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Talk Outline
What will be covered?

General principles of RNA-Seq 

Guidance on best practices for experimental design 

A walk-through of the steps involved in RNA-Seq data 
analysis 

References to applicable file formats  

References to appropriate software tools and pipelines for 
RNA-Seq data analysis

What will NOT be covered

How to use individual software tools or pipelines 

How to analyze Single Cell RNA-Seq data 



What is RNA-Seq ?

RNA-Seq (RNA sequencing), uses next-generation 
sequencing (NGS) to reveal the presence and quantity of 
RNA in a biological sample at a given moment (Wikipedia) 

Strictly speaking, this could be any type of RNA (mRNA, 
rRNA, tRNA, snoRNA, miRNA) from any type of biological 
sample  
For the purpose of this talk we will be limiting ourselves to 
mRNA 
Technically, with a few exceptions, we are not actually 
sequencing mRNA but rather cDNA

RNA-Seq is only valid within the context of Differential Expression 



What is RNA-Seq ?

Image from: https://mbernste.github.io/posts/rna_seq_basics/



Public sources of RNA-Seq data 

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo/)

Both microarray and sequencing data  

Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra)

 All sequencing data (not necessarily RNA-Seq)  

ArrayExpress (https://www.ebi.ac.uk/arrayexpress/)

European version of GEO  

Homogenized data: MetaSRA, Toil, recount2, ARCHS4 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/


RNA-Seq - WorkFlow
Experimental Design

What question am I asking? 
How should I do it (does it need to be done)? 

Sample Preparation
Sample Prep 
Library Prep 
Quality Assurance 

Sequencing
Technology/Platform 

Data Analysis (Computation)
[Starting point - fastq (reads) or data-table (counts)]



Experimental Design



Only Sequence the RNA of interest

Remember ~90% of RNA is ribosomal RNA 
Therefore enrich your total RNA sample by: 

polyA selection (oligodT affinity) of mRNA (eukaryote) 
rRNA depletion - RiboZero is typically used (costs extra)



Remember

RNA-Seq looks at steady state mRNA levels 
which is the sum of transcription and degradation 
Protein levels are assumed to be driven by mRNA 
levels 
RNA-Seq can measure relative abundance not 
absolute abundance 
RNA-Seq is really all about sequencing cDNA



What are the Goals of your Experiment

What genes are expressed? 
What genes are differentially expressed? 
Are different splicing isoforms expressed? 
Are there novel genes or isoforms expressed? 
Should you be doing targeted long-read sequencing? 

If this a standalone experiment, a pilot, or a “fishing trip” ?

The answers to these questions should guide you in the 
sequencing technology to use and analytic roadmap to follow.



Read Choices
Read Depth

More depth needed for lowly expressed genes 
Detecting low fold differences need more depth 

Read Length
Longer reads are more likely to map uniquely 
Paired read help in mapping and junctions 

Stranded Protocols
Give clearer results 

Replicates
Detecting subtle differences in expression needs more 
replicates 
Detecting novel genes or alternate iso-forms need more 
replicates

Increasing depth, length, and/or replicates increase costs



Replicates
Technical Replicates

It’s generally accepted that they are not necessary because 
of the low technical variation in RNA-Seq experiments 

Biological Replicates (Always useful/necessary) 
Not strictly needed for the identification of novel transcripts 
and transcriptome assembly 
Essential for differential expression analysis - must have 3+ 
for statistical analysis 
Minimum number of replicates needed is variable and difficult 
to determine: 
   3+ for cell lines 
   5+ for inbred samples 
 20+ for human samples (rarely possible) 
More is always better

You need replicates



Batch Effects 
Variations in samples NOT due to biological effects

 Differences in sample treatment 
 Samples processed on different days/times 
 Samples processed by different people 
 Samples sequenced at different times/lanes/machines 
 Samples are a mixture of different sexes

Avoid at All Costs !

If all samples cannot be treated the same, never process all 
treatment or control samples is a single “batch”



Data Analysis Questions
Where will the primary data be stored (fastq)? 
 Data Management Environment (DME) 
Where will the processed data be stored (bam)? 
Who will do the primary analysis? 
Who will do the secondary analysis? 
Where will the published data be deposited  
and by whom? (what metadata will they require)
Are you doing reproducible science?

Talk to the people who will be analyzing your data and the 
sequencing Core BEFORE doing the experiment

https://hpcdmeweb.nci.nih.gov/


Sample Preparation



Costs (mRNA total)

Library Construction $87

Illumina HiSeq 4000 $1007/lane PE 2 x 75 
(all 8 lanes)

Illumina NovaSeq $4382/lane 1 x 100 bp

Illumina NextSeq High Output $1956 2 x 75 bp (V2)

Illumina MiSeq $623 PE 2 x 75 bp (V3)

CCR Sequencing Facility (subsidized pricing)



General Rules for Sample Preparation

Prepare all samples at the same time or as close as possible. The 
same person should prepare all samples 

Do not prepare “experiment” and “control” samples on different 
days or by different people (Batch effects) 

Use high quality means to determine sample quality (RNA Integrity 
Number) (RIN >0.8) and quantity, and size (Tapestation, Qibit, 
Bioanalyzer) 

Don’t assume everything will work the first time (do pilot 
experiments) or every time (prepare extra samples) 

Pilot experiments are your friends





Sample Amounts

Type of Library
Minimum DNA/RNA 

Requirement for 
Library Construction

Recommended DNA/RNA 
for Optimal Library 

Construction

Maximum Sample 
Volume Requirement 

for Library 
Construction

Additional Requirements

mRNA Sequencing 100 ng 1 μg 50 μL RIN should be at least 8.0, 
DNase treated

mRNA ultralow 
Clonetech 100 pg 10 ng 10 μL RIN should be at least 8.0, 

DNase treated

microRNA 
Sequencing 100 ng 1 μg 6 μL

Total RNA 
Sequencing 100 ng 1 μg 10 μL DNase treated, FFPE and 

degraded RNA can be used

Total RNA ultralow 10 ng 1 μg 10 μL DNase treated, FFPE and 
degraded RNA can be used



QC Metric Guidelines mRNA total RNA

RNA Type(s) Coding Coding + non-coding

RIN 8 [low RIN = 3' bias] > 8

Single-end vs Paired-end Paired-end Paired-end

Recommended Sequencing
Depth 10-20M PE reads 25-60M PE reads

FastQC Q30 > 70% Q30 > 70%

Percent Aligned to Reference 70% > 65%

Million Reads Aligned Reference 7M PE reads (or > 14M 
reads)

16.5M PE reads (or > 33M 
reads)

Percent Aligned to rRNA < 5% < 15%

0 Coding > 50% Coding > 35%

Picard RNA-SeqMetrics Intronic + Intergenic < 25% Intronic + Intergenic < 40%

RNA-Seq Sample Recommendations (CCBR)



Best Practice Guidelines from Bioinformatic Core (CCBR): 
1. Factor in at least 3 replicates (absolute minimum), but 4 if possible (optimum minimum). Biological 

replicates are recommended rather than technical replicates.

2. Always process your RNA extractions at the same time.  Extractions done at different times lead to 
unwanted batch effects.

3. There are 2 major considerations for RNA-Seq libraries: 
• If you are interested in coding mRNA, you can select to use the mRNA library prep.  The recommended 

sequencing depth is between 10-20M paired-end (PE) reads.  Your RNA has to be high quality (RIN > 8).
• If you are interested in long noncoding RNA as well, you can select the total RNA method, with 

sequencing depth ~25-60M PE reads.  This is also an option if your RNA is degraded.
4. Ideally to avoid lane batch effects, all samples would need to be multiplexed together and run on the same 
lane.  This may require an initial MiSeq run for library balancing.  Additional lanes can be run if more 
sequencing depth is needed.

5. If you are unable to process all your RNA samples together and need to process them in batches, make 
sure that replicates for each condition are in each batch so that the batch effects can be measured and 
removed bioinformatically.

6. For sequence depth and machine requirements, visit  Illumina Sequencing Coverage website

For cost estimates, visit  Sequencing Facility pricing for NGS
For further assistance in planning your RNA-Seq experiment or to discuss specifics of your project, please contact us 
by email: CCBR@mail.nih.gov. For cost and specific information about setting up an RNA-Seq experiment, please 
visit the Sequencing Facility website or contact Bao Tran

https://bioinformatics.ccr.cancer.gov/ccbr/project-support/experimental-design-best-practices/
https://bioinformatics.ccr.cancer.gov
http://support.illumina.com/downloads/sequencing_coverage_calculator.html
https://crtp.ccr.cancer.gov/sf/pricing/
mailto:CCBR@mail.nih.gov?subject=
https://ostr.ccr.cancer.gov/resources/provider_details/sequencing-facility
mailto:tranb2@mail.nih.gov?subject=


Sequencing



Illumina Sequencing Platforms

Illumina
Sequencing by Synthesis (SbS) 
/NovaSeq/HiSeq/NextSeq/MiSeq 
Short read length (50 to 300 bp) 

Selection driven by cost, precision, 
speed, number of samples and 
number of reads required 

Consult with the Sequencing Core

Illumina
NovaSeq

Illumina
NextSeq

Illumina
MiSeq



Long Read Sequencing Platforms

PacBio
120,000 bases per molecule, with 
maximum read lengths > 200,000 
bases. Good for repetitive regions 
and isomers, modified bases. 

Oxford Nanopore
Direct DNA or RNA sequencing  
(Max length 2 Mb) Good for modified 
bases, repetitive regions, isomers, 
small genomes. 

Consult with the Sequencing Cores

PacBio Sequel II 

MinION GridION
Oxford Nanopore



Data Analysis



RNA-Seq - Data Analysis
What version of the Genome should you align against ?
Sequence and annotation -  Same sequence can have different annotations 

Remember to make note of this choice and advise the core

Factors that determine the answer to this question are:
Are you trying to match published data or previous experiments? 
Are you interested in a particular type of annotation (GeneID, 
EnsembleIDs, refseqID, etc.? 
Are you interested in Genes or transcripts? 
If there are no other overriding factors, use the latest genome 
sequence and annotations (Biowulf has many pre-built) 
Is it desirable to align against the T2T genome 
If no reference genome, you will have to use a different approach

https://sites.google.com/ucsc.edu/t2tworkinggroup


RNA-Seq Pipeline
RNA-Seq Analysis process can be broken down 

into two main steps

Primary Analysis 
FASTQ -> Count-file

Secondary+ Analysis 
Count-file -> Differential Expression, PATHWAY ANALYSIS …



RNA-Seq - Data Analysis WorkFlow I
Quality Control

Sample quality and consistency 
Is Trimming appropriate - quality/adaptors 

Reports
Alignment/Mapping

Reference Target (Sequence and annotation)  
Alignment Program & parameters 
Mark Duplicates 
Post-Alignment Quality Assurance 

BAM, WIG, files and reports
Quantification

Counting Method and Parameters 
BED files, count matrices

The Sequencing Core may do some or all of this



RNA-Seq - Data Analysis WorkFlow II

Quantification
Differential Expression - statistics 

Data tables, plots
Visualization

Visual inspection - IGV 
Data representation - scatter plots, violin plots, heat-maps 

Images and Graphs
Biological Meaning

Gene Set Enrichment 
Pathway Analysis 

Data tables, network maps



Computational Considerations 
THE GOOD NEWS

For the most part the computational aspects have been 
taken care of for you.  

(no need to develop new algorithms or code)

There are pre-built workflows that can automate many of 
the processes involved, and facilitate reproducibility



Computational Considerations 
THE BAD NEWS

Like most of NGS data analysis, the complexity of RNA-
Seq data analysis revolves around data and information 
management and the dealing with “unexpected” issues

Consider the simplest experiment 
(Two conditions three replicates) 

6-12 fastq starting files 
6-12 quality control files 

6-12 fastq files post trimming of adaptors 
6 bam file, and 6 bam index files 

6 gene count files 
36-48 files minimum (big files)



Computational Considerations 
The Challenges

There is no single best method for RNA-Seq data analysis - it depends on your 
definition of best, and even then it varies over time and with the particular goals 
and specifics of a given experiment 

You should learn enough about the process to make “sensible choices” and to 
know when the results are reasonable and correct 

Treating an RNA-Seq (or any NGS) analysis as a black box is a “recipe for 
disaster” (or at least bad science). You do not need to know the particulars of 
every algorithm involved in a workflow, but you should know the steps involved 
and what assumptions and/or limitations are built into the whole workflow



High performance Linux computer (multicore, high memory, 
and plenty of storage) for the alignment phase 
Familiarity with the “command line” and at least one 
programming/scripting language 
Basic knowledge of how to install software 
Basic knowledge of R and/or statistical programming 
Basic knowledge of Statistics and model building

Computational Prerequisites

Using pre-built workflows 
Using Cloud/Web resources, with pre-built workflows

OR



Data Analysis

  Pre-alignment QC & cleanup 
  Alignment 
  Post-alignment QC & filtering 
  Quantification 

  Differential Expression 
  Biological Interpretation



RNA-Seq Pipeline - Primary Analysis
https://github.com/CCBR/RENEE  (Rna sEquencing aNalysis pipElinE)

https://github.com/CCBR/RENEE


https://github.com/CCBR/RENEE  (Rna sEquencing aNalysis pipElinE)

RNA-Seq Pipeline - Primary Analysis

https://github.com/CCBR/RENEE


https://nf-co.re/RNA-Seq

1

cat
fastq

STAGE

2. Genome alignment & quantification
3. Pseudo-alignment & quantification

1. Pre-processing

4. Post-processing

3

5

41 2

RNA-Seq Pipeline - Primary Analysis



https://nidap.nih.gov/

RNA-Seq Pipeline - Secondary Analysis

https://nidap.nih.gov/


https://bigomics.ch/rna-seq-data-analysis/

RNA-Seq Pipeline - Secondary Analysis

https://bigomics.ch/rna-seq-data-analysis/


Quality Control/Assessment 
(Pre-Alignment)



Evaluate the read quality to determine  
(Tells us nothing about whether the experiment worked) 

Is the data of sufficiently high quality to be analyzed? 
Are there technical artifacts? 
Are there poor quality samples? 

Evaluate the following features 
Overall sequencing quality scores and distributions 
GC content distribution 
Presence of adapter or contamination 
Sequence duplication levels 

Data should be filtered, trimmed, or rejected as 
appropriate

Sequencing cores generally provide some/all of this analysis

Data Quality Assessment



FastQC
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

good_sequence_short_fastqc.html

GOOD BAD

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html


MultiQC
https://multiqc.info/examples/rna-seq/multiqc_report.html

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html


Alignment 
(Computationally Intensive Step)



RNA-Seq Mapping Challenges

The majority of mRNA 
derived from eukaryotes 
is the result of splicing 
together discontinuous 
exons





Alternate splicing deconvolution is not for the faint of heart



Mapping Challenges

Reads not perfect 
Duplicate molecules (PCR artifacts skew quantitation) 
Multimapped reads - Some regions of the genome 
are thus classified as unmappable 
Aligners try very hard to align all reads, therefore 
fewest artifacts occur when all possible genomic 
locations are provided (genome over transcriptome)



RNA-Seq Mapping Solutions
Align against the transcriptome

Many/All transcriptomes are incomplete 
Can only measure known genes 
Won’t detect non-coding RNAs 
Can’t look at splicing variants 
Can’t detect fusion genes or structure variants 

De novo assembly of RNA-Seq reads
Largely used for uncharacterized genomes 

Align against the genome using a splice-aware aligner
Most versatile solution 

Pseudo-Aligner - quasi mappers (Salmon and Kalisto)
New class of programs - blazingly fast 
Map to transcriptome (not genome) and does quantitation 
Surprisingly accurate except for very low abundance signals 
Bootstrapping can give confidence values



The Times they are a Changin !!

Check or new versions… try new software





To Align or not to Align

Aligners typically align against the entire genome 
and provide an output where the results can be visibly 
inspected (bam file via IGV). They must be used for 
detecting novel genes/transcripts. Quantitation of 
aligned reads to specific genes is typically done by a 
separate program

PseudoAligners assign reads to the most appropriate 
transcript… can’t find novel genes/transcripts or other 
anomalies. Generally much faster than aligners and are 
arguably more accurate



Typical Questions about alignment

 What is the best aligner to use? 
STAR - (Salmon or Kallisto) - subjective 

 What Genome version should I use?  
Depends - most recent or best annotated 

 What Genome annotation should I use?  
GeneCode with caveats - know what is 

being annotated and what is not and how it 
effects your results



What parameters should I use? 
Most programs have lots of optional 
parameters that can tweak the results, but 
most are set to defaults that should work 
in most common situations.

Questions not asked

Don’t change parameters that you don’t understand - 
especially if it produces your preferred result



Post-Alignment QC

An important step in accessing the success of the 
experiment is the post-alignment QC. 

 Important considerations
  What is the distribution of the reads across the      
genome…do they align with know exons. 
  Are the reads distributed across the gene body 
uniformly 
  Is there a bias in read strand (unstranded protocols) 
  Do the different samples have similar profiles. 



RSeQC example of plot types



Quantification



Most RNA-Seq techniques deal with count data. The reads 
are mapped to a reference and the number of reads 
mapped to each gene/transcript is counted 
Read counts are roughly proportional to gene-length and 
abundance 
The more reads the better

Counting as a measure of Expression

Artifacts occur because of:
Sequencing Bias 
Positional bias along the length of the gene 
Gene annotations (overlapping genes) 
Alternate splicing 
Non-unique genes 
Mapping errors



Count mapped reads
Count each read once (deduplicate) 
Discard reads that: 

have poor quality alignment scores 
are not uniquely mapped 
overlap several genes 
have paired reads do not map together 

Document what was done

Counting as a measure of Expression



https://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/

Normalization
There are three metrics commonly used to normalize for sequencing depth and gene 
length.  

 RPKM = Reads Per Kilobase Million 
 Total Reads/1,000,000     = PM 
 Gene read-count/PM      = RPKM 
 RPM/gene-length (kb)    = RPKM 

 FPKM = Fragments Per Kilobase Million
FPKM is very similar to RPKM. RPKM was made for single-end RNA-Seq, 
where every read corresponded to a single fragment that was sequenced. 
FPKM was made for paired-end RNA-seq 

 TPM   = Transcripts Per Million (Sum of all TPM in samples is the same)
TPM is very similar to RPKM and FPKM. The only difference is the order of 
operations  

          Gene read-count/gene-length (kb)   = RPK 
  (Sum all RPKs)/1,000,000                 = PM 

Gene RPK/PM                                  = TPM



Most Differential Expression software does its own normalization



Counting as a measure of Expression

Name     Length EffectiveLength TPM     NumReads
ENSG00000121410.12_4 509.732 325.991 3.22494 322.674
ENSG00000268895.6_6 1823.71 1633.86 0.9255 464.119
ENSG00000148584.15_4 5354.1 5164.27 0 0
ENSG00000175899.14_4 4544.77 4354.95 0.039651 53

A2M-AS1 2592.39 2402.54 0.008136 5.999
A2ML1 1749 1561.55 0 0
SLC7A2 452 269.66 0 0

ENSG00000001461.12_NIPAL3 386 208.766 0 0
ENSG00000001497.12_LAS1 1715 1526.05 0 0
ENSG00000001617.7_SEMA3F 1023 833.15 0 0
ENSG00000003096.9_KLHL13 1457.48 1269.51 3.23046 1258.74

Not always integers - 

Decimal values are not acceptable


to some programs
Different ways of annotating the genes



The goal of the spike-in control is to determine how well 
we can measure and reproduce data with known 
(expected) properties. ERCC ExFold Spike-In Mixes are 
commercially available, pre-formulated blends of 92 
transcripts, derived and traceable from NIST-certified DNA 
plasmids. The transcripts are designed to be 250 to 2,000 
nt in length, which mimic natural eukaryotic mRNAs.

Spike in Controls



Differential Expression



Differential expression involves the comparison 
of normalized expression counts of different 
samples and the application of statistical 
measures to identify quantitative changes in 
gene expression between two different samples 

Differential Expression



Two Statistical Components (All statistical methods rely on 
various assumptions regarding the characteristics of the data) 

Normalization of counts  - the process of ensuring that values are 
expressed on the same scale (e.g. RPKM, FPKM, TPM, TMM). 
Corrects for variable gene length, read depth 

Differential Expression - analysis of the difference in expression of 
genes under two conditions (pair wise comparison) - expressed 
as fold difference. A statistical test determines whether the 
observed difference is statistically significant (i.e. the likelihood of 
the observation is greater than that expected from random 
biological variability). Such analyses are typically based on a 
negative binomial distribution - expressed as P or corrected P 
value

Differential Expression



Log Transformed Data

For RNA-Seq data analysis, just like any dataset, 
choosing the correct data model is essential for getting 
meaningful results. If the native data doesn’t fit a 
suitable model it is often necessary to transform the 
data, such that it fits a standard statistical model 

For RNA-Seq data most differential expression software 
assumes it fits a negative binomial distribution, and this 
is achieved by taking the log of the raw data  The 
models also make the assumption that the majority of 
genes have not changed between the two 
experimental conditions



Log  Transformed Data
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Biological replicates are essential to derive a meaningful result. 
Don’t mistake the high precision of the technique for the lack of 
need for biological replicates 

Final output is typically a rank order list of differentially expressed 
(DE) genes with expression values and associated p-values 

If technical or biological variability exceeds that of the experimental 
perturbation you will get zero DEs. 

Remember not all DE may be directly due to the experimental 
perturbation, but could be do to cascading effects of other genes.

Differential Expression



Multiple Testing Correction

Differential Expression data must be corrected for multiple 
testing. Two common methods are the “Bonferroni 
procedure” and “Benjamini–Hochberg procedure”. These 
forms or statistical corrections will result in a “corrected p-
value”, or a qvalue or FDR or padj (adjusted p-value) 

Note p-values refer to the each gene, whereas an FDR (or 
qvalue) is a statement about a list. So using  FDR cuff of 
0.05 indicates that you can expect 5% false positives in the 
list of genes with an FDR of 0.05 or less



Count Matrix
Data_matrix

Data_matrix p53_rock_1 p53_rock_2 p53_rock_3 p53_rock_4 p53_IR_1 p53_IR_2 p53_IR_3 p53_IR_4 null_rock_1 null_rock_2 null_IR_1 null_IR_2

C330021F23RIK 83 67 52 117 52 43 38 38 96 71 54 71

CPS1 0 0 0 0 4 8 0 0 0 0 0 1

FAM171B 11 11 6 11 13 10 4 8 14 6 10 10

OLFR910 0 1 0 0 0 1 0 0 0 0 0 0

DYNLL2 462 413 294 529 330 206 317 293 312 275 409 663

NPEPL1 2361 1794 1563 1612 2296 1565 2969 3758 1904 1657 3200 3516

TRAJ2 4 6 6 4 9 13 5 4 7 4 5 2

SLC2A4 9 11 3 3 15 10 13 21 2 7 0 0

ZFP655 2874 2474 2006 2517 1640 1276 1881 1948 2666 2412 3157 3315

SLC8A1 1074 839 941 921 657 340 469 320 852 770 337 803

CYB5R4 7431 6425 4866 6215 4502 3800 4170 4656 6602 5619 6059 6843

GM31123 0 0 0 0 0 0 0 0 0 0 0 0

CTDNEP1 1210 1105 869 1323 833 493 951 1094 1063 999 2069 2039

ETS1 44445 38606 27356 39522 10423 7905 8481 10543 42254 41214 20881 27334



Contrast/Meta File
Study_design

Study_Design p53_rock_1 p53_rock_2 p53_rock_3 p53_rock_4 p53_IR_1 p53_IR_2 p53_IR_3 p53_IR_4 null_rock_1 null_rock_2 null_IR_1 null_IR_2

p53 wt wt wt wt wt wt wt wt null null null null

Treatment rock rock rock rock IR IR IR IR rock rock IR IR

Study_design-1

Study_Design p53 Treatment

p53_rock_1 wt rock

p53_rock_2 wt rock

p53_rock_3 wt rock

p53_rock_4 wt rock

p53_IR_1 wt IR

p53_IR_2 wt IR

p53_IR_3 wt IR

p53_IR_4 wt IR

null_rock_1 null rock

null_rock_2 null rock

null_IR_1 null IR

null_IR_2 null IR

Different programs require 
this file to be organized in 
different ways





Differential Expression Output
1. name - the feature identity. It must be unique within the column. It may be a gene name, a transcript 
name, an exon

 (i.e. whatever the feature that we chose to quantify… can impact later steps.

2. baseMean - the average normalized expression level across all samples. It measure how much total 
signal is present across both conditions.

3. baseMeanA - the average normalized expression level across the first condition. 

4. baseMeanB - the average normalized expression level across the first condition.

5. foldChange - the ratio of baseMeanB/baseMeanA. Very important to always be aware that in the fold 
change means B/A (second condition/first condition)

6. log2FoldChange - the second logarithm of foldChange. Log 2 transformations are convenient as they 
transform the changes onto a uniform scale. A four-fold increase after transformation is 2 . A four-fold 
decrease (1/4) after log 2 transform is -2. This property makes it much easier to compare the magnitude of 
up/down changes.

7. PValue - the uncorrected p-value of the likelihood of observing the effect of the size foldChange (or 
larger) by chance alone. This p-value is not corrected for multiple comparisons.

8. PAdj - the multiple comparison corrected PValue (via the Hochberg method). This probability is that of 
having at least one false positive when accounting for all comparisons that were made. This value is usually 
overly conservative in genomics.

9. FDR/q-values - the False Discovery Rate - this column represents the fraction of false discoveries for all 
the rows above the row where the value is listed. For example, if in row number 300 the FDR is 0.05, it 
means that if you were cut the table at this row and accept all genes at and above it as differentially 
expressed then, 300 * 0.05 = 15 genes out of the 300 are likely to be false positives. 


The normalized matrix of the original count data is rarely given by default but can be very useful.



Differential Expression Output
EDGER

Gene LogFC AveExpr P-Value FDR
*CA14 -6.72 4.31 1.406716E-10 0.000001

*MCF2L -10.75 3.25 2.854327E-10 0.000001

*COL5A2 -6.12 4.28 3.678663E-10 0.000001

*TYRP1 -9.31 9.85 4.190114E-10 0.000001

*BCAN -8.39 5.33 6.384088E-10 0.000001

*CSAG1 10.81 -0.56 7.095577E-10 0.00000

DESEQ2

Row-names Symbol log2FoldChange padj p53_mock_1 p53_mock_2 p53_mock_3 p53_mock_4 p53_IR_1 p53_IR_2 p53_IR_3 p53_IR_4

ENSMUSG00000000001 Gnai3;Gnai3 -0.4763 0.1737 11.584 11.565 11.609 11.621 11.399 11.338 11.997 11.927

ENSMUSG00000000028 Cdc45;Cdc45 -0.4610 0.4125 8.024 7.575 7.668 7.295 7.736 7.675 7.906 7.873

ENSMUSG00000000037 Scml2;Scml2 1.3780 0.1889 3.196 3.554 3.563 3.296 4.592 5.249 4.765 5.262

ENSMUSG00000000056 Narf;Narf -0.1732 0.8053 10.644 10.609 10.634 10.754 9.640 9.516 10.036 10.127

ENSMUSG00000000058 Cav2;Cav2 -0.3945 0.6751 4.377 4.546 5.292 5.120 4.122 3.531 4.835 4.269

ENSMUSG00000000088 Cox5a;Cox5a -0.5847 0.2738 9.887 9.754 9.964 9.851 9.692 9.501 10.530 10.467

ENSMUSG00000000120 Ngfr;Ngfr 0.7409 0.2168 7.519 7.746 7.625 8.458 8.053 8.149 7.435 7.406

ENSMUSG00000000127 Fer;Fer 0.1804 0.7480 7.324 7.381 7.368 7.008 7.389 6.650 6.534 6.235

ENSMUSG00000000142 Axin2;Axin2 0.0927 0.9124 5.542 5.920 5.396 5.510 6.008 6.281 5.351 5.484

http://amp.pharm.mssm.edu/Harmonizome/gene/CA14
http://amp.pharm.mssm.edu/Harmonizome/gene/MCF2L
http://amp.pharm.mssm.edu/Harmonizome/gene/COL5A2
http://amp.pharm.mssm.edu/Harmonizome/gene/TYRP1
http://amp.pharm.mssm.edu/Harmonizome/gene/BCAN
http://amp.pharm.mssm.edu/Harmonizome/gene/CSAG1


Visualization
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Plotting the Data

Volcano PlotPCA Plot



Plotting the Data



Plotting the Data

HeatMap of Sample Replicates



Plotting the Data

Heat Maps



IGV View of RNA-Seq Data



IGV View of RNA-Seq Data



IGV View of RNA-Seq Splicing Data



IGV Stranded RNA-Seq Data





Tertiary Analysis - Biological Meaning
Pathway Analysis

IPA (Qiagen - CCR License) Future talk

Reactome (http://www.reactome.org/)

Functional Analysis

Gene Set Enrichment Analysis (GSEA)  
https://www.gsea-msigdb.org/gsea/index.jsp

DAVID  
https://david.ncifcrf.gov/

Enrichr 
https://maayanlab.cloud/Enrichr/

Genomic Location

Transcription Factor Enrichment Analysis

https://www.gsea-msigdb.org/gsea/index.jsp
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/


Software Solutions
CCR staff have access to a number of resources

NIH HPC - Biowulf & Helix - CIT maintained large cluster with a 
huge software library  (Unix command line) 
CCBR Pipeliner/Renee - RNA-Seq pipeline from CCBR (Biowulf) 
Partek Flow (Local Web Service) 
NIDAP - NIH Integrated Data Analysis Platform (RNA-Seq module) 
Cancer Genomics Cloud CGC 
DNAnexus (Cloud Solution) 
Galaxy -is an open source, web-based platform for data intensive 
biomedical research  

CLCBio Genomic Workbench (Small genomes - local software) 
Qlucore -  (local software) 

https://hpc.nih.gov/
https://ccbr.github.io/RENEE/latest/
https://partekflow.cit.nih.gov/
https://partekflow.cit.nih.gov
https://nidap.nih.gov/
https://bioinformatics.ccr.cancer.gov/ccbr/education-training/nidap-training/
https://cgc.sbgenomics.com/home
https://platform.dnanexus.com/
https://hpcdmeweb.nci.nih.gov/
https://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/801/index.php?manual=Introduction_CLC_Genomics_Workbench.html
https://qlucore.com/geneexpressions


Web-Based Tools

BioJupies - Many analysis functions - generates 
Jupyter Notebook of results 
(https://amp.pharm.mssm.edu/biojupies/) 

IDEP - an integrated web application for differential 
expression and pathway analysis of RNA-Seq data 
(http://bioinformatics.sdstate.edu/idep/

Both allow analysis of your data or many public datasets

http://www.apple.com
https://amp.pharm.mssm.edu/biojupies/
https://amp.pharm.mssm.edu/biojupies/
http://bioinformatics.sdstate.edu/idep/


NGS File Formats

Sequence
FASTA, FastQ 

Alignment
SAM, BAM, CRAM 

Annotation
GTF, GFF, BED (BigBED) 

Graphing
WIG (BigWIG), BEDGRAPH 

See the NGS file format document on the BTEP site

https://bioinformatics.ccr.cancer.gov/docs/nfs-file-formats/index.html


File Transfer

Globus (https://hpc.nih.gov/storage/globus.html) 
HPCDME (https://hpcdmeweb.nci.nih.gov/) 
BOX 
OneDrive 
(s)FTP 
Network Drives 
Flash Drives

https://hpc.nih.gov/storage/globus.html
https://hpcdmeweb.nci.nih.gov/


Raw Sequence Cleanup
Trim and/or filter sequence to remove sequencing primers/
adaptor and poor quality reads. Example programs: 

FASTX-Toolkit is a collection of command line tools for Short-Reads FASTA/
FASTQ files preprocessing. 

SeqKit is an ultrafast comprehensive toolkit for FASTA/Q processing.  

Trimmomatic is a fast, multithreaded command line tool that can be used to 
trim and crop Illumina (FASTQ) data as well as to remove adapters.  

TrimGalore is a wrapper tool around Cutadapt and FastQC to consistently apply 
quality and adapter trimming to FastQ files, with some extra functionality for 
MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries. 

Cutadapt finds and removes adapter sequences, primers, poly-A tails and other 
types of unwanted sequence from your high-throughput sequencing reads. 

FastP a tool designed to provide fast all-in-one preprocessing for FastQ files.

https://github.com/agordon/fastx_toolkit
https://bioinf.shenwei.me/seqkit//
http://www.usadellab.org/cms/?page=trimmomatic
https://github.com/FelixKrueger/TrimGalore
https://cutadapt.readthedocs.io/en/stable/
https://github.com/OpenGene/fastp


Pseudo-Aligners

kallisto is a program for quantifying the abundance of 
transcripts from RNA-Seq data, or more generally of target 
sequences using high-throughput sequencing reads. It is 
based on the novel idea of pseudo-alignment for rapidly 
determining the compatibility of reads with targets, without 
the need for alignment. (https://doi.org/10.1038/nbt.3519)

Salmon uses new algorithms (specifically, coupling the concept 
of quasi-mapping with a two-phase inference procedure) to 
provide accurate expression estimates very quickly while using 
little memory. Salmon performs its inference using an expressive 
and realistic model of RNA-seq data that takes into account 
experimental attributes and biases commonly observed in real 
RNA-seq data. (https://doi.org/10.1038/nmeth.4197)

https://github.com/pachterlab/kallisto
https://doi.org/10.1038/nbt.3519
https://salmon.readthedocs.io/en/latest/salmon.html


Post Alignment  Cleanup

Picard is a set of command line tools for manipulating high-
throughput sequencing (HTS) data and formats such as SAM/
BAM/CRAM and VCF. (mark PCR duplicates) 

Samtools provide various utilities for manipulating alignments in 
the SAM/BAM format, including sorting, merging, indexing and 
generating alignments in a per-position format 

BamTools is a command-line toolkit for reading, writing, and 
manipulating BAM (genome alignment) files

https://broadinstitute.github.io/picard/
http://www.htslib.org/
https://github.com/pezmaster31/bamtools/


Post Alignment  QC

RSeQC package provides a number of useful modules that can 
comprehensively evaluate high throughput sequence data especially 
RNA-seq data. “Basic modules” quickly inspect sequence quality, 
nucleotide composition bias, PCR bias and GC bias, while “RNA-seq 
specific modules” investigate sequencing saturation status of both 
splicing junction detection and expression estimation, mapped reads 
clipping profile, mapped reads distribution, coverage uniformity over 
gene body, reproducibility, strand specificity and splice junction 
annotation 

MultiQC is a modular tool to aggregate results from bioinformatics 
analyses across many samples into a single report 

Picard Tools - RNA-SeqMetrics is a module that produces  metrics 
about the alignment of RNA-seq reads within a SAM file to genes 

https://rseqc.sourceforge.net
https://multiqc.info
https://broadinstitute.github.io/picard/


Common Aligners

Bowtie2 
BWA/BWA-mem 
STAR
HISAT2 
TopHat2

Most alignment algorithms rely on the construction of auxiliary data structures, called 
indices, which are made for the sequence reads, the reference genome sequence, or both. 
Mapping algorithms can largely be grouped into two categories based on properties of 
their indices: algorithms based on hash tables, and algorithms based on the Burrows-
Wheeler transform 

Tools for mapping high-throughput sequencing data
Nuno A. Fonseca Johan Rung Alvis Brazma John C. Marioni Author Notes
Bioinformatics, Volume 28, Issue 24, 1 December 2012, Pages 3169–3177, https://doi.org/10.1093/bioinformatics/bts605

https://bowtie-bio.sourceforge.net/bowtie2/index.shtml
https://github.com/lh3/bwa
https://github.com/alexdobin/STAR
http://daehwankimlab.github.io/hisat2/
https://ccb.jhu.edu/software/tophat/index.shtml
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1093/bioinformatics/bts605


Visualization
Integrated Genome Viewer (https://www.broadinstitute.org/igv/) 
UCSC Genome Browser (https://genome.ucsc.edu/) 

Pathway Analysis
QIAGEN Ingenuity Pathway Analysis
DAVID (http://david.abcc.ncifcrf.gov/tools.jsp)
ConsensusPathdb (http://cpdb.molgen.mpg.de/)
Reactome (http://www.reactome.org/)
Molecular Signatures Database (http://www.netgestalt.org/)
PANTHER (http://www.pantherdb.org/)
Cognoscente (http://vanburenlab.medicine.tamhsc.edu/cognoscen
Pathway Commons (http://www.pathwaycommons.org/)
PathVisio (http://www.pathvisio.org/)
Moksiskaan (http://csbi.ltdk.helsinki.fi/moksiskaan/)
Weighed Gene Co-Expression Network Analysis (WGCNA)s
More tools in R Bioconductor

Visualization and Pathway Analysis

https://genome.ucsc.edu/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/


Further Reading

RNA-seqlopedia 
https://RNA-Seq.uoregon.edu/


RNA-Seq by Example  

https://www.biostarhandbook.com/


Reference-based RNA-Seq data analysis 
https://training.galaxyproject.org/
training-material/topics/transcriptomics/
tutorials/ref-based/tutorial.html

https://rnaseq.uoregon.edu
https://rnaseq.uoregon.edu
https://www.biostarhandbook.com/books/rnaseq/index.html
https://www.biostarhandbook.com/
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html


Further Reading

Introduction to RNA-seq 
https://scienceparkstudygroup.github.io/rna-seq-lesson/


RNA-seq: a step-by-step analysis pipeline  

https://github.com/CebolaLab/RNA-seq


BTEP - Bioinformatics Resources for CCR Scientists 
https://bioinformatics.ccr.cancer.gov/docs/resources-for-bioinformatics/

https://scienceparkstudygroup.github.io/rna-seq-lesson/
https://github.com/CebolaLab/RNA-seq
https://bioinformatics.ccr.cancer.gov/docs/resources-for-bioinformatics/


Questions ?

Contacts:  
Peter FitzGerald   fitzgepe@nih.gov 
BTEP                     ncibtep@nih.gov


