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Exome sequencing	workflow

http://www.dana-farber.org

Sample	preparation
Genomic	DNA

Library	construction

Sequencing
Illumina,	Roche,	Life	Tech.

Raw	reads
FASTQ,	QC	report

Bwa-Mem,		Novoalign,	
SAMtoolsMapped	reads

Bam	files,	Alignment	stats

Possible	mutations	and	
indels

MuTect,	VarScan,	GATK

Annotated	and	filtered	
functional	variants

ANNOVAR,	MutSig,	
HotNet,	MEMo

Confirmed	novel	
functional	variants

Manual	review,	Target	
re-sequencing



1) Next	generation	sequencing	(NGS)
v Platform
v Productivity

2) Exome sequencing
3) Experimental	design
4) Mutation	study	resources



Sanger	sequencing:	dye-terminator	
sequencing,	1977-present		



Next	generation	sequencing	technology
2004-present

Mardis ER.	(2017)	Nat Protoc.	12(2):213-218.



Comparison	of	sequencing	methods
Next	generation	sequencingSanger	sequencing

http://ueb.vhir.org/NGS;	https://www.qiagen.com



Run	throughput	in	
gigabases against	length	
for	the	different	
sequencing	platforms

https://flxlexblog.wordpress.com



Next generation sequencing applications

Genomics

Dna-seq

• Mutation, 
SNVs

• Indels
• CNVs
• Translocation

Transcript-
omics

RNA-seq

• Expression 
level

• Novel 
transcripts

• Fusion 
transcripts

• Splice 
variants

Epi-
genomics

ChIP-Seq, 
Methyl-Seq

• Global 
mapping of 
DNA-protein 
interactions

• DNA 
methylation

• Histone 
modification



1) Next	generation	sequencing	(NGS)
2) Exome sequencing

v Benefit
v Capture	technology

3) Experimental	design
4) Mutation	study	resource



Ø Focuses	on	the	part	of	the	genome	we	understand	best,	
the	exons	of	genes	

Ø About	85%	of	known	mutations	in	Mendelian	diseases	
affect	the	exome
v Nonsense,	missense,	splice,	indel mutations

Ø Depending	on	the	annotation	and	coverage	of	flanking	
sequencing:	~35-60Mb	=>	1-2%	of	human	genomes

Ø There	are	~200,000	coding	exons	in	~20,000	genes
Ø A	whole	exome is	1/6	the	cost	of	whole	genome	and	1/15	

the	amount	of	data	

Whole	exome	sequencing: Why?	

Biesecker,	L.	et	al.	(2011)	Genome	Biology	12:128	



Exome sequencing	balances	the	coverage	
and	cost

http://webinar.sciencemag.org/webinar/archive/exome-sequencing-today%E2%80%99s-lab

Sanger Targeted Exome

•Accurate
•Cheap per exon
•High turn-around

•Optimization possible
•Low chance	of
incidental findings

•Easy	analysis

•No bias for genes
•Standardized
workflow

•Re-use of performed
exomes to	interpret
new	ones

•Low diagnostic yield
for genetically	
heterogeneous
diseases

•Design and
re-design required
•Different designs
for different
disorders

•No	non-coding	
regions

•Sequencing	bias
• Incidental	findings

•No	sequencing	bias
•Detect	SVs	and	
SNVs

•Data	analysis	
bottleneck

• Interpretation	of	
non-coding	regions

•Expensive,	time-
consuming

Whole	Genome



Exome sequencing	detects	mutations



Somatic	mutation	calls	require	tumor-
normal	paired	samples

normal

tumor



SureSelect Target	Enrichment	workflow

http://www.genomics.agilent.com

Automated	NGS	Sample	Preparation



Comparison	of	commercial	human	whole-
exome	capture	platforms

(a)	Targeted	genomic	regions;
(b)	Targeted	coding	regions;
(c)	Targeted	untranslated	regions.

NimbleGen:	 63,564,965	bases	
Agilent:	 50,390,601	bases	
Illumina:	 45,112,692	bases

Shigemizu D et	al.	(2015)	Sci	Rep.	5:12742.



Coverage	of	target	regions

Shigemizu D et	al.	(2015)	Sci	Rep.	5:12742.

%Coding	regions	covered	at	10x	at	
different	read	depthOn-target	enrichment



1) Next	generation	sequencing	(NGS)
2) Exome sequencing
3) Experimental	design

vSample	size
vSequencing	coverage

4) Mutation	study	resource



Whole exome DNA sources

18

• Fresh	frozen	(FF)
• Paraffin	embedded	tissue	(FFPE)
• Cell	line
• Single	cell
• cfDNA

Tumor	DNA

• Blood
• Neighboring	tissue

Normal	
tissue

• Date	of	diagnosis
• Malignancy	stage
• Location	of	primary	tumor		
• Location	of	metastatic	tumor	
• Therapies

Clinical	
information	



Variants	detected	in	exome sequencing	data	
from	the	paired	FF/FFPE	samples

Hedegaard,	J.	et	al.	(2014)	PLoS ONE	9(5):	e98187.	



High	genetic	diversity	in	a	single	tumor	
(HCC)

Ling,	S.	(2015)	Proc Natl Acad Sci U	S	A.	112(47):E6496-505



Map	of	the	mutation	clones

Ling,	S.	(2015)	Proc Natl Acad Sci U	S	A.	112(47):E6496-505



Single	cell	exome sequencing	demonstrates	
the	sample	heterogeneity	

Wang,	Y.	et	al.	(2014)	Nature.	512(7513):155-60.

Triple-negative	breast	cancer	(TNBC)



Certain	mutations	only	occur	in	a	subset	of	
TNBC	cell	populations	

Wang,	Y.	et	al.	(2014)	Nature.	512(7513):155-60.



The	number	of	samples	needed	to	detect	
significantly	mutated	genes

Lawrence,	M.S.	et	al.		(2014)	Nature.	505(7484):495-501	



Sequencing	terminology

1.	Insert		
2.	Read	
3.	Single	Read	(SR)
4.	Paired	End	(PE)
5.	Multiplexing
6.	Flowcell
7.	Lane

Normand,	R.	et	al.	(2013)	Methods	Mol Biol.	1038:1-26.



Sequencing	coverage

Average	coverage	=	
read	length	✕ number	of	mapped	reads/ genome	size

Normand,	R.	et	al.	(2013)	Methods	Mol Biol.	1038:1-26.



Diploid	genome	and	coverage

Wendl,	M.C.	et	al.	(2008)	BMC	Bioinformatics.	9:239.	



OVCAR-3,	NCI60	cell	line,	
Ovarian	cancer

http://www.ncbi.nlm.nih.gov/projects/sky/skyquery.cgi

The	complexity of	cancer	genome



Polyploid genome	and	coverage

Wendl,	M.C.	et	al.	(2008)	BMC	Bioinformatics.	9:239.	



High	coverage	is	needed	for	low	tumor	
fraction	samples

Ding,	L.	et	al.	(2014)	Nat	Rev	Genet.	15(8):556-70



The	depth-VAF	scatter	plot	of	SNV	
candidates	in	WES

Cai L, et	al.	(2016)Sci Rep.	6:36540.



Steps	to	bring	in	projects	to	CCR–SF

https://ostr.cancer.gov/resources
/fnl-cores/sequencing-facility

Make	sure	to	
consult		your	

bioinformatics	for	
experiment	design	

Courtesy	of	Yongmei	Zhao,	CCR-SF





1) Next	generation	sequencing	(NGS)
2) Exome sequencing
3) Experimental	design
4) Mutation	study	resources

vGenome	in	a	Bottle
vDREAM	mutation	challenge



Genome	in	a	Bottle	Consortium
• No	widely	accepted	set	of	

metrics	to	characterize	the	
fidelity	of	variant	calls	from	
NGS…

• Genome	in	a	Bottle	Consortium	
is	developing	standards	to	
address	this…
– well-characterized	human	genomes	

as	Reference	Materials	(RMs)
• characterized	and	disseminated	by	

NIST
– tools	and	methods	to	use	these	

RMs
• Global	Alliance	for	Genomics	and	

Health	Benchmarking	Team

http://genomeinabottle.org



The	data	sets	for	NA12878	are	available	at	
the	Genome	in	a	Bottle	ftp	site	at	NCBI

Zook,	J.M.	et	al.	(2014)	Nat	Biotechnol.	32(3):246-51.	

ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878



Integration	methods	to	establish	benchmark	
variant	calls
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Clinical adoption of human genome sequencing requires 
methods that output genotypes with known accuracy at 
millions or billions of positions across a genome. Because 
of substantial discordance among calls made by existing 
sequencing methods and algorithms, there is a need for a 
highly accurate set of genotypes across a genome that can 
be used as a benchmark. Here we present methods to make 
high-confidence, single-nucleotide polymorphism (SNP), 
indel and homozygous reference genotype calls for NA12878, 
the pilot genome for the Genome in a Bottle Consortium. 
We minimize bias toward any method by integrating and 
arbitrating between 14 data sets from five sequencing 
technologies, seven read mappers and three variant callers. 
We identify regions for which no confident genotype call 
could be made, and classify them into different categories 
based on reasons for uncertainty. Our genotype calls are 
publicly available on the Genome Comparison and Analytic 
Testing website to enable real-time benchmarking of  
any method.

As whole human genome and targeted sequencing start to offer the 
real potential to inform clinical decisions1–4, it is becoming criti-
cal to assess the accuracy of variant calls and understand biases and 
sources of error in sequencing and bioinformatics methods. Recent 
publications have demonstrated hundreds of thousands of differences 
between variant calls from different whole human genome sequencing 
methods or different bioinformatics methods5–11. To understand these 
differences, we describe a high-confidence set of genome-wide geno-
type calls that can be used as a benchmark. We minimize biases toward 
any sequencing platform or data set by comparing and integrating 11  
whole human genome and three exome data sets from five sequencing 
platforms for HapMap/1000 Genomes CEU female NA12878, which 
is a prospective reference material (RM) from the National Institute 
of Standards and Technology (NIST). The recent approval of the first 
next-generation sequencing instrument by the US Food and Drug 

Administration highlighted the utility of this candidate NIST refer-
ence material in approving the assay for clinical use12.

NIST, with the Genome in a Bottle Consortium, is developing 
well-characterized whole-genome reference materials, which will 
be available to research, commercial and clinical laboratories for 
sequencing and assessing variant-call accuracy and understanding 
biases. The creation of whole-genome reference materials requires 
a best estimate of what is in each tube of DNA reference material, 
describing potential biases and estimating the confidence of the 
reported characteristics. To develop these data, we are develop-
ing methods to arbitrate between results from multiple sequencing 
and bioinformatics methods. The resulting arbitrated integrated 
genotypes can then be used as a benchmark to assess rates of false 
positives (o r calling a variant at a homozygous reference site), false 
negatives (or calling homozygous reference at a variant site) and 
other genotype calling errors (e.g., calling homozygous variant at 
a heterozygous site).

Current methods for assessing sequencing performance are  
limited. False-positive rates are typically estimated by confirming 
a subset of variant calls with an orthogonal technology, which can 
be effective except in genome contexts that are also difficult for the 
orthogonal technology13. Genome-wide, false-negative rates are 
much more difficult to estimate because the number of true nega-
tives in the genome is overwhelmingly large (i.e., most bases match 
the reference assembly). Typically, false-negative rates are estimated 
using microarray data from the same sample, but microarray sites 
are not randomly selected, as they only have genotype content with 
known common SNPs in regions of the genome accessible to the 
technology.

Therefore, we propose the use of well-characterized whole-
genome reference materials to estimate both false-negative and 
false-positive rates of any sequencing method, as opposed to using 
one orthogonal method that may have correlated biases in genotyp-
ing and a more biased selection of sites. When characterizing the 
reference material itself, both a low false-negative rate (i.e., calling 
a high proportion of true variant genotypes, or high sensitivity) 
and a low false-positive rate (i.e., a high proportion of the called 
variant genotypes are correct, or high specificity) are important 
(Supplementary Table 1).

Low false-positive and false-negative rates cannot be reliably 
obtained solely by filtering out variants with low-quality scores 
because biases in the sequencing and bioinformatics methods are not 
all included in the variant quality scores. Therefore, several variant  

Integrating human sequence data sets provides a 
resource of benchmark SNP and indel genotype calls
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Candidate	variants

Concordant	variants

Find	characteristics	of	bias

Arbitrate	using	evidence	of	
bias

Confidence	Level

http://www.slideshare.net/GenomeInABottle/presentations

Zook,	JM	et	al	(2014)	Nat	Biotechnol.	
32(3):246-51.	



~2.7M	high	confident	snps are	detected	by	
multiple	algorithms	

Zook,	J.M.	et	al.	(2014)	Nat	Biotechnol.	32(3):246-51.	

Exome SNPs

Exome SNPs



Systematic	comparison	of	variant
calling	pipelines	using	GIAB

Hwang	S,	Kim	E,	Lee	I,	Marcotte EM.	(2015)	Sci Rep.	5:17875.	

SNP

INDEL



The	mutation	caller	performance	varies	
drastically,	2013

Kim,	S.Y.,	Speed,	T.P.	(2013)	BMC	Bioinformatics.	10;14:189.	

16	LUSC	tumor-normal	exome-seq	pairs



Krøigård AB et	al	(2016)	PLoS One.	11(3):e0151664.

Evaluation	of	somatic	mutation	callers
2016



http://dreamchallenges.org



Challenge	data	and	assessment

http://dreamchallenges.org



Combining	tumor	genome	simulation	with	crowdsourcing	
to	benchmark	somatic	single-nucleotide-variant	detection

Ewing,	A.D.	et	al.	(2015)	Nat	Methods.	12(7):623-30.	



ExAc:	Exome	Aggregation	Consortium

http://exac.broadinstitute.org



1) Sample	and	case	selection
2) Matched	normal	samples
3) Library	construction
4) Sequencing	platform
5) Sequencing	depth
6) Exome-seq
7) Whole	genome	sequecing
8) Targeted	sequencing
9) Sequence	alignment
10) Variant	calling
11) Subclonal inference
12) RNA-seq
Griffith	M.	et	al	(2015)	Cell	Syst.	1(3):210-223.


