seq experiment or to discuss specifics of your project, please contact us
by email: CCBR@mail.nih.gov. For cost and specific information about setting up an RNA-Seq experiment, please
visit the_ Sequencing Facility website or contact Bao Tran



https://bioinformatics.ccr.cancer.gov/ccbr/project-support/experimental-design-best-practices/
https://bioinformatics.ccr.cancer.gov
http://support.illumina.com/downloads/sequencing_coverage_calculator.html
https://crtp.ccr.cancer.gov/sf/pricing/
mailto:CCBR@mail.nih.gov?subject=
https://ostr.ccr.cancer.gov/resources/provider_details/sequencing-facility
mailto:tranb2@mail.nih.gov?subject=

Sequencing




llumina Sequencing Platforms

Hﬂt

= |llumina
lllumina NovaSeq
Sequencing by Synthesis (SbS)
/NovaSeq/HiSeg/NextSeq/MiSeq
Short read length (50 to 300 bp)
Selection driven by cost, precision, llumina
speed, number of samples and NextSeq
number of reads required
Consult with the Sequencing Core

lllumina

MiSeq




Long Read Sequencing Platforms

PacBio

120,000 bases per molecule, with
maximum read lengths > 200,000
bases. Good for repetitive regions
and isomers, modified bases.

PacBio Sequel I

Oxford Nanopore

Direct DNA or RNA seqguencing
(Max length 2 Mb) Good for modified
bases, repetitive regions, isomers,
small genomes.

W
W
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MinION GridION
Oxford Nanopore

Consult with the Sequencing Cores




Data Analysis




RNA-Seq - Data Analysis

What version of the Genome should you align against ?
Sequence and annotation - Same sequence can have different annotations

Factors that determine the answer to this question are:

Are you trying to match published data or previous experiments?
Are you interested in a particular type of annotation (GenelD,
EnsemblelDs, refseqlD, etc.?

Are you interested in Genes or transcripts?

It there are no other overriding tfactors, use the latest genome
sequence and annotations (Biowulf has many pre-built)

Is It desirable to align against the 12T genome

It no reference genome, you will have to use a different approach

Remember to make note of this choice and advise the core



https://sites.google.com/ucsc.edu/t2tworkinggroup

RNA-Seq Pipeline

RNA-Seq Analysis process can be broken down
INto two main steps

Primary Analysis
FASTQ -> Count-file

Secondary+ Analysis
Count-file -> Differential Expression, PATHWAY ANALYSIS ...



RNA-Seq - Data Analysis WorkFlow |

@® AQuality Control
z Sample quality and consistency
z |s Trimming appropriate - quality/adaptors
%k Reports
® Alignment/Mapping
» Reference Target (Sequence and annotation)
z Alignment Program & parameters
z Mark Duplicates
2z Post-Alignment Quality Assurance
%k BAM, WIG, files and reports
® Quantification
» Counting Method and Parameters
sk BED files, count matrices

The Sequencing Core may do some or all of this



RNA-Seq - Data Analysis WorkFlow ||

® Quantification

z Differential Expression - statistics
%k Data tables, plots
@ Visualization

z Visual inspection - IGV

» Data representation - scatter plots, violin plots, heat-maps
%k Images and Graphs
® Biological Meaning

z (Gene Set Enrichment

» Pathway Analysis
%k Data tables, network maps



Computational Considerations
THE GOOD NEWS

For the most part the computational aspects have been
taken care of for you.
(no need to develop new algorithms or code)

There are pre-built workflows that can automate many of
the processes involved, and tacilitate reproducibility



Computational Considerations
THE BAD NEWS

Like most of NGS data analysis, the complexity of RNA-
Seq data analysis revolves around data and information
management and the dealing with “unexpected” issues

Consider the simplest experiment
(Two conditions three replicates)
0-12 fastg starting files
6-12 quality control files
6-12 fastqg files post trimming of adaptors
6 bam file, and 6 bam index files
6 gene count files
36-48 files minimum (big files)



Computational Considerations
The Challenges

® There is no single best method for RNA-Seq data analysis - it depends on your
definition of best, and even then it varies over time and with the particular goals
and specifics of a given experiment

® You should learn enough about the process to make “sensible choices” and to
know when the results are reasonable and correct

® Treating an RNA-Seq (or any NGS) analysis as a black box is a “recipe for
disaster” (or at least bad science). You do not need to know the particulars of
every algorithm involved in a workflow, but you should know the steps involved
and what assumptions and/or limitations are built into the whole workflow



Computational Prerequisites

@ High performance Linux computer (multicore, high memory,
and plenty of storage) for the alignment phase

@ Familiarity with the “command line” and at least one
programming/scripting language

@ Basic knowledge of how to install software

@ Basic knowledge of R and/or statistical programming

@ Basic knowledge of Statistics and model building
OR

@ Using pre-built workflows

@ Using Cloud/Web resources, with pre-built workflows



Data Analysis

Pre-alignment QC & cleanup
Alignment

Post-alignment QC & filtering
Quantification

Differential Expression
Biological Interpretation



RNA-Seq Pipeline - Primary Analysis

https://github.com/CCBR/RENEE (Rna sEquencing aNalysis pipEIlinE)
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https://github.com/CCBR/RENEE

RNA-Seq Pipeline - Primary Analysis

https://github.com/CCBR/RENEE (Rna sEquencing aNalysis pipElinE)

)
( Gather set of >
splice junctions
across all \
\ samples / Sample N _:

Align 2nd-pass + count + Sample 1q_
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Post-alignment
Quality-control

SAMtools || QualiMap
flagstat | bamqc

N

Merge
Raw counts, TPM,
FPKM across all
samples

Preseq RSeQC
Library Infer
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Picard
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https://github.com/CCBR/RENEE

RNA-Seq Pipeline - Primary Analysis

https://nf-co.re/RNA-Seq
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RNA-Seq Pipeline - Secondary Analysis

https://nidap.nih.gov/
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https://nidap.nih.gov/

RNA-Seq Pipeline - Secondary Analysis

https://bigomics.ch/rna-seqg-data-analysis/
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https://bigomics.ch/rna-seq-data-analysis/

Quality Control/Assessment

(Pre-Alignment)




Data Quality Assessment

@ Evaluate the read quality to determine
(Tells us nothing about whether the experiment worked)
2 |s the data of sufficiently high quality to be analyzed?
2 Are there technical artifacts?
2 Are there poor quality samples?
@ Evaluate the following features
2 QOverall sequencing quality scores and distributions
2 GC content distribution
2 Presence of adapter or contamination
2 Sequence duplication levels
@ Data should be filtered, trimmed, or rejected as
appropriate

Sequencing cores generally provide some/all of this analysis




FastQC

https://www.bioinformatics.babraham.ac.uk/projects/fastqgc/
good_sequence_short_fastgc.html
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https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html

MultiQC

https://multigc.info/examples/rna-seg/multigc_report.html

FastQC: Per Sequence GC Content Export Plot
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https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html

Alignment
(Computationally Intensive Step)




RNA-Seqg Mapping Challenges
RNA-seq Alignment

Intron ::jﬁ?
pre-mRNA The majOrity of MRNA

= derived from eukaryotes
IS the result of splicing

together discontinuous
MRNA

Short read is split by
intron when aligning

to reference Genome "=m /




RNA-seq protocol schematic
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RNA-Seq: Special Mapping Concerns

Alternate Splicing

l ’ Fxom 1 Exon 2 Exor 3 Fwond Fwon 5
DNA DRy DD DGR O R <D D NIRRT
Exon 1 Exon 2 Exce 3 Cxend Exon 5
RNA ‘A“u AAAAAAAAAAAAAAAAAAAAA ~‘AA‘AAJ“4LI‘“-L‘.‘A.—A. -4-‘* AAAAAAAAAAAAAAAAAAAAAAAAA WAA-
[ Alternative Splicing ]
3 4 5 ! 2 B 1 2 3

mMRNA

Protein A Protein B Protein C

Alternate splicing deconvolution is not for the faint of heart

genome.gov
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RNA-Seq Mapping Solutions

® Align against the transcriptome

Many/All transcriptomes are incomplete

Can only measure known genes

Won't detect non-coding RNAs

Can't look at splicing variants

Can’t detect fusion genes or structure variants

YVYVVYVY

® De novo assembly of RNA-Seq reads
» Largely used for uncharacterized genomes

® Align against the genome using a splice-aware aligner
2z Most versatile solution

® Pseudo-Aligner - quasi mappers (Salmon and Kalisto)
2 New class of programs - blazingly fast
2 Map to transcriptome (not genome) and does quantitation
B Surprisingly accurate except for very low abundance signals
& Bootstrapping can give confidence values



The Times they are a Changin !!

Check or new versions... try new software

5 & R — Following @) Uor Pachter
2

| was amazed to see that just last month :
published its main paper Please stop using Tophat

with TopHat 1.4
That's not Cole and | developed the

even the most recent version of TopHat! method in *2008*. It was greatly
There have been 16 releases since then : :
(2012), the most recent in 2016. And mg'?r\;edﬁ‘n TopHatZ then HISAT &.
o A * . . I'here is no reason to use it
that's 3 *programs* ago! : :
anymore. | have been saying this for
B i e e & years yet it has more citations this year

Samples of different body regions from hundreds of

ﬁ e domurs s v sy v gt vrshon than last

Source: Twitter



On-target hits
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To Align or not to Align

Aligners typically align against the entire genome

and provide an output where the results can be visibly
inspected (bam file via IGV). They must be used for
detecting novel genes/transcripts. Quantitation of
aligned reads to specitic genes is typically done by a
separate program

PseudoAligners assign reads to the most appropriate
transcript... can’t find novel genes/transcripts or other
anomalies. Generally much faster than aligners and are

arguably more accurate



Typical Questions about alignment

@ What is the best aligner to use?
MSTAR - (Salmon or Kallisto) - subjective

@ What Genome version should | use”
M Depends - most recent or best annotated

@ What Genome annotation should | use?
M GeneCode with caveats - know what is
being annotated and what is not and how it
effects your results



Questions not asked

@ What parameters should | use?
™ Most programs have lots of optional
parameters that can tweak the results, but
most are set to defaults that should work
IN Most common situations.

Don’t change parameters that you don’t understand -
especially if it produces your preferred result




Post-Alignment QC

An important step in accessing the success of the
experiment is the post-alignment QC.

@ Important considerations
2z What is the distribution of the reads across the
genome...do they align with know exons.
2 Are the reads distributed across the gene body
uniformly
2 Is there a bias in read strand (unstranded protocols)
2 Do the ditferent samples have similar profiles.




RSeQC example of plot types

RSEQC
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Quantification




Counting as a measure of Expression

@ Most RNA-Seq technigues deal with count data. The reads
are mapped to a reference and the number of reads
mapped to each gene/transcript is counted

@ Read counts are roughly proportional to gene-length and

abundance

@ The more reads the better

Artifacts occur because of:

@ Sequencing Bias
Positional bias along the length of the gene
Gene annotations (overlapping genes)
Alternate splicing
Non-unique genes
Mapping errors

@ @ @ @ @



Counting as a measure of Expression

@ Count mapped reads
@ Count each read once (deduplicate)
@ Discard reads that:
2 have poor quality alignment scores
2 are not uniguely mapped
2 overlap several genes
2 have paired reads do not map together
@ Document what was done




Normalization

There are three metrics commonly used to normalize for sequencing depth and gene
length.

@ RPKM = Reads Per Kilobase Million
Total Reads/1,000,000 =PM
Gene read-count/PM = RPKM
RPM/gene-length (kb) = RPKM

@ FPKM = Fragments Per Kilobase Million
FPKM is very similar to RPKM. RPKM was made for single-end RNA-Seq,
where every read corresponded to a single fragment that was sequenced.
FPKM was made for paired-end RNA-seq

@ TPM = Transcripts Per Million (Sum of all TPM in samples is the same)
TPM is very similar to RPKM and FPKM. The only difference is the order of

operations
Gene read-count/gene-length (kb) = RPK
(Sum all RPKs)/1,000,000 = PM
Gene RPK/PM = TPM

https://www.rna-segblog.com/rpkm-fpkm-and-tpm-clearly-explained/



Count Normalization

Number of reads aligned to a gene gives a measure of
its level of expression

* Normalization of the count data
* Sequencing depth

* Length bias

| . 2 B o
Low High

3 i 4 D
Short transcript Long transcript

Most Differential Expression software does its own normalization

Nature Methods 8, 469-477(2011), D0i:10.1038/nmeth.1613




Counting as a measure of Expression

Name
ENSG00000121410.12_4
ENSG00000268895.6_6
ENSG00000148584.15_4
ENSG00000175899.14_4

A2M-AS1
A2MLA1
SLC7A2

ENSG00000001461.12_NIPAL3
ENSG00000001497.12_LAS1

ENSG00000001617.7_SEMAS3F
ENSG00000003096.9_KLHL13

|

Different ways of annotating the genes

Length
509.732
1823.71
5354 .1

454477

2592.39
1749
452

386
1715
1023

1457.48

EffectiveLength

325.991
1633.86
5164.27
4354.95

2402.54
1561.55
269.66

208.766
1526.05
833.15

1269.51

TPM NumReads
3.22494 322.674
0.9255 464.119
0 0
0.039651 53
0.008136 5.999
0 0
0 0
0 0
0 0
0 0
3.23046 1258.74

|

Not always integers -
Decimal values are not acceptable
to some programs



Spike in Controls

The goal of the spike-in control is to determine how well
we can measure and reproduce data with known
(expected) properties. ERCC ExFold Spike-In Mixes are
commercially available, pre-tormulated blends of 92
transcripts, derived and traceable from NIST-certified DNA
plasmids. The transcripts are designed to be 250 to 2,000
nt in length, which mimic natural eukaryotic mRNAs.




Differential Expression




Differential Expression

Differential expression involves the comparison
of normalized expression counts of different
samples and the application of statistical
measures to identity quantitative changes in
gene expression between two different samples




Differential Expression

Two Statistical Components (All statistical methods rely on
various assumptions regarding the characteristics of the data)

® Normalization of counts - the process of ensuring that values are
expressed on the same scale (e.g. RPKM, FPKM, TPM, TMM).
Corrects for variable gene length, read depth

Ditferential Expression - analysis of the difference in expression of
genes under two conditions (pair wise comparison) - expressed
as fold difference. A statistical test determines whether the
observed difference is statistically significant (i.e. the likelihood of
the observation is greater than that expected from random
biological variability). Such analyses are typically based on a
negative binomial distribution - expressed as P or corrected P
value



Log Transformed Data

For RNA-Seq data analysis, just like any dataset,
choosing the correct data model is essential for getting
meaningful results. If the native data doesn't fit a
suitable model it is often necessary to transform the
data, such that it fits a standard statistical model

For RNA-Seq data most differential expression software
assumes it fits a negative binomial distribution, and this
IS achieved by taking the log of the raw data The
models also make the assumption that the majority of
genes have not changed between the two
experimental conditions




Log Transformed Data
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Differential Expression

@ Biological replicates are essential to derive a meaningful result.
Don’t mistake the high precision of the technique for the lack of
need for biological replicates

@ Final output is typically a rank order list of differentially expressed
(DE) genes with expression values and associated p-values

@ If technical or biological variability exceeds that of the experimental
perturbation you will get zero DEs.

@ Remember not all DE may be directly due to the experimental
perturbation, but could be do to cascading effects of other genes.



Multiple Testing Correction

Differential Expression data must be corrected tor multiple
testing. Two common methods are the “Bonferroni
procedure” and “Benjamini-Hochberg procedure”. These
forms or statistical corrections will result in a “corrected p-
value”, or a gvalue or FDR or padj (adjusted p-value)

Note p-values refer to the each gene, whereas an FDR (or
gvalue) is a statement about a list. So using FDR cuff of
0.05 indicates that you can expect 5% false positives in the
ist of genes with an FDR of 0.05 or less




Count Matrix

Data_matrix

Data_matrix p53_rock_1 p53_rock_2 p53_rock_3 p53_rock_4 p53_IR_1 p53_IR.2 p53 1IR3 p53 IR 4 null_rock 1 null_rock_2 null_IR_1 null_IR_2

C330021F23RIK 83 67 52 117 52 43 38 38 96 71 54 71
CPS1 0 0 0 0 4 8 0 0 0 0 0 1
FAM171B 11 11 6 11 13 10 4 8 14 6 10 10
OLFR910 0 1 0 0 0 1 0 0 0 0 0 0
DYNLL2 462 413 294 529 330 206 317 293 312 275 409 663
NPEPLA1 2361 1794 1563 1612 2296 1565 2969 3758 1904 1657 3200 3516
TRAJ2 4 6 6 4 9 13 5 4 7 4 5 2
SLC2A4 9 11 3 3 15 10 13 21 2 7 0 0
ZFP655 2874 2474 2006 2517 1640 1276 1881 1948 2666 2412 3157 3315
SLC8A1 1074 839 941 921 657 340 469 320 852 770 337 803
CYB5R4 7431 6425 4866 6215 4502 3800 4170 4656 6602 5619 6059 6843
GM31123 0 0 0 0 0 0 0 0 0 0 0 0
CTDNEP1 1210 1105 869 1323 833 493 951 1094 1063 999 2069 2039
ETS1 44445 38606 27356 39522 10423 7905 8481 10543 42254 41214 20881 27334




Contrast/Meta File

Study_design

Study_Design p53_rock_1 p53_rock_.2 p53 rock. 3 p53.rock 4 p53 IR 1 p53 IR 2 p53 IR 3 p53 IR 4 null_rock 1 null_rock 2 null_IR_.1 null_IR_2

p53 wt wi wi wi wi wi wi wt null null null null

Treatment rock rock rock rock IR IR IR IR rock rock IR IR

Study_design-1

Study_Design p53 Treatment

p53_rock_1 wit rock

p53_rock_2 wt rock

p53_rock_3 wt rock

p53_rock 4 wit rock . .

; - Different programs require

. = this file to be organized in
wt " different ways

p53_IR_4 wt IR
null_rock_1 null rock
null_rock 2 null rock
null_IR_1 null IR

null_IR_2 null IR




Inferring Differential Expression (DE)

Normallzatl Needs Statlstlcs for | Availability
repllcas

edgeR Library size Empirical R/Bioconductor

Bayesian
oL nts estimation based

on Negative
binomial
distribution

DESeq Library size No Raw Negative R/Bioconductor

counts binomial
distribution

baySeq Library size  Yes Raw Empirical R/Bioconductor

Bayesian
counts estimation based

on Negative
binomial
distribution

LIMMA Library size  Yes Raw Empirical R/Bioconductor

Bayesian
counts Sy
estimation

CuffDiff RPKM No RPKM Log ratio Standalone



Differential Expression Output

1. name - the feature identity. It must be unique within the column. It may be a gene name, a transcript
name, an exon

(i.e. whatever the feature that we chose to quantify... can impact later steps.

2. baseMean - the average normalized expression level across all samples. It measure how much total
signal is present across both conditions.

3. baseMeanA - the average normalized expression level across the first condition.

4. baseMeanB - the average normalized expression level across the first condition.

5. foldChange - the ratio of baseMeanB/baseMeanA. Very important to always be aware that in the fold
change means B/A (second condition/first condition)

6. log2FoldChange - the second logarithm of foldChange. Log 2 transformations are convenient as they
transform the changes onto a uniform scale. A four-fold increase after transformation is 2 . A four-fold
decrease (1/4) after log 2 transform is -2. This property makes it much easier to compare the magnitude of
up/down changes.

7. PValue - the uncorrected p-value of the likelihood of observing the effect of the size foldChange (or
larger) by chance alone. This p-value is not corrected for multiple comparisons.

8. PAdj - the multiple comparison corrected PValue (via the Hochberg method). This probability is that of
having at least one false positive when accounting for all comparisons that were made. This value is usually
overly conservative in genomics.

9. FDR/q-values - the False Discovery Rate - this column represents the fraction of false discoveries for all
the rows above the row where the value is listed. For example, if in row number 300 the FDR is 0.05, it
means that if you were cut the table at this row and accept all genes at and above it as differentially
expressed then, 300 * 0.05 = 15 genes out of the 300 are likely to be false positives.

The normalized matrix of the original count data is rarely given by default but can be very useful.



Diff

erential Expression Output

EDGER
Gene LogFC AveExpr P-Value FDR
*CA14 -6.72 4.31 1.406716E-10 0.000001
*MCF2L -10.75 3.25 2.854327E-10 0.000001
*COL5A2 -6.12 4.28 3.678663E-10 0.000001
*TYRP1 -9.31 9.85 4.190114E-10 0.000001
*BCAN -8.39 5.33 6.384088E-10 0.000001
*CSAG1 10.81 -0.56 7.095577E-10 0.00000
DESEQ2
Row-names Symbol log2FoldChange padj p53_mock_1 p53_mock 2 p53_mock 3 p53_mock_ 4 p53_IR_1 p53_IR_2 p53_IR_3 p53_IR_4
ENSMUSG00000000001 Gnai3;Gnai3 -0.4763 0.1737 11.584 11.565 11.609 11.621 11.399 11.338 11.997 11.927
ENSMUSG00000000028 Cdc45;Cdc45 -0.4610 0.4125 8.024 7.575 7.668 7.295 7.736 7.675 7.906 7.873
ENSMUSGO00000000037 Scml2;Scmi2 1.3780 0.1889 3.196 3.554 3.563 3.296 4.592 5.249 4.765 5.262
ENSMUSG00000000056 Narf;Narf -0.1732 0.8053 10.644 10.609 10.634 10.754 9.640 9.516 10.036 10.127
ENSMUSG00000000058 Cav2;Cav2 -0.3945 0.6751 4.377 4.546 5.292 5.120 4.122 3.531 4.835 4.269
ENSMUSG00000000088 Coxb5a;Cox5a -0.5847 0.2738 9.887 9.754 9.964 9.851 9.692 9.501 10.530 10.467
ENSMUSG00000000120 Ngfr;Ngfr 0.7409 0.2168 7.519 7.746 7.625 8.458 8.053 8.149 7.435 7.406
ENSMUSGO00000000127 Fer;Fer 0.1804 0.7480 7.324 7.381 7.368 7.008 7.389 6.650 6.534 6.235
ENSMUSG00000000142 Axin2;Axin2 0.0927 0.9124 5.542 5.920 5.396 5.510 6.008 6.281 5.351 5.484



http://amp.pharm.mssm.edu/Harmonizome/gene/CA14
http://amp.pharm.mssm.edu/Harmonizome/gene/MCF2L
http://amp.pharm.mssm.edu/Harmonizome/gene/COL5A2
http://amp.pharm.mssm.edu/Harmonizome/gene/TYRP1
http://amp.pharm.mssm.edu/Harmonizome/gene/BCAN
http://amp.pharm.mssm.edu/Harmonizome/gene/CSAG1

Visualization




Plotting the Data

Raw Log2 All Counts

Normalized Log2 All Counts
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Volcano Plot

PCA Plot
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Plotting the Data

HeatMap of Sample Replicates

p I pr— R . 1
MCF7_Hypol l
MCF7_Hypo2 0.99
MCF7_RNA1 0.98
MCF7_RNA2 097
L MCF7 RNA3
0.96
MCF7_Norm1l
MCF7_Norm?2 0.95
Hela_RNA1 0.94
Hela_RNA2 I 0.93
Hela_RNA3
MCF10A_RNA3
MCF10A_RNA1
MCF10A_RNA2
MB231_RNA1
MB231_RNA2
MB231_RNA3
= = = = = = = I I I = = = = = =
0 0 0 0 0 0 0 o o o 0 0 0 @ @ w
m m M m m M m Q Q Q M m M N N N
|\‘ |\‘ |\' |\‘ |\‘ |\‘ |\‘ I;U I;U lW S g S g LD:', LD:',
SN R SRR S U S S S S S - -,
o o 3 3 = N w
2 ) = N w A ) § E E - 'Y &




Plotting the Data

Heat Maps
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|GV View of RNA-Seq Data
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|GV View of RNA-Seq Data
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|GV View of RNA-Seq Splicing Data
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|GV Stranded RNA-Seq Data
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Visualizing Splicing
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Tertiary Analysis - Biological Meaning

@ Pathway Analysis
2 IPA (Qiagen - CCR License) Future talk
2 Reactome (http://www.reactome.org/)

@ Functional Analysis

2 Gene Set Enrichment Analysis (GSEA)
https://www.gsea-msigdb.org/gsea/index.jsp

2 DAVID
https://david.ncifcrf.gov/

2 Enrichr
https://maayanlab.cloud/Enrichr/

@ Genomic Location

@ Transcription Factor Enrichment Analysis


https://www.gsea-msigdb.org/gsea/index.jsp
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/

Software Solutions

CCR staff have access to a number of resources
e NIH HPC - Biowulf & Helix - CIT maintained large cluster with a

huge software library (Unix command line)

CCBR Pipeliner/Renee - RNA-Seq pipeline from CCBR (Biowulf)
Partek Flow (Local Web Service)

NIDAP - NIH Integrated Data Analysis Platform (RNA-Seg module)
Cancer Genomics Cloud CGC

DNAnexus (Cloud Solution)

Galaxy -is an open source, web-based platform for data intensive
biomedical research

@ @ @ @ @ @

@ CLCBio Genomic Workbench (Small genomes - local software)
@ Qlucore - (local software)


https://hpc.nih.gov/
https://ccbr.github.io/RENEE/latest/
https://partekflow.cit.nih.gov/
https://partekflow.cit.nih.gov
https://nidap.nih.gov/
https://bioinformatics.ccr.cancer.gov/ccbr/education-training/nidap-training/
https://cgc.sbgenomics.com/home
https://platform.dnanexus.com/
https://hpcdmeweb.nci.nih.gov/
https://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/801/index.php?manual=Introduction_CLC_Genomics_Workbench.html
https://qlucore.com/geneexpressions

Web-Based Tools

@ Biodupies - Many analysis functions - generates
Jupyter Notebook of results
(httos://amp.pharm.mssm.edu/biojupies/)

@ |IDEP - an integrated web application for differential
expression and pathway analysis of RNA-Seq data
(htto://bioinformatics.sdstate.edu/idep/

Both allow analysis of your data or many public datasets


http://www.apple.com
https://amp.pharm.mssm.edu/biojupies/
https://amp.pharm.mssm.edu/biojupies/
http://bioinformatics.sdstate.edu/idep/

NGS File Formats

@ Sequence

» FASTA, FastQ

@ Alignment

> SAM, BAM, CRAM

@ Annotation

» GTF, GFF, BED (BigBED)

@ Graphing

» WIG (BigWIG), BEDGRAPH

See the NGS file format document on the BTEP site



https://bioinformatics.ccr.cancer.gov/docs/nfs-file-formats/index.html

File Transtfer

@ Globus (https:[{hpc.nih.gov[storage[g obus.html)
e HPCDME (https://hpcdmeweb.nci.niﬂ.gov/)

@ BOX

@ OneDrive
@ (S)FTP
@ Network Drives
o Clach Dr



https://hpc.nih.gov/storage/globus.html
https://hpcdmeweb.nci.nih.gov/

Raw Sequence Cleanup

Trim and/or filter sequence to remove sequencing primers/
adaptor and poor gquality reads. Example programs:

@ FASTX-Toolkit is a collection of command line tools for Short-Reads FASTA/
FASTQ files preprocessing.

@ SegKit is an ultrafast comprehensive toolkit for FASTA/Q processing.

@ Trimmomatic is a fast, multithreaded command line tool that can be used to
trim and crop lllumina (FASTQ) data as well as to remove adapters.

@ TrimGalore is a wrapper tool around Cutadapt and FastQC to consistently apply
quality and adapter trimming to FastQ files, with some extra functionality for
Mspl-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries.

@ Cutadapt finds and removes adapter sequences, primers, poly-A tails and other
types of unwanted sequence from your high-throughput sequencing reads.

@ FastP a tool designed to provide fast all-in-one preprocessing for FastQ files.


https://github.com/agordon/fastx_toolkit
https://bioinf.shenwei.me/seqkit//
http://www.usadellab.org/cms/?page=trimmomatic
https://github.com/FelixKrueger/TrimGalore
https://cutadapt.readthedocs.io/en/stable/
https://github.com/OpenGene/fastp

Pseudo-Aligners

Salmon uses new algorithms (specifically, coupling the concept
of quasi-mapping with a two-phase inference procedure) to
provide accurate expression estimates very quickly while using
ittle memory. Salmon performs its inference using an expressive
and realistic model of RNA-seq data that takes into account
experimental attributes and biases commonly observed in real
RNA-seq data. (httos://doi.org/10.1038/nmeth.4197)

kallisto is a program for quantifying the abundance of
transcripts from RNA-Seq data, or more generally of target
sequences using high-throughput sequencing reads. It is
based on the novel idea of pseudo-alignment for rapidly
determining the compatibility of reads with targets, without
the need for alignment. (hattps:/doi.org/10.1038/nbt.3519)



https://github.com/pachterlab/kallisto
https://doi.org/10.1038/nbt.3519
https://salmon.readthedocs.io/en/latest/salmon.html

Post Alignment Cleanup

Picard is a set of command line tools for manipulating high-
throughput sequencing (HTS) data and formats such as SAM/
BAM/CRAM and VCF. (mark PCR duplicates)

Samtools provide various utilities for manipulating alignments in
the SAM/BAM format, including sorting, merging, indexing and
generating alignments in a per-position format

BamTools is a command-line toolkit for reading, writing, and
manipulating BAM (genome alignment) files



https://broadinstitute.github.io/picard/
http://www.htslib.org/
https://github.com/pezmaster31/bamtools/

Post Alignment QC

RSeQC package provides a number of useful modules that can
comprehensively evaluate high throughput sequence data especially
RNA-seq data. “Basic modules™ quickly inspect sequence quality,
nucleotide composition bias, PCR bias and GC bias, while “RNA-seq
specific modules” investigate sequencing saturation status of both
splicing junction detection and expression estimation, mapped reads
clipping profile, mapped reads distribution, coverage uniformity over
gene body, reproducibility, strand specitficity and splice junction
annotation

MultiQC is a modular tool to aggregate results from bioinformatics
analyses across many samples into a single report

Picard Tools - RNA-SeqMetrics is a module that produces metrics
about the alignment of RNA-seq reads within a SAM file to genes



https://rseqc.sourceforge.net
https://multiqc.info
https://broadinstitute.github.io/picard/

Common Aligners

Most alignment algorithms rely on the construction of auxiliary data structures, called
indices, which are made for the sequence reads, the reference genome sequence, or both.
Mapping algorithms can largely be grouped into two categories based on properties of
their indices: algorithms based on hash tables, and algorithms based on the Burrows-
Wheeler transform

@ Bowtie?

e BWA/BWA-mem
@ STAR

@ HISAT?Z

@ lopHat?

Tools for mapping high-throughput sequencing data
Nuno A. Fonseca Johan Rung Alvis Brazma John C. Marioni Author Notes
Bioinformatics, Volume 28, Issue 24, 1 December 2012, Pages 3169-3177, https://doi.org/10.1093/bioinformatics/bts605



https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/lh3/bwa
https://github.com/alexdobin/STAR
http://daehwankimlab.github.io/hisat2/
https://ccb.jhu.edu/software/tophat/index.shtml
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1093/bioinformatics/bts605

Visualization and Pathway Analysis

Visualization
® Integrated Genome Viewer (https://www.broadinstitute.org/igv/)
® UCSC Genome Browser (https://genome.ucsc.edu/)

Pathway Analysis
® QIAGEN Ingenuity Pathway Analysis

® DAVID (http://david.abcc.ncifcrf.gov/tools.jsp)

® ConsensusPathdb (http://cpdb.molgen.mpg.de/)

® Reactome (http://www.reactome.org/)

® Molecular Signatures Database (http://www.netgestalt.org/)
® PANTHER (http://www.pantherdb.org/)

® Cognoscente (http://vanburenlab.medicine.tamhsc.edu/cognoscen
® Pathway Commons (http://www.pathwaycommons.org/)

® PathVisio (http://www.pathvisio.org/)

® Moksiskaan (http://csbi.ltdk.helsinki.fi/moksiskaan/)

® Weighed Gene Co-Expression Network Analysis (WGCNA)s
® More tools in R Bioconductor



https://genome.ucsc.edu/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/

Further Reading

RNA-seqlopedia
https://RNA-Seq.uoregon.edu/

RNA-Seq by Example
https://www.biostarhandbook.com/

Reference-based RNA-Seq data analysis

https://training.galaxyproject.org/
training-material/topics/transcriptomics/
tutorials/ref-based/tutorial.html



https://rnaseq.uoregon.edu
https://rnaseq.uoregon.edu
https://www.biostarhandbook.com/books/rnaseq/index.html
https://www.biostarhandbook.com/
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html

Further Reading

Introduction to RNA-seq

https://scienceparkstudygroup.github.io/rna-seqg-lesson/

RNA-seq: a step-by-step analysis pipeline
https://github.com/CebolalLab/RNA-seq

BTEP - Bioinformatics Resources for CCR Scientists
https://bioinformatics.ccr.cancer.gov/docs/resources-for-bioinformatics/



https://scienceparkstudygroup.github.io/rna-seq-lesson/
https://github.com/CebolaLab/RNA-seq
https://bioinformatics.ccr.cancer.gov/docs/resources-for-bioinformatics/

Questions 7

Contacts:
zPeter FitzGerald fitzgepe@nih.gov
»BTEP ncibtep@nih.gov



