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ChIP-seq Pipelines

Cloud-based

Local http://ugene.net

ENCODE Daa € ja Mal Hep

How to run the ENCODE ChiP-seq pipeline on DNA Nexus

1. Sign in to dnanexus.com

For information on making 3 DNA Nexus account, vis our

Projects |, &

Gl on “New project on your Projects page.

= 8
AiProfects  Resources  Featured

Projects

You have no projects to display. Would you ke to create ong?
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Read FASTQ Files with
Reads

Gets paths of fles: unset.

Unipro

[MGene

ChIP-seq Pipeline for Biowulf

github.com/CCBR/Pipeliner

® O onus- ccamposion:

GUI

x| CCBR Pipeliner

_ 2 e d File View Help
5 ~Project
Why GitHub? - Enterprise Explore ~ Marketplace Pricing Signin | Signup
Project Id project_name (Examples: CCBR-nnn,Labname or short project nams)
£ CCBR/ Pipeliner v | 18 | [Rowe [ 5] [Vrom ] 35 Email address | cam ( field: must use @nih.gov email address)
— Flow Cell ID 2019 (Examples: FlowCelllD, Labname, date or short project name)
< Code Issues 23 Pull requests 1 Projects & Wiki Insights
~Global Setting
Pipeliner Program _ http://ccbr.github.io/Pipeliner Pipsiine Family: | ChiPseq — | e [0e =
1,102 commits D abranches 12releases 2210 contributors
-— Project Description | ChiFseq |
Branch: master v ETM Clone or download Data Directory: | Open Directory

skehronicles Fixed ChiP-seq Python Package ImportError #374

Latest commit 477aece on Nov 27, 2018

FastQ files Found: 0

Open Directory

Working Directory: |

™ Data third 3years ago
e rpages I gemin o orsomatic e 2yearsage iz Ditsctry oryAun | An
8 Reporter fixed germiine calls for somatic pipeline 2years ago el

8 Results-template RSEM CPM filtering Issue # 6 months ago Fipeline, InitialChIPseqQC  —

8 Rules Fixed ChiP-seq Python Package ImportError

5 months ago
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File Formats

FASTA

>Universal Adapter
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

FASTQ

@SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=72
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACCAAGTTACCCTTAACAACTTAAGGGTTTTCAAATAGA
+SRR001666.1 071112 SLXA-EAS1 s 7:5:1:817:345 length=72
ITIIIITIIIIIIIIIIIIITIITIITIIIIIIIOIGOICITIIIIIIIIIITIITITIIIIIIDIIIIIIISIIIIIL/
@SRR001666.2 071112 SLXA-EAS1 s 7:5:1:801:338 length=72
GTTCAGGGATACGACGTTTGTATTTTAAGAATCTGAAGCAGAAGTCGATGATAATACGCGTCGTTTTATCAT
+SRR001666.2 071112 SLXA-EAS1 s 7:5:1:801:338 length=72
IITTTIIIIIIITIITITIIIIIITIITIIIIIIITIGIBIIIIIIIIIIIIIIIITIIIIIIIGII>IIIII-T) 8T

Trimming

Williams et al. BMC Bioinformatics (2016) 17:103

DOI 10.1186/512859-016-0956-2 BMC BIOInfOI’matICS

Trimming of sequence reads alters RNA- @
Seq gene expression estimates

Claire R. Williams', Alyssa Baccarella, Jay Z. Parrish'” and Charles C. Kim?**

Abstract

Background: High-throughput RNA-Sequencing (RNA-Seq) has become the preferred technique for studying gene
expression differences between biological samples and for discovering novel isoforms, though the techniques to
analyze the resulting data are still immature. One pre-processing step that is widely but heterogeneously applied is
trimming, in which low quality bases, identified by the probability that they are called incorrectly, are removed.
However, the impact of trimming on subsequent alignment to a genome could influence downstream analyses
including gene expression estimation; we hypothesized that this might occur in an inconsistent manner across
different genes, resulting in differential bias.

Results: To assess the effects of trimmina on aene exoression. we aenerated RNA-Sea data sets from four samole
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Many tools are available

- BBDUK * FASTX-Toolkit | « Sickle

» Biopieces » Goby

* Trimgalore

» Cutadapt * ngs_backbone

* Trimmomatic

More than 30 published adapter trimming tools...

Trimming programs

Trimming effects on Homo sapiens RNA-Seq reads
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Surviving reads

Del Fabbro et al 2013. PLOS One
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FastQC

@ FastQC
File Help

bad_sequence. txt good_sequence_short.b(t‘

Basic Statistics

Quality scores across all bases (Illumina >v1.3 encoding)
Per base sequence quality —
3 ﬁﬁﬁﬁ _IIIIIIIIIIIIIIIII

Per sequence quality scores |g HMHH
Per base sequence content |28 | [ I
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Y 14 - J
) Sequence Duplication Levels i

<& 12 .

4 B

l\ /\ Overrepresented sequences [1g .

@ Kmer Content

[T

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
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https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Blacklists

fromtiers in TECHNOLOGY REPORT ARTICLE
blished: 10 April 2014
GENETICS doi: WO.;;EE;‘geene 20157‘00075

Impact of artifact removal on ChlIP quality metrics in
ChlIP-seq and ChlIP-exo data

Thomas S. Carroll’*', Ziwei Liang?', Rafik Salama'’, Rory Stark’ and Ines de Santiago™*

! Cambridge Institute CRUK, University of Cambridge, Cambridge, UK
? Lymphocyte Development, MRC Clinical Sciences Centre, Imperial College, London, UK

Edited by: With the advent of ChlP-seq multiplexing technologies and the subsequent increase in
Mick Watson, The Roslin Institute, ChlIP-seq throughput, the development of working standards for the quality assessment
UK_ of ChlP-seq studies has received significant attention. The ENCODE consortium’s large
Reviewed by: - scale analysis of transcription factor binding and epigenetic marks as well as concordant
Urmi H. Trivedi, University of . h .

Edinburgh, UK work on ChlIP-seq by other laboratories has established a new generation of ChlP-seq
Douglas Vernimmen, University of quality control measures. The use of these metrics alongside common processing steps
Edinburgh, UK has however not been evaluated. In this study, we investigate the effects of blacklisting

Olivier Elemento, Weill Cornell

Medical College, USA and removal of duplicated reads on established metrics of ChlP-seq quality and show that

the interpretation of these metrics is highly dependent on the ChlP-seq preprocessing

*Correspondence: . . ) . . . .
Thomas S. Carroll and Ines de steps applied. Further to this we perform the first investigation of the use of these metrics
Santiago, Cancer Research UK, for ChlP-exo data and make recommendations for the adaptation of the NSC statistic to
Cambridge Institute, University of allow for the assessment of ChlP-exo efficiency.

Cambridge, Li Ka Shing Centre
Robinson Way, Cambridge CB2 ORE,

Uk Keywords: ChiIP-exo, ChIP-seq, QC, blacklist, duplicates
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Blacklists

Classes of 226 ultra-high signal artifacts

1% 2% 3%

/

High_Mappability_island

Low_mappability_island
Satellite_repeat
centromeric_repeat

snRNA

telomeric_repeat

“A comprehensive collection of signal artifact blacklist regions in the human genome”, by Anshul Kundaje
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Mapping

% assembly_070509_all.ace - Tablet - x.xx.30¢.xx

>\ ) [3 | cLssacontip? | consensus length: 1,404 (1,379) | reads: 63 | features: 3| Memory usage: 172.84 MB (6)
/| Home | 7] .
B * Bowt
3 T Packed || O Zoom: s (s | 4 Page Left NP OW Ie
< < Stacked | |, Variants: (s | W Page Right
Oren Inpoit Enhanced  Classic & 5 ===
Assembly  Features Sort “¥ Jump to Base ° BWA
Data Layout Style Adjust Navigate Options
Contigs (33,518): | Features (3) T — S it

= tl \jiiERmmmenn [ ] ELAN D
Contig | Leng...|R.. ¥|Fea. | |§ ”-””m]” |1 .
CRTSOI Tz os T S (LT T

onti
CL1004Co.. 1198 | GEN FEN =N FEN NN RN GEN VEN GFEm v I .HISAT
chistcont i B2 [elelmciciciclaclcicicia alcicicla clelA Glmlmcicla melclal cimal,
CL972Conti. 1822 63 20
cLOTSConti. 2668 63 8 | °
CL981Conti. 819 63 2 423 U423 436 U436 CV10 458 U458
CL1000Co. 1158 63 5
CLB9Contig1 1168 63 10
cLsg2Cont.. 756 63 2 H
Qe w8 2 * NovoAlign
CL967Conti.. 858 63 2
CL1001Co. 1329 63 8
CL1Contig1 611 62 13 °
CLiContigs.. 2008 62 3
CLicontigs. 775 82 10 (A GlcGic A aGicolacaaGTcc A ecac G
CL238Conti. 2078 62 4
CL331Conti. 2008 62 8 °
CLB30Cont. 619 62 19
cLoT4Conti. 261 B2 2
CL976Conti. 1556 62 9
CL98BCont. 11865 62 3%
v °
S e 2 i ...and others
Fiterby: (Name ]
< - >

Tablet Tip: Right click on a visible read, consensus or protein translation to see options for copying its data to the clipboard

SAM format

@HD VN:1.0 SO:coordinate
@sQ SN:chr20e LN:64444167
@PG ID:TopHat VN:2.0.14 CL:/srv/dna_tools/tophat/tophat -N 3 --read-edit-dist 5 --read-rea
lign-edit-dist 2 -i 50 -I 5000 --max-coverage-intron 5000 -M -o out /data/user446/mapping tophat/index/chr
20 /data/userd446/mapping tophat/L6 18 GTGAAA L6007 R1 001.fastq
HWI-ST1145:74:C101DACXX:7:1102:4284:73714 16 chr20 190930 3 106M * 0 0
CCGTGTTTAAAGGTGGATGCGGTCACCTTCCCAGCTAGGCTTAGGGATTCTTAGTTGGCCTAGGAAATCCAGCTAGTCCTGTCTCTCAGTCCCCCCTCT
C BBDCCDDCCDDDDCDDDDDDCDCCCDBC?DDDDDDDDDDDDDDDCCDCDDDDDDDDDDCCCCEDDDC?DDDDDDDDDDDDDDDDDDDDDBDHFFFFDC@@
AS:i:-15 XM:i:3 X0:i:0 XG:i:0 MD:Z:55C20C13A9 NM:i:3 NH:i:2 CC:Z:= CP:i:55352714 HI:i:0
HWI-ST1145:74:C101DACXX:7:1114:2759:41961 16 chr20 193953 50 106M * 0 0
TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGGGGCAGTGGACCTTCCAGTGATTCCCCTGACATAAGGGGCATGGACGA
G DCDDDDEDDDDDDDCDDDDDDDCCCDDDCDDDDDEEC>DFFFEJJJIIIGIIIITHGBHHGITIIIIIIGIIITIIIIITHIIIIIIHHHHHFFFFFCCC
AS:i:-16 XM:i:3 X0:i:0 XG:i:0 MD:Z:60G16T18T3 NM:i:3 NH:i:1
HWI-ST1145:74:C101DACXX:7:1204:14760:4030 16 chr20 270877 50 106M * 0 0
GGCTTTATTGGTAAAAAAGGAATAGCAGATTTAATCAGAAATTCCCACCTGGCCCAGCAGCACCAACCAGAAAGAAGGGAAGAAGACAGGAAAAAACCA
C DDDDDDDDDCCDDDDDDDDDDEEEEEEEFFFEFFEGHHHHFGDIJIHIIIJIIJIIIIIIGGFIIIHIIIII1]IIIGHHFAHGFHIHFGGHFFFDD@BB

AS:i:-11 XM:i:2 X0:1:0 XG:1:0 MD:Z:0A85G13 NM:1i:2 NH:i:1
HWI-ST1145:74:C101DACXX:7:1210:11167:8699 0 chr20 271218 50 50M4700N56M * 0
0 GTGGCTCTTCCACAGGAATGTTGAGGATGACATCCATGTCTGGGGTGCACTTGGGTCTCCGAAGCAGAACATCCTCAAATATGACCTCTCG

accepted_hits.sam

Medium.com
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Best aligner?

“The evaluation of Bowtie, Bowtie2, BWA, mrsFAST, and Novoalign show their ability to correctly
map the reads. Moreover, Novoalign mapped the largest percentage of reads, similar to GSNAP,
specially for highly repeated genomes. However, it maintained the lowest throughput among the
genome indexing tools in most of the experiments”

“In general, there is no the-best tool among all of the tools; each tool was the-best in certain
conditions. The short sequence mapping problem is still an active problem and new tools are
needed to be developed”

Hatem et al, BMC Bioinformatics 2013

”So Bowtie is definitely faster and we are able to reproduce the sensitivity gain, however if you
account for false-positives, BWA clearly wins out”

seganswers.com

F currently maintained by John Hopkins University.

, i3  The Bowtie sequence aligner was originally developed by Ben Langmead et al. at
the University of Maryland in 2009. It is Bowtie is open-source software and is
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Contamination

< Babraham Bioinformatics

www.bioinformatics.babraham.ac.uk

Fast
screen

good_sequence_screen

Foman Mowe Rt Bl Yest | PhK  Adapten  Vedos  Vesp  WNA Nohis

Taxonomic Sequence Classification System

Kr@na « - seen x Root
5 - Maxdepin Gount: 21106702

Unassigned: 508
<1+ Fontsize

- |+ Chartsize
@ Collapse
Snapshot
Link

x
gacteria 0077 [

P —— |

fother Root] 0.002% | |

Wingett. 2018. F1000 Res

Wood. 2014. Genome Biol

Correlation

input

H3K4mel

H3K4me3

H3K27me3

H3K9me3

[
-1.0 -0.8 -0.6 —-0.4 —-02 0.0

deeptools.readthedocs.io
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3.0

log(signal) Rep2
1.5 2.0 25

1.0

0.5

0.5

1.0 1.5 2.0
log(signal) Rep1

IDR<=1%"7
e FALSE
e TRUE

25

NB: ENCODE developers do NOT
recommend using as it is for broad
chromatin marks ChIP-seq

Landt et al 2012. Genome Res

Fingerprint plot

fraction w.r.t. bin with highest coverage

1.0

0.8 +

H3K27me3
H3K4mel
H3K4me3
H3K9me3
input

0.6

0.4

0.2+

0.0

rank

deeptools.readthedocs.io
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Generation of cross-correlation plot

Highly enriched ChIP
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v
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&= &= = =2 R
= Loz w a & =
————
! ! k
= = = =] - -
- - - - - - Landt et al 2012. Genome Res
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Landt et al 2012. Genome Res
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Library Complexity
[ Pect [ PBC2 [ Bottieneckinglevel |  NRF [ Complexity | Fiag colors |

<05 <1 Severe <05 Concerning Orange
0.5=sPBC1<0.8 1sPBC2<3 Moderate 0.5=<NRF <0.8 | Acceptable Yellow
08=<PBC1<09 | 3=PBC2<10 Mild 0.8=<NRF <0.9 | Compliant None

209 =10 None >0.9 Ideal None

PCR Bottleneck Coefficient (PBC) shows how skewed the distribution of read counts per location is towards 1 read per location.
PBC = N1/Nd

(N1= number of genomic locations to which EXACTLY one unique mapping read maps;
Nd = the number of genomic locations to which AT LEAST one unique mapping read maps, i.e. the number of non-redundant, unique mapping reads)

Non-Redundant Fraction (NRF) - Unique Reads/Total Mapped Reads

Qtag is a thresholded version of RSC (-2:veryLow, -1:Low, 0:Medium, 1:High, 2:veryHigh)

NUnigMappedReads PBC1 PBC2 Qtag RSC NRF NSC
Sample 1 26070339 0.9 12,5 2.0 1.6 0.9 1.0
Sample 2 20297 073 0.6 23 2.0 2.0 0.6 1.3

22 696 844 0.4 1.9 2.0 4.5 0.5 1.1

Sample 3

WWW.NES-qC.org

Next Generation Sequencmgw\/\A
Quality Control Generator

Ho WhyNGS-QC?  Database LOGIQA  QCGenomics  NGS-QCGeneratorTool Tetramer Tutorial  Applications

‘Welcome to NGS-QC

Comparative analysis between ChIP-seq and other enrichment-related NGS datasets requires prior characterization of their degree of technical similarity. NGS-QC Generator is a computational-based approach that infers
quality indicators from the distribution of sequenced reads associated to a particular NGS profile. Such information is then used for comparative purposes and for defining strategies to improve the quality of sample-

derived datasets.

Database content statistics

Evaluate the quality of your favorite ChIP-seq or enrichment-related NGS dataset through our customized Galaxy platform instance. J—

"Google" in our database hosting Quality control descriptors for publicly available NGS-generated datasets. Currently hosting 82144
publicly available profiles.

Database hosting quality scores for publicly available long-range genome interaction assays (HIC, ChIAPET, 4C-seq).

@I Public resource providing a central access to the largest collection of genomic data. It allows to browse, visualize, compare, and
Number of entries in the

analyze thousands of publicly available genomic datasets.
collection, grouped by organism.
Click here for more stats.

"Google" in our database for NGS-QC certified Antibodies.

Certified
Antibodies

FYTTTTTT. (AP

3
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H3K27ac in humans

QC Stamp (10pc)
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QC, Alignment, and Visualization
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Visualization
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Normalization
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Duplication

e
Typical ChIP-seq peak

e
Low-complexity ChiP-seq peak

Landt et. al. Genome Res. 2012

Do you need to remove duplicates?

All reads No Duplicates

Histogram of width(all) Histogram of width(DD)

g 2
g g £
° T T T T 1 ° r T T T 1
200 400 600 800 1000 200 400 600 800 1000
width(all) width(DD)
# peaks 61,314 25,175
# bases covered 84,157,874 36,168,022

15
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Two ways to remove duplicates

* Partial duplicate removal

* Uses a binomial distribution of read
numbers across the entire genome
and removes the upper quantile.

* Remove all duplicates

A

* If reads map to the same start and
end position, remove all but one of
the reads.

5%

02 Q3

Wikipedia. 2019.

Effect of partial/total duplicate removal

All reads

Histogram of width(all)

No Duplicates
Histogram of width(DD)

1 )
1000

1
800
L

600

Frequency
1000 2000 3000 4000 5000 6000 7000
| L |
Frequency
200 400
L

1

0
L

0
L

r T T T 1 r T T T

width(all) width(DD)
# peaks 61,314 25,175
# bases covered 84,157,874 36,168,022

1000 1500 2000 2500 3000

500

L

L

Partial

Histogram of width(auto)

200

400 600 800
width(auto)
47,479
69,159,165

1000
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Effect of partial/total duplicate removal

No Duplicates Partial
41 ol 1696
40+
40+ 1373
% 324 P 2
& = é”ac-
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o 20+ by azc-
a -g &
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56 10 275
0l 2 .7 130008
v T — T 0=
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3 > > g0 >
2 :
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BigWig generation: %
Read extension for single end sequencing data %

align to
reference genome

Wf@
: antjsense tags
>

Wilbanks et. al. PLOS ONE. 2010.

Calculating the read extension

cross—correlation
0 I18

T ! T T T
-500 0 500 1000 1500
strand-shift (180)

18
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il

QC, Alignment, and Visualization | = —-

J \\
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Pipelines
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\
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Visualization

Duplication

BigWigs

Normalization

Normalization for library size

* RPKM:

* reads per kilobase per million reads
* defined as:
* RPKM (per bin) = # of reads per bin / (# of mapped reads (in millions) * bin length (kp) )
* RPGC:
* reads per genomic content
* used to normalize reads to 1x depth of coverage

* defined as:
* RPGC = (total # of mapped reads * fragment length) / effective genome size

19
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Normalization: Subtracting the input
from the library normalized reads

[ I I —-C_:_:F?:_:
p13 p12 pll2 p1l.1 ql1.2 q21.1 q21.2 q21.3 922 q22.12 q22.2 9223

3,045 kb
34,000 kb 35,000 kb
L I
[0-6.00]
Input
[0-6.00]
‘ ‘ ChiP ‘ |

[1.432- 15]

| | Subtraction

Input Subtracted Normalization

— — — e —— L E NN S —
p13.2 pi3d p12 pilz  plll q112 q q21. 42131 q21.33 922  q231 q23.3 q242 243 q25.1 4253

7,927 kb
,000 kb 36,000 kb 37,000 kb 38,000 kb 39,000 kb
| | |
[
[0- 6.00]
Input
chip

BB

[1.432- Subtraction
tuhl il o _'ul | .FJMMMMWWJL‘MM
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Tools

* Duplicate Removal:
* MACS: https://github.com/taoliu/MACS
* Picard; https://broadinstitute.github.io/picard/
* Visualization:
* deeptools: https://deeptools.readthedocs.io/en/develop/

* Viewers:

* IGV: https://software.broadinstitute.org/software/igv/
* UCSC genome browser: https://genome.ucsc.edu/

ChIP-seq Considerations

QC, Alignment, and Visualization

~ >

Peak Calling and Follow Up Analysis

21
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Peak Calling and Follow Up Analysis

( )

Different Types of Peaks

Peak Calling

Annotations

Motifs

Differential Binding

Proteins bind in different ways

* Transcription factor
* Tight, high peaks
* RNA Pol Il
* Enriched at TSS but bound throughout the gene body

* Histones
* Some are sharper and located near TSS
* Some are broader and spread out across the length of active or inactive genes

22
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Proteins bind in different ways

i [ CTCF
. ' RNA Pol Il
G i AR e A A
. | M H3K36me3

H3K27me3

Park et al 2009. Nat Rev Genet

What causes these different shapes?

A B
ROANNNN

'
sequenced section

SPNANN NN

Sense strand W

LAYV

NN

5 3 5’
3 5’ 3
m Antisense strand

WV
refereanll:%ngue)nome l l
£
B N
H =
(_q_ = (—((__ &E
€,
>

Wilbanks et al 2010. PLOS ONE
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[ Peak Ca"lng and Follow Up Analysis ....................

Different Types of Peaks

Peak Calling

Annotations

Motifs

Differential Binding

How are peaks called?

| —

ChIP-seq fragments —_—
IR ——
—
Sequence & align tags ‘
]
| N
_ =) =]
I

Mahoney and Pugh et al 2015. Criti Rev Biochemi and MolBio
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General concept of most peak callers

Count the number of reads within a window and determine
whether this number is above background

Peak-finding Peak-pairing
1) Shift or extend tags %~ .. 1) Build stranded tag
- . -/ ™\ density landscapes
-_. > o kvd S
e TN
2) Build tag density landscape ¥ 2) Find max. locations
i - on each strand
3) Find A
)Iolcnatig\:sx ¢ 3) Pair opposite strand
: L =]
] O

Ny
Predicted binding event location
Mahoney and Pugh et al 2015. Criti Rev Biochemi and MolBio

There are many peak callers out there...

GEM CCAT Fseq Hotspot Spp-msp
BCP ChIPDiff QUEST Qeseq Sole-Search
MUSIC ERANGE RSEG Hpeak CisGenome
MACS2 PeakSeq TPIC BayesPeak  Gene Track
ZINBA SICER W-ChIPPekas spp-wtd FindPeaks
™ SISSRs PolyPeak spp-mtc etc...

Thomas et al 2017. Briefings in Bioinformatics

25
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Each peak caller has different
methods and benefits

)
a, 4 &
o ) N & &
{00 'S & {\‘\g &° z“oé‘ e /& C0 A
¥ P £ A & CICIL e W &
S e S /S 8 S S &
2 S 2SS S [\3 Q 2 © & X /o o &
S8 & /@ N N o /S @ /9. & N
& \c?\ 4‘1"0 \)"@ \,b(\*\& nge é’\é\ @z“ ‘ooe & 0‘\00 0\9" ’b@"\b'b 0@\ ¢\\® o«
s/ S/ S PSS S S S S 3 5
/& /R & RN IS L & & /S &
Program /o€ 5/ /S8R 8 /5o &/ S S <
* conditional
CisGenome | 28 [ 1.1 | X X X X X X binomial model
Minimal ChipSeq
Peak Finder 15 |ed X X
chromsome scale
E-RANGE| 27 | 3.1 X X X Poisson dist.
MACS| 13 [1.35 X X X X local Poisson dist.
QuEST| 14|23 X X X+ X chromsome scale
Poisson dist.
HPeak| 29 | 1.1 X X X Hidden Markov Model
Sole-Search| 23 | 1 | X | X X X X One sample t-test
conditional
PeakSeq| 21 [1.01 X X X binomial model
SISSRS| 32| 14 X X X
spp package 1117 3
(wtd & mtc) g i X X X X X
Generating density| Peak Adjustments w. Significance relative to
profiles assignment control data control data

X* = Windows-only GUI or cross-platform command line interface
X** = optional if sufficient data is available to split control data
X' = method exludes putative duplicated regions, no treatment of deletions

Wilbanks et al 2010. PLOS ONE

Peak calling: things to keep in mind

* Peak callers are designed to deal with different types of peaks
* Pay attention to what they’re designed to handle

* Peak callers are optimized for a specific type of peak/dataset
* Tuning the parameters is often important
* Including the p-value, g-value, and/or FDR

 Peaks will not completely overlap across replicates or tools
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MACS works well for narrow peaks %
while SICER is designed for broad peaks %

10 kbt |
Wnt6 = Hi--- Wnt10a &% ! ] =

H3K27me3

in mES cell

I | - - L | n -_ -_—
MACS - - ]
- -
-

SICER _r-————T-BTYTBFB | —r—-—

Xu et al 2014. Methods Mol Biol

Model-based Analysis of ChIP-Seq (MACS)

 Extend reads and scale to library size

* Call candidate peaks relative to:
* control sample
* genome background
* large local region
* small local region

* Calculate FDR by calling peaks in the control relative to the ChIP

Feng et al 2012. Nature Protocols
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Spatial Clustering for Identification of
ChIP-Enriched Regions (SICER)

* Uses windows and gaps to o .
identify "islands” of e e
enrichment =R Y A ihat Nahad

* Gaps allow for short regions ~ w-=
lacking binding within an
island, more pattern
variability across island Y S— W=200

B e | 2 ) W08 el e

* Compares to a randomized T VO Y Y eSS

background and control
background to calculate FDR

Xu et al 2014. Methods Mol Biol

Output file formats

* https://genome.ucsc.edu/FAQ/FAQformat.html

This format is used to provide called peaks of signal enrichment based on pooled, normalized (interpreted) data. It is a BED6+4 forr

. chrom - Name of the chromosome (or contig, scaffold, etc.).

)

. chromStart - The starting position of the feature in the chromosome or scaffold. The first base in a chromosome is numberec

w

. chromEnd - The ending position of the feature in the chromosome or scaffold. The chromEnd base is not included in the disg
defined as chromStart=0, chromEnd=100, and span the bases numbered 0-99.

4. name - Name given to a region (preferably unique). Use "." if no name is assigned.

o

score - Indicates how dark the peak will be displayed in the browser (0-1000). If all scores were "'0"' when the data were sub
value. |deally the average signalValue per base spread is between 100-1000.

. strand - +/- to denote strand or orientation (whenever applicable). Use "." if no orientation is assigned.
. signalValue - Measurement of overall (usually, average) enrichment for the region.

. pValue - Measurement of statistical significance (-log10). Use -1 if no pValue is assigned.

© ® N O

. qValue - Measurement of statistical significance using false discovery rate (-log10). Use -1 if no gqValue is assigned.

10. peak - Point-source called for this peak; 0-based offset from chromStart. Use -1 if no point-source called.
Here is an example of narrowPeak format:

track type=narrowPeak visibility=3 db=hgl9 name="nPk" description="ENCODE narrowPeak Example"
browser position chr1:9356000-9365000

chrl 9356548 9356648 . 0 . 182 5.0945 -1 50
chrl 9358722 9358822 . 0 - 91 4.6052 -1 40
chrl 9361082 9361182 . 0 . 182 9.2103 -1 75
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FRIP (Fraction of Reads in Peaks)

* Measures global ChIP enrichment

* Quick understanding of quality of
the IP and peak calling algorithm

* Good quality FRiP for a transcription
factor: > 5%

FRIP

Percentage of Reads In Peaks

Ch12_1 Ch12_2
100 -

75 -

50 -

25 - (9.4%) (16.4%)

OutSide

de Santiago, Carroll 2017. Chromatin Immunoprecipitation

[ Peak Calling and Follow Up Analysis

7

Different Types of Peaks

Peak Calling

Annotations

Motifs

Differential Binding
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Annotations: questions to ask

* |s this protein enriched around promoters?
* Many tools are biased towards promoters/TSS sites

* What is a gene?

* Do you have a reason to include pseudogenes, lincRNAs, etc?

* Do you care about introns/alternative transcripts?

* What happens if a peak overlaps multiple genes?

Annotation tools

HOMER

* Straight-forward to use

* Only protein coding genes
* Focused on nearest TSS
* One annotation per peak

P <\,
N° 2N

( ‘\',

2 (

er ¢ 'i‘

\
eI\

i
\

UROPA

* More complicated to set up

* Takes any gene list input

* Focuses where the user decides

* Creates two tables: one of top
annotation per peak, and one of
all possible annotations given
the input conditions

Heinz et al 2010. Mol Cell
Kondili et al 2017. Scientific Reports
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T, AArrrrres

Annotation tools: example HOMER output table

- A | B | € | D | E| F | G | H | ! | J | K | L [ N | O | B Q | R

1 | PeakiD Chr Start End Strand Peak Sco Focus Rz Annotation  Detailed Anno Distance to T Nearest Pror PromoterID Nearest Unig Nearest Refs Nearest Ense Gene Name Gene Alias  Gene Descrig|
2 |chr18-1 chr18 69007968 695008268 + 593  0.939 intron (NR_03:intron (NR_03: 74595 NR_034133 400655 Hs.579378 NR_034133 LOC400655 - hypothetical
3 |chro-1 chrg 88209966 88210266 + 5319 0.946 Intergenic Intergenic -50894 NM_001185! 79670 Hs.597057 NM_001185! ENSG00000C ZCCHC6 DKFZp666B1 zinc finger, C|
i |chrid-1 chrl4 = 62337073 62337373 + 505.4 0.918 intron (NM_17intron (NM_17 244485 NM_172375 27133 Hs.27043  NM_139318 ENSG000001 KCNHS EAG2|H-EAG potassium v(|
5_|chr17-1  chr17 5076243 5076543 + 492.1  0.936 intron (NR_03:intron (NR_03: 2414 NM_207103 388325 Hs.462080 NM_207103 ENSG000001C170rf87  FLI32580|Mi chromosome]
p_|chri7-2  chr17 47851714 47852014 + 476.2  0.824 Intergenic Intergenic -259488 NM_001082! 56934 Hs.463466 NM_001082!ENSG000001 CA10 CA-RPX|CAR carbonic anh|
7 |chr10-1  chrl0 98420680 58420980 + 4748 0.967 intron (NM_1Eintron (NM_15 49439 NM_152309 118788 Hs.310456 NM_152309 ENSGO000001 PIK3AP1 BCAP |RP11- phosphoinos
B |chr9-2 chrg 81294389 81294689 + 456.3  0.957 Intergenic Intergenic -82159 NM_007005 7091 Hs.444213 NM_007005 ENSG000001 TLE4 BCE-1| BCE1 | transducin-lil
P |chri4-2  chri4 36817736 36818036 + 4523 0.757 intron (NM_1Z intron (NM_13 81017 NM_001195: 145282 Hs.660396 NM_001195; ENSG000001 MIPOL1 DKFZp313M: mirror-image|
JO |chr18-2  chr18 20049825 20050125 + 449.7  0.853 intron (NM_OE intron (NM_OE 56213 NM_018030 114876 Hs.370725 NM_018030 ENSG000001 OSBPL1A FLI10217 | OF oxysterol bin|
|1 |chr7-1 chr7 12226829 12227129 + 4457  0.901 intron (NM_O1intron (NM_01 9606 NM_001134! 54664 Hs.396358 NM_001134; ENSG000001 TMEM1068 FLI11273|Mitransmembr;
|2 |chr14-3  chri4 88712188 88712488 + 443.1  0.844 intron (NM_OC intron (NM_0C 240869 NM_005157 1112 Hs.621371 NM_001085: ENSGO0000C FOXN3 C140rf116|C forkhead bo|
|3 |chr18-3  chri8 62951924 62952224 + 443.1  0.947 Intergenic Intergenic -382689 NR_033921 643542 Hs.652901 NR_033921 LOC643542 - hypothetical
|4 |chr3-1 chr3 32196769 32187069 + 443.1 0.87 Intergenic Intergenic -58256 NM_178868 152189 Hs.154986 NM_178868 ENSG000001 CMTM8 CKLFSF8| CKL CKLF-like MA|
|5 |chril-1  chrll 110685448 110685748 + 425.8 0.907 Intergenic Intergenic -9849 NR_034154 399948 Hs.729225 NR_034154 C11orf92 DKFZp781P1 chromosome|
|6 |chrd-1 chr4 81755366 81755666 + 423.2  0.908 intron (NM_15intron (NM_15 279618 NM_152770 255119 Hs.527104 NM_152770 ENSG000001 C4orf22 MGC35043 chromosome

Heinz et al 2010. Mol Cell

UROPA output figures —

A UROPA summary

There were 14989 peaks in the input bed file,
UROPA annotated 13544 peaks

query feature distance feature.anchor internals strand direction filter.attribute attribute.value show.attributes
query00 gene 10000 start True both any_direction gene_type protein_coding c("gene_name", "genc_type”)
query01 gene 10000 start True both any_direction  gene_type IncRNA None
query02 gene 10000 start True  both any_direction gene_type  misc_RNA None

priority: False

Input: ENCFFO01VFA.bed
Anno: gencode.v19.annotation.gtf

B Cc

Distance to features across final hits Genomic location of 'gene’ across final hits
0.0015 *
feature )
[lgene location
I downstream (2%)

1 FeaturelnsidePeak (1.7%)
W overlapEnd (1.4%)

I overlapStart (54.1%)

I PeaklnsideFeature (32.6%)
1 upstream (8.2%)

00010 *

Relative count

00005 *

00000 +
8 2000 4600 6000
Distance to feature

Kondili et al 2017. Scientific Reports
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[ Peak Calling and Follow Up Analysis |
y
: Different Types of Peaks
: Peak Calling
: Annotations |
: Motifs |
: Differential Binding A
Motifs: things to consider
* Transcription factor motifs: Myc
* Tends to be small and robust; often centrally located in peaks
* Other proteins: " QCAC T c

* More varied, degenerated motifs, if any at all
* Rarely centrally located

* Motifs are identified as enriched in peaks relative to some
background: should it be the entire genome, just promoters, or
something else?

e Search for known motifs or novel motifs?
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Motif Calling Tools

MEME Suite

* MEME-ChIP: novel motifs
MEME
DREME: small, robust motifs
Centrimo: centrally enriched motifs

e AME: known motifs

i MEME-ChIP

* Motif Analysis of Large Nucleotide Datasets

AME

Analysis of Motif Enrichment

HOMER

* Runs for both known and novel

motifs simultaneously

Bailey et al 2009. Nucleic Acids Research

Heinz et al 2010. Mol Cell

MEME: meme-suite.org

MEME-ChIP performs comprehensive motif
analysis (including motif discovery) on LARGE
sets of (typically nucleotide) sequences such
as those identified by ChiP-seq or CLIP-seq
experiments (sample output from sequences).

i, MEME-ChIP

Motif Analysis of Large Nucleotide Datasets

Note: The input sequences should be
centered on a 100 character region
expected to contain motifs. See this Manual
for more information.

Version 5.0.5

—| Data Submission Form

Perform motif discovery, motif enrichment analysis and clustering on large nucleotide datasets.

Select the motif discovery and enrichment mode [Z|
© Classic mode ) Di mode O Di o

mode F88E

Select the sequence alphabet
Use sequences with a standard alphabet or specify a custom alphabet.

© DNA, RNA or Protein * Custom

Input the primary sequences
Enter the (equal-length) nucleotide seq to be analyze

Upload sequences %) | Choose File No file chosen

Input the motifs
Select, upload or enter a set of known motifs.

[ Eukaryote DNA
[ Vertebrates (In vivo and in silico)

Input job details
(Optional) Enter your email address. 2]

AME

Analysis of Motif Enrichment

Version 5.0.5

FYTTTTTT (PP

C

AME identifies known user-provided motifs
that are either relatively enriched in your
sequences compared with control sequences,
that are enriched in the first sequences in your
input file, or that are enriched in sequences
with small values of scores that you can
specify with your input sequences (sample
output from sequences, control sequences and
motifs). See this Manual or this Tutorial for
more information.

—| Data Submission Form

Perform standard (non-local) motif enrichment analysis.

Select the type of control sequences to use
© Shuffled input sequences

Select the sequence alphabet

© DNA, RNA or Protein

Input the primary sequences

Upload sequences %] | Choose File | Nofile chosen

Input the motifs

User-provided control sequences

Use sequences with a standard alphabet or specify a custom alphabet. [2]

Custom No file chosen

Enter the sequences in which you want to find enriched motifs.

Select a motif database or enter the motifs you wish to test for enrichment. [?]

[ Eukaryote DNA

[ Vertebrates (In vivo and in silico)

: Al SRR

Coalaaiile

NONE 686¢
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MEME-ChIP output

Di y/Enri E

Motif Found

Program |7

I Known or Similar
Motifs |7

KIfi (MAQ493.1)

£ T MEME é';;’ KLF9 (MA1107.1)
X [e KIf12 (MA0742.1)
0. 4 C S s
S8 oW e NE e e ¥
Reverse Complement &  Show 26 More 72 CentriMo Group [*2
N y/Enri E-val Known or Similar
Motif Found Program Motifs [2]
GATAS (MA0766.1)
2, 5.7e-  GATA1::TALL
s T DREME 041 (MA0140.2)

ol 2

N moeow

GATA3 (MA0037.3)

Reverse Complement <  Show 22 More 12 CentriMo Group [*[2
‘ _ Discovery/ E-value Known or Similar
Motif Found Enru:hme Program Motifs

I ACQ CentriMo g
= L2 3
> s @ e ;oo

Reverse Complement <

.0e-

05 PAXS (MAQ014.3)

Distribution

Distribution

Distribution

Machaniak et al 2011. Bioinformatics

Motif seach: tabular out

puts

AME output - e ™ > o
7] 7 7
Logo Database () Alt ID vae vae Thsh (%) (%)
’ JASPAR2018
5 : 3.93e-  5.52e- 410 112
J' ?QQACACCC‘%—‘ feodii(;’::t MAQ493.1  KIfL 123 120 3.38 (45.4%)  (6.2%)
JASPAR2018
5 N 7.8%e- l.11le- 405 170
J ::e%r:::::t MA1107.1  KLF9 o3 8o 1.64 (445%)  (9.4%)
HOMER output
. g log % of |% of STD(Bg . Motif
Rank [Motif P-value P-pvalue  [Targets [Background|STD) Best Match/Details File
NFkB-p65(RHD)/GM12787- motif
1 AA I I I C le-1835|-4.228¢+03[28.11%|5.16% |, 0P [P6S-ChIP-Seq/Homer g\
=l C A (63.1bp) More Information | Similar | - .
. - - Motifs Found
PB0058.1_Sfpil_1 motif
2 A_A1A_ AA A A T 1e-1716|-3.953e+03(34.50%|8.65% 46728;? More Information | Similar |file
==LAGM ==x (62.8%9)otifs Found marix
O A A TA 41 8bp MAO0102.1_Cebpa motif
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[ Peak Calling and Follow Up Analysis
J
Different Types of Peaks
Peak Calling
Annotations
Motifs
Differential Binding

Key assumption of differential peak calling:
most peaks are similar across conditions

Unique Unique Shared Shared
(single enrichment) (differential) (differential) (similar)

Conditions

____________________________________________________

Wu et al 2015. Front Genet
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Differential peak calling is dependent on
peak calling quality

Rep! _nllliie. el ettt Sl st
Rep?m_-.‘.

LOSET T NE au pe——

Rep! mumm o mu s =
Rep2 wmmm wm mm s e -

Repd mu— ———

Yang et al 2014. Comput Struct Biotechnol J

Differential peak calling

Sharp or Broad
ChlIP Enrichment?
Biological 5% Sharp Broad | Biological
Replicates? | "1 Replicates?
L YES NO | p [ L= - YBS NO | Predefined
Region Set? | "1 Region Set? Region Set? | “| Region Set?
YESJ NO YES NO YES LNO YES NO
4 Y A Y \ A A\ Y
= ChiPComp - MAnorm - MAnorm "‘ Rep
- - ChiPComo {0
- DiffBind - Homer - DiffBind - diffReps-nb - unique Peaks MACS
- MACS2 bdgdiff QChiPat ODIN
- ODIN-bin - RSEG
o SICER

Steinhauser et al 2016. Brief Bioinformatics
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Differential peak calling tools

MANORM DIFFBIND
* Cannot handle replicates * Requires replicates of all
conditions

* Lacks statistical power

* Needs peaks to be defined from
an outside source * Needs peaks to be defined from
an outside source

e Has a statistical framework

* Works for both narrow and
broad peaks * Works for both narrow and

broad peaks

Ross-Innes et al 2012. Nature
Shao et al 2012. Genome Biology

Conclusions

*ChIP-seq is not trivial.
*Every experiment is unique.

* Experimental design is critical for ChlP-seq.
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