Center for Cancer Research A Bjoinformatics Training and

" W—— .
Education Program Lecture
' : http://bioinformatics.nci.nih.gov/training/

Enrichment plot: MARTINELLI_IFNS_DIFF

o7{ NS
FooiN
205 ]
o |
%04
5 0a]
£ 03
£ 7
E=H
£
01/
oot

|1/ NN E—

Introduction to the Broad Institute’s Gene Set Enrichment Analysis (GSEA) software

1l

Locations of genes

in 1 gene set

Ranked Gene List

Presented by Alan E. Berger, PhD
Lowe Family Genomics Core, School of Medicine, Johns Hopkins University

Tuesday April 16, 2013 2:00-3:30 pm Bldg. 37 Room 4041 - 4047

e Using gene sets, e.g., pathways, GO categories, to interpret microarray (and other) biology data

e Using a measure of differential expression for all the genes, rather than a list of distinguished genes
* The general approach of the Broad Institute’s GSEA software // comparison with DAVID (NIAID)

* The statistics behind GSEA // The data files required to use GSEA

e Understanding the output files produced by GSEA (April 23: hands on running the GSEA software)

For more information contact: Dr. David Goldstein at 301-496-4357, goldsted@mail.nih.gov,

Dr. Peter FitzGerald at 301-402-3044, pcf@helix.nih.gov,
Dr. Maggie Cam at 301-443-2695, maggiec@mail.nih.gov



The content of this set of slides is derived from
several NIH-CIT tutorials on GSEA given by

Aiguo Li, Ph.D., NIH-NCI and Alan Berger, Ph.D.,
in 2007 & 2008



Outline

* Functional Analysis of Microarray Data — Analysis at the Level of

Gene Sets

— DAVID (NIAID) which is based on DEG lists
— Gene Set Enrichment Analysis (Broad Institute)

* Hands-on (April 23)
— Running GSEA: required input data files and formats & Parameter selection;
Broad Institute Utilities

— Understanding the GSEA outputs



Background

Genome-wide expression profiling with microarrays has become an
effective frequently used technique in molecular biology

Interpreting the results to gain insights into biological mechanisms
remains a major challenge

For a typical two group comparison, e.g., tumor vs. normal, a standard

approach has been to produce a list of differentially expressed genes
(DEGS)



Criteria for Differential Expression of a Gene

e Statistically significant differential expression
— by t-test, multi-way ANOVA, etc.
— P-value cut-off: require, e.g., p < 0.01, but see FDR

e Satisfactory false discovery rate (FDR)
— What fraction of the DEG list is false positives?

— Benjamini-Hochberg procedure for estimating the FDR is a
common choice (e.g., require FDR < 0.1 or 0.2).

o Sufficient level of fold change (FC)
— require |FC| =2 1.50r2
(common convention: groups A, B, gene g with ave. expression levels
Har Mgi FC=p, /pg when py 2 pg; FC =-pg /p, when pg 2 1, )



DEG lists Il

e Large fraction of “Present” calls for the expression values in the
group with the higher average expression level for that probe

— 80% but require 3 out of 3 when group size = 3

— If this is not satisfied for a given probe, do not do any
statistical testing on it.

— This avoids false positives based on noise, and also reduces
the number of comparisons N used in calculating the FDR.

e Specific criteria and cutoffs depend on user preference and the
biological situation (e.g., would like “reasonable amount” of
mRNA and |FC| 2 2 for gRT-PCR verification)



Challenges in Interpreting Gene Microarray Data

Even with DEG list(s) of up and/or down-regulated genes, still
need to accurately extract valid biological inferences. Cutoff for
inclusion in DEG lists is somewhat arbitrary.

May obtain a long list of statistically significant genes without any
obvious unifying biological theme

May have few individual genes meeting the threshold for
statistical significance

Lists of statistically significant genes from two studies of the same
biological system may show limited overlap depending on the
analysis methods and the criteria for significance



Enrichment of Gene Categories in a Gene List

e Statistical procedures such as Fisher’s exact test based on the
hypergeometric distribution are used to test if members of a list of
differentially expressed genes are overrepresented in given GO
categories or in predefined gene sets compared with the distribution
of the whole set of genes represented on the chip.

e Tools developed along this line include:
> DAVID

GoMinor

GenMAPP

Onto-Express

GOstat

YV V V VY



Fisher Exact Viewpoint:
2 X 2 Contingency Table

in pathway S not in pathway S

in DEG list 5 45 50
notin DEG list 95 9855 9950
Totals 100 9900 10000

One way to view this is think of there being 10,000 candies (genes) in a bin (array), 100 of which are
Ghirardelli chocolates (in the pathway S), and being given a random batch of 50 candies from the bin
(a random DEG list). If you got 5 or more of the chocolates, were you unusually lucky? Indeed yes!

Answer: P =0.000134



DAVID: Database for Annotation, Visualization and Integrated
Discovery

http://david.abcc.ncifcrf.gov/

DAVID Bioinformatics Resources 6.7
Mational Institute of Allergy and Infectious Diseases (NIAID), NIH

Start Analysis

Home Shortcut to DAVID Tools

Technical Center | Downloads & APIs

Term of Service = Why DAVID? | About Us

Shortcut to DAVID Tool . . .
click here to start a DAVID category enrichment analysis of a user

supplied gene list

= Functional Annotation

Gene-annotation enrichment analysis, |
functional annotation clustering , BioCarta & 2[:]03 — 2{]12

KEGG pathway mapping, gene-disease

association, homologue match, ID

|[ Search ]

- ' c a
translation, literature match and more What's IIII[JD[’TB.I:IT in DAVID?

The Database for Annotation, Visualization and Integrated
Discovery (DAVID ) v6.7 is an update to the sixth version of

= Gene Functional Classification

Provide a rapid means to reduce large lists
of genes into functionally related groups of
genes to help unravel the biological content

captured by high throughput
technologies. Mare

+ Current (v 6.7) release note

+ New requirement to cite DAVID

+ [Ds of Affv Exon and Gene arravs supported
+ Novel Classification Algorithms

Theo e A o e e AT e e A

our original web-accessible programs. DAVID now provides a
comprehensive set of functional annotation tools for
investigators to understand biclogical meaning behind large list
of genes. For any given gene list, DAVID tools are able to:




' (S ng Analysis Wizard
‘Ik E{ yFon DAVID Bioinformatics Resources 6.7, NIAID/NIH

| ]
i Home | Start Analysis | Shortcut to DAVID Tools | Technical Center I Downloads & APIs | Term of Service | Why DAVID? | About Us | |

4 List Background . .
: Analysis Wizard
Upload Gene List

Tell us how vou like the tool
Contact us for questions

« Step 1. Submit your gene list through left panel.
Step 1: Enter Gene List

Paste list of genes (copy column from spreadsheet) -

DAVID works better with array probe IDs than with gene
symbols

121_at

1235_g at ° o po
0% a Select type of gene identifier,
__ﬁ 1205t e.g., official gene symbol or

1431_at
Kﬁ&/ lllumina ID or Affymetrix ID etc.
Step 2: Select Identifier 454 f at
1598_g_at

AFFYMETRIX_3PRIME_IVT_ID |+

o i Tell DAVID whether this is list of distinguished genes
0 (genes of interest from your data) or background

Baﬂlgrmlnll..

[

Submilis |




If you gave DAVID gene symbols rather than array Probe IDs then will
usually see a box indicating multiple corresponding species, click on OK

Message from webpage ﬁ

Please note that multiple species have been detected in your

! . gene list. You may select a specific specie(s) with the List
Manager on the left side of the page by highlighting the specific
specie(s) and pressing the "Select” button. As a default, all
species in your list will be used for analysis. Also note that you
may need to select an appropriate background under the
"BACKGROUNDS" tab in the manager to the left. By default, the
background corresponding to the first species in the list will be
selected if an uploaded or Affymetrix background is not in use.




Analysis Wizard

DAVID Bicinformatics Resources 6.7, NIAID/NIH

| Home | Start Analysis | Shortcut to DAVID Tools = Technical Center | Downloads & APIs | Term of Service | Why DAVID? | About Us

Background

. Analysis Wizard
Gene List Manager
CI . k . Tell us how vou like the tool
ICK On Orga nism Contact us for questions
T ——— & Step 1. Successfully submitted gene list

Mus musculus(178) Current Gene List: List_2
Rattus norvegicus(163) Current Background: Homo sapiens

‘ Step 2. Analyze above gene list with one of DAVID tools

List Manager melp ., Which DAVID tools to use?

< Functional Annotation Tool

+ Functional Annotation Clast

_ s Functional Annotation Chart
- « FPunctional Annotation Table

Show Gene List

« Gene Functional Classification Tool Then CIiCk on Functional
<3 Gene ID Conversion Tool An notation Tool

= Gene Name Batch Viewer




' ‘Bg Functional Annotation Tool
‘[l = Bo DAVID Bioinformatics Resources 6.7, NIAID/NIH

| Home | Start Analysis | Shortcut to DAVID Tools | Technical Center | Downloads & APIs | Term of Service | Why DAVID? | About Us

Gene List Manager Annotation Summary Results

Help and Tool Manual
Current Gene List: List 2 203 DAVID IDs

Current Background: Homo sapiens Check Defaults Clear All

Disease (1 selected)

Functional _Categories (3 selected)
Gene_Ontology (2 selected)
General Annotations (0 selected)
Literature (0 selected)
Main_Accessions (0 selectad)
Pathways (2 selected)
Protein_Domains (3 selected)
Protein_Interactions (o selectad)
Tissue_Expression (0 selected)

Homo sapiens{203)
Mus musculus(173)
Rattus norvegicus(163)
Bos taurus(166)

Select Specias

H B EH

HHEH

List Manager Help

B

List 1

H B H

Select List to:

Rename
—_—— oo |

Combined View for Selected Annotation Then click on Functional

#

**Rad annotation categories dencte DAVID defined defaults***

[ Functional Annotation Clustering ]e Annotation Clustering

[ Functional Annotation Chart ]

[ Functional Annotation Table ]




DAVID Bioinformatics Resources 6.7 False

. ‘ll' E . } Mational Institute of Allergy and Infechous Diseases (NIAID), NIH discove ry
rate (FDR)
Help and Manual column

Functional Annotation Clustering

Current Gene List: List_1
Current Background: Homeo sapiens
352 DAVID IDs

Options Classification Stringency Medium |
| Rerunusing options | [ Create Sublist |

140 Cluster(s) E Download File

annotation Cluster 1 Enrichmeant Score: 3.35 e - Count P_Valug Banjamin
[l sp_PiR_KEYWORDS oxidoreguctase BT = 26 2.8E-5 5.3E-3
O a:::rER;_BP_Fnr oxidation reduction BT - 26 4.56-4  2.3E-1 FO r DAVI D
| SP_PIR_KEYWORDS nadp BT - 9 7.0E-3  2.1E-1

_.ﬂ.nr;:lr.aﬂnn Cluster 2 Enrichment Score: 2.6 G " Count  P_Value Benjamini res u Its’ Wa nt

[l sp_piR_kEvworDs ligid synthesis EI = 12 1.4E-6 5.2E-4 F D R < 0 . 1 bEfO re
O $P_PIR_KEYWORDS Steroid biosynthesic BT [~ 7 7.1E-5 8.8E-3 o
| GOTERM_BP_FAT ligid bigsynthetic process BT - 18 1.4E-4 2.2E-1 conSIder
1 GoTErRM_Bp_FaT sterol bipsynthetic process ET = 6 4.7E-4  1.9E-1 catego ry as
4 $P_PIR_KEYWORDS sterol higsynthesis BT H 5 9.3E-4  6.BE-2 .
[l sP_PIR_KEYWORDS Cholesverol higsynihesis EI M 4 4A4E-3 L7E-1 pOSSI b IV
1 GoTERM_BP_FAT steroid biosynthetic process BT = 7 5.3E-3 5.56-1 Sigl‘lifica nt (a nd
[ GOTERM_BP_FAT cholesteral binsynthetic process BT 5 4 1.2E-2 7.6E-1
| GOTERM_BP_FAT sterol metabalic process BT = & 4.2E-2  B.BE-1 pTEfe ra bly bEIOW
| KEGE_PATHWAY Steroid biosynthesis BY H 3 S.4E-2 6.0E-1 )
O GOTERM_BP_FAT cholesterl metabolic process BRI 5 5 9.6E-2 9.2E-1 0.01
| GOTERM_BP_FAT steroid metabolic process BT = 7 1.BE-1 9.6E-1

annotation Cluster 3 Enrichment Scora: 2.4 ] = Count P_valug Banjamini
[l sP_PIR_KEYWORDS ligid synthesis RT - 12 1.4E-6 5.2E-4
| 5P_PIR_KEYWORDS Falty acid biesynthesis RT i & 9.7E-4  5.98-2
| SP_PIR_KEYWORDS multifunctional enzyme BT ] 7 1.56-3 7.0E-2
| KEGE_PATHWAY Fatty acid biesyrthesis RT M 3 6.9E-3  2.4E-1



Sample Gene List for DAVID

Experiment:

Wegener’s granulomatosis (WG) vs. normal controls (C)
n = 41 patients, 23 controls

Genelist (84 distinct genes):

FC 2 1.5 (up in WG)
p-value < 0.01
FDR<0.1



DAVID Output

DAVID Bioinformatics Resources 6.7

National Institute of Allergy and Infectious Diseases (NIAID), NIH

Functional Annotation Clustering
Help and Manua
Current Gene List: List_1
Current Background: Homo sapiens
71 DAVID IDs

Options Classification Stringency

Rerun using options ] [ Create Sublist ]
30 Cluster(s) K pownload File
Annotation Cluster 1 Enrichment Score: 10.42
F SP_PIR_KEYVIORDS Antimicrobial RT r— 11 8.1E-14 8.4E-12
F] SP_PIR_KEYWORDS antibiotic RT m— 10 2.7E-12 1.9E-10
F] GOTERM_BP_FAT defense responze RT e 20 5.5E-11 4.0E-8
F] GOTERM_BP_FAT respense te bacterium RT e 12 2.0E-9 7.4E-7
F] GOTERM_BP_FAT defense response to bacterium RT JE—— 10 3.3E-9 8.0E-7

Annotation Cluster 2 Enrichment Score: 9.21

F] SP_PIR_KEYVIORDS disulfide bond RT e — 41 7.4E-16 1.6E-13
"] UP_SEQ_FEATURE disulfide bond RT —————— 40 1.9E-15 4.8E-13
F SP_PIR_KEYWORDS signal RT e — 38 6.5E-12 3.4E-10
F] UP_SEQ_FEATURE signal peptide RT EEEEE—— 38 7.8E-12 1.0E-9
"] SP_PIR_KEYV/ORDS glvcoprotein RT E 29 6.9E-9 2.9E-7
F] SP_PIR_KEYW/ORDS Secreted RT — 24 1.3E-8 4.7E-7



Limitations with Category Enrichment Methods!

* No further use made of information contained in expression values for
the genes not in the submitted list

* The level of differential expression of the genes in the “distinguished”
gene list is not taken into consideration: only counts the number of the
“distinguished” genes that are contained in each category being
considered

* The correlation structure of the expression data is not accounted for at
all

! Discovering statistically significant pathways in expression profiling studies,
Tian et al., PNAS 2005, 102:13544



Gene Set Enrichment Methods

These methods formulate a statistic reflecting the difference in
expression level between the two phenotypes under consideration for
the ensemble of genes in each gene set being considered

The levels of differential expression for all the genes in the chip are
utilized

Can be applied to gene sets from, e.g., pathways in BioCarta & KEGG;
genes co-located in cytobands; genes having common transcription
factor motifs; genes changed in response to some disease state or
experimental condition

But note: results depend on the collection of gene sets examined, and
still must address multiple testing error control (though much less
severe than for all probes on a large array)



Some References for Gene Set Methods

Gene Set Enrichment Analysis (GSEA): Subramanian et al., A knowledge-based
approach for interpreting genome-wide expression profiles, PNAS 2005, 102:15545;
note Lamb et al., The Connectivity Map..., Science 2006, 313:1929. (see Broad
Institute web page for this and other software)

PAGE: Parametric Analysis of Gene-Set Enrichment: Kim and Volsky, BMC
Bioinformatics 2005, 6:144 (uses the average of the measure of differential
expression (DE) of genes in a gene set, and values of DE over the chip to get a gene
set z-score).

Systematic consideration of the issues in formulating and evaluating gene set
methods: Ackermann and Strimmer, A general modular framework for gene set
enrichment analysis, BMC Bioinformatics 2009, 10:47

Systematic consideration of the issues in formulating and evaluating gene set
methods: Varemo, Nielsen and Nookaew, Enriching the gene set analysis of
genome-wide data by incorporating directionality of gene expression and combining
statistical hypotheses and methods, Nucleic Acids Research 2013 Mar 22 [Epub
ahead of print]



GSEA Overview -- Workflow

GSEA is a computational method that determines whether an a priori
defined set of genes shows statistically significant, concordant

differences between two biological states (e.g. phenotypes).

Gene Set
Database
Molecular
Profile Data

" o |
- oA -
| § - .IE
. ! b
lj.
| .
; : - 4.
- g

' Enriched
Sets

text and figure from the Broad Institute web pages for GSEA : http://www.broad.mit.edu/gsea/index.html
the current version of the figure at the Broad site is slightly different from the one above




Broad Institute GSEA Documentation Main Page

| & Main Page - Gen — Windaows Inter
File Edit View Favorites Tools Help % @convert v [Sele
@@v http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page v| @ | +y | X | Google R ;‘
.7 Favorites | = @ | Interactive Statistical Calc.. @ Johns Hopkins Departmen.. Q hitp--www.weathertap @ | Windows @ | Windows Media @ | Windows Marketplace € | Free Hotmail | Customize Links |
] - »
Main Page - Gen... X | &) WeatherTAP.com - .. o - v [=] g# v Page~ Safety~ Tools~ (@~
g 2 Login ~
Gene Set Enrichment Anahsi; Mal n Pag e
navigation . .
GSEA Home | Downloads | Molecular Signatures Database | Documentation | Contact
= Documentation Home
» Tutorial Use the navigation bar on the left to display documentation on GSEA software, MSigDB database or GSEA/MSIgDB web site_ If you have comments ar questions nat answered by the FAQ ar the User Guide i,
» User Guide contact us: gsea@broadinstitute org =3,
|| = DataFormats When contacting our team with questions about java GSEA programs, please send the following information:
M = FAQ = your computer's operation system
* Knoun lssues » version of java which you used to run GSEA =
» R-GSEA Readme
« Algorfihm » detailed log transcript from the GSEA session in question
= PNAS 2005 Examples to view the log, click [+] at the bottom of main screen of GSEA java desktop application, copy the text to a separate file and attach it to your request
= Papers that use GSEA [edif]
i Where to start
msigdb
" Release Noles If you are new to GSEA, see the Tutonal & for a brief overview of the software. If you have a question, see the FAQ or the User Guide 7. The User Guide describes how to prepare data files, load data files, run the
" ZUTEW:TY Stats gene set enrichment analysis, and interpret the results. It also includes instructions for running GSEA from the command line and a Quick Reference section, which describes each window of the GSEA deskiop
L] uide to a
GeneSetCard application.
Ml = msigDB XML . [edif]
| |
description MSigDB gene sets
® MSigDB License . . . . . . .
" MSigDB Current release of the Molecular Signatures Database (v3.1 MSigDB) contains 8,513 gene sets for use with GSEA. The best source of information about the gene sets is the MSigDB web site £,
Acknowledgements Please note that gene sets can change their names or become deprecated in subsequent releases of MSigDB. It is thus important to indicate version of MSigDB to fully reference gene sets used in your study.
|| software For further details about gene set name or status changes, please check here:
"l = Release Notes » between v3.1 (current) and v3.0
= Software License = betweenv3 0andv2 5
= Software [edif]
Acknowledgements Software
= For Broad Users l
We provide the following software implementations of the GSEA method:
internal only I
o« Wiki How-to-Use = Java desktop application - Easy-to-use graphical interface that can be run from the Downloads & page. The User Guide & fully describes this application (referred to as GSEA aor GSEA-P). 1
‘ @ Internet | Protected Mode: On o v ®125% v




Three Main Components in GSEA

e Algorithm
e Software implementation (Broad Institute)
e Database of gene sets:

> Molecular signature database (MSigDB at Broad Institute)
containing gene sets of interest

> Utilities mapping chip features to genes (e.g., lllumina or
Affymetrix probe set IDs to HUGO gene symbols)



GSEA: Gene Set Enrichment Analysis

/ Get ranked \

list L of all the
genes on the

chip based f \
on a chosen For each

measure of the gene set S: Generate enrichment %
difference of find the el .ES for S base.d . g |
their expression > location of - o:. runn::’g-sum Statls:m: g I _______________ \
[ — each genes chard presenceats | = SMHTITIITII
phenotypes A & B in S within L K / L
under study, e.g., /
K tumor vs. normal l

Gene sat
A 3 Bne se f \

E= £s-0 Analyze significance of
+FCT this Kolmogorov-Smirnov
type statistic by
permutation testing

o J
-FC | ES<0 '

Multiple hypothesis testing (MHT)
error control for multiple S’s using
the false discovery rate (FDR)

b

Ranked Gene List

bands are locations in L
of genes from S




Enrichment Score (ES) Calculation

Start with ranked list (L) of genes that are in (Hit) or not in (Miss) a gene set (S)

Ranked List FC Contribution Hits Misses Running
(L) to running +|FC| /Z | -1/(N-N,) | sum for ES
sum for ES
E— 15 Hit +0.15 +0.15 0.15
_ 12 Hit +0.12 +0.12 0.27
- 10 Miss -0.001 -0.001 0.269
_— 9 Hit +0.09 +0.09 0.359
_— 8 Hit +0.08 +0.08 0.439
I 6 Miss -0.001 -0.001 0.438
Hits: Genes € S +|FC| / = l,

Misses: Genes ¢ S -1/(N-N,,)

> =sum of fold changes for genes in gene set (S) (e.g., 100)
N =no. of genesin the array (e.g., 1020)
NH = no. of genes in the gene set (S) (e.g., 20)

TR 1 v

running sum

ES(S) = value of max deviation from 0 (extr) of the running sum



The running enrichment score for a positive ES gene set
from the P53 GSEA example data set

GSEA_Results

(<)) 08
S
0.5 1
o g
o 0.4 1
-
S % 031
bco -g E 02/
‘T O o ES(S)
C
o 0.75
E 0.50
% 025
-
2 0.00
g o= + p53 WT p53 MUT -
& .050 < ——r—.
2.5-00 5.d00 ?{5;00 10.600
Rank in Ordered Dataset
B enrichment_profile [l Hits Ranking metric scores
Zero crossing of ranking
underlying running enrichment score figure copied from metric values

http://www.broadinstitute.org/gsea/datasets.jsp

p53 dataset (gene set is lairPathway)

locations of genes in S



The running enrichment score for a negative ES gene set
from the P53 GSEA example data set

GSEA_Results

0.00 .
-0.05 1
-0.10
-0.15 |
-0.20 1
-0.25 1

P TEALRITTIE toations o genesims

0.75

Enrichment Score (ES)

& 60 o
5 88 8

enrichment score

running

o
T 050
=
E 0.25
3
= 000
-t
£°% + pS3WT p53 MUT -

-0.50 < ﬁ

0 2,500 5.000 7.500 10,000

Rank in Ordered Dataset

B enrichment_profile [l Hits Ranking metric scores

Zero crossing of ranking

running enrichment score figure copied from metric values
http://www.broadinstitute.org/gsea/datasets.jsp
p53 dataset (gene set is BRCA_UP)




GSEA Algorithm: Definition of Enrichment Scores
the equations

W, = measure of differential expression of gene j between group A and group B

1. Order the genes in aranked list Lso W, decreases from the top (j=1) to the bottom (j=N)
of the list

2. Account for the locations of the genes in § (“hits”) weighted by W, and the

locations of genes not in S (“misses’’) from the top of the list down to a given
positioniinL

. wi |!
Knit(S,1) = Zl 1 where Ne= > |w[
ng_S NR gieS
j<i

for GSEA the defaultis t = 1, for Kolmogorov-Smirnov t=0

KmisS(S, |) = Z 1 Nu =# genes inS
9igS (N o NH) N =# genes in Chip
J<i

3. Calculate maximum deviation from zero of K, ;.- K

miss

ES(S,i) = K, (S,i) = K., (S, i)

iss

ES(S) = extr,(ES(S,i)) (greatest excursion of the ES(S,i) from 0)



permutation

number /

Testing the Significance of ES: permute & times

gene expression matrix, sample labels indicate phenotype

gene \ sample 1 T2 LES T4 N1 N2 N3 N4
CASP4 7.82 7.87 8.15 7.81 7.96 7.92 7.90 7.96
BAX 801 7.85 7.82 795 805 791 778  7.96 compute the
CASPE 7.73 7.82 7.92 813 818 801 7.90 7.86 differential expression
cD4a0 8.12 8.15 8.32 8.21 8.06 8.02 8.00 8.08 é
BIRC3 7.87 8.01 7.99 7.84 7.99 7.89 8.01 7.96 Value for eaCh gene
GADD45A 784 777 799 794 793 793 775  7.69 (DE(g)), and then the
BIRCZ 8.07 8.01 7.88 8.01 7.94 7.80 8.06 7.92
ATM 9.40 9.54 9.32 9.60 9.11 9.45 9.42 9.34 ES(S) Values for a” the
gene sets
do =~ 1000 sample label permutations™® - for each permutation
leave the rest of the expression matrix fixed, and recalculate
{DE(g)} and then the enrichment score for each S
1 —>  {ES(S,m,)}
2 —>  {ES(S,m,)}
. —>  {ES(S,m,)}
a
> {ES(S,m,))

*actually want at least 7 samples in each group for sample label permutation, else do gene permutation



If insufficient number of samples for sample label permutation,
do gene permutation

For a given gene set S (count of genesin S =s), each
permutation 7 is now the random selection of s genes
from the array forming a random gene set S_

the corresponding permuted enrichment score ES(S, &) =
ES(S,,) calculated from the original expression matrix



Testing the Significance of ES

Significance of the observed ES(S) is compared with the set of scores ESy,,(S)
computed with the randomly assigned phenotypes.

ES\ . (S):null distribution for ES(S)
Histogram of 1000 ES,,,(S) Scores

ES(S)

ES(S)

l

2 2 2

AR EI RN A TN

B EER RS es(s,m,)
BEREEREER ssm~ - C
10(;0 X ES(S,m1000) T
The empirical, nominal p value

for each ES(S) is then calculated
relative to the null distribution

for ES(S).



How normalized enrichment scores (NES) are calculated from ES

Histogram of the ES(S,r) values for a given S from the permutations

ES(S) original ES(S)

NES(S) =
(5) mean, {ES(S, ) values

with the same sign as
ES(S)}

@ B oD P @ o P PP

ES(S,)
ES\u.: null distribution for the ES
For each permutation m and gene set S, compute NES(S, r) to use in computing the FDR:

. ES(S,m,)
3;" ES(S, Tl'.k)
j« ES(S,m3) NES(S, m,) = mean_{ES(S, =) values
“ie with the same sign as
o2 ES(S, m,)}



False Discovery Rate (FDR) g value

Create a histogram of all NES(S, =), over all S and .
Use this null distribution to compute an FDR q value, for a given NES(S) = NES* > 0.

FDR value for S:  D(S) = {gene sets with NES > NES* }

estimate of # of false positives in D(S) = F * Ng*

size of D(S) = # of S with NES(S) > NES*
Histogram of NES(S, ) Scores Histogram of NES(S) Scores

NES*
|

i

Feyunemncy

= &

NES(S)  NES(S) > NES*
F = fraction of the Ng™ = # of gene sets with
NES(S) > 0

positive NES(S, 7) > NES*
similarly for NES(S) < 0

\_Y_J

NES(S,
S NEsis, 2 > NES*



Outline of the Hands-on GSEA Class (April 23)

Running GSEA:
— required input data files and formats & Parameter selection
— Broad Institute Utilities

Understanding the GSEA outputs

Live demonstration / hands on running the Desktop GSEA
software



Example GSEA output

Dataset:

Wegener’s granulomatosis (WG) vs. normal
controls (C)
41 patients, 23 controls
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GSEA output: gene sets upregulated in WG

HUMAN_TISSUE LIVER

VERHAAK _AML_MPM1_MUT VS WT UP

HSIAD_LIVER _SPECIFIC_GENES

HSAD1032 GLYCAMN_STRUCTURES DEGRADATION

HSA04610 COMPLEMENT_AMD_COAGULATION CASCADES

APPEL_IMATINIE_UP

[MTRINSICPATHWWAY

1SA_HEPATOMA _CAMNCER_UP

MATRIX_METALL OPROTEIMNASE

MARTIMELLI_IFNS_DIFF

LIAN_MYELOID_DIFF_GRAMULE

VG TTD ALL_UP

LEE_TCELLS3_UP

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

Details

33

172

244

24

BB

Kb

22

38

30

22

23

7B

95

0.86

0.67

0.64

0.84

074

0.84

084

0.76

0.80

085

082

0.64

0.63

219

213

208

2.04

202

2.

1.94

1.94

1.93

1.93

1.9

1.90

1.89

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.002

0.001

0.002

0.01M

0.01M

0.010

0.009

0.009

0.010

0.0M

0.000

0.000

0.000

0.005

0.004

0.010

0.055

0.0860

0.060

0.0860

0.065

0.085

0.100

1547

3599

3509

23N

1772

1894

1772

2861

2220

2656

623

3351

3056



DAVID Output for WG dataset

DAVID Bioinformatics Resources 6.7

National Institute of Allergy and Infectious Diseases (NIAID), NIH

Functional Annotation Clustering

Help and Manua
Current Gene List: List_1
Current Background: Homo sapiens
71 DAVID IDs

@ Options Classification Stringency | Medium v
[ Remunusingoptions | [ Create Sublist |

30 Cluster(s) B pownload File
O SP_PIR_KEYWORDS Antimicrobial RT — 11 8.1E-14 8.4E-12
O SP_PIR_KEYWORDS antibiotic RT — 10 2.7E-12 1.SE-10
O GOTERM_BP_FAT defense response RT [EP—— 20 5.5E-11 4.0E-8
O GOTERM_BP_FAT response riu RT —— 12 2.0E-9 7.4E-7
= GOTERM_BP_FAT defense response to bacterium RT — 10 3.36-9 8.0E-7

Annotation Cluster 2 Enrichment Score: 9.21

[J  SP_PIR_KEYWORDS 1 R ————— 41 7.4E-16 1.6E-13
O UP_SEQ_FEATURE disulfide bend RT ———— 40 1.9E-15 4.8E-13
[0  sP_PIR_KEYWORDS signal RT 38 6.5E-12 3.4E-10
O UP_SEQ_FEATURE signal peptide RT S — 38 7.8E-12 1.0E-9
[0  sP_PIR_KEYWORDS glvcoprotein RT s 39 6.9E-9 2.9E-7
O SP_PIR_KEYV/ORDS Secreted RT — 24 1.38-8 4.7E-7



Gene set
associated
with
immature
neutrophils
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Induction of Genes Mediating Interferon-dependent Extracellular
Trap Formation during Neutrophil Differentiation®
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Interferons (IFNs) are cytokines that possess potent
anti-viral and immunoregulatory activities. In contrast,
their potential role(s) in anti-bacterial defense and neu-
trophil activation mechanisms is less well explored. By
comparing gene expression patterns between immature
and mature human neutrophils, we obtained evidence
that intracellular proteases and other anti-bacterial
proteins are produced at earlier stages of matoration,
whereas the genes for receptors and signaling molecules
required for the release of these effector molecules are
preferentially induced during terminal differentiation.
For instance, mature neutrophils strongly expressed
genes that increase their responses to type I and type IT
IFNs. Interestingly, granulocyie/macrophage colony-
stimulating factor was identified as a repressor of IFN
signaling components and consequently of IFN-respon-
sive gpenes. Both IFN-a and IFN-y induced strong tyro-
sine phosphorylation of STAT1 in mature but not in
immature neutrophils. Functional in vifro studies sug-
gested that IFNs act as priming factors on mature neu-
trophils, allowing the formation of extracellular traps
upon subsequent stimulation with complement factor 5a
(CGa). In contrast, both IFIN-a and IFN-y had only little
capacity to prime immature cells in this system. More-
over, hoth IFNs did not have significant anti-prolifera-
tive effects on immature neutrophils. These data con-
tribute to our understanding regarding changes of gene
expression during neutrophil differentiation and IFN-
mediated anti-bacterial defense mechanisms.

MNeutrophils are a eritical component of the innate immune
system with several effector and immunoregulatory functions
(1). They are generataed in the bone marrow under the influ-
ence of cytokines, such as granolocyte colony-stimulating
factor (G-CSF)' and pranulocyte/macrophage eolony-stimu-
lating factor (GM-CSF), from hematopoietic stem cells. Inter-

* This work was supported by Swiss National Science Foundation
Grants 31-88449.02 and 31-58016.99), the Bernische Krebalign (Bern),
and the Gottfried and Julin Bangerier-Fhyner Foundation (Eurich).
The costs of publication of this article were defruyed in part by the
payment of page charges. This nrticle must therefore be hereby marked
“adrerfiserment” in sceordance with 18 US.C. Section 1734 salely to

andirntes this farct

estingly, G-CSF is not expressad in normal bone marrow cells
under physiclogic conditions (2), suggesting that it drives
myeloid differentiation in a hormonal manner. Multiple cell
types such as endothelial cells, epithelial cells, fibroblasts,
and macrophages are able to produce G-CSF and GM-CSF (3,
4). All thess cells make early contact with invading microor-
ganiems and/or their products, resulting in increased cyto-
kine production after infection. For instance, blood G-CSF
lavels have been described to rise from 25 to up to 10,000
peg/ml under pathologic conditions (5). Moreover, systemic
injection of G-CSF (6) or GM-CSF (7] results in a dramatic
increase of neutrophil production. Taken together, G-C8F
and GM-CSF have been demonstrated to be major regulators
of neutrophil production. Under conditions of stress, such as
infections, neutrophil numbers in blood can increase as a
consequence of cytokine-forced nentrophil differentiation.

Although immature neutrophile can be classified by mor-
phology as well as by the expression of more or less specific
surface proteins (8), it is difficult to obtain pure cell populations
characterized by a certain maturation stage. Therefore, most of
the studies trying to understand neatrophil differentiation at
the molecular level were performed by using cell lines derived
from leukemias. Previously published work resulted in the
identification of genes that may play critical roles in the differ-
entiation of nentrophils (%). Moreover, a gene expression profile
of neutrophils has been established (100, Despite these previous
studies, the underlying molecular events of normal neutrophil
differentiation are not well understood, and many of the genes
that are expressed by mature neutrophils have not been related
to funetion.

The objective of this stundy was to compare the transcrip-
tional repertoire of immature and mature huoman neutrophils
by using oligonucleotide microarrays. In addition we investi-
gated whether certain differences in gene expression are re-
versible by in vitro re-exposure of mature neatrophils with
GM-CSF. Although multiple genes were more expressed in
mature compared with immatuore cells, it was interesting to see
that mature neutrophils also demonstrated higher expression
of genes, which transduce sipnals of type I and type II inter-
farons. Consequently, several known IFN-responsive penes had

elevated expression levels in mature compared with immature
ralle Tha snbeanmanthe ahisinad fionetinmal date demanctrats
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Table: GSEA Results Summary

Dataset WiGvs-Cfor-GSEA_u_symsh_GaussianZ
Phenatype MNoPhenotypeAvailable

Upregulated in class na_pos

GeneSet WMARTIMELLI_IFMNS_DIFF

Enrichment Score (ES) 0.8470181

Mormalized Enrichment Score (NES) 1.9260814

Mominal p-value 0.0
FOR g-value 0.005648531
FWER p-Value 0.06

Enrichment plot: MARTINELLI_IFNS_DIFF

=
m

o7

Enrichment score (ES)
(=] (=] (=] (=] (=]
b o B om @

o o
o o

=

z . e
[= ‘na_pos (positively comelated)

T a0

x 5

=

il A

2

-5 00 Zerocross at 4950

E

B 25

=

2 50 ‘na_neg' (negatively cormelated)

= F

E o] 2,500 5,000 7.500 10,000 12,500 15,000 17.500

Rank in Qrdered Dataset

| T S e 1 P 11t M i o e mdein mnoes e |

g1



Fig 1: Enrichment plot: MARTINELLI IFNS _DIFF
Profile of the Running ES Score & Positions of GeneSet Members on the Rank Ordered List

Table: GSEA details [plain text format]

-

LL= I o' B S (R o 5 TR O & TR S % B %

MPO 4799 0.0833 Yes
LCNZ 4775 0.1677 Yes
Note large

AZUA b ; 4 587 0.2477 Yes
BPI number o 4 540 0.3272 Yes
ELAZ genes in 4233 0.4000 Yes
DEFA4 the gene 4.165 0.4725 Yes
CAMP set at the . 4.043 0 5426 Yes
CTSG top of the 250 3514 0 5954 Yes
CYBE complete 603 2 964 06278 Yes
CSFIR ranked list 657 2910 0.6763 Yes
ADAH . 791 2773 0.7177 Y.
Feen (relative to -
ALPL 1321 2.321 0.7294 Yes
- gene set

NCF2 ) 1364 2077 0.7670 Yes

12

S0D? size) 1401 2 240 0.5044 Yes
FCGR3A 2086 1.761 0.7977 Yes
ILBRA 2277 1642 0.8161 Yes
ILERB 2468 1.528 0.8325 Yes
STEGALNAC? 2656 1413 0.8470 Yes
SEMA3C 4494 0.292 0.7510 No
GPR109B 7894 0.000 0.5639 No
MIMPS 9597 0.000 0.4703 Mo

o 1244 fA40 [l g L Fl~



ARTHRITIS & RHEUMATISM

Vol. 62, No. 6, June 2010, pp 1744-1754
DOT 10.1002/art. 27398

@ 2010, American College of Rheumatology

Transcription of Proteinase 3 and Related Myelopoiesis Genes
in Peripheral Blood Mononuclear Cells of Patients With
Active Wegener’s Granulomatosis

Chris Cheadle, Alan E. Berger, Felipe Andrade, Regina James, Kristen Johnson,
Tonya Watkins, Jin Kyun Park, Yu-Chi Chen, Eva Ehrlich, Marissa Mullins, Francis Chrest,
Kathleen C. Barnes, and Stuart M. Levine

Objective. Wegener’s granulomatosis (WG) is a
systemic inflammatory disease that is associated with
substantial morbidity. The aim of this study was to
understand the biology underlying WG and to discover
markers of disease activity that would be useful for
prognosis and treatment guidance.

Methods. Gene expression profiling was per-
formed using total RNA from peripheral blood mono-
nuclear cells (PBMCs) and granulocyte fractions from
41 patients with WG and 23 healthy control subjects.
Gene set enrichment analysis (GSEA) was performed to
search for candidate WG-associated molecular path-
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cluding remission status and disease activity, were
determined using the Birmingham Vasculitis Activity
Score for WG (BVAS-WG).

Results. Eighty-six genes in WG PBMCs and 40 in
WG polymorphonuclear neutrophils (PMNs) were sig-
nificantly up-regulated relative to controls. Genes up-
regulated in WG PBMCs were involved in myeloid
differentiation, and these included the WG autoantigen
PR3. The coordinated regulation of myeloid differenti-
ation genes was confirmed by GSEA. The median ex-
pression values of the 86 up-regulated genes in WG
PBMCs were associated with disease activity (P = 1.3 x



