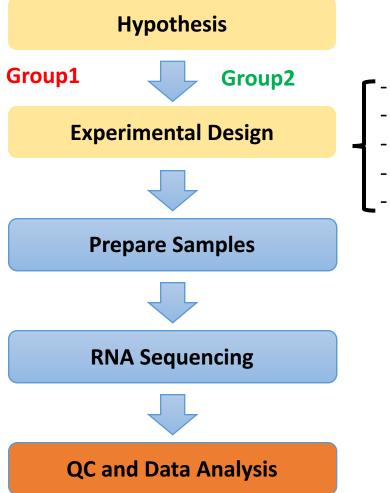
The CCBR RNA-Seq Pipeline

Fathi Elloumi, Ph.D NCI CCBR 3/20/2017

Agenda


- Introduction
- Data analysis Workflow
 - Review main steps
- CCBR RNA-Seq pipeline
 - Workflow overview
 - Quality Control reports
 - Principal Component Analysis PCA and differential expressed reports reports
 - Downstream analysis after running the pipeline
- Running the CCBR pipeline
 - Use case and demo

Agenda

- Introduction
- Data analysis Workflow
 - Review main steps
- CCBR RNA-Seq pipeline
 - Workflow overview
 - Quality Control reports
 - Principal Component Analysis PCA and differential expressed reports reports
 - Downstream analysis after running the pipeline
- Running the CCBR pipeline
 - Use case and demo

RNA-Seq Applications

- Differential Gene Expression
- Differential Transcript Expression
 - Still confined to known transcripts / isoforms
- Transcript Discovery / Whole Transcriptome Profiling
 - Interest is in looking for new isoforms or unannotated genes
- Others
 - SNP/Somatic Variant/Gene Fusion Detection

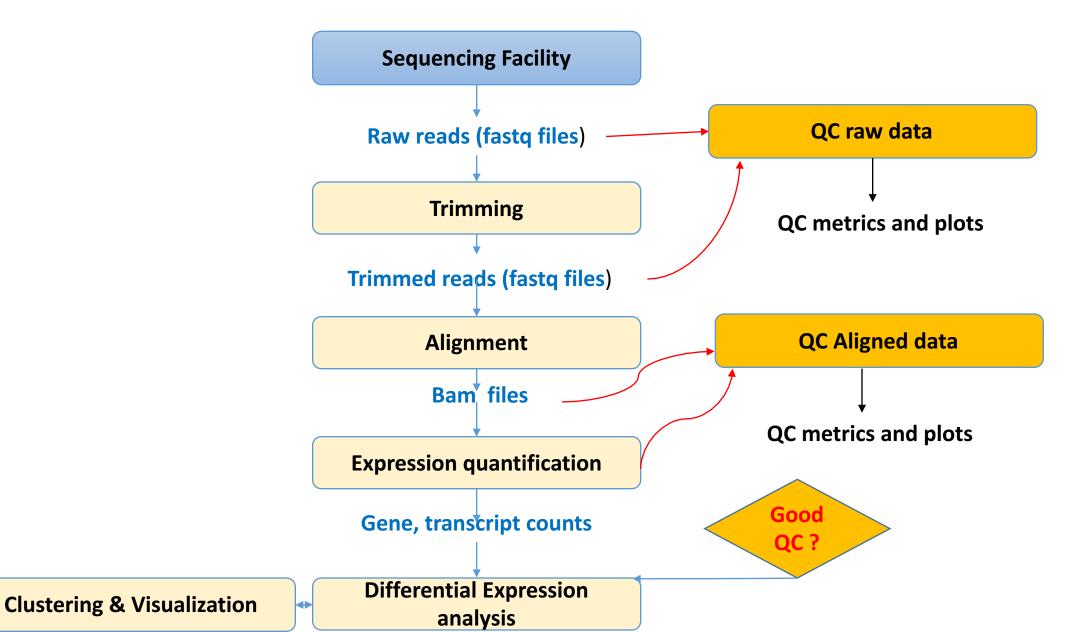
RNA-Seq project Overview

- RNA extraction protocol
- Depth

•••

- Library type SE/PE
- Nb. Replicates

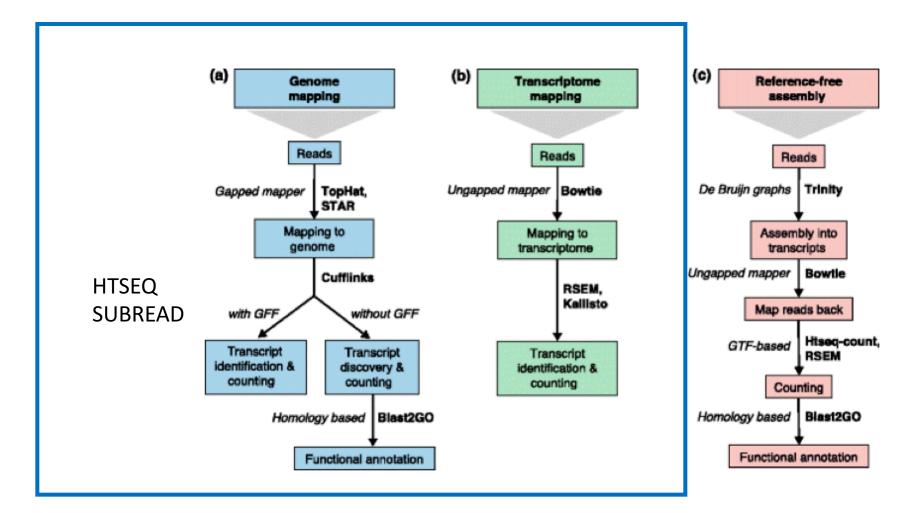
Best Practices


- Factor in at least 3 replicates (absolute minimum), but 4 if possible (optimum minimum). Biological replicates are recommended rather than technical replicates.
- Always process your RNA extractions at the same time. Extractions done at different times lead to unwanted batch effects.
- There are 2 major considerations for RNA-Seq libraries:
 - If you are interested in coding mRNA, you can select to use the mRNA library prep. The
 recommended sequencing depth is between 10-20M paired-end (PE) reads. Your RNA has to be
 high quality (RIN > 8).
 - If you are interested in long noncoding RNA as well, you can select the total RNA method, with sequencing depth ~25-60M PE reads. This is also an option if your RNA is degraded.
- Ideally to avoid lane batch effects, all samples would need to be multiplexed together and run on the same lane. This may require an initial MiSeq run for library balancing. Additional lanes can be run if more sequencing depth is needed.
- If you are unable to process all your RNA samples together and need to process them in batches, make sure that replicates for each condition are in each batch so that the batch effects can be measured and removed bioinformatically.

https://bioinformatics.cancer.gov/content/rna-seq

Agenda

- Introduction
- Data analysis Workflow
 - Review main steps
- CCBR RNA-Seq pipeline
 - Workflow overview
 - Quality Control reports
 - Principal Component Analysis PCA and differential expressed reports reports
 - Downstream analysis after running the pipeline
- Running the CCBR pipeline
 - Use case and demo


Typical RNA-Seq analysis workflow

Quality control (QC) of raw data

- Detect issues related to Sample Collection, Library preparation or Sequencing
- Need to check
 - Base quality score
 - sequence quality
 - Sequence duplication level
 - GC content level
 - Presence of contaminants
 - bacteria or virus
 - Adaptor presence

Alignment & quantification

Post-alignment QC

- % mapped and uniquely mapped reads: 70-90%
- uniformity of read coverage over gene body
- Read distribution
- Check for read strandedness
- Biotype composition (check for rRNA)

Differential expression analysis

- What are the genes or transcripts that are differentially expressed between two or more groups?
 - do statistical test:
 - T-test
 - Empirical Bayes (moderated t-test)
 - Anova (> 2 groups)
 - ...
 - adjust for multiple testing (FDR....)

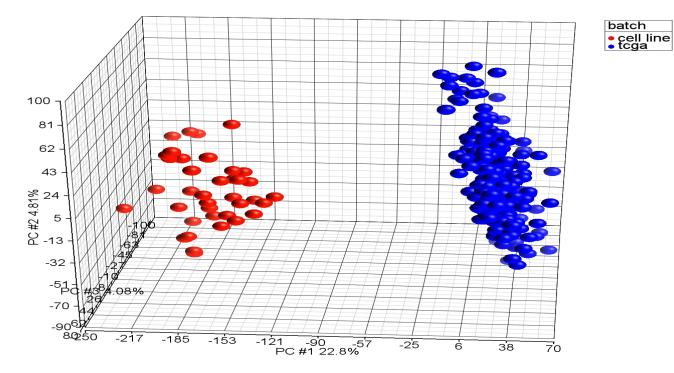
Known differentially expression detection methods

 Table I: Software packages for detecting differential expression

Method	Version	Reference	Normalization ^a	Read count distribution assumption	Differential expression test
edgeR	3.0.8	[4]	TMM/Upper quartile/RLE (DESeq-like)/None (all scaling factors are set to be one)	Negative binomial distribution	Exact test
DESeq	1.10.1	[5]	DESeq sizeFactors	Negative binomial distribution	Exact test
baySeq	1.12.0	[6]	Scaling factors (quantile/TMM/total)	Negative binomial distribution	Assesses the posterior probabilities of models for differentially and non-differentially expressed genes via empirical Bayesian methods and then compares these posterior likelihoods
NOlseq	1.1.4	[7]	<u>RPKM</u> /TMM/Upper quartile	Nonparametric method	Contrasts fold changes and absolute differences within a condition to determine the null distribution and then compares the observed differences to this null
SAMseq (samr)	2.0	[8]	SAMseq specialized method based on the mean read count over the null features of the data set	Nonparametric method	Wilcoxon rank statistic and a resampling strategy
Limma	3.14.4	[9]	ТММ	voom transformation of counts	Empirical Bayes method
Cuffdiff 2 (Cufflinks)	2.0.2-beta		Geometric (DESeq-like)/quartile/classic-fpkm	Beta negative binomial distribution	t-test
EBSeq	1.1.7	[11]	DESeq median normalization	Negative binomial distribution	Evaluates the posterior probability of differentially and non-differentially expressed entities (genes or isoforms) via empirical Bayesian methods

^aIn case of availability of several normalization methods, the default one is underlined.

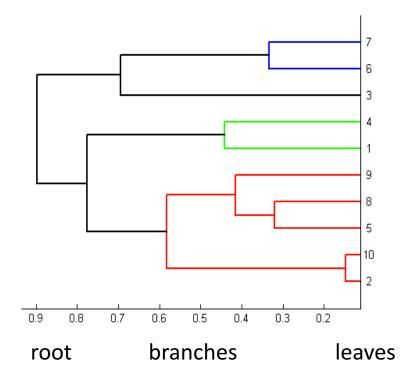
Comparison of software packages for detecting differential expression in RNA-seq studies Briefings in Bioinformatics vol 16 NOI. 59-70

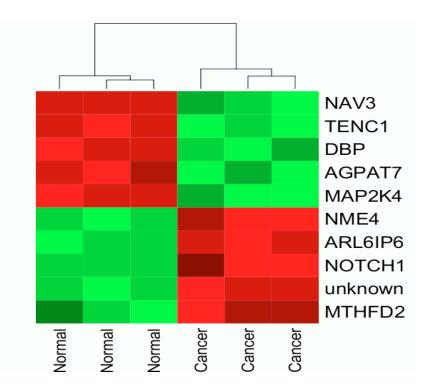

Normalization using scaling methods: overall gene expression is same across all samples

Method	Description		
Total count (TC):	Gene counts are divided by the total number of mapped reads (or library size) associated with their sample and multiplied by the mean total count across all the samples of the dataset		
Upper Quartile (UQ):	Very similar in principle to TC, the total counts are replaced by the upper quartile of counts different from 0 in the computation of the normalization factors		
Median (Med):	Also similar to TC, the total counts are replaced by the median counts different from 0 in the computation of the normalization factors		
DESeq	A scaling factor for a given sample is the median of the ratio, for each gene, of its read count over its geometric mean across all samples		
Trimmed Mean of M- values (TMM)	scaling factor is computed as the weighted mean of log ratios between the sample d the reference, after exclusion of the most expressed genes and the genes with e largest log ratios		

Principal Component Analysis

 Method for dimension reduction to identify patterns (thousands of genes = thousands of dimensions)

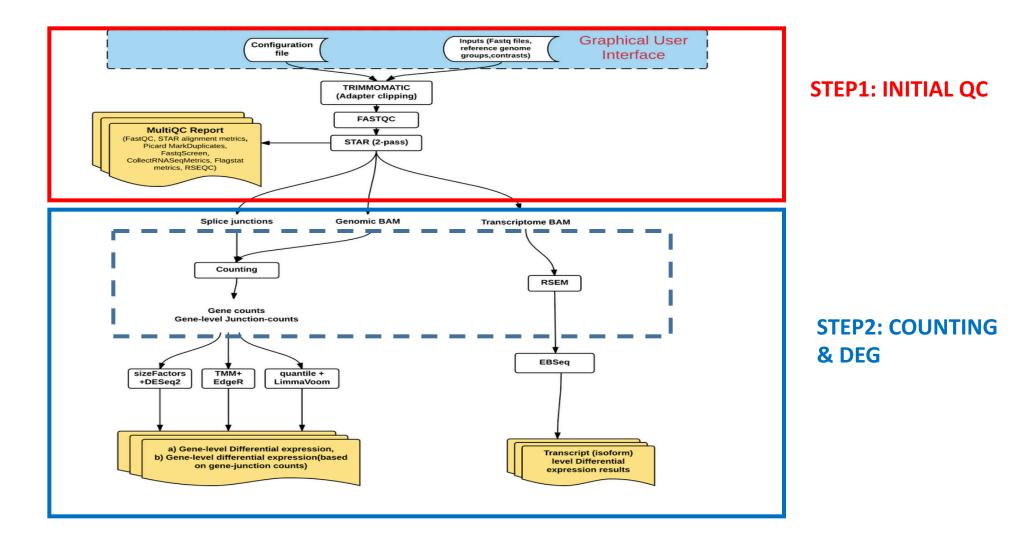


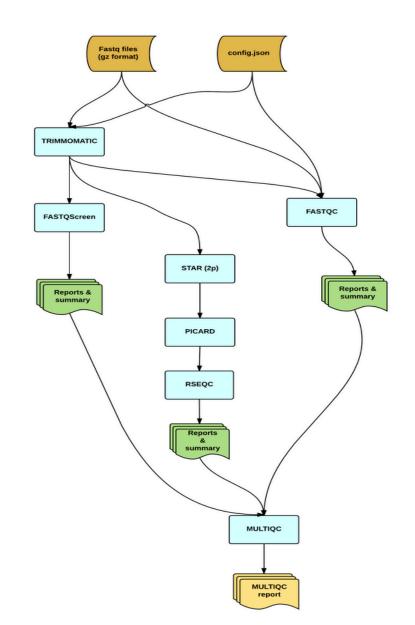

<u>The eigenvector with the largest eigenvalue (total variance)</u> is the first principal component. The second largest eigenvalue will be the direction of the second largest variance. Hierarchical Clustering

Dendrogram/tree

Heatmap

 branching diagram representing a hierarchy of categories based on degree of similarity

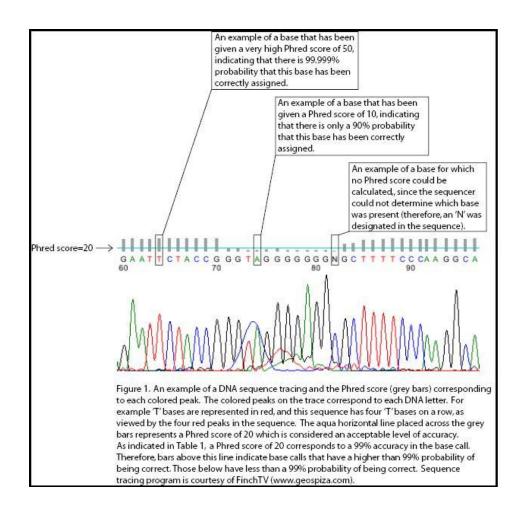



Agenda

- Introduction
- Data analysis Workflow
 - Review main steps
- CCBR RNA-Seq pipeline
 - Workflow overview
 - Quality Control reports
 - Principal Component Analysis PCA and differential expressed reports reports
 - Downstream analysis after running the pipeline
- Running the CCBR pipeline
 - Use case and demo

RNA-Seq Pipeline workflow

RNA-Seq: Initial QC workflow



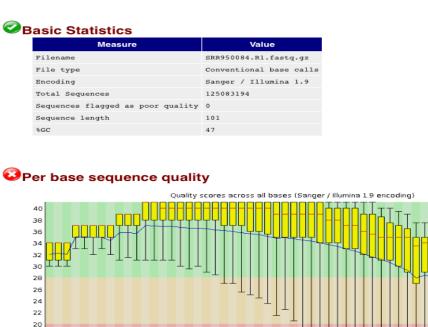
- Trimmonatic: just adaptor clipping
- STAR2 pass mode: for most sensitive novel junctions discovery

Use case: 4 samples from SEQC study

- Mixture of biological sources and a set of synthetic RNAs from the External Rna Control Consortium (ERCC)
- 2 samples from group A : Strategene Universal Human Reference RNA (UHRR) – from 10 human cell lines-
- ➤2 samples from group B: Ambion Human Brain Reference RNA (HBRR)
- ≻Illumina HiSeq2000. -100 bp-

Base quality (Q score)

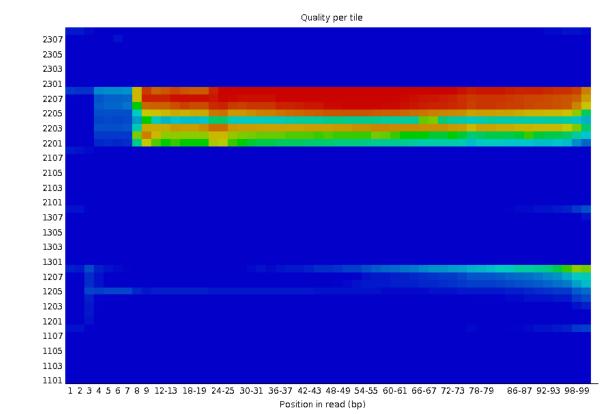
Phred quality scores are logarithmically linked to error probabilities Phred Quality Score Probability of incorrect base call Base call accuracy 10 1 in 10 90% 20 1 in 100 99% 30 1 in 1000 99.9% 40 1 in 10.000 99.99% 50 1 in 100,000 99.999% 60 1 in 1,000,000 99.9999%


 $Q = -10 \log_{10} P$, where P is the base-calling error probability

Sample QC report

Base quality distribution

*R*FastQC Report


Common reasons for warnings

- General degradation of quality over the duration of long runs
- Loss quality earlier in the run (bubbles in flowcell)
- Reads of different length

Warning if the lower quartile for any base is less than 10, or if the median for any base is less than 25. **Failure** if the lower quartile for any base is less than 5 or if the median for any base is less than 20.

1 2 3 4 5 6 7 8 9 12-13 18-19 24-25 30-31 36-37 42-43 48-49 54-55 60-61 66-67 72-73 78-79 86-87 92-93 98-99 Position in read (bp)

Tiles issues (bubble , smudge or debris in lane)

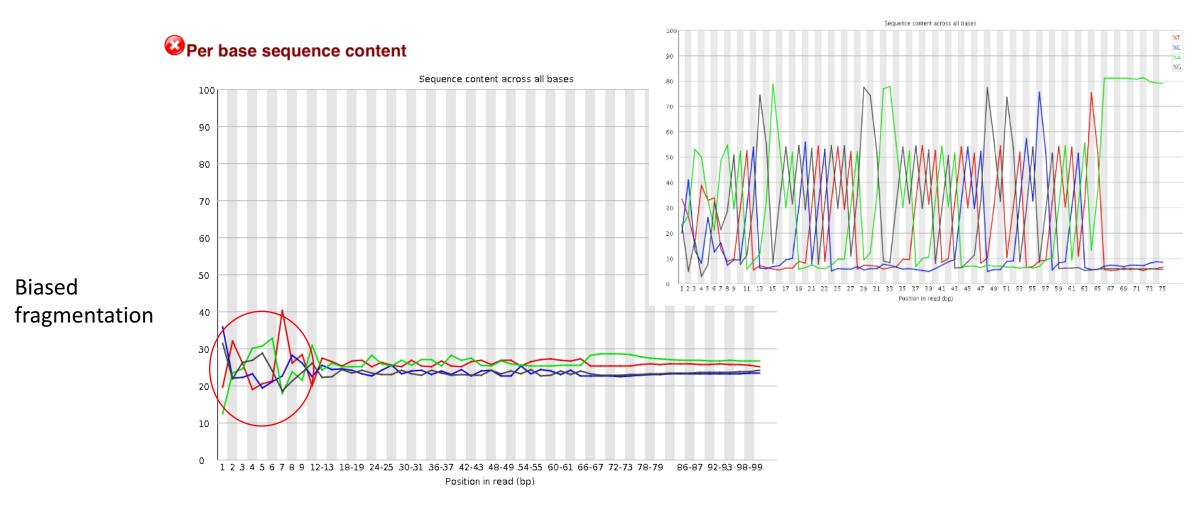
Per tile sequence quality

A good plot should be all blue !

Flowcell tile heatmap showing deviation from the average quality for each tile

Failure if any tile shows a mean Phred score more than 5 less than the mean for that base across all tiles

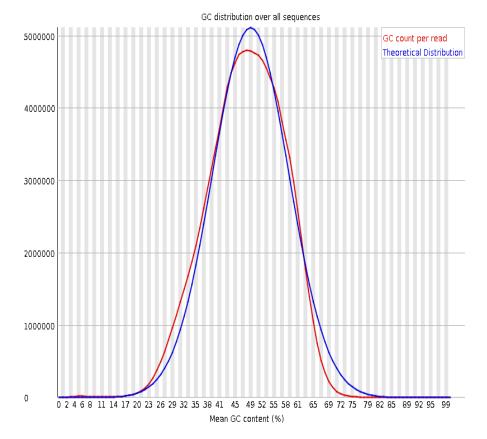
Check proportion of sequences with low quality values

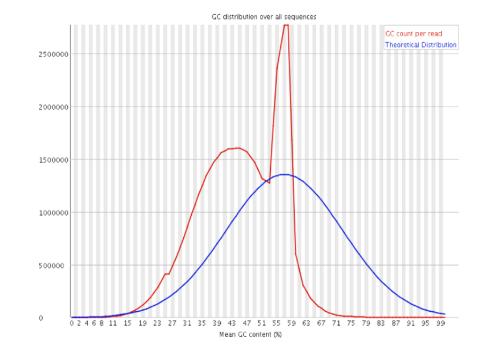

Quality score distribution over all sequences Average Quality per read 2.25E7 2.0E7 1.75E7 1.5E7 1.25E7 1.0E7 7500000 5000000 2500000 0 2345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Mean Sequence Quality (Phred Score)

Per sequence quality scores

For bi-modal or complex distribution, should check with per tile qualities

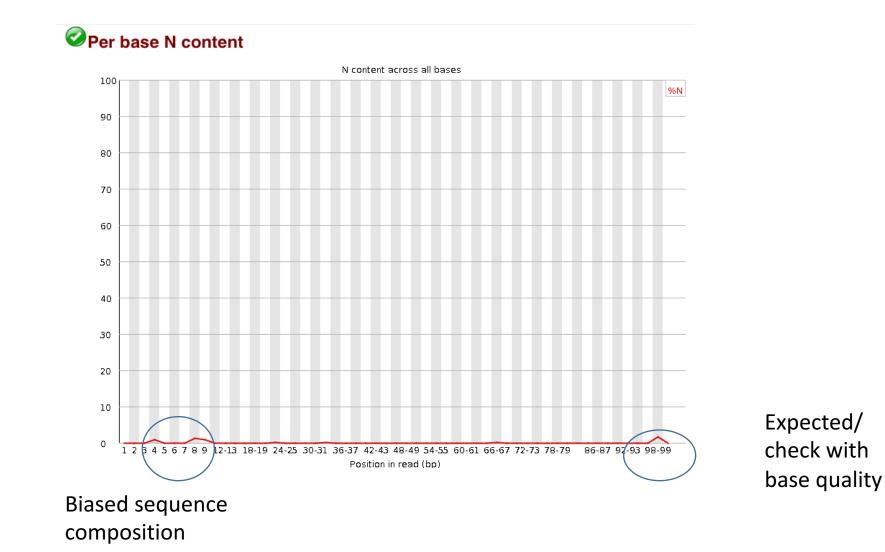
Failure if the most frequently observed mean quality is below 20

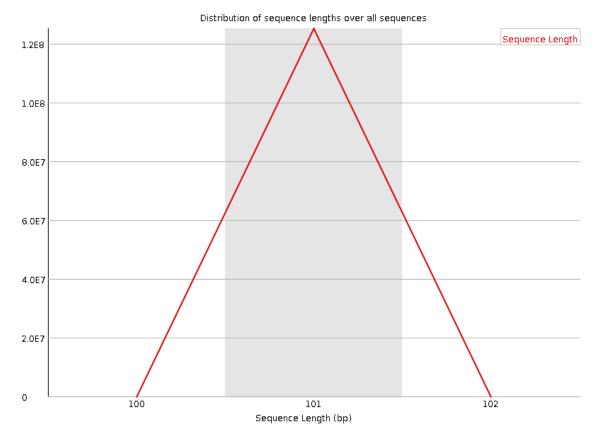

Per base sequence content should be uniform



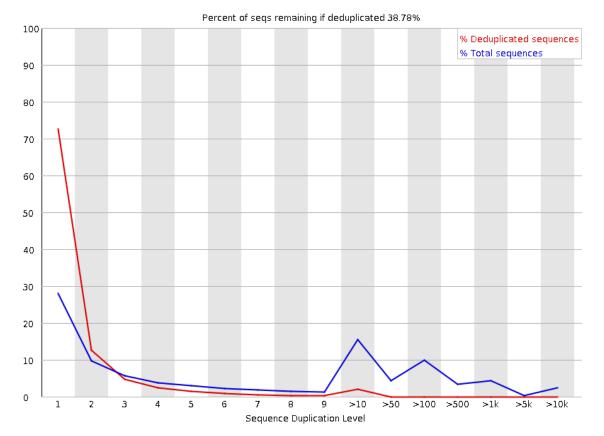
RNA-Seq libraries produce biased sequence composition at start of the read (10-12 bp) / does not affect downstream analysis

GC content should be a normal distribution


Per sequence GC content

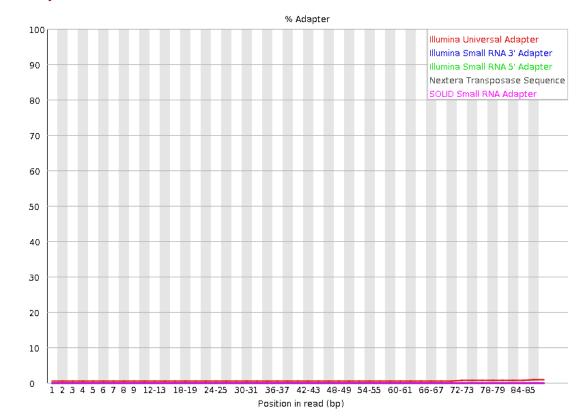

Contaminant issue (adapter dimers= paired of ligated adapters with no insert sequence) Need to check overrepresented sequences

No call distribution


All sequences should have the same length

Sequence Length Distribution

High duplication level should be carefully assessed

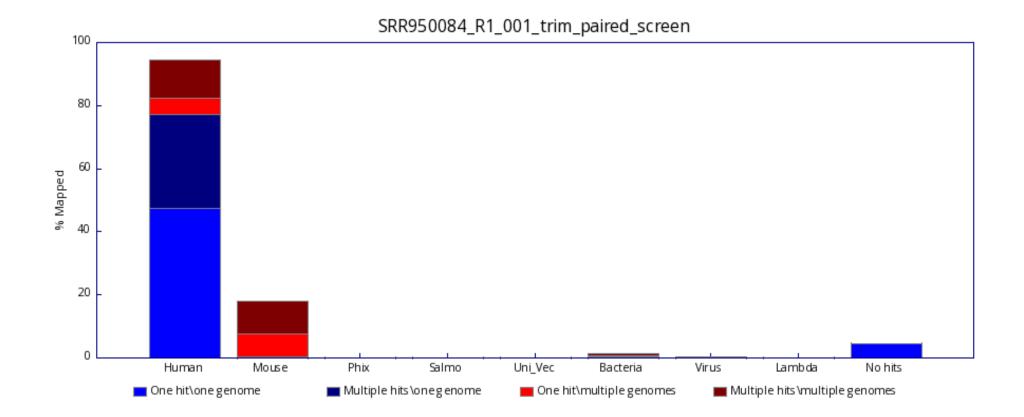

Sequence Duplication Levels

- Technical duplicates (PCR over amplification)
- Biological duplicates
 - Small RNA library
 - Over-sequence High expressed transcripts to observe lowexpressed ones

Check for adapter sequence

Adapter Content

If insert sizes are shorter than the read length -> need to remove adapter sequence


Check for contamination in Over-represented sequences:

Overrepresented sequences

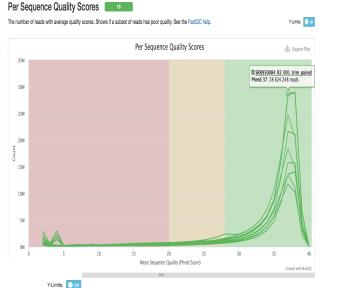
Sequence	Count	Percentage	Possible Source
GATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTCAACAATCTCGTAT	2328372	1.8614587024376752	TruSeq Adapter, Index 13 (97% over 40bp)
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACAGTCAACAATCTCGTA	676505	0.5408440401673785	TruSeq Adapter, Index 13 (97% over 40bp)

error if any sequence is found to represent more than 1% of the total

FastqScreen: look for Bacteria/ virus contamination

MultiQC report

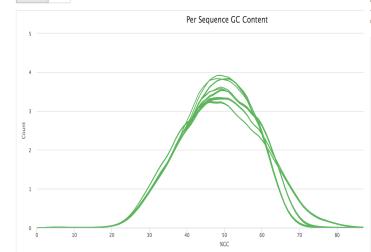
MultiQC: Multiple samples report


FastQC

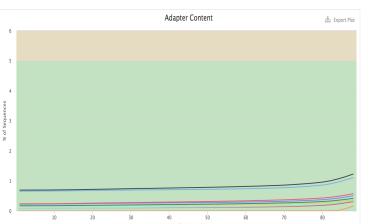
FastQC is a quality control tool for high throughput sequence data, written by Simon Andrews at the Babraham Institute in Cambridge.

Sequence Quality Histograms

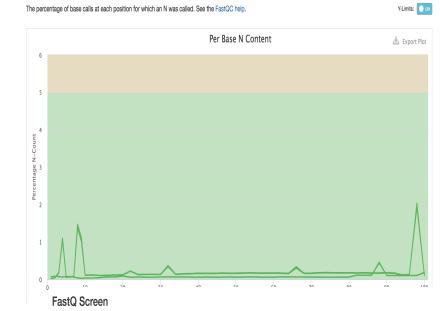
The mean quality value across each base position in the read. See the FastQC help



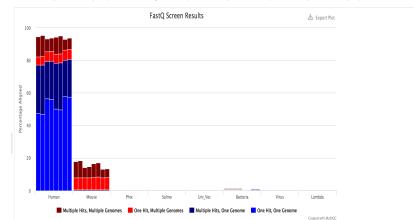
Per Sequence GC Content 16


The average GC content of reads. Normal random library typically have a roughly normal distribution of GC content. See the FastQC help.

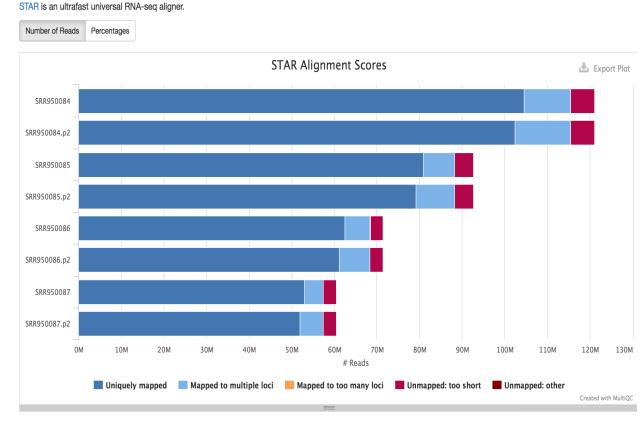
Percentages Counts



Adapter Content 16


The cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position. See the FasiQC help. Only samples with ≥ 0.1% adapter contamination are shown.

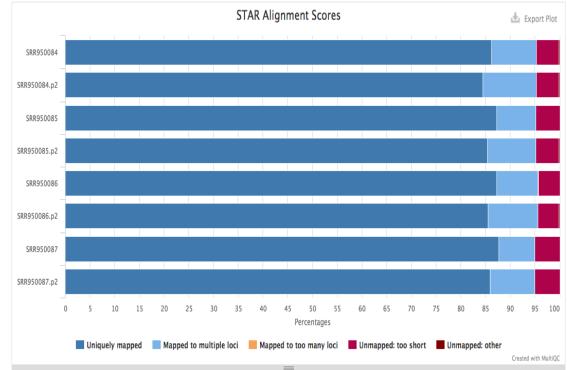
Per Base N Content


FastQ Screen allows you to screen a library of sequences in FastQ format against a set of sequence databases so you can see if the composition of the library matches with what you expect.

multiQC report: Mapping stats

nb.of mapped Reads

STAR

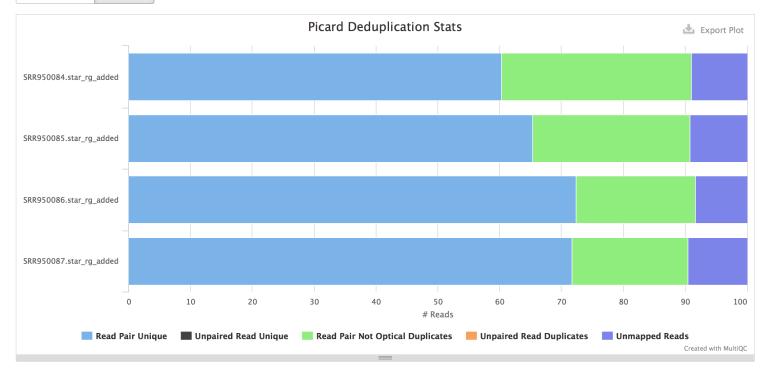


Mapping rate 70-90%

STAR

STAR is an ultrafast universal RNA-seq aligner.

Number of Reads Percentages

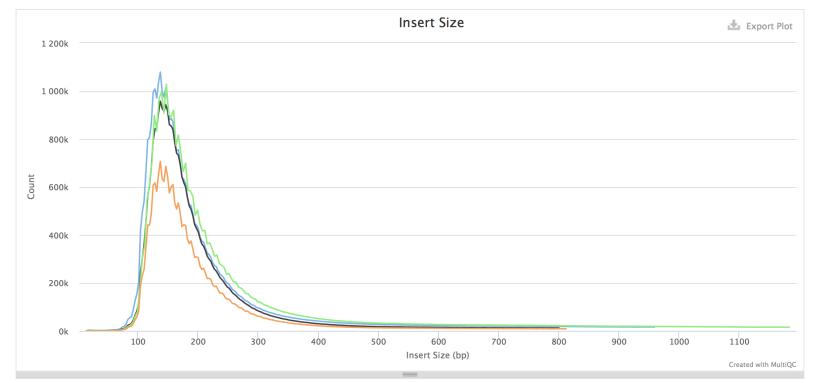

multiQC report: Picard duplication rate by paired reads

Picard

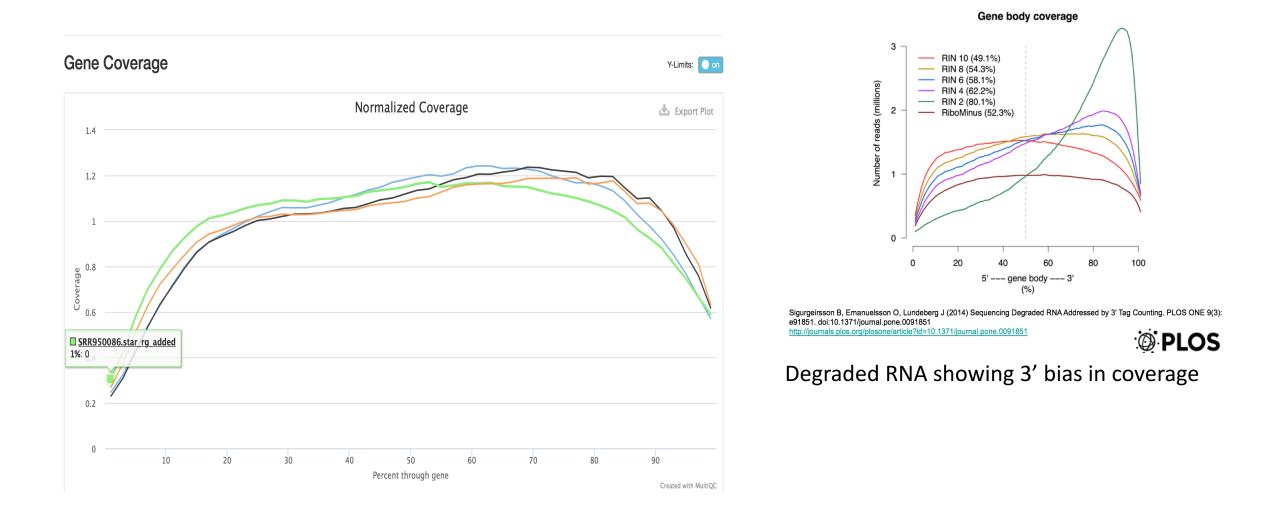
Picard is a set of Java command line tools for manipulating high-throughput sequencing data.

Mark Duplicates

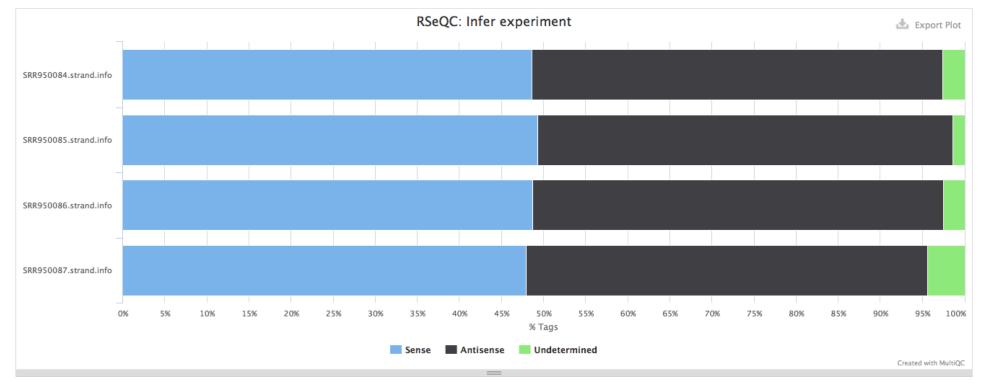
Number of Reads Percentages


multiQC report: Picard

Insert Size


Plot shows the number of reads at a given insert size. Reads with different orientations are summed.

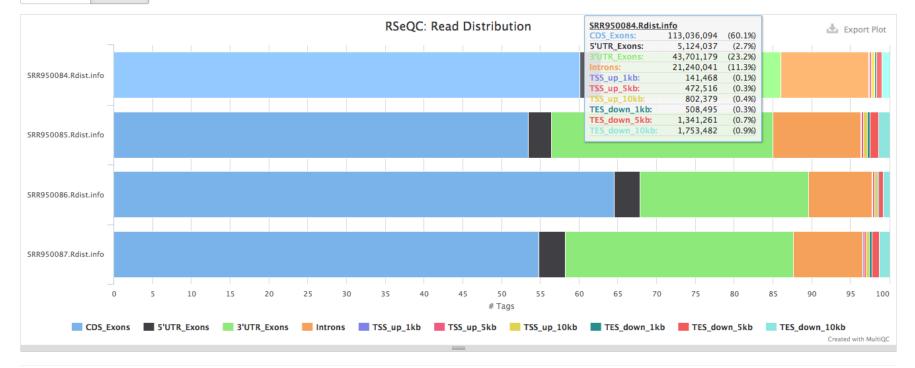
Counts Percentages


multiQC report: RNA quality check

multiQC report: RSEQC

Infer experiment

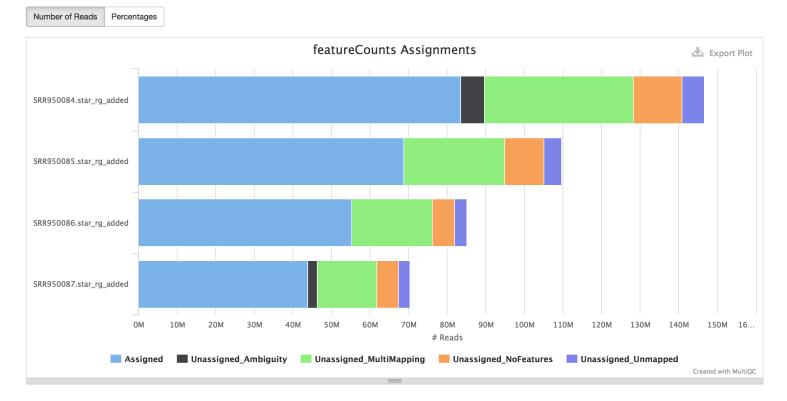
Infer experiment counts the percentage of reads and read pairs that match the strandedness of overlapping transcripts. It can be used to infer whether RNA-seq library preps are stranded (sense or antisense).


multiQC report: Exons coverage

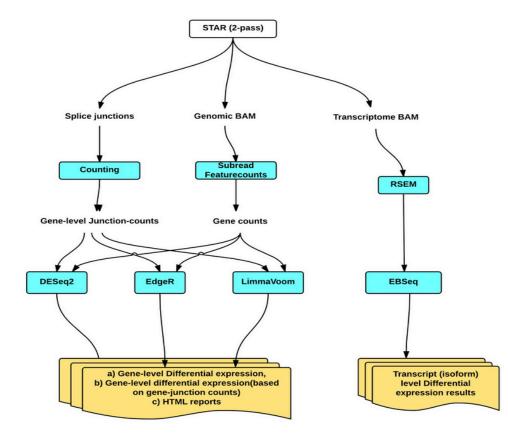
RSeQC package provides a number of useful modules that can comprehensively evaluate high throughput RNA-seq data.

Read Distribution

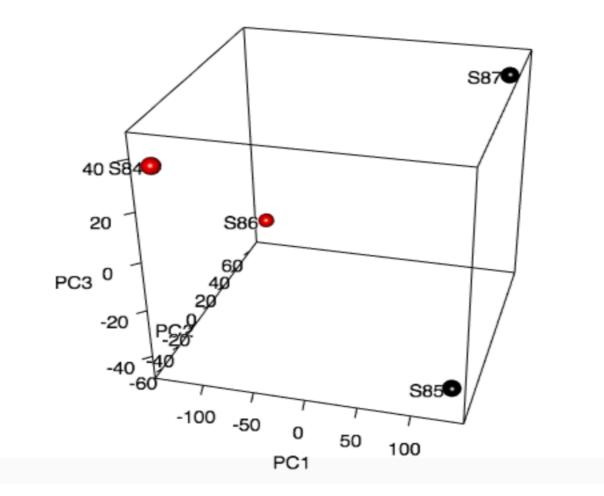
Read Distribution calculates how mapped reads are distributed over genome features.


Number of Tags Percentages

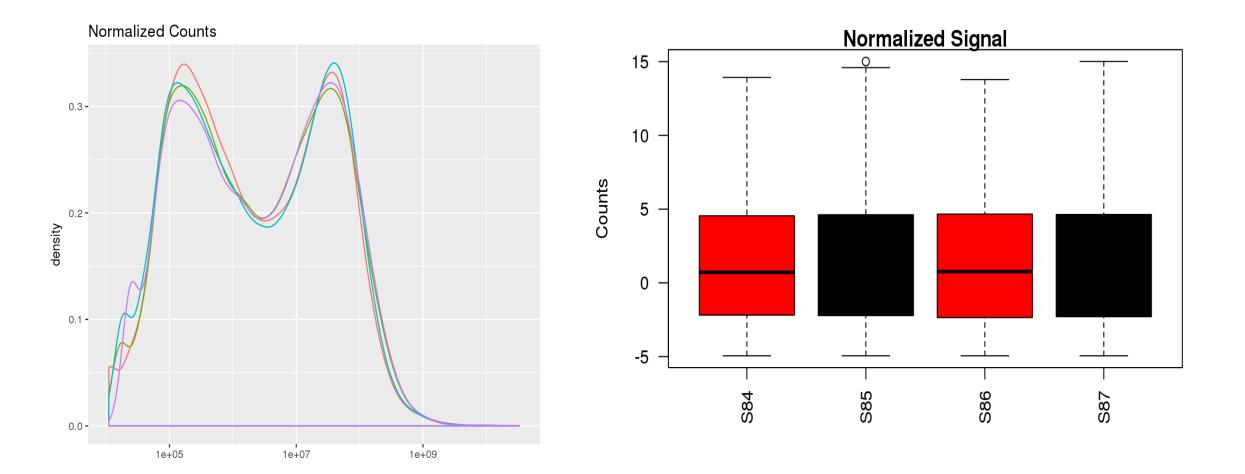
multiQC report: Count check


featureCounts

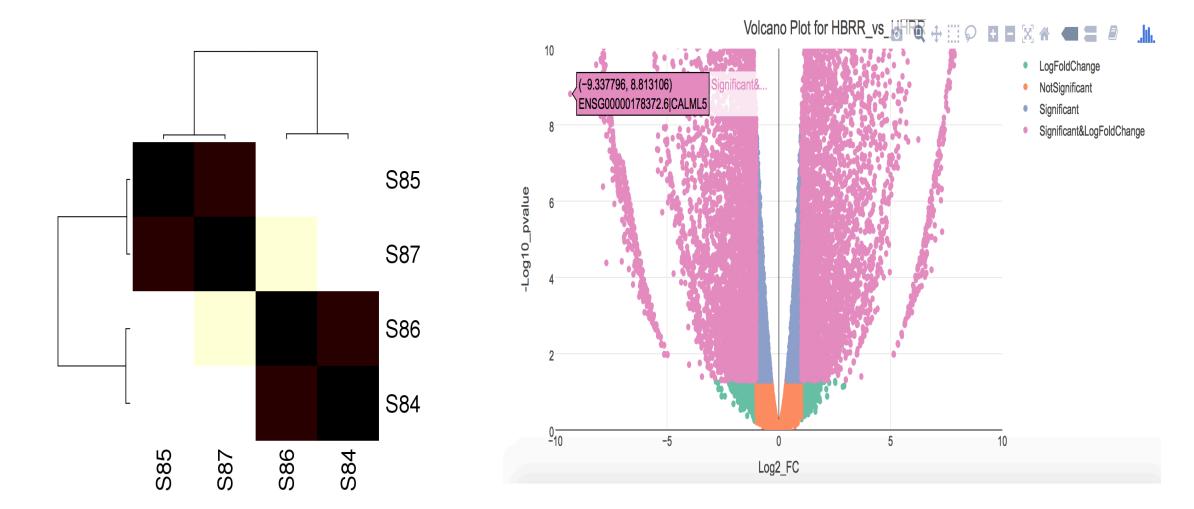
Subread featureCounts is a highly efficient general-purpose read summarization program that counts mapped reads for genomic features such as genes, exons, promoter, gene bodies, genomic bins and chromosomal locations.


Checking unassigned rate for overlapping regions and multi-mapping reads

RNA-Seq: Differential expression workflow



RNA-Seq: PCA report


PCA after TMM normalization

RNA-Seq: EdgeR DEG report (Limma, and Deseq2 also available)

RNA-Seq: EdgeR DEG report

DEG

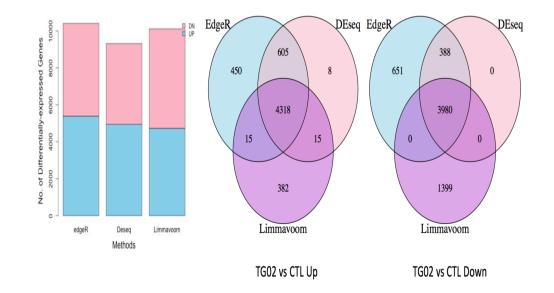
Show 10 \$ entries

	HBRR-UHRR_logFC 🔷	HBRR-UHRR_pval 🍦	
ENSG000000003.10 TSPAN6	-2.50928615777818	1.3380101042162e-28	
ENSG000000005.5 TNMD	-3.6495628070402 6.175042214714e-		
ENSG0000000419.8 DPM1	-1.46952506670122 1.49147150717859e-1		
ENSG0000000457.9 SCYL3	-0.0751178228148991 0.7766915646170		
ENSG0000000460.12 C1orf112	-2.7512929546514 2.07376241097899e-23		
ENSG000000938.8 FGR	5.77257447142532 8.64069023783316e-42		
ENSG0000000971.11 CFH	0.367498252758908 0.120055574266859		
ENSG0000001036.9 FUCA2	-2.50835963213615 7.88387959188995e-34		
ENSG0000001084.6 GCLC	0.227863384547624 0.231618171572459		
ENSG0000001167.10 NFYA	-0.765530062980488 0.000127763247166451		
Showing 1 to 10 of 30,122 entries	Previous 1 2 3 4	5 3013 Next	

Search:

EdgeR_deg_HBRR_vs_UHRR.txt

Id	ensID	gene	logFC	logCPM	PValue	FDR	FC
ENSG0000000003.10 TSPAN6	ENSG0000000003.10	TSPAN6	-2.509286158	4.944362674	1.34E-28	1.34E-27	-5.693383012
ENSG0000000005.5 TNMD	ENSG0000000005.5	TNMD	-3.649562807	-0.672287271	6.18E-11	2.61E-10	-12.54954199
ENSG0000000419.8 DPM1	ENSG0000000419.8	DPM1	-1.469525067	5.344403608	1.49E-12	7.04E-12	-2.769307134
ENSG0000000457.9 SCYL3	ENSG0000000457.9	SCYL3	-0.075117823	3.592577781	0.776691565	0.827749197	-1.053447066
ENSG0000000460.12 C1orf112	ENSG0000000460.12	C1orf112	-2.751292955	3.857511111	2.07E-23	1.70E-22	-6.733202968
ENSG0000000938.8 FGR	ENSG0000000938.8	FGR	5.772574471	1.710361124	8.64E-42	1.32E-40	54.66609706
ENSG0000000971.11 CFH	ENSG0000000971.11	CFH	0.367498253	4.312593606	0.120055574	0.164057252	1.290113731
ENSG0000001036.9 FUCA2	ENSG0000001036.9	FUCA2	-2.508359632	5.662233909	7.88E-34	9.44E-33	-5.68972779
ENSG0000001084.6 GCLC	ENSG0000001084.6	GCLC	0.227863385	5.654432914	0.231618172	0.293797219	1.171099279
ENSG0000001167.10 NFYA	ENSG0000001167.10	NFYA	-0.765530063	5.437495321	0.000127763	0.000297089	-1.699994481
ENSG0000001460.13 STPG1	ENSG0000001460.13	STPG1	1.457008799	4.439054736	1.16E-09	4.46E-09	2.745385607
ENSG0000001461.12 NIPAL3	ENSG0000001461.12	NIPAL3	2.759319171	7.353825876	1.14E-48	2.10E-47	6.770766522
ENSG0000001497.12 LAS1L	ENSG0000001497.12	LAS1L	-0.222818625	6.354111211	0.24308328	0.306533033	-1.167011376
ENSG0000001561.6 ENPP4	ENSG0000001561.6	ENPP4	3.557250132	5.450703915	2.46E-57	5.68E-56	11.77169475
ENSG0000001617.7 SEMA3F	ENSG0000001617.7	SEMA3F	-0.94998227	4.107566858	0.000351012	0.000761977	-1.931848916
ENSG0000001626.10 CFTR	ENSG0000001626.10	CFTR	1.363661906	0.807413586	0.000139806	0.000323271	2.573375357
ENSG0000001629.5 ANKIB1	ENSG0000001629.5	ANKIB1	0.058685985	6.421272185	0.756280072	0.80934623	1.04151671
ENSG0000001630.11 CYP51A1	ENSG0000001630.11	CYP51A1	-0.290194885	2.269595297	0.670414156	0.732924384	-1.222805448
ENSG0000001631.10 KRIT1	ENSG0000001631.10	KRIT1	-0.210802525	5.404130871	0.292101282	0.359584568	-1.157331792
ENSG0000002016.12 RAD52	ENSG0000002016.12	RAD52	-0.075564881	4.123075561	0.758993715	0.811817651	-1.053773555
ENSG0000002079.8 MYH16	ENSG0000002079.8	MYH16	-1.63888835	-0.611449531	0.001090409	0.002194368	-3.114257744
ENSG0000002330.9 BAD	ENSG0000002330.9	BAD	0.729585279	3.317604969	0.394161428	0.4666849	1.658162363
ENSG0000002549.8 LAP3	ENSG0000002549.8	LAP3	-0.714689805	6.043843772	0.000333134	0.000726081	-1.641130319
ENSG0000002587.5 HS3ST1	ENSG0000002587.5	HS3ST1	5.247363704	3.974820467	3.29E-54	7.00E-53	37.98515238
ENSG0000002726.15 AOC1	ENSG0000002726.15	AOC1	-4.329901882	-1.834716476	9.70E-08	3.16E-07	-20.11084621
ENSG0000002745.8 WNT16	ENSG0000002745.8	WNT16	2.365264313	0.04674071	1.08E-09	4.18E-09	5.152470403

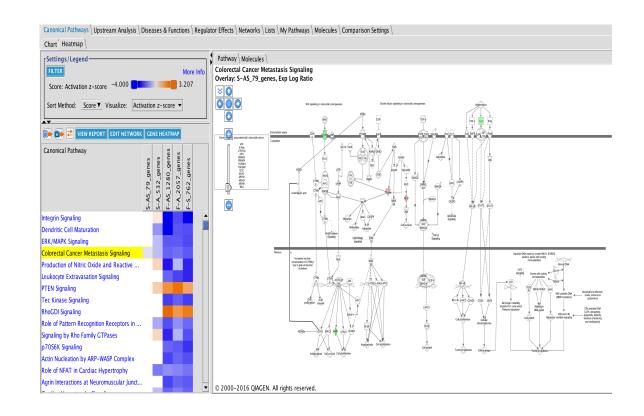

What is the method to use?

No clear answer!

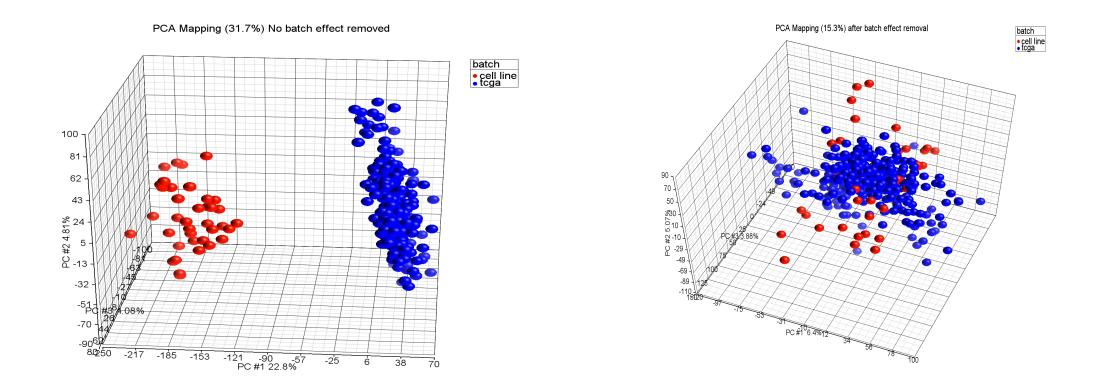
TG02 versus CTL

Compare results:

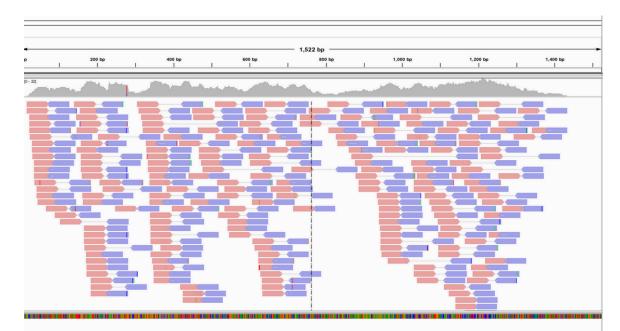
- PCA
- Sample clustering
- DEG results

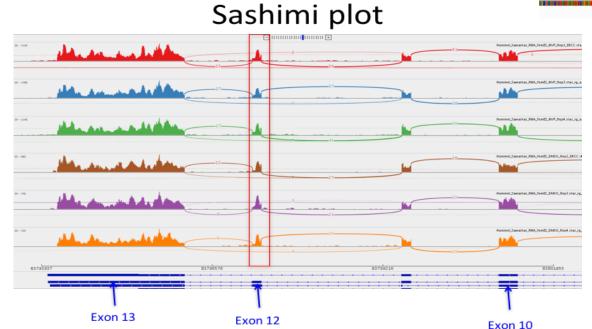


DEG Venn diagram


Visualization and enrichment analysis

- Cluster the samples based on the top ranked genes (sd, mad, IQR..)
- Pathway enrichment (GSEA, IPA, ...)
 - Easy use of DEG files


Dealing with Batch effect



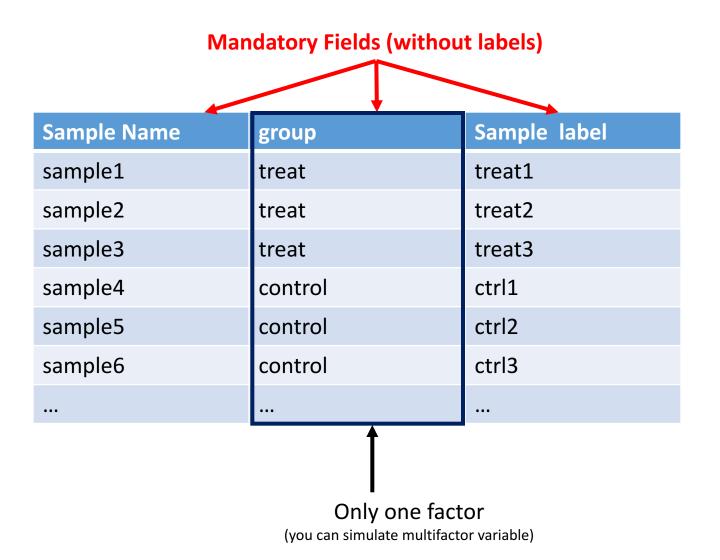
• incorporate batch effect as co-variate in the model)

Viewing RNA-Seq data

- Integrative Genomics Viewer (IGV)
 - Read alignments
 - Splices junctions

Agenda

- Introduction
- Data analysis Workflow
 - Review main steps
- CCBR RNA-Seq pipeline
 - Workflow overview
 - Quality Control reports
 - Principal Component Analysis PCA and differential expressed reports reports
 - Downstream analysis after running the pipeline
- Running the CCBR pipeline
 - Use case and demo


CCBR Pipeliner

- Offers for now 3 NGS data workflow: RnaSeq, ExomeSEq and GenomeSeq.
- Each workflow:
 - \checkmark is version-aware
 - \checkmark is modular and extensible
 - Multiple options/programs can be selected for a task.
 - \checkmark is reproducible
 - uses a config file
 - ✓ maintains an audit trail (as a log file)
 - ✓ runs on NIH cluster and use Queue system
 - ✓ informs user, via email, once run is complete

Data preparation/ Input

- Pipeliner takes in raw paired-end NGS data: fastq.gz files
- Fastq naming convention:
 - <samplename>.R1.fastq.gz,
 - <samplename>.R2.fastq.gz
- Pipeliner can convert filenames to the desired naming convention
 - labels.txt: two-column text file
 - SampleA_R1_001.fastq.gz TumR1_Batch1.R1.fastq.gz
- For DEG, you need to know the phenotype/group for the samples and the contrasts for differential analysis

"groups.tab" file

"contrasts.tab" file

Group1	Vs. group2
treat	control

CCBR RNASEQ Pipeline (InitialQC)

• • •	XC	CCBR Pipeliner	
File View Help			
Project Information			
Project Id	project (Examples: CCBR-nnn,Labnan	ne or short project name)
Email address		Mandatory field: must use @r	ih.gov email address)
Flow Cell ID	stats (Examples: FlowCellID, Labna	me, date or short project name)
Global Settings—			
Genome: hg19	Pipeline Family:	eq 💶	
Project Description	RNAseq		
Data Directory:			Open Directory
FastQ files Found:	0		
Working Directory:			Open Directory
	Initialize Direct	ory Dry Run	Run
_Options			
Pipeline ii	nitialqcmaseq 🛁		
-Sample Infor	mation		
Set Groups	Set Contrasts		

Data directory: /scratch/elloumif/SEQC4/

Working directory: /data/<user>/...

CCBR RNASEQ Pipeline (DEG Analysis)

	CCBR Pipeliner	
File View Help		
Project Information		
Project Id project	(Examples: CCBR-nnn,Labname or short project name)	
Email address	(Mandatory field: must use @nih.gov email address)	
Flow Cell ID stats	(Examples: FlowCeIIID, Labname, date or short project name)	
Global Settings		
Genome: hg19 — Pipeline Family: m	aseq 🛁	
Project Description RNAseq		
Data Directory:	Open Directory	
FastQ files Found: 0		
Working Directory:	Open Directory	
Initialize Dir	ectory Dry Run Run	
Options		
Pipeline rnaseq 🛁		
no, Do not Report Differential	ly Expressed Genes 👝	
Low Abundance Gene Thresholds		
Include genes with >= 5 read cour	nts in >= 2 samples	
Sample Information Set Groups Set Contrasts		

Data directory: /scratch/elloumif/SEQC4/

Working directory: /data/<user>/...

RNA-Seq Output: Main directories

- rawQC: Fastqc results on raw data
- **Trim**: trimmed data (adaptor cut)
- QC: Fastqc results on trimmed data
- FQscreen: FastqScreen results (trimmed data)
- Reports: contains Multiqc report and main log file of the pipeline (snakemake.log)
- **DEG_genes**: DEG results based on gene count + Html reports
- DEG_genejunctions: DEG results based on junction gene count + Html reports

DEG directory output files

- Limma* files (txt, png, html)
- Deseq2* files
- edgeR* files

RNA-Seq Output: Main files (main working directory)

- Bam files (*.bam)
- raw count data (3 methods):
 - Gene: RawCountFile_gene.txt and RawCountFile_genes_filtered.txt
- Gene Normalized data: CPM_TMM_counts.txt
- RSEM results:
 - <sample>.rsem.genes.results
 - <sample>.rsem.isoforms.results
- EBSEQ results:
 - <sample>isoform..EBSeq
 - <sample>.isoform.EBSeq.normalized_data_matrix
 - <sample>.isoform.EBSeq.counts.matrix
- Run.json: configuration file run settings

Configuration file

```
"project": {
   "DEG": "yes",
   "MINCOUNTGENEJUNCTIONS" "5"
   "MINCOUNTGENES": "5",
   "MINCOUNTJUNCTIONS": "5",
   "MINSAMPLES": "2",
   "PICARDSTRAND": "NONE",
   "SJDBOVERHANG" "100",
   "STARDIR": "/fdb/STAR_current/GENCODE/Gencode_human/release_19/genes-100",
   "STARSTRANDCOL": "2",
   "STRANDED": "0",
   "TRIM": "yes",
   "analyst": "",
   "annotation": "hg19",
   "batchsize": "20",
   "binset" "standard-bin",
   "cluster": "cluster_medium.json",
   "contrasts": {
       "rcontrasts": [
           "HBRR",
           "UHRR"
   },
   "custom": [],
   "datapath": "/data/CCBR/dev/RNA-Seq-techdev/SEQC_dataset/FASTQfiles",
   "description": "Enter CCBR Project Description and Notes here.\n",
   "efiletype": "fastq",
   "filetype": "fastq.gz",
   "flowcellid": "stats",
   "groups": {
       "rgroups": [
           "UHRR",
           "HBRR"
           "UHRR",
           "HBRR"
       1,
       "rlabels":
           "S84",
           "S85",
           "S86",
           "S87"
       1,
       "rsamps": [
           "SRR950084",
           "SRR950085",
           "SRR950086",
           "SRR950087"
```

```
"rnaseq": {
    "CONFMULTIQC": "/data/CCBR_Pipeliner/db/PipeDB/Rnaseq/multiqc_config.yaml",
    "RSEM": "/usr/local/apps/rsem/1.3.0",
    "STARVER": "STAR/2.5.2b",
    "MULTIQC": "multiqc/0.9dev0",
    "PICARDVER": "picard/1.119",
```

...

Setup before running ccbrpipeliner

- Helix and Biowulf accounts
- X11 client (Windows: Putty, NoMachine; Mac: Xquartz, NoMachine)
- Space:
 - Biowulf home directories have default of 100GB allocation: not enough to run NGS pipelines.
 - Best option: have a lab-wide /data/labname storage allocation, with higher storage
- Basic knowledge of Unix commands (ssh, mkdir, vi)

CCBR pipeliner availability

<u>https://github.com/CCBR/Pipeliner</u>

✓ via module "ccbrpipeliner" at Biowulf

CCBR pipeliner documentation

https://github.com/CCBR/Pipeliner/blob/master/Pipeli nerVer1.0_documentation.pdf

Demo

Use case: 4 samples from SEQC study

- Mixture of biological sources and a set of synthetic RNAs from the External Rna Control Consortium (ERCC)
- 2 samples from group A : Strategene Universal Human Reference RNA (UHRR) – from 10 human cell lines-
- ➤2 samples from group B: Ambion Human Brain Reference RNA (HBRR)
- ≻Illumina HiSeq2000. -100 bp-

Input files

- Fastq files
- Labels.txt
- Groups.tab
- Contrasts.tab

Output files

- FASTQC report
- MultiQC report
- Pca report
- Edge R report
- Rawcount files
- Normalized data files

