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Objectives

Understand some of the key concepts in the
methods and analysis of single cell genomics data

Understand some of the current limitations

Appreciate important experimental design
considerations, including platform selection

Be introduced to some of the “established” and
emerging single cell genomics applications

Outline

Key Concepts in Single Cell Genomics
Example Single Cell RNA-Seq Workflows
Experimental Design & Platform Selection

Single Cell Genomic Applications



Key Concepts in Single Cell
Genomics



Single Cell Genomics — Avoiding
the Caveat of Averaging
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Generalized Workflow for
Single Cell RNA-Seq

Isolate single calls from a tssue sample (inciuding micro-dissection
and manpulation, flow cytometric cell-sorting, microfuidic platforms,
and droplet-based methods)

Single cell lysis in a way that preserves cellular mRNA

1 - Partition Single Cells
2 - Barcode & Sequence
3 - Analyze & Interpret

mANA molecule capture using poly(T] sequence
primers that bind 1o mRNA poly[A] tails

Convert poly(T]-primed mRNA into
cDNA using reverse transcription

cDNA amplification (usually by
PCR or by in witro transcription)

(®)  Use bicintormasic methods o perform quality control
cDNA sequencing Fbrary preparation (insert Sndex' and to assess technical variability in the scRNA-seq data

nuclootide barcodes to identity each library)

@ Use bicinformatic and/or computational
methods 1o interprel robust data biologically

Haque et al 2017



What’s different about Single Cell data”?

Requires the partitioning of single cells

* Assigning information from one cell versus another is usually done via a barcoding
strategy, which occurs when the cell is partitioned

* Isolating single cells is not trivial from some tissues — they can either be difficult to
dissociate and/or fragile

Single cell data is “sparse”

Example scRNA-Seq
* Low amount of starting material and less-than-ideal conditions for sensitivity

Dataset
* Single cell RNA-Seq might give you 500 genes expressed in a single cell Cell#1.. 20
* Analysis methods take some of this into consideration, and may differ from analysis of Kb
bulk datasets GM3738L . .
2
RPL.L v v e e e e e e e e e
. o N Sox17 . . . . . . .. 1.0 000000
Single cell data is "noisy” 37323 . .
. . . . . . . . . Mrpl15 . . . . . . . 1....2.......
* Prone to technical noise and variation, making measurement of biological signal tricky  plar .22, ... ... ... 2.1,
. . . . . Gm37988 . . . .. Lo e e e e
* Lots PCR and molecular biology wizardry at work — technical bias may arise '
* Even when a molecule is present, it’s detection is not guaranteed (low-abundance
molecules are especially prone to these “drop-outs”)
* Better to rely on correlated sets of genes rather than single genes for analysis = fy
e
Datasets are flexible / usually require specialized analysis ) H

* Standard control versus treatment type testing often only part of the analysis 5

* Differential expression may starts with defining which samples to compare g
* May require identification of outlier samples, normalization, and clustering of data ;
* Ability to select samples in each comparison groups makes data very flexible

||||||



Example of Single Cell RNA-Seq
Workflows

1 - Partition Single Cells
2 - Barcode & Sequence
3 - Analyze & Interpret



Cell isolation and handling

Ideally want to measure the native biological state
* Minimize transcriptional drift, degradation, etc. during isolation process
* Preserve viability and diversity of cell types

Do you need to test and optimize dissociation processes?
» Selection of enzymes, incubation times, etc.
* Effects on cell viability?

Do you need to enrich for target cell types?
* FACS, MACs, other?

. What?effect will this additional processing have on what you are looking to
assay'-

What if fresh samples cannot be obtained, or the tissue cannot be
efficiently dissociated?

* Some preservation / fixation methods have been demonstrated
* |solating nuclei instead of whole cells may be an option



Partitioning Single Cells —
Some Common Examples

Microfluidic FACs Droplet Based
Capture Methods




Capturing mRNA and Adding Barcodes

Single Cell Per Well
Protocols

Cell lysis (Steps 1-8)
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Poly(A)* RNA
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Oligo(dT) primer \

Reverse transcription
and terminal transferase (Steps 9-11)
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Template switching
by reverse transcriptase (Steps 9-11)

ISPCR primers

]
I CCC | —
| —
ISPCR primers
PCR preamplification of cDNA (Steps 12—14)
PCR cleanup (Steps 15-26)
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I CCC | —
l Tagmentation (Tn5) (Steps 28-31)
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Gap repair, enrichment PCR
and PCR purification (Steps 32-36)

P5 primer i5 index
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N
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Sequencing (Steps 37-41)
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Picelli et al 2014

Droplet-Based
Protocols
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From 10X Genomics Promotional Material



A quick intro to spike-in’s and UMI’s:
Exogenous spike-in’s provide a known reference
concentration for comparison / adjustment
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A quick intro to spike-in’s and UMI’s:

Molecular indices allow tracking of how many
original molecules existed

. b
Cell 1 Cell 2 Chri3: Tubb2b 34,130,350 34,130,300
A =l = -
e e o~ = UMI Barcode 5’ end of transcript Reads
NI P e ATGGA CAAAGT ee—— x16
- = celry T8 ST ———= %5
TAATG CAAAGT =e— x14
Reverse transcription, barcoding and UMI labeling CGTAA ATGCTT — 0
Cell 2 CGTTC ATGCTT eo— %20
UMI 5’ end of transcript TATCA ATGCTT - eo—— x41
— H 4 . ——~
- Lost MRANA ~—_—— _
* Multiple reads for the same gene
PCR amplification . .
—— —— i within the same cell can be
S = T collapsed to a count of one if they
— = — = have the same UMI barcode
, _ * Increased diversity of tags when cell
Sequencing and computation . .
D = e barcode and target identity
= gx = —~== included.
== == * Unique molecular identifiers are
P B 5 s m O currently only possible with 5" or 3’
Molecules in cell 1 Molecules in cell 2 end methOdS

Islam et al 2014 Nature Methods PMID: 24363023



Library Prep & Sequencing

Full-length Libraries
3’ End Libraries

l Tagmentation (Tn5) (Steps 28-31)

* * * * Final Library Structure:
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Data Analysis

Part |: Processing & Alignment

* Demultiplex individual samples using cell barcodes
* Single cell-per-well protocols generally use lllumina indices
* Droplet-based systems use custom scripts to extract cell barcodes

* Trimming and alighment
 Removal of adapter sequences and low-quality information
* Alignment of reads to reference genome with transcript coordinates

* Full-length libraries can handle some multi-mapping; 5or 3’ end
libraries usually on utilize non-ambiguously mapped reads

e Assessment of alignment metrics
* Percentage of reads mapped
* Percentage exon vs intron vs intergenic
* For full-length: gene body coverage and detection of splice sites

Input:

Raw sequencing files
Output:

Gene expression matrix



Data Analysis

Part Il: Dimensionality reduction, clustering
and differential expression testing

Initial QC and filtering
* OQutlier identification
* Thresholding based on read depth, UMI counts, and/or genes detected

Cross-sample normalization
* Adjustment for library size, etc.

Variance thresholding and stabilization
* Selection of variable genes (non-"housekeepers”)
* Dispersion (variance over mean) threshold often used
* Data transformed to reduce statistical weight of huge expression values (e.g. log-transformation)

Dimensionality reduction
* Principle component analysis (or similar) to look for structure in data

Define relationships between individual samples
* Clustering (hierarchical, k-means, graph-based)

* Trajectory modeling
Differential expression testing Input:

Gene expression matrix
1 - Partition Single Cells Output:
2 - Barcode & Sequence Analyzed data
3 - Analyze & Interpret



Glossary of terms

Cell Barcode: sequence tag associated with all molecules from a single cell sample that
allows tracking of individual transcriptomes

Unique Molecular Index (UMI): A unique sequence tag for every transcript molecule

Sensitivity: Ability to detect specific molecules, if present. Usually reported as number of
UMI counts (transcripts) or genes detected.

Reads vs Counts: Reads are reported by the sequencer. Counts are the enumeration of
observed molecules, which can be estimates based on transcript models or transcript
counts with UMI’s. Multiple reads of a gene with the same UMI can be a single count.

Multiplexing: Combining samples together for more efficient handling and analysis. De-
multiplexed via cell barcodes.

Spike-in’s: Exogenous synthetic molecules of known composition and concentration added
to the initial reaction to compare to molecules from the cell. Allows for determination of
sensitivity and a conversion of relative data to more absolute values.

Full-length vs 3’ Only: For single cell RNA-Seq, referring to whether full length trancript
information is assayed, or only the 3’ end of the molecule — giving gene-only level
information.

Dimensionality Reduction: Decreasing the complexity of the dataset by evaluating
correlated structure between genes and grouping as a “meta-genes” to help interpret
highly-multidimensional data.



Experimental Desigh &
Platform Selection
Considerations

https://btep.ccr.cancer.gov/november-2017-single-cell-rna-seq-mind-read-starting-adventure/



Initial Experimental Design Questions

* Why you need single cell resolution?
* Single cell has technical limitations and extra cost

* Assaying a heterogeneous population, a dynamic process, or
surveying a tissue or system with diverse cell types?

 What do you expect to get from your data?

* Knowing what analysis and comparisons you want to make will
help make sure you include the right samples and controls

 Who will analyze the data?

* A strong partnership between the biological subject matter

expert and someone with bioinformatic expertise will increase
the chances of project success

e Bioinformatic consultation at project outset often helps in
improving design



Experimental Design <-> Platform

Fluidigm C1:
Higher cost, low-
throughput, full-
length, with
ability to image

Common Considerations:

* Cost per cell

* Throughput

* Efficiency of capture

* Full-length or 3’-Only Protocol
* Sensitivity

* Linking to other modality ﬁ‘..u ) % o " 10X Chromium:
* Multiple conditions in parallel? — 1. ’—‘ E g ~ Lower cost, high-

o throughput, 3’-

Enzyme end, upto 8
samples in parallel

Single Cell
GEMs

Capture
Method $system  $ per cells No. cells Doublets Transcript type UMIs Effliociency
DROP-seq $50000 $0.65 up to 50000 0.36-11.3% 3'mRNA Yes ~2%
Fluidigm C1 $150,000 $1.5-10 96, 800 (10k?) 10-23% mRNA No ~10%
10X Genomics $125,000 $0.20-1.00 1000-6000 1-5% 3' mRNA Yes 65%
Wafergen $200,000 $1.5-2.5 ~1800 1-5%? 3' mRNA Yes ?

Modified from core-genomics.blogspot.com



Single cell-per-well methods allow

Nextera “tagmentation” library prep

Amplified cDNA i7 Index
Primers Iy
w » /
8

5' End 3” End
13
" — "R i5 Index
Primer
$
i5 Index
Primer i7 Index Using combinatorial code of i7 + i5 index
& Primer combinations, can multiplex up to
384 individual samples together on
$ lllumina sequencer

reconstructed during alignment

full-length scRNA-seq on lllumina
NGS sequencing platforms

S | _> Reads come from anywhere along transcript;

Sample 1:i7=N708; i5=S510
Sample 2:i7=N712; i5=S511
Sample 3:i7=N708; i5=5S512

Aligned
Fragments

Genome - --
Isoform A ( — — )

Isoform B | e

5-3’ Transcript Coverage



Which is better — more cells or
greater depth?

6,000

5,000

4,000

3,000

Median Genes per Cell

2,000

1,000

0 50,000

Modified from 10X Genomics material

100,000

More Sensitive, More Ex-
pensive Per Cell, Lower
Throughput Method1

Pl

Less Sensitive, Less
Expensive Per Cell,
Higher Throughput

150,000 200,000 250,000 300,000

Raw Reads Per Cell

More information can be gained by sequencing
to greater depth — especially using sensitive
methods
* More genes detected; fewer “drop-outs”
* Better isoform discrimination (when full-
length libraries sequenced)
More independent observation (more cells) is
better for cell identity classification — averages
out noise
Classic scientific non-answer: it depends on
what you are looking for
* Broad survey of cell types or dynamics
processes best modeled by higher-
throughput data
* Investigation of presumably low-expressed
(or specific isoforms) requires greater
depth



Number of cell types in population

How Many Cell for Rare Cell
Populations?

Number of cells required to have 90% chance B Number of cells required to have 90% chance
to sequence at least 50 cells of each type to sequence at least Y cells of each type
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Baran-Gale et al 2017 (doi.org/10.1093/bfgp/elx035)




Control for Batch Effects in Design

Confounded design
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Single Cell Genomic
Applications



Example of scRNA-Seq Analysis: Unbiased
|dentification of New Cell Types and
Markers

c Broad survey gene expression characterization

CD56+ NK CDg+
Sl . Cytotoxic T

tSNE2
. 73

Cell Clusters

CD45 RA+
Naive T

~. N CD4+/CD45RO+ T Memory
CD4+ T Helper2

From Chromium Technical Builetin  ISNE1
Marker Genes for Each Cluster



Example of scRNA-Seq Analysis:
Unbiased survey of cell ratio and
transcriptional phenotypes changes

Healthy individual CLL patient AML patient
| X
CD19+ B

| .
i CD34+ Progeniu&"“‘
* b 5o

S ‘

. 7T Phe
S5 P
. it
b x P i T
000 W

& A

L I S

R :
S C Oy

Expansion of B cells Expansion of myeloid
(86%) progenitors (69%)

Figure 5. Single cell profiling from healthy and malignant tumor cell samples.
Single cell profiling of BMMCs from healthy, CLL and AML patients. ~30,000 reads/cell
in this experiment.

From 10X Genomics Chromium Technical Bulletin



Example of scRNA-Seq Analysis:
Developmental Trajectory Analysis

Prox1

o
O

10

Stage & Region
OE16 - Base

I @ P1 - Apex
@®P1 - Whole
®P1 - Base

@ P7 - Apex

20 ©P7 - Whole

0 20 %0 6 OP7-Base Cd kn 1a

nTPM
Log(nTPM) Expression

{
¢
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t
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_ Log(nTPM) Expression
¢

*

(s

¢

Log(nTPM) Expression

Ex & gé

A &

Late Rising
(140 genes)

Early Declining
(766 genes)

HC LatSC Other HC LatSC Other HC LatSC Other
E16 P1 P7

1 =
5
@
9 Early Rising Gradual Declining
5 ) (547 genes) (804 genes)
& Pseudotime
Rising Declining
ANOVA Rank ANOVA Rank
Gene Gene
(p-value) (p-value)
Plekhb1 1st (~0) Fn1 1st (4.41x10°1)
Enho 2nd (5,22x10°13) Chst15 2nd (6.91x10°10)
Sdc4 3rd (2.10x10-12) Epha? 3rd (1.53x10°¢)
Cdknla | 7th (9.71x1010) Sox11 17t (4.23x10%)
Carl4 13th (2.00x10°8) Prox1 759t (0.01)

Pseudotime ordering of single cell samples according to differentiation stage (using Monocle package)




Increased thro
combinatorial

Distribute to

Methanol fixed
. - xwell plate(s)

cells or
extracted nuclei ..

in situ RT with barcoded primers (1% barcode)

Cell type

. Body wall muscle
. Coelomocytes

. Germline

@ cia

‘ Gonad/vulval precursors
. Hypodermis

. Intestinal/rectal muscle
. Low coverage or unclear

. Neurons
. Pharynx

ndexing

2" strand synthesis, tagmentation,
& PCR (2™ barcode)

Pool amplicons & deep
sequence to generate
single cell 3' digital
gene expression profiles

Neuron subtype |

. Canal associated
. Cholinergic

. Ciliated sensory
. Dopaminergic
. GABAergic

‘ Interneuron

. Oxygen sensory
. Pharyngeal

. Touch receptor

O\

Caoetal 2017

ughput with

Whole organism
scale assays with
combinatorial
indexing

Makes broad
classification
surveying
possible

Increased
sampling allows
greater
resolution of
dynamic
processes and
sparse data
(epigenetics)



Encoding multiple modalities

Single Cell Ab-Seq

* Protein or Reporters Single-Cell Protein Profiling
/ Cells @ Antibodies \( )
* Genomic / Epigenome @ ® @ N «vv’ @
£ ¢ “.: * :
. @. S ),\\ A "; B 1§ O =

Spatial Location @ @@ S

History (such as activity)

&

Shahi et al 2017
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Buenrostro et al 2015 Dey et al 2015



Encoding lineage information

= T o o e o o o .
* Accumulation of CRISPR
DE'E!]]I/:IZIN [T T === reconStrUCtlon
i, * Theoretically can be linked to
~—

Figure 1. A GESTALT barcode. (A) A barcode with ten Cas9 target sites (gray bars), as well as flanking primer sequences

barcode of this cell has already acquired deletions (red) and insertions (blue) in an ancestor cell, edits which are shared t ra n S C ri pto m e ) fo r Ce I | i d e ntity
with other related cells. During this cell’s lifetime Cas9 introduces an additional insertion (target 3), a mark that will be

@/ . mutations allow lineage
== TN TN T T ==
other information (such as
(green) is introduced into the genome of interest. (B) A GESTALT barcode from a single cardiomyocyte of the heart. The
passed onto all progeny cells. The pattern of shared edits between many thousands of cells can be used to infer lineage.
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3. Reconstruction of the alleles from a single zebrafish embryo using the V6 GESTALT barcode. Adapted from [1].

McKenna et al 2015 Science



Spatial Information

Cells
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Single Cell Isoform Detection

Cell Reports

The Functional Impact of Alternative Splicing in

Cancer

Graphical Abstract
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Authors

Héctor Climente-Gonzalez,
Eduard Porta-Pardo, Adam Godzik,
Eduardo Eyras

Correspondence
eduardo.eyras@upf.edu

In Brief

Climente-Gonzalez et al. show that
alternative splicing (AS) changes in
tumors are linked to a significant loss of
functional domain families that are also
frequently mutated in cancer. These
domain losses happen independently of
somatic mutations and lead to the
remodeling of complexes and protein-
protein interactions in cancer.

* In the push for more cells and

broader surveys, many
platforms utilize gene-only
level counting

* Transcript isoforms are

important

Single cell per well protocols
that allow “full-length” are
generally low throughput,
expensive, and lack UMIs



Improved analysis methods

* Infrastructure and data structures to handle large
multidimensional datasets

* Established workflows and best practices
* Modeling of dynamics, etc.
* Inclusion / handling of multi—modal datasets

* Discovery of fundamental transcriptional controls
and gene regulatory networks

* Functional genomics at single cell resolution



Objectives

* Understand some of the key concepts in the
methods and analysis of single cell genomics data

e Understand some of the current limitations

* Appreciate important experimental design
considerations, including platform selection

e Be introduced to some of the “established” and
emerging single cell genomics applications



Are there single cell RNA-Seq datasets to
play with before collecting my own?

Most single cell publications have data deposited in GEO
e Can download raw data and usually processed expression matrices

Some commercial platforms provide example datasets to view and
analysis
e 10X Genomics (https://support.10xgenomics.com/single-cell/datasets)

Some analysis package developers provide example datasets
* Seurat (http://satijalab.org/seurat/get started.html)

Some data can also be viewed in web-based portals



Some final thoughts

Manage expectations

Experimental design and platform selection is
Important

Proper data analysis will take some time and your
pioinformatician will be your best friend

Don’t assume bulk RNA-Seq analysis tools are
appropriate for scRNA-Seq data



How do | keep up?

 Who to watch:

* Regeyv, Linnarsson, Satija, Trapnell, Teichmann,
Kharchenko and Shendure Labs

e Twitter: @scell papers

* NIH Single Cell User Group
* http://nih-irp-singlecell.github.io



