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Objectives
• Understand	some	of	the	key	concepts	in	the	
methods	and	analysis	of	single	cell	genomics	data
• Understand	some	of	the	current	limitations
• Appreciate	important	experimental	design	
considerations,	including	platform	selection
• Be	introduced	to	some	of	the	“established”	and	
emerging	single	cell	genomics	applications

Outline
• Key	Concepts	in	Single	Cell	Genomics
• Example	Single	Cell	RNA-Seq Workflows
• Experimental	Design	&	Platform	Selection
• Single	Cell	Genomic	Applications



Key	Concepts	in	Single	Cell	
Genomics



Single	Cell	Genomics	– Avoiding	
the	Caveat	of	Averaging

Diagram	from:	http://fightdipg.org/research-projects/



Single	Cell	“Genomics”	Not	
Limited	to	Transcriptome

Macaulay	et	al	2017	doi.org/10.1016/j.tig.2016.12.003
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Generalized	Workflow	for	
Single	Cell	RNA-Seq

1	- Partition	Single	Cells
2	- Barcode	&	Sequence
3	- Analyze	&	Interpret

Haque et	al	2017



What’s	different	about	Single	Cell	data?
Requires	the	partitioning	of	single	cells
• Assigning	information	from	one	cell	versus	another	is	usually	done	via	a	barcoding	

strategy,	which	occurs	when	the	cell	is	partitioned
• Isolating	single	cells	is	not	trivial	from	some	tissues	– they	can	either	be	difficult	to	

dissociate	and/or	fragile

Single	cell	data	is	“sparse”
• Low	amount	of	starting	material	and	less-than-ideal	conditions	for	sensitivity
• Single	cell	RNA-Seq might	give	you	500	genes	expressed	in	a	single	cell
• Analysis	methods	take	some	of	this	into	consideration,	and	may	differ	from	analysis	of	

bulk	datasets

Single	cell	data	is	”noisy”
• Prone	to	technical	noise	and	variation,	making	measurement	of	biological	signal	tricky
• Lots	PCR	and	molecular	biology	wizardry	at	work	– technical	bias	may	arise
• Even	when	a	molecule	is	present,	it’s	detection	is	not	guaranteed	(low-abundance	

molecules	are	especially	prone	to	these	“drop-outs”)
• Better	to	rely	on	correlated	sets	of	genes	rather	than	single	genes	for	analysis

Datasets	are	flexible	/	usually	require	specialized	analysis
• Standard	control	versus	treatment	type	testing	often	only	part	of	the	analysis
• Differential	expression	may	starts	with	defining	which	samples	to	compare

• May	require	identification	of	outlier	samples,	normalization,	and	clustering	of	data
• Ability	to	select	samples	in	each	comparison	groups	makes	data	very	flexible
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Example	of	Single	Cell	RNA-Seq
Workflows

1	- Partition	Single	Cells
2	- Barcode	&	Sequence
3	- Analyze	&	Interpret



Cell	isolation	and	handling
• Ideally	want	to	measure	the	native	biological	state

• Minimize	transcriptional	drift,	degradation,	etc.	during	isolation	process
• Preserve	viability	and	diversity	of	cell	types

• Do	you	need	to	test	and	optimize	dissociation	processes?
• Selection	of	enzymes,	incubation	times,	etc.
• Effects	on	cell	viability?

• Do	you	need	to	enrich	for	target	cell	types?
• FACS,	MACs,	other?
• What	effect	will	this	additional	processing	have	on	what	you	are	looking	to	
assay?

• What	if	fresh	samples	cannot	be	obtained,	or	the	tissue	cannot	be	
efficiently	dissociated?
• Some	preservation	/ fixation	methods	have	been	demonstrated
• Isolating	nuclei	instead	of	whole	cells	may	be	an	option



Partitioning	Single	Cells	–
Some	Common	Examples
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Single	Cell	Partitioning,	Lysis	and	Barcoding

Microfluidic	
Capture

FACs Droplet	Based	
Methods



Capturing	mRNA	and	Adding	Barcodes
Single	Cell	Per	Well	

Protocols

6

Single	Cell	Partitioning,	Lysis	and	Barcoding

From	10X	Genomics	Promotional	Material

Droplet-Based	
Protocols

Picelli et	al	2014



A	quick	intro	to	spike-in’s	and	UMI’s:
Exogenous	spike-in’s	provide	a	known	reference	
concentration	for	comparison	/	adjustment

• Spike-in	concentration	
needs	to	be	tuned	to	RNA	
content	of	your	samples
• Balance	detection	

with	sequencing	cost
• The	utility	of	spike	in’s	may	

be	limited	for	droplet	based	
methods

Baran-Gale	et	al	2017

ERCCs:	up	to	96	synthetic	RNA	
molecules	in	known	molar	ratios	
and	lengths

SIRVs:	synthetic	RNA	molecules	
that	model	alternatively	splicing	
and	other	variation.	Vary	in	length	
and	complexity.

https://www.lexogen.com/sirvs/



A	quick	intro	to	spike-in’s	and	UMI’s:
Molecular	indices	allow	tracking	of	how	many	

original	molecules	existed

Islam	et	al	2014	Nature	Methods	PMID: 24363023

• Multiple	reads	for	the	same	gene	
within	the	same	cell	can	be	
collapsed	to	a	count	of	one	if	they	
have	the	same	UMI	barcode

• Increased	diversity	of	tags	when	cell	
barcode	and	target	identity	
included.

• Unique	molecular	identifiers	are	
currently	only	possible	with	5’	or	3’	
end	methods



Library	Prep	&	Sequencing
3’	End	Libraries

Full-length	Libraries

Diagram	from	http://www.gendx.com/illumina-clonal-amplifiction



Data	Analysis
Part	I:	Processing	&	Alignment	

• Demultiplex individual	samples	using	cell	barcodes
• Single	cell-per-well	protocols	generally	use	Illumina	indices
• Droplet-based	systems	use	custom	scripts	to	extract	cell	barcodes

• Trimming	and	alignment
• Removal	of	adapter	sequences	and	low-quality	information
• Alignment	of	reads	to	reference	genome	with	transcript	coordinates
• Full-length	libraries	can	handle	some	multi-mapping;	5	or	3’	end	
libraries	usually	on	utilize	non-ambiguously	mapped	reads

• Assessment	of	alignment	metrics
• Percentage	of	reads	mapped
• Percentage	exon	vs	intron	vs	intergenic
• For	full-length:	gene	body	coverage	and	detection	of	splice	sites

Input:	
Raw	sequencing	files
Output:	
Gene	expression	matrix



• Initial	QC	and	filtering
• Outlier	identification
• Thresholding	based	on	read	depth,	UMI	counts,	and/or	genes	detected

• Cross-sample	normalization
• Adjustment	for	library	size,	etc.

• Variance	thresholding	and	stabilization
• Selection	of	variable	genes	(non-”housekeepers”)
• Dispersion	(variance	over	mean)	threshold	often	used
• Data	transformed	to	reduce	statistical	weight	of	huge	expression	values	(e.g.	log-transformation)

• Dimensionality	reduction
• Principle	component	analysis	(or	similar)	to	look	for	structure	in	data

• Define	relationships	between	individual	samples
• Clustering	(hierarchical,	k-means,	graph-based)
• Trajectory	modeling

• Differential	expression	testing Input:	
Gene	expression	matrix
Output:	
Analyzed	data

Data	Analysis
Part	II:	Dimensionality	reduction,	clustering	

and	differential	expression	testing

1	- Partition	Single	Cells
2	- Barcode	&	Sequence
3	- Analyze	&	Interpret



Glossary	of	terms
Cell	Barcode:	sequence	tag	associated	with	all	molecules	from	a	single	cell	sample	that	
allows	tracking	of	individual	transcriptomes
Unique	Molecular	Index	(UMI):	A	unique	sequence	tag	for	every	transcript	molecule
Sensitivity:	Ability	to	detect	specific	molecules,	if	present.	Usually	reported	as	number	of	
UMI	counts	(transcripts)	or	genes	detected.
Reads	vs Counts:	Reads	are	reported	by	the	sequencer.	Counts	are	the	enumeration	of	
observed	molecules,	which	can	be	estimates	based	on	transcript	models	or	transcript	
counts	with	UMI’s. Multiple	reads	of	a	gene	with	the	same	UMI	can	be	a	single	count.
Multiplexing:	Combining	samples	together	for	more	efficient	handling	and	analysis.	De-
multiplexed	via	cell	barcodes.
Spike-in’s:	Exogenous	synthetic	molecules	of	known	composition	and	concentration	added	
to	the	initial	reaction	to	compare	to	molecules	from	the	cell.	Allows	for	determination	of	
sensitivity	and	a	conversion	of	relative	data	to	more	absolute	values.

Full-length vs	3’	Only:	For	single	cell	RNA-Seq,	referring	to	whether	full	length	trancript
information	is	assayed,	or	only	the	3’	end	of	the	molecule	– giving	gene-only	level	
information.

Dimensionality	Reduction:	Decreasing	the	complexity	of	the	dataset	by	evaluating	
correlated	structure	between	genes	and	grouping	as	a	“meta-genes”	to	help	interpret	
highly-multidimensional	data.



Experimental	Design	&	
Platform	Selection	
Considerations

https://btep.ccr.cancer.gov/november-2017-single-cell-rna-seq-mind-read-starting-adventure/



Initial	Experimental	Design	Questions

• Why	you	need	single	cell	resolution?
• Single	cell	has	technical	limitations	and	extra	cost
• Assaying	a	heterogeneous	population,	a	dynamic	process,	or	
surveying	a	tissue	or	system	with	diverse	cell	types?

• What	do	you	expect	to	get	from	your	data?
• Knowing	what	analysis	and	comparisons	you	want	to	make	will	
help	make	sure	you	include	the	right	samples	and	controls

• Who	will	analyze	the	data?
• A	strong	partnership	between	the	biological	subject	matter	
expert	and	someone	with	bioinformatic expertise	will	increase	
the	chances	of	project	success

• Bioinformatic consultation	at	project	outset	often	helps	in	
improving	design



Common	Considerations:
• Cost	per	cell
• Throughput
• Efficiency	of	capture
• Full-length	or	3’-Only	Protocol
• Sensitivity
• Linking	to	other	modality
• Multiple	conditions	in	parallel?

Modified	from	core-genomics.blogspot.com

~2%
~10%
65%
?

Capture	
Efficiency

Experimental	Design	<->	Platform
Fluidigm C1:	
Higher	cost,	low-
throughput,	full-
length,	with	
ability	to	image
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Single	Cell	Partitioning,	Lysis	and	Barcoding

10X	Chromium:	
Lower	cost,	high-
throughput,	3’-
end,	up	to	8	
samples	in	parallel



Single	cell-per-well	methods	allow	
full-length	scRNA-seq on	Illumina	
NGS	sequencing	platforms

Sample	1:	i7=N708;	i5=S510
Sample	2:	i7=N712;	i5=S511
Sample	3:	i7=N708;	i5=S512
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Which	is	better	– more	cells	or	
greater	depth?

• More	information	can	be	gained	by	sequencing	
to	greater	depth	– especially	using	sensitive	
methods
• More	genes	detected;	fewer	“drop-outs”
• Better	isoform	discrimination	(when	full-

length	libraries	sequenced)
• More	independent	observation	(more	cells)	is	

better	for	cell	identity	classification	– averages	
out	noise

• Classic	scientific	non-answer:	it	depends	on	
what	you	are	looking	for
• Broad	survey	of	cell	types	or	dynamics	

processes	best	modeled	by	higher-
throughput	data

• Investigation	of	presumably	low-expressed	
(or	specific	isoforms)	requires	greater	
depth

Modified	from	10X	Genomics	material



Baran-Gale	et	al	2017	(doi.org/10.1093/bfgp/elx035)

How	Many	Cell	for	Rare	Cell	
Populations?



Control	for	Batch	Effects	in	Design

Baran-Gale	et	al	2017	(doi.org/10.1093/bfgp/elx035)

Butler	&	Satija BioRxiv 2017
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Single	Cell	Genomic	
Applications



Example	of	scRNA-Seq Analysis:	Unbiased	
Identification	of	New	Cell	Types	and	

Markers

High-throughput Droplet-Based 
scRNA-Seq is Not Just Hype
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Example	of	scRNA-Seq Analysis:	
Unbiased	survey	of	cell	ratio	and	

transcriptional	phenotypes	changes

From	10X	Genomics	Chromium	Technical	Bulletin

Figure 5. Single cell profiling from healthy and malignant tumor cell samples.  
Single cell profiling of BMMCs from healthy, CLL and AML patients. ~30,000 reads/cell  
in this experiment.

CLL patient AML patientHealthy individual



Example	of	scRNA-Seq Analysis:	
Developmental	Trajectory	Analysis

Investigating the Development of Cochlear Lateral Supporting 
Cell Subtypes by Single Cell mRNA-seq

Michael Kelly1, Joseph Burns1, Kathryn Ellis1, Joseph Mays1, Carly Martin1, Robert Morell2, Matthew Kelley1
1Laboratory of Cochlear Development and 2Genomics and Computational Biology Core 

National Institute on Deafness and Other Communication Disorders, National Institutes of Health; Bethesda, MD 20892

Cochlear epithelia from E16, P1 and P7 Lfng/GFP; Gfi1-Cre x R26-
tdTomato were enzymatically and mechanically dissected to enrich for sensory 
and adjacent non-sensory cells (B). In this transgenic model, hair cells are 
labeled by tdTomato fluorescence and most of the supporting cell subtypes are 
labeled by GFP. Inner Pillar cells are largely devoid of GFP expression. The 
Fluidigm C1 system was used to capture single cells from each dissection and 
to generate amplified cDNA libraries that were sequenced on an Illumina
platform (C). 

Because developmental gradients exist along the longitudinal axis of the 
cochlear duct, apical and basal turns of the cochlea were separated and 
processed in parallel so that differentiation-dependent transcriptional changes 
could be reliably identified. Lateral supporting cells were identified by unbiased 
sample clustering and by expression of known markers, such as Fgfr3 and 
Prox1. Differentiation trajectories for each cell type were modeled using 
transcriptional profiles across each developmental timepoint. 

In comparison to medial supporting cells, which 
share gene expression profiles with non-sensory cells, 
lateral supporting cells display distinct transcriptional 
profiles at all timepoints examined. These results 
suggest that the lateral supporting cells may represent 
an early-specified domain of cells that are distinct from 
the medial sensory region. Moreover, expression 
analysis of lateral supporting cells across timepoints
identifies previously uncharacterized components of 
the Wnt signaling pathway in the development of this 
region. 

Single	Cell	mRNA-seq Methods	Overview
• Single cells from E16, P1, and P7 cochleae captured on 10-17micron Fluidigm C1 chip
• All capture sites imaged prior to lysis of cell, allowing for selection of single cells
• OligodT-primed reverse transcription using SMARTer method followed by cDNA PCR

amplification on the C1 microfluidic chip
• Illumina sequencing library using Nextera XT transposase-based fragmentation of

amplified full-length cDNA and sample barcoding
• 48 cells per lane were multiplexed on each HiSeq 1000 lane for approximately 1-2

million reads per cell
• Reads mapped to NCBI mouse mm10 reference transcriptome with Bowtie2, as part

of RSEM package
• Transcript abundance calculations performed using RSEM in R, and transcripts per

million (TPM) values were normalized across all samples used in each analysis using
geometric mean normalization Future Directions

• Further validation of genes identified from differential expression and monocle trajectory
analysis

• Test possible developmental relationships by genetic lineage tracing
• Expansion of the single cell mRNA-seq dataset to allow for more robust comparisons and

trajectory modeling for each of the cell subtypes
• New higher-throughput methods allow for increased numbers of cells at lower per-cell cost
• Improved chemistries promise better transcript coverage and reliability, allowing for better

isoform detection
• Provide user-friendly access to the single cell mRNA-seq datasets so that others in the field

may utilize them
• A subset of the P1 cochlear dataset is currently on GEO (GSE71982) and soon be

available on gEAR

Lateral Supporting Cell Markers Identified by Single Cell mRNA-seq

Summary & Conclusions
• Single cell mRNA-seq of cells originating from multiple developmental timepoints and regions allows for:

• Flexible differential expression comparisons that identify new cell markers

• Modeling of temporal and spatial trajectories to reveal shared patterns of expression between genes

• Unbiased cluster analysis to suggest relationships between various cell types

• Genes enriched in lateral supporting cells may help us better understand the development of these important cell

subtypes and provide useful markers

• Modeled differentiation trajectories of the lateral supporting cell population (and other cell types) reveal possible

genes and gene networks that may be co-regulated, which may help identify important molecular pathways

• Lateral supporting cells displayed distinct transcriptional characteristics, even when the organ of Corti was still in

the process of early development stages at E16. Along with shared gene expression between medial supporting

cells and non-sensory cells, these distinct lateral supporting cell expression patterns may suggest an early lineage

separation of the medial and lateral cochlear compartments

Differentiation Trajectory Modeling of Lateral Supporting Cells 
Identifies Dynamically-Regulated Candidate Genes

Unique Transcriptional Profile of Lateral Supporting Cells Suggests 
Possible Early Lineage SeparationIntroduction & Abstract

The lateral, or abneural, domain of the organ of Corti represents a distinct 
population of cells, marked by unique morphological, molecular, and 
functional characteristics (A). Supporting cells from the lateral domain include 
inner and outer pillar cells and Deiters cells, which have unique and highly 
stereotyped three-dimensional architectures that are likely essential for proper 
auditory mechanics. Little is known about the transcriptional program that 
directs the unique differentiation of these cell types. Furthermore, while a 
shared developmental lineage for lateral supporting cells and all other 
sensory cells of the organ of Corti has been hypothesized, limited direct 
evidence exists to support this assumption. Here, we utilize single cell RNA 
sequencing (mRNAseq) to explore the transcriptional differentiation of these 
specialized cell types. 

A

Overall, these results suggest that the lateral domain of the organ of
Corti may represent a unique developmental lineage important for
increased auditory sensitivity and frequency discrimination. Validation
of other component genes and pathways identified from the
differentiation trajectory models is ongoing and we are performing
genetic lineage tracing to determine at what point a separate lateral
sensory domain may arise.

This work was funded by the the NIDCD Intramural Research Program (DC000059 to M.W.K and DC000039-18 to T.B. Friedman)
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(p-value) Gene ANOVA Rank 
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Plekhb1 1st (~0) Fn1 1st (4.41x10-11)

Enho 2nd (5.22x10-13) Chst15 2nd (6.91x10-10)

Sdc4 3rd (2.10x10-12) Epha7 3rd (1.53x10-8)

Cdkn1a 7th (9.71x10-10) Sox11 17th (4.23x10-06)

Car14 13th (2.00x10-8) Prox1 759th (0.01)
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Supporting Cells (Across E16-P7)

Gene ANOVA Rank (p-value)

Mansc4 (Gm5887) 1st (6.78x10-85)
Fgfr3 2nd (4.10x10-75)

Serpine3 3rd (1.20x10-73)
Car14 4th (3.93x10-65)

4930523C07Rik 5th (3.97x10-57)
Prox1 12th (9.34x10-40)
Cntn1 27th (6.62x10-30)

Kremen1 49th (3.03x10-20)
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E16 - Base 15 10 8 7
P1 - Apex 25 10 8 0

*P1 - Whole 50 10 16 13
P1 - Base 26 5 9 0
P7 - Apex 29 3 5 14

P7 - Whole 16 5 15 5
P7 - Base 9 3 12 5

Total 170 46 73 44
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Data	Analysis	Summary
• Outlier samples removed with Singular analysis package
• Dimensionality reduced by trimming low expressed genes

and those with little variance, followed by PCA to select
aspects of the data that separated cell subtypes

• Samples with similar transcriptional expression were
grouped by K-means clustering

• Further separation of expected cells types was done by
curation of known markers of each subtype

• Differential expression was done between these groups by
ANOVA within the Singular analysis package in R

• Trajectory modeling was performed using Monocle in R
*	These	samples	are	part	of	the	dataset	published	in	Burns	&	Kelly	et	al	Nature	Comm2015

(A) Principle component analysis performed on single cell samples from each age independently shows clear separation of hair cells and lateral 
supporting cells from other cochlear cell types. (B) Violin plots summarizing expression of cells within each group from all timepoints showing the enriched 
expression of known supporting cell markers, including those restricted to the lateral organ of Corti. Cntn1 and Kremen1 were identified as also having 
expression enriched within the lateral supporting cell group from a differential expression test between groups. (C) Cntn1 is expressed in lateral supporting
cells, as well as spiral ganglion neurites, which largely overlap with Tuj1 in the medial organ of Corti. (D) Kremen1 is enriched in the lateral supporting
cells of the organ of Corti. (E) Subset of differential expression results.
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B C D

E
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(A) Using single cell mRNA-seq data from an individual cell subtype across multiple timepoints
allows for modeling of expression changes. (B) Single cell expression of genes across 
Monocle “Pseudotime” shows expected profiles of genes known to change during E16 to P7 
development. (C) Violin plots show trends within LatSC expression may be shared by other cell
types. (D) Differential expression across pseudotime showed genes that fit into 1 of 4 profiles. 
(E) Subset of differentially expressed genes that either increased or decreased from E16 to P7.

A

B C D

E

Co_P1_Ep_Neg_15

Co_P1_Ep_Neg_6

Co_P1_Ep_Neg_35

Co_P1_Ep_Neg_0

Co_P1_Ep_Neg_45

Co_P1_Ep_Neg_5

Co_P1_Ep_Neg_44

Co_P1_Ep_Neg_16

Co_P1_Ep_Neg_47

Co_P1_Ep_Neg_49

Co_P1_Ep_Neg_42

Co_P1_Ep_Neg_52

Co_P1_Ep_Neg_37

Co_P1_Ep_Neg_28

Co_P1_Ep_Neg_24

Co_P1_Ep_Neg_23

Co_P1_Ep_Neg_31

Co_P1_Ep_G
FP_3

Co_P1_Ep_G
FP_6

Co_P1_Ep_G
FP_16

Co_P1_Ep_G
FP_14

Co_P1_Ep_G
FP_15

Co_P1_Ep_G
FP_30

Co_P1_Ep_G
FP_21

Co_P1_Ep_G
FP_5

Co_P1_Ep_G
FP_33

Co_P1_Ep_G
FP_29

Co_P1_Ep_G
FP_19

Co_P1_Ep_G
FP_7

Co_P1_Ep_G
FP_32

Co_P1_Ep_G
FP_1

Co_P1_Ep_G
FP_27

Co_P1_Ep_Neg_4

Co_P1_Ep_Neg_29

Co_P1_Ep_Neg_34

Co_P1_Ep_Neg_25

Co_P1_Ep_Neg_40

Co_P1_Ep_Neg_22

Co_P1_Ep_Neg_8

Co_P1_Ep_Neg_19

Co_P1_Ep_Neg_46

Co_P1_Ep_Neg_36

Co_P1_Ep_Neg_26

Co_P1_Ep_Neg_18

Co_P1_Ep_Neg_43

Co_P1_Ep_Neg_30

Co_P1_Ep_Neg_38

Co_P1_Ep_Neg_53

Co_P1_Ep_Neg_32

Co_P1_Ep_Neg_39

Co_P1_Ep_Neg_27

Co_P1_Ep_Neg_41

Co_P1_Ep_Neg_20

Co_P1_Ep_Neg_1

Co_P1_Ep_Neg_50

Co_P1_Ep_Neg_51

Co_P1_Ep_Neg_3

Co_P1_Ep_Neg_48

Co_P1_Ep_G
FP_13

Co_P1_Ep_Neg_54

Co_P1_Ep_G
FP_0

Co_P1_Ep_G
FP_24

Co_P1_Ep_G
FP_10

Co_P1_Ep_G
FP_11

Co_P1_Ep_G
FP_20

Co_P1_Ep_G
FP_36

Co_P1_Ep_G
FP_31

Co_P1_Ep_G
FP_26

Co_P1_Ep_G
FP_38

Co_P1_Ep_G
FP_37

Co_P1_Ep_G
FP_22

Co_P1_Ep_G
FP_2

Co_P1_Ep_G
FP_39

Co_P1_Ep_G
FP_35

Co_P1_Ep_G
FP_28

Co_P1_Ep_G
FP_40

Co_P1_Ep_G
FP_34

Co_P1_Ep_G
FP_18

Co_P1_Ep_G
FP_9

Co_P1_Ep_G
FP_23

Co_P1_Ep_G
FP_25

Co_P1_Ep_tdTom
_7

Co_P1_Ep_tdTom
_1

Co_P1_Ep_tdTom
_5

Co_P1_Ep_tdTom
_3

Co_P1_Ep_tdTom
_6

Co_P1_Ep_tdTom
_4

Co_P1_Ep_tdTom
_8

Co_P1_Ep_tdTom
_2

Co_P1_Ep_tdTom
_0

Co_P1_Ep_tdTom
_9

Igf2

Sema3c

Rasgrf1

Myo5c

Pxdn

Papss2

H19

Ifi27l1

Smoc2

Tns3

Rspo2

Ogn

Plekha4

Matn1

Col4a2

Car9

Alcam

Calb1

Hint1

Tmem132c

Srgap1

Igf1

Cdkn1c

Epyc

Itm2a

Cldn6

Wfdc2

Txndc5

Muc15

Tnfrsf19

Fndc3b

Calml4

Pcolce2

Fxyd1

Wnt5a

Fgfr1

Sh3bgrl3

Pcsk6

Polr2a

Fam198a

Gucy1b3

Ltbp3

Cryl1

Ldb2

Slc16a2

Pdia5

6430527G18Rik

Col11a2

Ptprd

Hmcn1

Sox5

Fam184b

Galm

Sulf1

Prdm16

1190002H23Rik

Peg3

Fras1

Mmp2

4833420G17Rik

Maml2

Mmp14

Frmd3

Syt1

2900092D14Rik

Tsen15

Net1

Sall3

Car2

Chst2

Crym

Cobl

Gjb6

Fgf10

Cpxm2

Dpp4

Il33

Smpdl3a

Lgr5

Stox1

Cdh2

Slc22a3

Gpc4

B3gnt7

Ppp1r1a

B3galt2

Ism1

Slitrk6

Socs2

Prss23

Gpr126

Gm8680

Igfbp3

Sipa1l1

Gm5506

Map3k1

Tmprss3

Nrcam

Serpine2

Fam101b

E030010A14Rik

Dync1i1

Gm5887

1190002F15Rik

2310022B05Rik

Tsga14

Rab3b

Rragd

Cox4i2

Kremen1

Hs3st1

Prox1

Fgfr3

S100b

Col4a1

Cntn1

4930523C07Rik

Pgm5

Itih5

Rhou

Trp53inp2

Syt12

Myoz3

Lfng

Hmga2

LOC100505062

Il2

Fzd9

Sash1

Olfr1372−ps1

Ptprz1

Qpct

St8sia2

9930013L23Rik

Frem2

Emb

Ephb1

Gm10091

Olfm1

Rffl

Nbl1

Dapk1

Apba1

Myo3a

Defb25

Pvalb

Lhfpl5

Fam70b

Dlk2

Rasd2

Grxcr1

Ppp1r27

Otof

Gng8

Gm6537

Camk2b

Miat

2510049J12Rik

Bdnf

Grxcr2

Cxcl14

Pou4f3

Syt13

Fam188b2

Barhl1

Chrna10

Xirp2

Gm9766

Gpr156

Cib2

Dynlrb2

Gng3

Rundc3a

Eml1

Espnl

Hip1r

Mreg Isolation
5c
3c

Cell Type
NSCa
NSCb
Supp Cell
Hair Cell

GFP (I)
9.97

0

tdTomato (I)
9.97

0

Gene Groups
1
2
3
4
5
6
7
8
9
10

0

5

10

Medial Cell Lateral NS Cell LatSC HC

Co_P1_Ep_Neg_15

Co_P1_Ep_Neg_6

Co_P1_Ep_Neg_35

Co_P1_Ep_Neg_0

Co_P1_Ep_Neg_45

Co_P1_Ep_Neg_5

Co_P1_Ep_Neg_44

Co_P1_Ep_Neg_16

Co_P1_Ep_Neg_47

Co_P1_Ep_Neg_49

Co_P1_Ep_Neg_42

Co_P1_Ep_Neg_52

Co_P1_Ep_Neg_37

Co_P1_Ep_Neg_28

Co_P1_Ep_Neg_24

Co_P1_Ep_Neg_23

Co_P1_Ep_Neg_31

Co_P1_Ep_G
FP_3

Co_P1_Ep_G
FP_6

Co_P1_Ep_G
FP_16

Co_P1_Ep_G
FP_14

Co_P1_Ep_G
FP_15

Co_P1_Ep_G
FP_30

Co_P1_Ep_G
FP_21

Co_P1_Ep_G
FP_5

Co_P1_Ep_G
FP_33

Co_P1_Ep_G
FP_29

Co_P1_Ep_G
FP_19

Co_P1_Ep_G
FP_7

Co_P1_Ep_G
FP_32

Co_P1_Ep_G
FP_1

Co_P1_Ep_G
FP_27

Co_P1_Ep_Neg_4

Co_P1_Ep_Neg_29

Co_P1_Ep_Neg_34

Co_P1_Ep_Neg_25

Co_P1_Ep_Neg_40

Co_P1_Ep_Neg_22

Co_P1_Ep_Neg_8

Co_P1_Ep_Neg_19

Co_P1_Ep_Neg_46

Co_P1_Ep_Neg_36

Co_P1_Ep_Neg_26

Co_P1_Ep_Neg_18

Co_P1_Ep_Neg_43

Co_P1_Ep_Neg_30

Co_P1_Ep_Neg_38

Co_P1_Ep_Neg_53

Co_P1_Ep_Neg_32

Co_P1_Ep_Neg_39

Co_P1_Ep_Neg_27

Co_P1_Ep_Neg_41

Co_P1_Ep_Neg_20

Co_P1_Ep_Neg_1

Co_P1_Ep_Neg_50

Co_P1_Ep_Neg_51

Co_P1_Ep_Neg_3

Co_P1_Ep_Neg_48

Co_P1_Ep_G
FP_13

Co_P1_Ep_Neg_54

Co_P1_Ep_G
FP_0

Co_P1_Ep_G
FP_24

Co_P1_Ep_G
FP_10

Co_P1_Ep_G
FP_11

Co_P1_Ep_G
FP_20

Co_P1_Ep_G
FP_36

Co_P1_Ep_G
FP_31

Co_P1_Ep_G
FP_26

Co_P1_Ep_G
FP_38

Co_P1_Ep_G
FP_37

Co_P1_Ep_G
FP_22

Co_P1_Ep_G
FP_2

Co_P1_Ep_G
FP_39

Co_P1_Ep_G
FP_35

Co_P1_Ep_G
FP_28

Co_P1_Ep_G
FP_40

Co_P1_Ep_G
FP_34

Co_P1_Ep_G
FP_18

Co_P1_Ep_G
FP_9

Co_P1_Ep_G
FP_23

Co_P1_Ep_G
FP_25

Co_P1_Ep_tdTom
_7

Co_P1_Ep_tdTom
_1

Co_P1_Ep_tdTom
_5

Co_P1_Ep_tdTom
_3

Co_P1_Ep_tdTom
_6

Co_P1_Ep_tdTom
_4

Co_P1_Ep_tdTom
_8

Co_P1_Ep_tdTom
_2

Co_P1_Ep_tdTom
_0

Co_P1_Ep_tdTom
_9

Igf2

Sema3c

Rasgrf1

Myo5c

Pxdn

Papss2

H19

Ifi27l1

Smoc2

Tns3

Rspo2

Ogn

Plekha4

Matn1

Col4a2

Car9

Alcam

Calb1

Hint1

Tmem132c

Srgap1

Igf1

Cdkn1c

Epyc

Itm2a

Cldn6

Wfdc2

Txndc5

Muc15

Tnfrsf19

Fndc3b

Calml4

Pcolce2

Fxyd1

Wnt5a

Fgfr1

Sh3bgrl3

Pcsk6

Polr2a

Fam198a

Gucy1b3

Ltbp3

Cryl1

Ldb2

Slc16a2

Pdia5

6430527G18Rik

Col11a2

Ptprd

Hmcn1

Sox5

Fam184b

Galm

Sulf1

Prdm16

1190002H23Rik

Peg3

Fras1

Mmp2

4833420G17Rik

Maml2

Mmp14

Frmd3

Syt1

2900092D14Rik

Tsen15

Net1

Sall3

Car2

Chst2

Crym

Cobl

Gjb6

Fgf10

Cpxm2

Dpp4

Il33

Smpdl3a

Lgr5

Stox1

Cdh2

Slc22a3

Gpc4

B3gnt7

Ppp1r1a

B3galt2

Ism1

Slitrk6

Socs2

Prss23

Gpr126

Gm8680

Igfbp3

Sipa1l1

Gm5506

Map3k1

Tmprss3

Nrcam

Serpine2

Fam101b

E030010A14Rik

Dync1i1

Gm5887

1190002F15Rik

2310022B05Rik

Tsga14

Rab3b

Rragd

Cox4i2

Kremen1

Hs3st1

Prox1

Fgfr3

S100b

Col4a1

Cntn1

4930523C07Rik

Pgm5

Itih5

Rhou

Trp53inp2

Syt12

Myoz3

Lfng

Hmga2

LOC100505062

Il2

Fzd9

Sash1

Olfr1372−ps1

Ptprz1

Qpct

St8sia2

9930013L23Rik

Frem2

Emb

Ephb1

Gm10091

Olfm1

Rffl

Nbl1

Dapk1

Apba1

Myo3a

Defb25

Pvalb

Lhfpl5

Fam70b

Dlk2

Rasd2

Grxcr1

Ppp1r27

Otof

Gng8

Gm6537

Camk2b

Miat

2510049J12Rik

Bdnf

Grxcr2

Cxcl14

Pou4f3

Syt13

Fam188b2

Barhl1

Chrna10

Xirp2

Gm9766

Gpr156

Cib2

Dynlrb2

Gng3

Rundc3a

Eml1

Espnl

Hip1r

Mreg Isolation
5c
3c

Cell Type
NSCa
NSCb
Supp Cell
Hair Cell

GFP (I)
9.97

0

tdTomato (I)
9.97

0

Gene Groups
1
2
3
4
5
6
7
8
9
10

0

5

10

Co_P1_Ep_Neg_15

Co_P1_Ep_Neg_6

Co_P1_Ep_Neg_35

Co_P1_Ep_Neg_0

Co_P1_Ep_Neg_45

Co_P1_Ep_Neg_5

Co_P1_Ep_Neg_44

Co_P1_Ep_Neg_16

Co_P1_Ep_Neg_47

Co_P1_Ep_Neg_49

Co_P1_Ep_Neg_42

Co_P1_Ep_Neg_52

Co_P1_Ep_Neg_37

Co_P1_Ep_Neg_28

Co_P1_Ep_Neg_24

Co_P1_Ep_Neg_23

Co_P1_Ep_Neg_31

Co_P1_Ep_G
FP_3

Co_P1_Ep_G
FP_6

Co_P1_Ep_G
FP_16

Co_P1_Ep_G
FP_14

Co_P1_Ep_G
FP_15

Co_P1_Ep_G
FP_30

Co_P1_Ep_G
FP_21

Co_P1_Ep_G
FP_5

Co_P1_Ep_G
FP_33

Co_P1_Ep_G
FP_29

Co_P1_Ep_G
FP_19

Co_P1_Ep_G
FP_7

Co_P1_Ep_G
FP_32

Co_P1_Ep_G
FP_1

Co_P1_Ep_G
FP_27

Co_P1_Ep_Neg_4

Co_P1_Ep_Neg_29

Co_P1_Ep_Neg_34

Co_P1_Ep_Neg_25

Co_P1_Ep_Neg_40

Co_P1_Ep_Neg_22

Co_P1_Ep_Neg_8

Co_P1_Ep_Neg_19

Co_P1_Ep_Neg_46

Co_P1_Ep_Neg_36

Co_P1_Ep_Neg_26

Co_P1_Ep_Neg_18

Co_P1_Ep_Neg_43

Co_P1_Ep_Neg_30

Co_P1_Ep_Neg_38

Co_P1_Ep_Neg_53

Co_P1_Ep_Neg_32

Co_P1_Ep_Neg_39

Co_P1_Ep_Neg_27

Co_P1_Ep_Neg_41

Co_P1_Ep_Neg_20

Co_P1_Ep_Neg_1

Co_P1_Ep_Neg_50

Co_P1_Ep_Neg_51

Co_P1_Ep_Neg_3

Co_P1_Ep_Neg_48

Co_P1_Ep_G
FP_13

Co_P1_Ep_Neg_54

Co_P1_Ep_G
FP_0

Co_P1_Ep_G
FP_24

Co_P1_Ep_G
FP_10

Co_P1_Ep_G
FP_11

Co_P1_Ep_G
FP_20

Co_P1_Ep_G
FP_36

Co_P1_Ep_G
FP_31

Co_P1_Ep_G
FP_26

Co_P1_Ep_G
FP_38

Co_P1_Ep_G
FP_37

Co_P1_Ep_G
FP_22

Co_P1_Ep_G
FP_2

Co_P1_Ep_G
FP_39

Co_P1_Ep_G
FP_35

Co_P1_Ep_G
FP_28

Co_P1_Ep_G
FP_40

Co_P1_Ep_G
FP_34

Co_P1_Ep_G
FP_18

Co_P1_Ep_G
FP_9

Co_P1_Ep_G
FP_23

Co_P1_Ep_G
FP_25

Co_P1_Ep_tdTom
_7

Co_P1_Ep_tdTom
_1

Co_P1_Ep_tdTom
_5

Co_P1_Ep_tdTom
_3

Co_P1_Ep_tdTom
_6

Co_P1_Ep_tdTom
_4

Co_P1_Ep_tdTom
_8

Co_P1_Ep_tdTom
_2

Co_P1_Ep_tdTom
_0

Co_P1_Ep_tdTom
_9

Igf2

Sema3c

Rasgrf1

Myo5c

Pxdn

Papss2

H19

Ifi27l1

Smoc2

Tns3

Rspo2

Ogn

Plekha4

Matn1

Col4a2

Car9

Alcam

Calb1

Hint1

Tmem132c

Srgap1

Igf1

Cdkn1c

Epyc

Itm2a

Cldn6

Wfdc2

Txndc5

Muc15

Tnfrsf19

Fndc3b

Calml4

Pcolce2

Fxyd1

Wnt5a

Fgfr1

Sh3bgrl3

Pcsk6

Polr2a

Fam198a

Gucy1b3

Ltbp3

Cryl1

Ldb2

Slc16a2

Pdia5

6430527G18Rik

Col11a2

Ptprd

Hmcn1

Sox5

Fam184b

Galm

Sulf1

Prdm16

1190002H23Rik

Peg3

Fras1

Mmp2

4833420G17Rik

Maml2

Mmp14

Frmd3

Syt1

2900092D14Rik

Tsen15

Net1

Sall3

Car2

Chst2

Crym

Cobl

Gjb6

Fgf10

Cpxm2

Dpp4

Il33

Smpdl3a

Lgr5

Stox1

Cdh2

Slc22a3

Gpc4

B3gnt7

Ppp1r1a

B3galt2

Ism1

Slitrk6

Socs2

Prss23

Gpr126

Gm8680

Igfbp3

Sipa1l1

Gm5506

Map3k1

Tmprss3

Nrcam

Serpine2

Fam101b

E030010A14Rik

Dync1i1

Gm5887

1190002F15Rik

2310022B05Rik

Tsga14

Rab3b

Rragd

Cox4i2

Kremen1

Hs3st1

Prox1

Fgfr3

S100b

Col4a1

Cntn1

4930523C07Rik

Pgm5

Itih5

Rhou

Trp53inp2

Syt12

Myoz3

Lfng

Hmga2

LOC100505062

Il2

Fzd9

Sash1

Olfr1372−ps1

Ptprz1

Qpct

St8sia2

9930013L23Rik

Frem2

Emb

Ephb1

Gm10091

Olfm1

Rffl

Nbl1

Dapk1

Apba1

Myo3a

Defb25

Pvalb

Lhfpl5

Fam70b

Dlk2

Rasd2

Grxcr1

Ppp1r27

Otof

Gng8

Gm6537

Camk2b

Miat

2510049J12Rik

Bdnf

Grxcr2

Cxcl14

Pou4f3

Syt13

Fam188b2

Barhl1

Chrna10

Xirp2

Gm9766

Gpr156

Cib2

Dynlrb2

Gng3

Rundc3a

Eml1

Espnl

Hip1r

Mreg Isolation
5c
3c

Cell Type
NSCa
NSCb
Supp Cell
Hair Cell

GFP (I)
9.97

0

tdTomato (I)
9.97

0

Gene Groups
1
2
3
4
5
6
7
8
9
10

0

5

10

nT
PM

Medial Supporting Cells

Kremen1

DAPI

Prox1

P1
	W

M

Kremen1
Myo7a

Myo7a

A

C

D

(D) Genetic lineage tracing with Sox2-CreER (and other region-
specific Cre drivers) to determine if an early separation of the 
medial and lateral compartments exist. The R26-Confetti may give 
additional confidence in clonal relationships because of the 
multiple reporter fluorescent readouts.

(A) Lfng/GFP-positive medial supporting cells share expression of 
many genes with medial non-sensory cells and cluster with them with 
unbiased analysis. (B) Shared gene expression is confirmed by 
immunostaining showing expression of medial-enriched markers 
extending into the medial sensory domain up to the inner pillar cell 
row. 

(C) All cells of the organ of Corti are believed to originate from a set of 
sensory precursor cells. Shared transcriptional profiles raise the 
possibility that medial supporting cells may have a distinct lineage 
from a separate lateral supporting cell lineage.
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Pseudotime ordering	of	single	cell	samples	according	to	differentiation	stage	(using	Monocle	package)



Increased	throughput	with	
combinatorial	indexing

• Whole	organism	
scale	assays	with	
combinatorial	
indexing

• Makes	broad	
classification	
surveying	
possible

• Increased	
sampling	allows	
greater	
resolution	of	
dynamic	
processes	and	
sparse	data	
(epigenetics)

Cao	et	al	2017



Encoding	multiple	modalities
• Protein	or	Reporters	

• Genomic	/	Epigenome

• Spatial	Location

• History	(such	as	activity)
Shahi et	al	2017

Dey et	al	2015Buenrostro et	al	2015

Single	Cell	ATAC-Seq

Single	Cell	Ab-Seq

Single	Cell	
Genome	&	
Transcriptome



Encoding	lineage	information
• Accumulation	of	CRISPR	

mutations	allow	lineage	
reconstruction

• Theoretically	can	be	linked	to	
other	information	(such	as	
transcriptome)	for	cell	identity

McKenna	et	al	2015	Science



Spatial	Information

From	http://www.spatialtranscriptomicsresearch.org



Single	Cell	Isoform	Detection

• In	the	push	for	more	cells	and	
broader	surveys,	many	
platforms	utilize	gene-only	
level	counting

• Transcript	isoforms	are	
important

• Single	cell	per	well	protocols	
that	allow	“full-length”	are	
generally	low	throughput,	
expensive,	and	lack	UMIs



Improved	analysis	methods

• Infrastructure	and	data	structures	to	handle	large	
multidimensional	datasets
• Established	workflows	and	best	practices
• Modeling	of	dynamics,	etc.
• Inclusion	/	handling	of	multi—modal	datasets
• Discovery	of	fundamental	transcriptional	controls	
and	gene	regulatory	networks
• Functional	genomics	at	single	cell	resolution



Objectives

• Understand	some	of	the	key	concepts	in	the	
methods	and	analysis	of	single	cell	genomics	data
• Understand	some	of	the	current	limitations
• Appreciate	important	experimental	design	
considerations,	including	platform	selection
• Be	introduced	to	some	of	the	“established”	and	
emerging	single	cell	genomics	applications



Are	there	single	cell	RNA-Seq datasets	to	
play	with	before	collecting	my	own?

• Most	single	cell	publications	have	data	deposited	in	GEO
• Can	download	raw	data	and	usually	processed	expression	matrices

• Some	commercial	platforms	provide	example	datasets	to	view	and	
analysis
• 10X	Genomics	(https://support.10xgenomics.com/single-cell/datasets)

• Some	analysis	package	developers	provide	example	datasets
• Seurat	(http://satijalab.org/seurat/get_started.html)

• Some	data	can	also	be	viewed	in	web-based	portals



Some	final	thoughts

• Manage	expectations
• Experimental	design	and	platform	selection	is	
important
• Proper	data	analysis	will	take	some	time	and	your	
bioinformatician will	be	your	best	friend
• Don’t	assume	bulk	RNA-Seq analysis	tools	are	
appropriate	for	scRNA-Seq data



How	do	I	keep	up?

• Who	to	watch:
• Regev, Linnarsson,	Satija,	Trapnell,	Teichmann,	
Kharchenko and	Shendure Labs
• Twitter:	@scell_papers

• NIH	Single	Cell	User	Group
• http://nih-irp-singlecell.github.io


