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Exome sequencing workflow
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1) Next generation sequencing (NGS)
s Platform

** Productivity



Sanger sequencing: dye-terminator
sequencing, 1977-present

= == == =
- -
== _ B Eeu..
- —
s =T BT
ro] S -,
=:b— ot -
- -
; - - -
— e bt
— - —
P o e e T ‘-—
i = =
B A T —_— _'-
-, ~ et g N -
[ T — - e, A
o= e [t - —,
% T — -— — =y
— - — = =
o = -t -
=g - - -
— - -
- - —
5 ' -
— S — = — o
I — = -—
o S

i
i

, 1440

Lo, \s=200 1600

L 1 1.E'Sc'l L 1

TTGTTARTCCGC TCACAATTCCACACARCL
128 138 148




Next generation sequencing technology
2004-present
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Comparison of sequencing methods

Sanger sequencing

Next generation sequencing
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(Library construction)
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Clonal amplification of
fragments on a solid surface

(Bridge PCR or Emulsion
PCR)

Direct step-by-step detection of
each nucleotide base
incorporated

during the sequencing reaction



Gigabses per run (log scale)
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Next generation sequencing applications

Genomics Transcript- Epi-
omics genomics
ChIP-Seq,
Pna-seq RNA-seq Methyl-Seq
* Mutation, « Expression . Globa_l
SNVs level mapping of
» Indels - Novel DNA-protein
« CNVs transcripts interactions
- Translocation * Fusion ) DN,ﬁ; "
transcripts metnylation
« Splice * Histone

variants modification



2) Exome sequencing
s Benefit

s Capture technology



Whole exome sequencing: Why?

Focuses on the part of the genome we understand best,
the exons of genes

About 85% of known mutations in Mendelian diseases
affect the exome

** Nonsense, missense, splice, indel mutations
Depending on the annotation and coverage of flanking
sequencing: ~35-60Mb => 1-2% of human genomes
There are ~200,000 coding exons in ~20,000 genes

A whole exome is 1/6 the cost of whole genome and 1/15

the amount of data

Biesecker, L. et al. (2011) Genome Biology 12:128



Exome sequencing balances the coverage
and cost

* Accurate * Optimization possible ¢No bias for genes *No sequencing bias
*Cheap per exon *Low chance of *Standardized *Detect SVs and
*High turn-around incidental findings workflow SNVs
* Easy analysis *Re-use of performed
exomes to interpret
new ones
*Low diagnostic yield *Design and *No non-coding * Data analysis
for genetically re-design required regions bottleneck
heterogeneous Different designs *Sequencing bias *Interpretation of
diseases for different *Incidental findings non-coding regions
disorders *Expensive, time-
consuming

http://webinar.sciencemag.org/webinar/archive/exome-sequencing-today%E2%80%99s-lab



Exome sequencing detects mutations

Somatic mutations Germline mutations
* Occur in nongermline tissues * Present in egg or sperm
« Cannot be inherited * Can be inherited
» Cause cancer family syndrome
Parent
Child
Nonheritable Heritable O
Mutation in tumor only Mutation in All cells
(for example, breast) egg or sperm affected in
offspring

Adopned from e Natonal Cancer Instaute and he Amencan Sodety of Cincal Onoology



Somatic mutation calls require tumor-
normal paired samples
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SureSelect Target Enrichment workflow

GENOMIC SAMPLE
(Set of chromosomes)

2000000000000 SureSelect
Target Enrichment System
000000000000C Capture Process

lm Kit

ct
GENOMIC SAMPLE (PREPPED) SureSelect HYB BUFFER BIOTINYLATED ANA LIBRARY
-
o
{ )
)
Hybn'd'zau‘}‘,__
V000C W \U STREPTAVIDIN COATED MAGNETIC BEADS

9000¢ doops
ooooc@@mc + PAHTQ

W@&O

m Bead capture
UNBOUND FRACIION Wash Beads
DlgesrﬁNA
,\ ,\ ) Amplify
AVAY =) | Sequencing
W W

http://www.genomics.agilent.com

Application Number of samples/week”

Manual Automated

Whole Genome Sequencing 100 960
(library preparation only)

Target Enrichment 20-40 192

Automated NGS Sample Preparation



Comparison of commercial human whole-
exome capture platforms

a W Aglent b

 62Mb

1.5Mb

7 lllumina M NimbleGen

C

(a) Targeted genomic regions;
(b) Targeted coding regions;
(c) Targeted untranslated regions.

0.4M8

| NimbleGen: 63,564,965 bases
. Agilent: 50,390,601 bases
llumina: 45,112,692 bases

Shigemizu D et al. (2015) Sci Rep. 5:12742.



% targeted bases

Coverage of target regions

%Coding regions covered at 10x at
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3) Experimental design
s*Sample size

**Sequencing coverage



Whole exome DNA sources

Tumor DNA

Normal
tissue

Clinical
information

Fresh frozen (FF)
Paraffin embedded tissue (FFPE)
Cell line

Single cell
cfDNA

Blood
Neighboring tissue

e Date of diagnosis

* Malignancy stage

* Location of primary tumor

e Location of metastatic tumor
* Therapies

18



Variants detected in exome sequencing data
from the paired FF/FFPE samples

. Average
/o coverage
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Hedegaard, J. et al. (2014) PLoS ONE 9(5): €98187.



High genetic diversity in a single tumor

(HCC)
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Map of the mutation clones

AL

Ling, S. (2015) Proc Natl Acad Sci U S A. 112(47):E6496-505



Single cell exome sequencing demonstrates
the sample heterogeneity

Euclidean distance

100| f o Biploiéj_ Clel'ld ”
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Single cells

Wang, Y. et al. (2014) Nature. 512(7513):155-60.



Certain mutations only occur in a subset of
TNBC cell populations
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The number of samples needed to detect
significantly mutated genes

20,000

No. of tumour-normal pairs needed for
90% power in 90% of genes

Somatic mutation frequency (per Mb)

Rhabdoid Breast GBEM Esophageal Melanoma
Medulloblastoma Neuroblastoma Muitiple myeloma Endometnal adeno. Lung squamous
Acute myeloid leukemia CLL Ovarian Colorectal Lung adano.
Carcinoid Prostate Kidney clear cell DLBCL Head and neck Bladder

Lawrence, M.S. et al. (2014) Nature. 505(7484):495-501



Sequencing terminology

STRUCTURE DETAILS
Rd1 Seq Primer Index Seq Primer
e 3 > — >
e e INDEX
\ lawd beg zpy
|
Sequence of Interest
1. Insert
2. Read

3. Single Read (SR)
4. Paired End (PE)
5. Multiplexing

6. Flowcell

/. Lane

Normand, R. et al. (2013) Methods Mol Biol. 1038:1-26.



Sequencing coverage

Average coverage =
read length x number of mapped reads/ genome size
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Normand, R. et al. (2013) Methods Mol Biol. 1038:1-26.
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C elegans data: 1 read -1
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Wendl, M.C. et al. (2008) BMC Bioinformatics. 9:239.



The complexity of cancer genome
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Polyploid genome and coverage
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High coverage is needed for low tumor
fraction samples

Probability that at least 3 reads report variant

| |
20 30 40 50 70 100 200 300 400 600 1,000

Sequence coverage (X-fold redundancy)

Ding, L. et al. (2014) Nat Rev Genet. 15(8):556-70



The depth-VAF scatter plot of SNV
candidates in WES

Tumor read depth

Cai L, et al. (2016)Sci Rep. 6:36540.
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Steps to bring in projects to CCR-SF

Make sure to
project scope and design

bioinformatics for
* experiment design

Sequencing proposal mtR—
submission

\J

https://ostr.cancer.gov/resources
CSASsubmission

/fnl-cores/sequencing-facility

BAILC |~
T inategem S— T

Sample manifest

\

[ Sample shipment J

Courtesy of Yongmei Zhao, CCR-SF
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Laicos Somedical Ressarch, Inc.

Cancer Research Technology Program Sequencing Facility
lllumina Sequencing Sample Manifest Form sl

Requestor
Princpal Investigator
Laboratory Drason
Laboratory Contact E-mai Phone
Sample Type Quantitabion Method

(SAS Number Applicationr [JChipSeq [JmANASeq® []Total RNA Seq™ [Jmicro ANA [JgDNA
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Project Detalls

Sarmple Name Concentration Volume (ul Run Type (SH, PE Sequencer (GADUHiSeg Read Length (36, 103 bp Number of Lanes Reference Genome

Comments
Please complete the Sample Manifest form and e-mail it to the attention of Jyoti Shetty at shettyju@mailaih.gov prior to shipping your samples / ﬁi
Please include 2any Quality Comtrol documentation vailable such as gel images or electropherogams \(‘ |
‘ . -



4) Mutation study resources

*Genome in a Bottle
**DREAM mutation challenge



Genome in a Bottle Consortium

No widely accepted set of
metrics to characterize the
fidelity of variant calls from
NGS...

Genome in a Bottle Consortium
is developing standards to
address this...

— well-characterized human genomes
as Reference Materials (RMs)

* characterized and disseminated by
NIST

— tools and methods to use these
RMs

* Global Alliance for Genomics and
Health Benchmarking Team

http://genomeinabottle.org

—
A

Genome in a Bottle

£ C ;
v‘ / onsortium

Human DNA for
Whole Genome

Variant
: Assessment
R [Rample: H6-001




The data sets for NA12878 are available at
the Genome in a Bottle ftp site at NCBI

Source? Platform Mapping algorithm Coverage Read length Genome/exome
1000 Genomes [llumina Gallx BWA 39 44 Genome
1000 Genomes [llumina Gallx BWA 30 54 Exome
1000 Genomes 454 Ssaha2 16 239 Genome
X Prize [llumina HiSeq Novoalign 37 100 Genome
X Prize SOLID 4 Lifescope 24 40 Genome
Complete Genomics Complete Genomics CGTools 2.0 73 33 Genome
Broad [llumina HiSeq BWA 68 93 Genome
Broad [llumina HiSeq BWA 66 66 Exome
[llumina [llumina HiSeq CASAVA 80 100 Genome
[llumina [llumina HiSeq — PCR-free  BWA 56 99 Genome
[llumina [llumina HiSeq — PCR-free = BWA 190 99 Genome
Life Technologies lon Torrent tmap 80 237 Exome
[llumina [llumina HiSeq — PCR-free  BWA-MEM 60 250 Genome
Life Technologies lon Torrent tmap 12 200 Genome

ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878

Zook, J.M. et al. (2014) Nat Biotechnol. 32(3):246-51.



Integration methods to establish benchmark

variant calls

Candidate variants

Concordant variants

Find characteristics of bias

Arbitrate using evidence of
JES

Confidence Level
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Integrating human sequence data sets provides a
resource of benchmark SNP and indel genotype calls

Justin M Zook!, Brad Chapman?, Jason Wang?, David Mittelman*4, Oliver Hofmann?, Winston Hide? &

Marc Salit!

Clinical adoption of human genome sequencing requires
methods that output g ypes with known at
millions or billions of positions across a genome. Because
of substantial discordance among calls made by existing
sequencing methods and algorithms, there is a need for a
highly accurate set of genotypes across a genome that can
be used as a benchmark. Here we present methods to make
high-confidence, single-nucleotide polymorphism (SNP),
indel and homozygous reference genotype calls for NA12878,
the pilot genome for the Genome in a Bottle Consortium.
We minimize bias toward any method by integrating and
arbitrating between 14 data sets from five sequencing
technologies, seven read mappers and three variant callers.
We identify regions for which no confident genotype call
could be made, and classify them into different categories
based on reasons for uncertainty. Our genotype calls are
publicly i on the Comparison and Analytic
Testing website to enable real-time benchmarking of

any method.

As whole human genome and targeted sequencing start to offer the
real potential to inform clinical decisions!'~4, it is becoming criti-
cal to assess the accuracy of variant calls and understand biases and
sources of error in sequencing and bioinformatics methods. Recent
publications have demonstrated hundreds of thousands of differences
between variant calls from different whole human genome sequencing
methods or different bioinformatics methods®-!1. To understand these
differences, we describe a high-confidence set of genome-wide geno-
type calls that can be used as a benchmark. We minimize biases toward
any sequencing platform or data set by comparing and integrating 11
whole human genome and three exome data sets from five sequencing
platforms for HapMap/1000 Genomes CEU female NA12878, which
is a prospective reference material (RM) from the National Institute
of Standards and Technology (NIST). The recent approval of the first
next-generation sequencing instrument by the US Food and Drug

1Biosystems and Biomaterials Division, National Institute of Standards and
Technology, Gaithersburg, Maryland, USA. 2Bioinformatics Core, Department

Administration highlighted the utility of this candidate NIST refer-
ence material in approving the assay for clinical use!2.

NIST, with the Genome in a Bottle Consortium, is developing
well-characterized whole-genome reference materials, which will
be available to research, commercial and clinical laboratories for
sequencing and assessing variant-call accuracy and understanding
biases. The creation of whole-genome reference materials requires
a best estimate of what is in each tube of DNA reference material,
describing potential biases and estimating the confidence of the
reported characteristics. To develop these data, we are develop-
ing methods to arbitrate between results from multiple sequencing
and bioinformatics methods. The resulting arbitrated integrated
genotypes can then be used as a benchmark to assess rates of false
positives (o r calling a variant at a homozygous reference site), false
negatives (or calling homozygous reference at a variant site) and
other genotype calling errors (e.g., calling homozygous variant at
a heterozygous site).

Current methods for assessing sequencing performance are
limited. False-positive rates are typically estimated by confirming
a subset of variant calls with an orthogonal technology, which can
be effective except in genome contexts that are also difficult for the
orthogonal technology!?. Genome-wide, false-negative rates are
much more difficult to estimate because the number of true nega-
tives in the genome is overwhelmingly large (i.e., most bases match
the reference assembly). Typically, false-negative rates are estimated
using microarray data from the same sample, but microarray sites
are not randomly selected, as they only have genotype content with
known common SNPs in regions of the genome accessible to the
technology.

Therefore, we propose the use of well-characterized whole-
genome reference materials to estimate both false-negative and
false-positive rates of any sequencing method, as opposed to using
one orthogonal method that may have correlated biases in genotyp-
ing and a more biased selection of sites. When characterizing the
reference material itself, both a low false-negative rate (i.e., calling
a high proportion of true variant genotypes, or high sensitivity)
and a low false-positive rate (i.e., a high proportion of the called
variant genotypes are correct, or high specificity) are important

of Biostatistics, Harvard School of Public Health, Cambridge,
USA. 3Arpeggi, Inc., Austin, Texas, USA. *Virginia Bioinformatics Institute and
Department of Biological Sciences, Virginia, USA. C

should be addressed o J.M.Z. (jzook@nist.gov)

Received 14 December 2013; accepted 27 January 2014; published online

y Table 1).

Low false-positive and false-negative rates cannot be reliably
obtained solely by filtering out variants with low-quality scores
because biases in the sequencing and bioinformatics methods are not

Al inclndad in tha vasinnt anality ccavae Thavafaca cavasal vainnt

PP

Zook, JM et al (2014) Nat Biotechnol.

32(3):246-51.

http://www.slideshare.net/GenomelnABottle/presentations



~2.7M high confident snps are detected by
multiple algorithms
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Systematic comparison of variant
calling pipelines using GIAB

fastq files |-

|
Read aligners * * * *
Novoalign Bowtie2 BWA-MEM Tma
(lon Proton only)
| | | ]
|
Variant Callers* * V *
Freebayes Samtools GATK-HC TVC
(lon Proton only)

\d

\d

\d

\

vcf files: raw variant data

L 2
Vcflib: regularize each mutation
Bedtools: select variants on Exon
| |
variants on exon data (SNPs and Indels)
T Bt N === h Gold standard
I \\ r ‘l t \ I \ variants by GIAB
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Hwang S, Kim E, Lee |, Marcotte EM. (2015) Sci Rep. 5:17875.



The mutation caller performance varies
drastically, 2013

16 LUSC tumor-normal exome-seq pairs B
Detected by two callers
A Caller B 8 | Detected by three callers
0 Detected by all callers
Caller A Caller D 1047
g - 3862
< 3657
8 ] 2670
: i

Caller A CallerB CallerC CallerD

Kim, S.Y., Speed, T.P. (2013) BMC Bioinformatics. 10;14:189.

5380
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Evaluation of somatic mutation callers
2016

Variant calling

EBCall
Mutect
Seurat

5 breast cancer patients ‘ Exome sequencing - Shimmer
tumor-normal pairs mean coverage 80 x Somatic Sniper
Strelka
Varscan 2
Virmid
Indelocator
SNVs
1200 -
1000 4
800 - mPT1 MPT2 mPT3 mPT4 mPTS

600 -

400 A

200 4

EBCall Mutect Seurat Shimmer Somatic Strelka Varscan 2 Virmid

Krgigard AB et al (2016) PLoS One. 11(3):e0151664.
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Challenge data and assessment
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Combining tumor genome simulation with crowdsourcing

to benchmark somatic single-nucleotide-variant detection
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ExAc: Exome Aggregation Consortium

TP53  tumor protein p53 Transcripts ~ Constraint Expected Observed Constraint
Number of variants 567 (Including filtered: 653) from EXAC no. variants no. variants Metric
Number of CNVs 6 (Including filtered: 32)
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GeneCards TP53 (£
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Optimizing Cancer Genome Sequencing and

Analysis
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