

# NGS Data Analysis Workshop

**Course Tutorial** 

© 2016 Genomatix Software GmbH

For more information please contact:

Genomatix Software GmbH Bayerstr. 85a 80335 Munich Germany

| Phone: | +49 89 599766 0         |
|--------|-------------------------|
| Fax:   | +49 89 599766 55        |
| Email: | info@genomatix.de       |
| WWW:   | http://www.genomatix.de |



## **Table of Contents**

| Introduction                                                                    | . 3 |
|---------------------------------------------------------------------------------|-----|
| Introduction to Genomatix Genome Analyzer                                       | . 4 |
| Creating a project                                                              | . 6 |
| Data background                                                                 | . 8 |
| Tbx20 transcription factor binding and effects on expression in the adult mou   | se  |
| heart                                                                           | . 8 |
| RNA-Sequencing analysis                                                         | . 9 |
| Principle component analysis                                                    | . 9 |
| Differential expression in Tbx-/- knockout compared to wild type adult mou      | se  |
| hearts                                                                          | 20  |
| Comparative expression analysis                                                 | 20  |
| Biology of differentially expressed genes                                       | 28  |
| Chip-sequencing analysis                                                        | 30  |
| ChIP-Seg workflow: regions bound by Tbx20 in the adult mouse heart              | 30  |
| Available peak finding algorithms                                               | 30  |
| Peak finding                                                                    | 35  |
| Read classification                                                             | 36  |
| Peak classification                                                             | 38  |
| Sequence extraction                                                             | 38  |
| TFBS overrepresentation                                                         | 39  |
| Definition of new TFBS                                                          | 40  |
| TFBS module overrepresentation                                                  | 44  |
| Integration of expression and ChIP-Seg data                                     | 47  |
| Positional correlation of Tbx20 peaks with differentially expressed transcripts | 47  |
| Identification of direct regulatory targets based on correlation                | 49  |
| In-depth transcription factor binding site analysis of correlated peaks         | 56  |
| Trimming and conversion to sequence                                             | 58  |
| FrameWorker: common TFBS patterns                                               | 60  |
| ModelInspector: check for relevant biology                                      | 64  |
| Annotation of Tbx20 binding regions – target prediction                         | 69  |
| Comparison of Tbx20-neighboring genes with regulated genes                      | 74  |
| Literature                                                                      | 78  |



# Introduction

Next Generation Sequencing (NGS) offers a sensitive and unbiased method for high-throughput genomic studies. NGS is complementing, and to a considerable extent supplanting longer established methods, such as microarrays, in the analysis of e.g. gene expression, protein-DNA binding, or chromatin modification on a genome-wide scale.

A number of suppliers offer platforms for massive parallel sequencing. Throughput grows with each new sequencer generation, and with increasing numbers of reads per experiment, the scalability of the mapping algorithm is becoming an important performance factor.

The major challenge, though, is faced following the mapping of the reads: data must be turned into biological information. Pivotal for this is the availability of efficient software and strategies for downstream analysis.

In this tutorial you will learn how you can analyze NGS data with the Genomatix system, covering the analysis of RNA-Seq and ChIP-Seq data.



## Introduction to Genomatix Genome Analyzer

The Genomatix Genome Analyzer (GGA) is an integrated software/hardware solution for second level analysis of NGS data, after reads have been mapped to the respective genomic target sequences. An easy to use web interface gives access to a broad range of analysis applications for Chip-Seq, RNA-Seq, and DNA-Seq data, among them:

#### Peak finding

Position data of mapped single reads can be clustered to detect peaks and separate signal from background.

#### Genome annotation

NGS data can be integrated, correlated, and visualized within the extensive genome annotation in ElDorado. Comparative genomics allows cross-species analysis for phylogenetically conserved regions and regulatory structures.

#### **Expression analysis**

The GGA generates normalized transcript expression values from your NGS data and genomic annotation. Compare data sets for differential expression and upload the results into Genomatix Pathway System to generate and analyze gene networks.

#### **Transcription factor analysis**

Genome-wide transcription factor (TF) analysis identifies overrepresented TF binding sites and phylogenetically conserved functional elements. Correlation with genomic annotation finds potential regulatory targets of TF binding. Use CoreSearch for de novo binding site definition from your ChIP-Seq data.

#### Data meta analysis

Compare several data sets in position correlation graphs, e.g. for the genome wide elucidation of TF interaction, and retrieve regions based on correlation.

#### Variant analysis

Genome wide small variant analysis identifies effects on protein sequences and TF binding sites, using the genome and TF binding site annotation in ElDorado and MatBase.

#### **CNV** analysis

Pair-wise comparison of BAM files predicting copy number variations, including annotation, filter options, visualization, and links to downstream analysis tools.



Open the home page of the Genomatix Genome Analyzer in your web browser. You should see a page like this:

| See the biology behind the data.                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Login       Use the Genomatix Software Suite         Online Help       Browse the online help         Manuals       Read the manuals         Administration       Edit settings, add or modify users                                                                                                                                               |
| To access the <b>Bioinformatics Workbench</b> you need to connect to '192.168.222.185' via ssh. We recommend using <b>PuTTY</b> , a free Telnet/SSH Client for Windows users or the ssh command from a terminal for MacOS X or Unix users.<br>For up-to-date information please visit http://www.genomatix.de or contact us at sales@genomatix.de. |

Click the 'Login' button and enter your user name and password:

#### Please log in:

| Username: | seminar1 |
|-----------|----------|
| Password: | •••••    |
|           | Login    |



# Creating a project

At the top of each page, you'll find a navigation menu bar which allows you to access the available programs. Select the Projects & Results item from the Projects & Account menu.

| AGS Analysis Genes & Genomes (                                                                                                               | Gene Regulatio                                                                                  | n Literature & Pathways To                                                                                                                                                               | ols Pro          | ojects & Account                                                                                                | Help                                                                                        | Your projects                                              | and results                                                                      |                                                                                                                         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                              |                                                                                                 |                                                                                                                                                                                          | P                | Projects & Results                                                                                              | 2                                                                                           |                                                            |                                                                                  |                                                                                                                         |  |
|                                                                                                                                              | -                                                                                               |                                                                                                                                                                                          | A                | Account                                                                                                         | 0                                                                                           |                                                            |                                                                                  |                                                                                                                         |  |
| Genomatix Geno                                                                                                                               | me An                                                                                           | alyzer (GGA)                                                                                                                                                                             | P                | Password                                                                                                        |                                                                                             |                                                            |                                                                                  |                                                                                                                         |  |
| he Conomativ Conome Analyzer (CCA)                                                                                                           | is our integrat                                                                                 | od solution for comprohensive visu                                                                                                                                                       | N                | lessages                                                                                                        |                                                                                             | and Novt C                                                 | operation Sec                                                                    | wonsing. The biological                                                                                                 |  |
| ackaround data consisting of apportation                                                                                                     | n and dene net                                                                                  | work data (ElDorado) plus the tran                                                                                                                                                       | P                | attern Libraries:                                                                                               |                                                                                             | and Next Generation Sequencing. The biological             |                                                                                  |                                                                                                                         |  |
| vperimental results in a unique biologica                                                                                                    | al context. Netw                                                                                | work and nathway generation, regul                                                                                                                                                       | latory t         | Personal Matrix Library & Subsets                                                                               |                                                                                             | a site motif definition are only a few of the tasks that ( |                                                                                  |                                                                                                                         |  |
| e performed                                                                                                                                  | experimental results in a unique biological context. Network and pathway generation, regulatory |                                                                                                                                                                                          | natory           | Personal Model Library & Subsets                                                                                |                                                                                             | g site motil delimition are only a few of the tasks that   |                                                                                  |                                                                                                                         |  |
| o pononnoa.                                                                                                                                  |                                                                                                 |                                                                                                                                                                                          | P                | Personal Model Lib                                                                                              | ary & Subsets                                                                               |                                                            |                                                                                  |                                                                                                                         |  |
| e performed.                                                                                                                                 |                                                                                                 |                                                                                                                                                                                          | Ρ                | Personal Model Lib                                                                                              | ary & Subsets                                                                               |                                                            |                                                                                  |                                                                                                                         |  |
| NGS                                                                                                                                          | G                                                                                               | enes                                                                                                                                                                                     | P                | Gene                                                                                                            | ary & Subsets                                                                               |                                                            | Literat                                                                          | ture                                                                                                                    |  |
| NGS<br>Analysis                                                                                                                              | G<br>&                                                                                          | enes<br>Genomes                                                                                                                                                                          | Ρ                | Gene<br>Regulati                                                                                                | on                                                                                          |                                                            | Literat<br>& Path                                                                | ture<br>Iways                                                                                                           |  |
| NGS<br>Analysis<br>Start tasks like the Genomatix ChIPS                                                                                      | G<br>&<br>eq Ge                                                                                 | enes<br>Genomes                                                                                                                                                                          | m                | Gene<br>Regulati<br>Get comprehen                                                                               | on<br>sive information of                                                                   | n                                                          | Literat<br>& Path                                                                | t <b>ure</b><br>IWAYS<br>nomatix Pathway Syster                                                                         |  |
| NGS<br>Analysis<br>Start tasks like the Genomatix ChIPS<br>Workflow or Expression Analysis for                                               | G<br>&<br>eq Ge<br>the                                                                          | enes<br>Genomes<br>I details of genomic annotation fror<br>Genomatix databases, view a                                                                                                   | m                | Gene<br>Regulati<br>Get comprehen<br>promoters, trans                                                           | on<br>sive information of<br>scription factors an                                           | n<br>nd their                                              | Literat<br>& Path<br>Use the Ge<br>characterize                                  | ture<br>IWAYS<br>nomatix Pathway System                                                                                 |  |
| NGS<br>Analysis<br>Start tasks like the Genomatix ChIPS<br>Workflow or Expression Analysis for<br>RNASeq / microRNA data or CNV              | G<br>&<br>eq Ge<br>the<br>gra                                                                   | enes<br>Genomes<br>t details of genomic annotation fror<br>Genomatix databases, view a<br>phical display in the                                                                          | m                | Gene<br>Regulati<br>Get comprehen<br>promoters, tran-<br>binding sites (M                                       | ON<br>sive information or<br>scription factors an<br>atinspector/MatBa                      | n<br>nd their<br>ise).                                     | Literat<br>& Path<br>Use the Ge<br>characterize<br>criteria or s                 | ture<br>IWAYS<br>nomatix Pathway System<br>a your gene sets by variou<br>earch scientific literature v                  |  |
| NGS<br>Analysis<br>Start tasks like the Genomatix ChIPS<br>Workflow or Expression Analysis for<br>RNASeq / microRNA data or CNV<br>analysis. | G<br>&<br>eq Ge<br>the<br>gra<br>Ge                                                             | enes<br>Genomes<br>t details of genomic annotation fror<br>Genomatix databases, view a<br>phical display in the<br>nomeBrowser, retrieve promoters                                       | m                | Gene<br>Regulati<br>Get comprehen<br>promoters, tran<br>binding sites (M<br>Define and seai                     | ON<br>sive information or<br>scription factors an<br>atinspector/MatBa<br>ch complex regula | n<br>nd their<br>ise).<br>atory                            | Literat<br>& Path<br>Use the Ge<br>characterize<br>criteria or s<br>keywords (I  | ture<br>ways<br>nomatix Pathway System<br>e your gene sets by variou<br>earch scientific literature w<br>uttinspector). |  |
| NGS<br>Analysis<br>Start tasks like the Genomatix ChIPS<br>Workflow or Expression Analysis for<br>RNASeq / microRNA data or CNV<br>analysis. | eq Ge<br>the<br>gra<br>Ge                                                                       | enes<br>Genomes<br>t detaits of genomic annotation fror<br>Genomatix databases, view a<br>phical display in the<br>nomeBrowser, retrieve promoters<br>get statistics on uploaded BED/BAN | P<br>m<br>s<br>M | Gene<br>Regulati<br>Get comprehen<br>promoters, tran<br>binding sites (M<br>Define and sear<br>patterns with Gi | ON<br>sive information or<br>scription factors an<br>atinspector/MatBa<br>ch complex regula | n<br>nd their<br>ise).<br>atory                            | Literat<br>& Path<br>Use the Ge<br>characterize<br>criteria or so<br>keywords (I | ture<br>ways<br>nomatix Pathway System<br>a your gene sets by variou<br>earch scientific literature w<br>litinspector). |  |

Press the New project button, enter a name for your project in the pop-up dialog, and click on OK.

| Name                                                                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------|--|
| MyProject                                                                                                               |  |
| precalc                                                                                                                 |  |
| Create a new project<br>Create a new project<br>Please enter a name for your new project<br>workshop<br>OK<br>Abbrechen |  |
|                                                                                                                         |  |



Using the controls, set the new project as your default project.

| Choose you     | ir default project:  |                     |
|----------------|----------------------|---------------------|
| workshop -     | Set default project  | !                   |
| Current defaul | t project: MyProject | Set default project |

The project will be the default in the upper left hand corner project selection on the different program pages.

| NGS Analysis   | Genes & Genomes | Gene Regulation |
|----------------|-----------------|-----------------|
| Current projec | t: workshop 🔻   |                 |



# Data background

# *Tbx20 transcription factor binding and effects on expression in the adult mouse heart*

The following examples are based on publicly available RNA-Seq and ChIP-Seq data from adult mouse heart (accession number GSE30943 on the NCBI Gene Expression Omnibus at http://www.ncbi.nlm.nih.gov/geo).

Tbx20, a transcription factor required for cardiac development, has key roles in early heart development. It has been associated with congenital heart diseases in humans, including defects in septation, chamber growth and valvulogenesis. Conditional ablation of Tbx20 in adult cardiomyocytes leads to a rapid onset and progression of heart failure, with prominent conduction and contractility phenotypes that lead to death. Tbx20 can act both as an activator and a repressor of transcription (Sakabe et al., 2012).

The available data comprise expression data from wild type and Tbx20 knockout adult mouse hearts in triplicates, as well as Tbx20 ChIP-Seq data and input DNA controls from wild type hearts. For this tutorial, sequence files were downloaded from GEO, transferred into fastq format, and mapped to the mouse genome (NCBI build 38) using the Genomatix Mining Station. The genomic positions of the uniquely mapping reads are available in bigBed (\*.bb) format on the Genomatix Genome Analyzer server used during the workshop.



# **RNA-Sequencing analysis**

## Principle component analysis

Principal component analysis (PCA) is a statistical procedure that can be used for exploratory data analysis. PCA uses linear combinations of the original data (e.g. gene expression values) to define a new set of unrelated variables (principal components). These new variables are orthogonal to each other, avoiding redundant information.

PCA can be thought of as fitting an n-dimensional ellipsoid to the data, where each axis of the ellipsoid represents a principal component. If some axis of the ellipse is small, then the variance along that axis is also small, and by omitting that axis and its corresponding principal component from our representation of the dataset, we lose only a commensurately small amount of information.

Thus, PCA can be used to reduce the dimensions of a data set, allowing the description of data sets and their variance with a reduced number of variables. Since similarities between data sets are correlated to the distances in the projection of the space defined by the principal components, PCA can also be used to identify outliers with respect to the principal components.

It is often sufficient to look at the first two components, as these describe the largest variability.

A PCA tool can be found in the *NGS Analysis* menu in the navigation bar; please open this now.



This task can be used to get an impression of the similarity of RNA-sequencing samples, i.e. to identify subgroups or outliers.

Based on the read distribution in the input files, a normalized expression value (NE) will be calculated for each locus (or transcript) for each input file. The NE value is based on the number of reads located in the exons of the locus/transcript and is normalized to the length of the locus/transcript and the density of the data set. The resulting NE matrix is then used as input for the PCA, using the R package pcaMethods (Stacklies et al., 2007).



For this analysis, we'll need read position files in BED file format, or as bigBed, the corresponding binary format, or, alternatively, as BAM file.

#### Here is an example for a BED file:

| chr1 | 3007329 | 3007356 | 4_112_715_245 | 0.962963 | + |
|------|---------|---------|---------------|----------|---|
| chr1 | 3007329 | 3007356 | 4_97_641_338  | 0.962963 | + |
| chr1 | 3011584 | 3011611 | 4 74 929 759  | 1.000000 | - |
| chr1 | 3014985 | 3015012 | 4_139_94_580  | 1.000000 | + |
| chr1 | 3020759 | 3020786 | 4_99_752_96   | 1.000000 | + |
| chr1 | 3020873 | 3020900 | 4_137_571_605 | 1.000000 | - |
| chr1 | 3024593 | 3024620 | 4_197_207_931 | 0.925926 | + |
| chr1 | 3025020 | 3025047 | 4_124_676_441 | 1.000000 | + |
| chr1 | 3025020 | 3025047 | 4_54_459_727  | 0.925926 | + |
| chr1 | 3025914 | 3025941 | 4 110 349 304 | 1.000000 | + |
| chr1 | 3026179 | 3026206 | 4 95 762 768  | 0.925926 | - |
| chr1 | 3038718 | 3038745 | 4_182_675_953 | 0.962963 | - |

The first three columns are mandatory:

Col 1 : chromosome (starting with chr)

Col 2 : start position of the read (counting starts from 0)

Col 3 : end position of the read (start < end, represents the last nucleotide of the sequence + 1)

Additional optional information can be provided in the next columns; it is important that the order of the columns is maintained, i.e. if the file contains strand information, it must be placed in column 6, and both columns 4 and 5 cannot be empty.

Col 4 : SeqId (alpha-numerical value, <=50 characters)

- Col 5 : Score (usually the quality score of the mapping)
- Col 6 : strand information
  - + : plus strand
  - : minus strand
  - 0 : no strand information available



As you will work with mouse data, use the controls in the upper right hand corner of the input page to change the current genome selection to *Mus musculus*.

| Current project: workshop - | Current Genome:                                                                                                                                                         | Homo sapiens                                                                                                                                                                  | - | GRCh38 - | ElDorado 06-2015 👻 |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|--------------------|
|                             | Principal Component Analys                                                                                                                                              | Anopheles gambiae<br>Apis mellifera<br>Arabidopsis thaliana<br>Bos taurus                                                                                                     | * |          |                    |
|                             | Principal Component Analysis for RNASeq c                                                                                                                               | Caenomabditis elegans<br>Camponotus floridanus<br>Canis familiaris                                                                                                            | Е |          |                    |
| Input                       |                                                                                                                                                                         | Danio rerio                                                                                                                                                                   |   |          |                    |
| Available files             | Listing files for Homo sapiens / GRCh38:<br>Select <sup>®</sup> BED files or <sup>©</sup> BAM files<br>No BED/BB files for Homo sapiens / GRCh38 in th<br>Add BED files | Drosophila melanogaster<br>Equus caballus<br>Gallus gallus<br>Glycine max<br>Harpegnathos saltator<br>Homo sapiens<br>Macaca mulatta<br>Monodelphis domestica<br>Mus musculus |   |          |                    |
|                             | Use drag & drop to fill the groups below with ava<br>Number of Groups: 1                                                                                                | Neurospora crassa<br>Ornithorhynchus anatinus<br>Oryctolagus cuniculus                                                                                                        | Ŧ |          |                    |

Press the *Add BED files* button to open a dialog for adding BED or bigBed files to your project.

| Current project: workshop 💌 | Current Genome: Mus musculus                                                                                                                                                 |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Principal Component Analysis for NGS Data                                                                                                                                    |
|                             | Principal Component Analysis for RNASeq data. See help for more.                                                                                                             |
| Input                       |                                                                                                                                                                              |
| Available files             | Listing files for Mus musculus / NCBI build 38:<br>Select  BED files or  BAM files<br>No BED/BB files for Mus musculus / NCBI build 38 in this project yet.<br>Add BED files |
|                             | Use drag & drop to fill the Upload more files to your project s from above list:                                                                                             |

Then select Import from the GGA, and press the Browse GGA button.

### **BED File Upload**

#### Current Project: "workshop"





Open the directory structure until you come to the subdirectory at the path *workbench\_home/Demo/NGS\_Seminar/mmu\_heart*. There you'll find the files with the expression data, and also the ChIP-Seq files which we will use later. For now, select the first 6 files starting with *mmu\_heart\_expression* by ticking the check boxes.

| 🖣 🛅 demo                          |
|-----------------------------------|
| 🖻 🔄 workbench_home                |
| 🖻 🔄 Demo                          |
| Incl_GGA_Training                 |
| 🖻 🚞 NGS                           |
| 🖻 🔄 NGS_Seminar                   |
| 🖻 🗋 AdditionalData                |
| 🖻 🗀 CD4_DNaselHS                  |
| 🖻 🚞 CD4_H3K4                      |
| 🖻 🗀 CD4_Polli                     |
| 🖻 🗀 CNV                           |
| 🖻 🚞 DiabeticNephropathyExpression |
| 🖻 🗀 HeLa_STAT1                    |
| 🖭 🗋 LeberCongenitalAmaurosis      |
| Liver_expression                  |
| MCF7_expression                   |
| Melanocyte_expression             |
| 🖻 🗀 PPARG                         |
| SNPAnalysis                       |
| YY1_casestudy                     |
| kidneyCancer                      |
| 🖻 🔄 mmu_heart                     |
| mmu_heart_expression_tbx20ko_1.bb |
| mmu_heart_expression_tbx20ko_2.bb |
| mmu_heart_expression_tbx20ko_3.bb |
| Immu_heart_expression_wt_1.bb     |
| mmu_heart_expression_wt_2.bb      |
| mmu_heart_expression_wt_3.bb      |
| 🔤 🗋 mmu_heart_inputdna.bb         |
| 🖳 🛄 🕒 mmu_heart_tbx20_chipseq.bb  |

Press the Submit button at the bottom of the file selection dialog to close it.

Submit



#### In the upload dialog, press Submit.

| Upload genomic region                                                       | S                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             | Import BED / bigBed file(s) from<br>© your local computer © the GMS                                                                                                                                                                                                                                                                                                      |
| Upload<br>file(s) with genomic<br>regions<br>in <u>BED file format</u><br>? | Browse GGA      x mmu_heart_expression_tbx20ko_1.bb     x mmu_heart_expression_tbx20ko_2.bb     x mmu_heart_expression_tbx20ko_3.bb     x mmu_heart_expression_wt_1.bb     x mmu_heart_expression_wt_2.bb     x mmu_heart_expression_wt_3.bb      Note, that bigBed files must have the extension '.bb'     Optional name/prefix for your BED     file(s) on the server: |
| Email option (for very la                                                   | arge, zipped files)                                                                                                                                                                                                                                                                                                                                                      |
| Your <u>email address</u><br>Ø                                              | <ul> <li>Show result directly in browser window</li> <li>Send the URL of the result to Courses@genomatix.de<br/>Use the email option for long-running jobs, to avoid server-timeout messages<br/>You may set a default email address by filling or modifying the 'email address' field on your<br/>personal account page</li> </ul>                                      |
| Submit Reset For                                                            | n                                                                                                                                                                                                                                                                                                                                                                        |

#### The upload will start; when it is finished, press the Close this window button in the dialogue.

The following input file(s) were successfully uploaded to the project "workshop" and are now available in the relevant tasks:

- mmu\_heart\_expression\_tbx20ko\_1.bb (8708085 regions)
- mmu\_heart\_expression\_tbx20ko\_2.bb (9105462 regions)
- mmu\_heart\_expression\_tbx20ko\_3.bb (8980354 regions)
  mmu\_heart\_expression\_wt\_1.bb (8028478 regions)
- mmu\_heart\_expression\_wt\_2.bb (8591698 regions)
- mmu\_heart\_expression\_wt\_3.bb (7845462 regions)

To delete, rename or protect the uploaded file(s) from automatic deletion please use the Project Management

Close this window or add more BED files...



The uploaded files will be listed as below.

| Input                |                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Available files      | Listing files for Mus musculus / NCBI build 38:<br>Select  BED files or  BAM files mmu_heart_expression_tbx20ko_1.bb (8708085 regions) mmu_heart_expression_tbx20ko_2.bb (9105462 regions) mmu_heart_expression_tbx20ko_3.bb (808054 regions) mmu_heart_expression_wt_1.bb (8028478 regions) mmu_heart_expression_wt_2.bb (8591698 regions) mmu_heart_expression_wt_3.bb (7845462 regions) |
| Parameters for PCA 0 | Use drag & drop to fill the groups below with available files from above list:          Number of Groups:       2         Group 1          Files: 0          black                                                                                                                                                                                                                         |
| Options 🕜            | ☑ Do rlog transformation                                                                                                                                                                                                                                                                                                                                                                   |
| Transcript/Locus 🕜   | <ul> <li>Locus-based expression analysis (union of exons for all loci, i.e. gene bodies)</li> <li>Transcript-based expression analysis (all transcripts separately)</li> </ul>                                                                                                                                                                                                             |

Rename the groups, e.g. Group 1 to *Tbx20 KO*, Group 2 to *WT*. Drag & drop the files into the corresponding group fields. Select the transcript-based analysis (for consistency with the comparative expression analysis that we'll run later) and submit the job, which will run in the background.

| Input                     |                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Available files           | Listing files for Mus musculus / NCBI build 38:<br>Select  BED files or  BAM files Add BED files                                                                                                                                                                                                                                                                 |
| Parameters for PCA Ø      | Use drag & drop to fill the groups below with available files from above list:<br>Number of Groups: 2 •<br>Tbx20 KO ()<br>* mmu_heart_expression_tbx20ko_1.bb (8708085 regions)<br>* mmu_heart_expression_tbx20ko_2.bb (9105462 regions)<br>* mmu_heart_expression_tbx20ko_3.bb (8980354 regions)<br>Files: 3<br>black •                                         |
| Options 🕜                 | ☑ Do rlog transformation                                                                                                                                                                                                                                                                                                                                         |
| Transcript/Locus          | <ul> <li>Locus-based expression analysis (union of exons for all loci, i.e. gene bodies) in transcript-based expression analysis (all transcripts separately)</li> <li>Transcript-based expression analysis (all transcripts separately)</li> <li>All sources (non-redundant transcripts)</li> <li>NCBI RefSeq</li> <li>Ensembl</li> <li>NCBI GenBank</li> </ul> |
| Output                    |                                                                                                                                                                                                                                                                                                                                                                  |
| Result name               | Result name: result_pca<br>(special characters except -+.,^ are not allowed and will be replaced by _)<br>courses@genomatix.de                                                                                                                                                                                                                                   |
| rour <u>email address</u> | You may set a default email address by filling or modifying the 'email address' field on your personal account page                                                                                                                                                                                                                                              |
| Submit Reset Form         |                                                                                                                                                                                                                                                                                                                                                                  |



Check the *Project Management* page to see running jobs. The PCA analysis will be listed as *RUNNING* or *PENDING* (in case it's waiting for a free processor core). Please note that the list does not automatically update; if you wish to see the current state, reload the page.

| Job-ID | Task                         | State           | Submitted at        | Remove      | ejob   |
|--------|------------------------------|-----------------|---------------------|-------------|--------|
| 3459   | Principal Component Analysis | RUNNING         | 2015-07-10T10:44:57 | Remove      | e job  |
|        |                              | Project Managem | ent                 |             |        |
|        |                              |                 |                     | Automatic   |        |
| ime    |                              | Comment         | Created             | deletion in | Action |

When he job is finished, the result will appear in the current project under *Principal Component Analysis*. Click on the result name to display the result.

| workshop                     |                        |
|------------------------------|------------------------|
| BED files                    | containing 6 BED files |
| Principal Component Analysis | containing 1 result    |
| result pca                   |                        |

The Overview page displays the overview table and a number of analytic plots.

| Samples   | Numb   | er of sampl   | es s | ubmitted to | o analysis   |      |       |    |            |
|-----------|--------|---------------|------|-------------|--------------|------|-------|----|------------|
| PCs       | Numb   | er of princip | al c | omponents   | s calculated | (ma  | x 10) |    |            |
| Variables | Numb   | er of loci or | trar | scripts cor | nsidered for | anal | ysis  |    |            |
| Method    | svd =  | singular val  | ue d | decomposit  | tion         |      |       |    |            |
| R2        | The    | proportion    | of   | variance    | explained    | by   | each  | PC | calculated |
|           | (eigen | ivalue)       |      |             |              |      |       |    |            |

R2cum The cumulative proportion of the variance explained by the current and all preceding principal components.

| Overview  | PC1    | PC2     | PC3        | 3D      | Dowr  | nload of | Result | s     |       |       |       |
|-----------|--------|---------|------------|---------|-------|----------|--------|-------|-------|-------|-------|
| PCA Info  | )      |         |            |         |       |          |        |       |       |       |       |
| samples   | 6      |         |            |         |       |          |        |       |       |       |       |
| PCs       | 6      | Coeffic | cient of D | etermin | ation | 1        | 2      | 3     | 4     | 5     | 6     |
| variables | 217159 | R2      |            |         |       | 0.793    | 0.070  | 0.057 | 0.042 | 0.038 | 0.000 |
| method    | svd    | R2cum   |            |         |       | 0.793    | 0.863  | 0.920 | 0.962 | 1.000 | 1.000 |



#### Score plot

The score plot displays each sample in the data set with respect to the first two principal components and can therefore be used to interpret the relations among the samples. This information can be used to identify outliers.

In this data set, replicates from the WT group show high similarity with respect to the first two principal components. Replicates in the Tbx20 KO group show a greater variation, mainly due to the values for replicate 3. However, the two groups separate from each other.





#### Scree plot

The scree plot visualizes which principal components account for which fraction of total variance in the data. The principal components are listed by decreasing order of contribution to the total variance. The bars show the proportion of variance represented by each component (R2) and the points shows the cumulative variance (R2cum). In this case, the first component explains almost 80% of the total variance, the first three components together over 90% of it.





### Loadings plot

The loadings plot is a plot of the relationship between original variables (genes) and subspace dimensions. It summarizes correlation and anti-correlation of genes/transcripts with the first two principal components.





#### **Details for principal components**

For the top principal components that are needed to account for 90% of the variance in the data (or up to a maximum of 10 PCs) the 40 transcripts/loci with the highest absolute loadings are shown in a table and a plot.

In the current example, the first 3 PCs account for >90% of the variance; below you see part of the results for the first component. Please note that a gene name can be listed several times for transcript-based analyses.

| Overview | PC1      | PC2     | PC3        | 3D      | Dow  | nloa     | d of I | Resu | Its |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
|----------|----------|---------|------------|---------|------|----------|--------|------|-----|------|-----|------|-----|-------|--------|-----|--------|-----|---|-----|-----|------|------|-----|-----|------|-------|-------|------|------|------|------|------|-------|-----|-----|----|-----|-----|---|
| Top 40 L | .oadings | for PC1 |            |         |      |          |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| Rank     | GenelD   | Symbol  | Lo         | ading   |      |          |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 1        | 20750    | Spp     | 1 -        | -0.0192 |      |          |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 2        | 20750    | Spp     | 1 .        | -0.0192 |      |          |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     | 0    |      |     |     | 0    | 0     | _     | 0    | _    | ~    | -    |      | _     |     |     |    |     |     | - |
| 3        | 20750    | Spp     | <u>1</u> · | -0.0192 |      |          |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       | Ŭ     | 0    | 0    | 0    | 0    | 0    | >     |     |     | 0  | 0   |     |   |
| 4        | 20750    | Spp     | <u>1</u>   | -0.0192 |      |          |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 5        | 20750    | Spp     | <u>1</u>   | -0.0192 |      | 0.01     | -      |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 6        | 20750    | Spp     | 1          | -0.0192 |      | -        |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 7        | 20750    | Spp     | <u>1</u>   | -0.0192 | ings |          |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 8        | 20750    | Spp     | <u>1</u>   | -0.0191 | loac | 00       | +      |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 9        | 20750    | Spp     | <u>1</u>   | -0.0191 | top  | 0        |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 10       | 20753    | Sprr1   | <u>a</u> - | -0.0190 | PC1  |          |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 11       | 20750    | Spp     | <u>1</u>   | -0.0190 |      | 5        |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 12       | 20753    | Sprr1   | <u>a</u>   | -0.0190 |      | <u>,</u> | 1      |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 13       | 21857    | Timp    | 1 .        | -0.0189 |      |          |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |
| 14       | 21857    | Timp    | 1          | -0.0189 |      | N        |        |      |     |      |     |      |     |       |        |     |        |     |   | 0   | 0   |      |      | 0   | 0   |      | 0     |       |      |      |      |      | 0    | C     | 0   | 0   |    | 0   |     | ) |
| 15       | 21857    | Timp    | <u>1</u>   | -0.0189 |      | -0.0     | -      | 1 0  | -   | 1    | , 0 | -    | -   | 1     |        |     | -<br>- | T   |   | -   | -   | -    | -    | -   | -   | -    |       | -     | -    | -    | -    | -    | -    | -     | -   | -   | -  |     | _   | _ |
| 16       | 21857    | Timp    | 1 -        | -0.0189 |      |          |        | 1dd  | pp1 | t dd | 100 | E dd | pp1 | Idd 1 | 100    | E E | 1du    | Idu |   | The | Tnc | nip2 | T IC | i i | Tnc | nip2 | Thc T | ain 2 | nip2 | nip2 | nip2 | nip2 | T IC | The T | 100 | f f | Ē  | E f |     | 1 |
| 17       | 21923    | Tn      | <u>c</u> - | -0.0185 |      |          |        | s s  | S   | s a  | 0   | S    | ŝ   | s     | spin s | Spr | Ξ.     | Ê,  | 1 |     |     | Ϋ́ς  |      |     |     | Ϋ́ς  | 2     | Kcr   | Š    | Kc   | Ϋ́ς  | Š    |      | 2     | S   | Gpt | 5. | 5 6 | 9 9 | ŝ |
| 18       | 21923    | Tn      | <u>c</u> - | -0.0184 |      |          |        |      |     |      |     |      |     |       |        |     |        |     |   |     |     |      |      |     |     |      |       |       |      |      |      |      |      |       |     |     |    |     |     |   |



### 3D score plot

This score plot displays each sample in the data set with respect to the first three principal components.



# Differential expression in Tbx20-/- knockout compared to wild type adult mouse hearts

### **Comparative expression analysis**

In this example, we'll carry out a differential expression analysis with the files that were subjected to a PCA in the previous step. Open the input page for *Expression Analysis for RNA-Seq* from the *NGS Analysis* menu:





Select the *tbx20ko* files to use them as the treatment group. Then tick the *Use second set...* checkbox and select the *wt* files in the second list as controls. You can choose from a number of methods and parameter settings for differential expression analysis. For this example, please leave the default settings for analyses with replicates: DESeq2 using the Wald test with parametric dispersion fitting.

| Input file(s) with read positions from Note: multiple files are treated as | m RNA-Seq ("Treatment")<br>replicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Available files                                                            | Listing files for Mus musculus / NCBI build 38:<br>Select  BED files or  BAM files<br>mmu_heart_expression_tbx20ko_1 bb (8708085 regions)<br>mmu_heart_expression_tbx20ko_2 bb (9105462 regions)<br>mmu_heart_expression_tbx20ko_3 bb (8890354 regions)<br>mmu_heart_expression_tbx20ko_3 bb (8890354 regions)<br>(You can use shift/ctrl-keys to select multiple files)<br>Add BED files                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Control files / Different condition (                                      | optionally with replicates)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Optional:<br><u>control file(s)</u><br>for differential analysis           | <ul> <li>Use second set of input files (different condition / control files) for differential gene expression analysis</li> <li>Select          BED files or          BED files or          BAM files         mmu_heart_expression_tbx20ko 3.bb (2980354 regions)         mmu_heart_expression_wt_2.bb (8591698 regions)         mmu_heart_expression_wt_2.bb (8591698 regions)         mmu_heart_expression_wt_3.bb (7845462 regions)         (You can use shift/ctrl-keys to select multiple files)         </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Differential Analysis<br>Parameters Ø                                      | Currently 3 BED files are selected as control.         Method for differential analysis:         Audic-Claverie (only if no replicates available) (details •)         © DESeq. recommended only for replicates (details •)         Statistical testing method:       • Wald test © Likelihood ratio test         Dispersion fitting method:       • Wald test © Likelihood ratio test         Dispersion fitting method:       • parametric © local © mean         © edgeR, only for replicates (details •)         List transcripts as significant, if         adjusted p-value threshold       0.05         and log2(fold-change) is ≥       1         for down-regulation in condition1 ("treatment") compared to condition2 ("control")         and log2(fold-change) is ≥       1         for down-regulation in condition1 compared to condition2         Note: = valuer 1 → not using p-value criterion; log2(fold-change)=0 → not using fold-change criterion |



Note that you have the option to run the analysis locus-based or transcript based. For this example, please take the *transcript-based* option. In this case, you can then choose from different transcript annotations. Please leave the latter at the default, activate the *read classification*, provide a result name, and run the analysis in the background, which should take about 10 minutes.

| Analysis Options          |                                                                                                                                                                                                                                                                                                                                           |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | © Locus-based expression analysis (union of exons for all loci, i.e. gene bodies) IRRE<br>Transcript-based expression analysis (all transcripts separately)                                                                                                                                                                               |
| <u>Transcript/Locus</u>   | <ul> <li>Source of transcripts</li> <li>NCBI RefSeq</li> <li>Ensembl</li> <li>NCBI GenBank</li> </ul>                                                                                                                                                                                                                                     |
| Read Classification       | Include Read Classification and Statistics (exons, introns, promoters and intergenic reads)                                                                                                                                                                                                                                               |
| Strand specificity        | Reads were sequenced in a strand specific manner                                                                                                                                                                                                                                                                                          |
| Output                    |                                                                                                                                                                                                                                                                                                                                           |
| Result name               | Result name: Tbx20_ko_expression ③     (special characters except -+.,^ are not allowed and will be replaced by _)                                                                                                                                                                                                                        |
| Your <u>email address</u> | <ul> <li>Show result directly in browser window</li> <li>Send the URL of the result to courses@genomatix.de</li> <li>Use the email option for long-running jobs, to avoid server-timeout messages</li> <li>You may set a default email address by filling or modifying the 'email address' field on your personal account page</li> </ul> |
| Submit Reset Form         |                                                                                                                                                                                                                                                                                                                                           |

After completion, load the result from the project management page.



Different files with analysis results on transcript and gene level can be downloaded. Of 217159 annotated transcripts, 31049 are differentially expressed (17021 up-regulated, 14028 down-regulated), corresponding to 4927 genes (2729 up-regulated, 2214 down-regulated).

#### Differential Expression Overview

|                              | Transcripts                              | Genes (known Geneld)                     |
|------------------------------|------------------------------------------|------------------------------------------|
| Total number analyzed        | 217159                                   | 29812                                    |
| Total humber analyzed        | download details (tab-separated) (62Mb)  | download details (tab-separated) (2.2Mb) |
| Differential expression      | 31049                                    | 4927                                     |
| Differential expression      | download details (tab-separated) (9.0Mb) |                                          |
|                              | 17021                                    | 2729                                     |
| Up-regulation                | Download BED file of Transcripts (1 1Mb) | download details (tab-separated) (288Kb) |
|                              | Save BED file to project management      | download gene list (52Kb)                |
|                              | 14028                                    | 2214                                     |
| Down regulation              |                                          | download details (tab-separated) (211Kb) |
| Down-regulation              | Download BED file of Transcripts (881Kb) | download details (tab-separated) (244(b) |
|                              | Save BED file to project management      |                                          |
| Up- and down-regulated genes | -                                        | 16                                       |
| (with different transcripts) |                                          | download details (tab-separated) (4.0Kb) |



Click the *download details* link for the differentially expressed transcripts, and open the file in a spreadsheet program; this will show you the list of the transcripts which are regulated according to the selected analysis method and thresholds (adjusted p-value  $\leq 0.05$ ; log2 fold change  $\geq 1$  or  $\leq -1$ ) including detailed information. NE (normalized expression) and RPKM (reads per thousand base pairs per million mapped reads) values are used as measures for expression. The output below is broken down into three blocks.

| TranscriptId | Accn     | LocusId     | Symbol   | Geneld | ContigAccn | Chromosome | Strand | Start     | End       | Length | #exons | p-value  | adj. p-value | log2(fold change) | Regulation |
|--------------|----------|-------------|----------|--------|------------|------------|--------|-----------|-----------|--------|--------|----------|--------------|-------------------|------------|
| GXT_12942264 | AK090041 | GXL_1787596 | Slamf9   | 98365  | NC_000067  | chr1       | +      | 172475374 | 172478575 | 1297   | 4      | 2.55E-04 | 1.06E-03     | 1.05              | up         |
| GXT_12942270 | AK089400 | GXL_1196246 | Kif21b   | 16565  | NC_000067  | chr1       | +      | 136131454 | 136149993 | 2606   | 6      | 2.24E-05 | 1.14E-04     | 2.16              | up         |
| GXT_12942315 | AK088077 | GXL_87684   | Trmt1l   | 98685  | NC_000067  | chr1       | +      | 151428666 | 151436707 | 1528   | 3      | 1.25E-03 | 4.42E-03     | -1.17             | down       |
| GXT_12942316 | AK088027 | GXL_742666  | Cd48     | 12506  | NC_000067  | chr1       | +      | 171682009 | 171705256 | 920    | 3      | 1.26E-02 | 3.36E-02     | 1.62              | up         |
| GXT_12942320 | AK087631 | GXL_20287   | Irf6     | 54139  | NC_000067  | chr1       | +      | 193153154 | 193166868 | 1760   | 5      | 2.18E-03 | 7.21E-03     | 1.85              | up         |
| GXT_12942323 | AK087427 | GXL_87676   | Arpc5    | 67771  | NC_000067  | chr1       | +      | 152766676 | 152775503 | 1687   | 4      | 8.91E-14 | 1.33E-12     | 1.41              | up         |
| GXT_12942325 | AK086974 | GXL_110155  | Stradb   | 227154 | NC_000067  | chr1       | +      | 58973641  | 58991512  | 1229   | 7      | 4.23E-07 | 2.88E-06     | -1.15             | down       |
| GXT_12942344 | AK085015 | GXL_6599    | Arid5a   | 214855 | NC_000067  | chr1       | +      | 36307760  | 36322975  | 4444   | 5      | 1.67E-13 | 2.42E-12     | 1.6               | up         |
| GXT_12942346 | AK084971 | GXL_110144  | Fastkd2  | 75619  | NC_000067  | chr1       | +      | 63730651  | 63753385  | 3179   | 12     | 3.20E-06 | 1.89E-05     | -1.02             | down       |
| GXT_12942350 | AK084836 | GXL_110247  | AK084836 | 0      | NC_000067  | chr1       | +      | 74295592  | 74297905  | 1745   | 2      | 7.56E-03 | 2.15E-02     | 1.35              | up         |

| #reads treat1 | #reads treat2 | #reads treat3 | #reads ctrl1 | #reads ctrl2 | #reads ctrl3 | NE treat1 | NE treat2 | NE treat3 | NE ctrl1 | NE ctrl2 | NE ctrl3 | mean NE(treat) | stddev NE(treat) | mean NE(ctrl) | stddev NE(ctrl) |
|---------------|---------------|---------------|--------------|--------------|--------------|-----------|-----------|-----------|----------|----------|----------|----------------|------------------|---------------|-----------------|
| 10            | 2 79          | 79            | 24           | 31           | 33           | 0.09079   | 0.06781   | 0.0689    | 0.02337  | 0.02824  | 0.03292  | 0.07583        | 0.01059          | 0.02818       | 0.0039          |
| 25            | 32            | 33            | 5            | i 5          | 3            | 0.01253   | 0.01282   | 0.01259   | 0.00242  | 0.00208  | 0.00149  | 0.01265        | 0.00012          | 0.002         | 0.00038         |
| 35            | 28            | 12            | 45           | 50           | 38           | 0.02899   | 0.02002   | 0.00888   | 0.0364   | 0.03834  | 0.03185  | 0.0193         | 0.00823          | 0.03553       | 0.00272         |
| 35            | 5 12          | 10            | 3            | 8            | 0            | 0.04435   | 0.01452   | 0.0123    | 0.00412  | 0.01027  | 0        | 0.02372        | 0.01461          | 0.0048        | 0.00422         |
| 20            | ) 19          | 16            | 2            | 2 5          | 2            | 0.01259   | 0.01075   | 0.01028   | 0.00072  | 0.00336  | 0.00147  | 0.01121        | 0.001            | 0.00185       | 0.00111         |
| 414           | 395           | 577           | 144          | 116          | 109          | 0.28403   | 0.26067   | 0.38556   | 0.10707  | 0.08124  | 0.0813   | 0.31009        | 0.05421          | 0.08987       | 0.01216         |
| 70            | 5 73          | 59            | 99           | 120          | 116          | 0.0645    | 0.05979   | 0.0497    | 0.0925   | 0.09902  | 0.10633  | 0.058          | 0.00617          | 0.09928       | 0.00565         |
| 280           | 5 447         | 503           | 111          | 81           | 94           | 0.07477   | 0.11098   | 0.12669   | 0.03127  | 0.02154  | 0.02737  | 0.10415        | 0.02174          | 0.02673       | 0.004           |
| 9             | 7 88          | 68            | 127          | 7 131        | 114          | 0.03447   | 0.03082   | 0.02313   | 0.05007  | 0.04683  | 0.04558  | 0.02947        | 0.00473          | 0.04749       | 0.00189         |
| 13            | 30            | 43            | 7            | 7 6          | 9            | 0.00869   | 0.01914   | 0.02787   | 0.00507  | 0.00406  | 0.00667  | 0.01857        | 0.00784          | 0.00527       | 0.00107         |

| ••          |             |             |            |            |            |                  |                    |                 |                   |
|-------------|-------------|-------------|------------|------------|------------|------------------|--------------------|-----------------|-------------------|
| RPKM treat1 | RPKM treat2 | RPKM treat3 | RPKM ctrl1 | RPKM ctrl2 | RPKM ctrl3 | mean RPKM(treat) | stddev RPKM(treat) | mean RPKM(ctrl) | stddev RPKM(ctrl) |
| 9.03104     | 6.68937     | 6.78256     | 2.30483    | 2.78191    | 3.24306    | 7.50099          | 1.08258            | 2.7766          | 0.38305           |
| 1.27791     | 1.34857     | 1.41009     | 0.23898    | 0.22331    | 0.14673    | 1.34552          | 0.05401            | 0.20301         | 0.0403            |
| 2.93102     | 2.01249     | 0.87451     | 3.66822    | 3.80862    | 3.16987    | 1.93934          | 0.84116            | 3.5489          | 0.27408           |
| 4.36875     | 1.43249     | 1.21037     | 0.40616    | 1.0121     | 0          | 2.3372           | 1.43938            | 0.47275         | 0.4158            |
| 1.30495     | 1.1856      | 1.01231     | 0.14154    | 0.33066    | 0.14484    | 1.16762          | 0.12014            | 0.20568         | 0.0883            |
| 28.1814     | 25.71461    | 38.08617    | 10.63198   | 8.0032     | 8.23556    | 30.66073         | 5.34629            | 8.95691         | 1.18824           |
| 7.10132     | 6.52332     | 5.34573     | 10.03345   | 11.3645    | 12.03061   | 6.32346          | 0.73052            | 11.14285        | 0.83026           |
| 7.39042     | 11.04667    | 12.60377    | 3.11111    | 2.12145    | 2.6961     | 10.34695         | 2.18509            | 2.64289         | 0.40578           |
| 3.50396     | 3.04012     | 2.38191     | 4.976      | 4.79625    | 4.57084    | 2.97533          | 0.46036            | 4.78103         | 0.1657            |
| 0.85551     | 1.8881      | 2.74397     | 0.49965    | 0.4002     | 0.6574     | 1.82919          | 0.77208            | 0.51908         | 0.1059            |

An unfiltered file with the same structure listing all analyzed transcripts is also available.

For detailed result lists on gene level, click on the corresponding links in the rightmost column of the differential expression overview. For example, the top of the list of down-regulated genes looks like this:

| Geneld | Symbol        | #transcripts regulated | total #transcripts for gene | mean log2(fold change) of reg. trans. | min fold change of reg. trans. | max fold change of reg. trans. | fc stddev | min p_value |
|--------|---------------|------------------------|-----------------------------|---------------------------------------|--------------------------------|--------------------------------|-----------|-------------|
| 80906  | Kcnip2        | 13                     | 13                          | -6.141                                | -6.409                         | -5.799                         | 0.19      | 2.05E-230   |
| 68052  | Rps13         | 3                      | 7                           | -6.139                                | -6.139                         | -6.139                         | 0         | 6.16E-14    |
| 13643  | Efnb3         | 3                      | 3                           | -5.773                                | -5.796                         | -5.76                          | 0.016     | 1.16E-152   |
| 319476 | Lrtm1         | 5                      | 5                           | -5.391                                | -5.516                         | -5.276                         | 0.091     | 5.28E-123   |
| 142687 | Asb14         | 8                      | 8                           | -5.305                                | -5.737                         | -3.437                         | 0.73      | 7.60E-74    |
| 319942 | A530016L24Rik | 6                      | 6                           | -5.299                                | -5.457                         | -5.125                         | 0.109     | 7.50E-65    |
| 30952  | Cngb3         | 3                      | 3                           | -5.081                                | -5.165                         | -4.946                         | 0.097     | 2.03E-10    |
| 213402 | Armc2         | 10                     | 12                          | -4.801                                | -5.495                         | -2.308                         | 0.877     | 8.12E-42    |
| 78910  | Asb15         | 7                      | 7                           | -4.791                                | -5.115                         | -4.349                         | 0.288     | 8.58E-57    |
| 238564 | Mylk4         | 10                     | 11                          | -4.64                                 | -4.902                         | -3.6                           | 0.352     | 4.09E-114   |

...

. . .

| mean NE(treat.reg.) | stddev NE(treat.reg.) | mean NE(ctrl.reg.) | stddev NE(ctrl.reg.) | mean RPKM(treat.reg.) | stddev RPKM(treat.reg.) | mean RPKM(ctrl.reg.) | stddev RPKM(ctrl.reg.) |
|---------------------|-----------------------|--------------------|----------------------|-----------------------|-------------------------|----------------------|------------------------|
| 0.01348             | 0.005                 | 0.81806            | 0.229                | 1.32801               | 0.506                   | 81.58881             | 22.09                  |
| 0                   | 0                     | 0.28783            | 0.165                | 0                     | 0                       | 28.36193             | 16.262                 |
| 0.00722             | 0.001                 | 0.32802            | 0.043                | 0.71178               | 0.106                   | 32.45018             | 4.281                  |
| 0.01947             | 0.01                  | 0.72033            | 0.236                | 1.93015               | 0.94                    | 71.11432             | 23.38                  |
| 0.00445             | 0.002                 | 0.18749            | 0.06                 | 0.46146               | 0.266                   | 19.15481             | 5.898                  |
| 0.00459             | 0.001                 | 0.16635            | 0.039                | 0.46903               | 0.13                    | 16.40701             | 3.813                  |
| 0                   | 0                     | 0.00876            | 0.003                | 0                     | 0                       | 0.88762              | 0.325                  |
| 0.00179             | 0.002                 | 0.0375             | 0.008                | 0.17655               | 0.219                   | 3.77305              | 0.785                  |
| 0.00683             | 0.004                 | 0.19036            | 0.042                | 0.67324               | 0.381                   | 18.99107             | 4.015                  |
| 0.00964             | 0.004                 | 0.21467            | 0.083                | 0.96041               | 0.442                   | 21.88284             | 8.548                  |



You can download a simple list of regulated genes with Gene IDs, log2 fold changes, and gene symbols.

| 80906  | -6.141 | Kcnip2        |
|--------|--------|---------------|
| 68052  | -6.139 | Rps13         |
| 13643  | -5.773 | Efnb3         |
| 319476 | -5.391 | Lrtm1         |
| 142687 | -5.305 | Asb14         |
| 319942 | -5.299 | A530016L24Rik |
| 30952  | -5.081 | Cngb3         |
| 213402 | -4.801 | Armc2         |
| 78910  | -4.791 | Asb15         |
| 238564 | -4.64  | Mylk4         |

For later comparison with the Tbx ChIP-Seq data, we'll use the BED file with the positions of the down-regulated transcript. Please save this now to your project management. Click the *Save BED file* link for the down-regulated transcripts.

|                              | 17021                                    | 2729                                     |
|------------------------------|------------------------------------------|------------------------------------------|
| Up-regulation                | Download BED file of Transcripts (1 1Mb) | download details (tab-separated) (288Kb) |
|                              | Save BED file to project management      | download gene list (52Kb)                |
|                              | 14028                                    | 2214                                     |
| Down-regulation              | Download BED file of Transcripts (881Kb) | download details (tab-separated) (244Kb) |
|                              | Save BED file to project management      | download gene list (48Kb)                |
| Up- and down-regulated genes | -<br>-                                   | 16                                       |
| (with different transcripts) |                                          | download details (tab-separated) (4.0Kb) |

On the next page, provide a name for the BED file and press the Save button.

| Save selected BED file as | Tbx20_ko_expression_transcripts_down.bed |  |  |  |  |
|---------------------------|------------------------------------------|--|--|--|--|
| to project                | workshop -                               |  |  |  |  |
| Save                      |                                          |  |  |  |  |

Next, please download the gene lists of the up-regulated and of the down-regulated genes to your local computer; we will use them later.

#### **Differential Expression Overview**

|                              | Transcripts                              | Genes (known Geneld)                            |
|------------------------------|------------------------------------------|-------------------------------------------------|
| Total number analyzed        | 217159                                   | 29812                                           |
| Total number analyzed        | download details (tab-separated) (62Mb)  | download details (tab-separated) (2.2Mb)        |
| D.7                          | 31049                                    | 4927                                            |
| Differential expression      | download details (tab-separated) (9.0Mb) |                                                 |
|                              | 17021                                    | 2729                                            |
| Up-regulation                | Download BED file of Transcripts (1.1Mb) | download details (tab-separated) (288Kb)        |
|                              | Save BED file to project management      | download gene list (52Kb)                       |
|                              | 14028                                    | 2214                                            |
| Down-regulation              | Download BED file of Transcripts (881Kb) | <u>download details (tab-separated)</u> (244Kb) |
|                              | Save BED file to project management      | download gene list (48Kb)                       |
| Up- and down-regulated genes |                                          | 16                                              |
| (with different transcripts) |                                          | download details (tab-separated) (4.0Kb)        |



After you've saved the files, please go back to the output page. The top 5 and top 50 up- and down-regulated genes are also available on the HTML page:

#### **Up-Regulation:**

Genes with the highest log2(fold change) for up-regulated Transcripts in input file(s) (mmu\_heart\_expression\_tbx20ko\_1.bb, ...) compared to control file(s) (mmu\_heart\_expression\_wt\_1.bb, ...):

| Symbol                           | Geneld | mean log2(fold change) of up-reg. transcripts |  |  |
|----------------------------------|--------|-----------------------------------------------|--|--|
| Spp1                             | 20750  | 7.01                                          |  |  |
| Timp1                            | 21857  | 6.54                                          |  |  |
| Sprr1a                           | 20753  | 5.91                                          |  |  |
| Bglap3                           | 12095  | 5.90                                          |  |  |
| Tnc                              | 21923  | 5.85                                          |  |  |
| >>> show more genes <<< (top 50) |        |                                               |  |  |

#### Down-Regulation:

Genes with the smallest log2(fold change) for down-regulated Transcripts in input file(s) (mmu\_heart\_expression\_tbx20ko\_1.bb, ...) compared to control file(s) (mmu\_heart\_expression\_wt\_1.bb, ...):

| Symbol                           | Geneld | mean log2(fold change) of down-reg. transcripts |  |  |
|----------------------------------|--------|-------------------------------------------------|--|--|
| Kcnip2                           | 80906  | -6.14                                           |  |  |
| Rps13                            | 68052  | -6.14                                           |  |  |
| Efnb3                            | 13643  | -5.77                                           |  |  |
| Lrtm1                            | 319476 | -5.39                                           |  |  |
| Asb14                            | 142687 | -5.30                                           |  |  |
| >>> show more genes <<< (top 50) |        |                                                 |  |  |

The top up- and down-regulated genes can directly be used as input for the Genomatix Pathway System from the result page (see next step).

Four different diagnostic plots can be viewed and downloaded. The first two are an MA plot and a volcano plot. Points represent transcripts, dashed lines are fold change thresholds.



Left: MA plot (log2 fold-change mean of normalized counts (y-axis) vs. mean of normalized counts (x-axis)). Red dots represent values for significantly regulated transcripts (according to the adjusted p-value, but not taking the log2 fold-change into account). Note that no transcripts with a mean below ~10 normalized counts are considered regulated

Right: volcano plot of adjusted p-value (y-axis, inverted scale) vs. log2 foldchange mean of normalized counts (x-axis). The volcano plot shows statistical significance (p-value) and biological significance (effect size as log2 fold change) in one graph.



The next two are p-value histogram and a dispersion plot.

Left: p-value histogram showing the distribution of observed p-values in bins of 0.05. As expected for a comparison with significant differences, there is an enrichment of small p-values.

Right: dispersion plot. The dispersion quantifies the within-group variability of each transcript. Black dots: transcript-wise dispersion estimates. Red line: trend line showing the dispersions' dependence on the mean; its shape is influenced by the selected dispersion fitting method. Blue dots near the trend line: final (shrunk towards the trend line) dispersion estimates. Blue dots above main cloud: dispersion outliers, which are not shrunk towards the trend line. Values represented by blue dots are used for significance testing.





The next part shows the read classification for all input files. It also provides enrichment graphs; below are the numbers for one of the knockout samples:

| offerential Expression Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is Read Classifica                                                                                               | tion for all files Expr                                                                              | ession Analysis for sample(s)                       | Expression Analysis for control(s)                            | Downloa |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                                                                      |                                                     |                                                               |         |
| lead Classification on n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nmu_heart_expres                                                                                                 | ssion_tbx20ko_1.bb                                                                                   | )                                                   |                                                               |         |
| General Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                      |                                                     |                                                               |         |
| Total number of Reads:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 8708085                                                                                              |                                                     |                                                               |         |
| Total basepairs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  | 308793936                                                                                            |                                                     |                                                               |         |
| Minimum Read length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 9                                                                                                    | 1                                                   |                                                               |         |
| Maximum Read length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 36                                                                                                   |                                                     |                                                               |         |
| Average Read length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | 35.5                                                                                                 | ]                                                   |                                                               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                                                                      |                                                     |                                                               |         |
| Enrichment General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                      |                                                     |                                                               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                                                                      |                                                     |                                                               |         |
| ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                      |                                                     |                                                               |         |
| 50 % 0.05<br>0 % recentage of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.74<br>ons exon<br>promoters<br>of Genome Perce                                                                 | 0.17<br>partial<br>intron<br>entage of Reads                                                         |                                                     |                                                               |         |
| 50 %<br>0 % of genomic element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.74<br>9.74<br>exon<br>promoters<br>of Genome Percent<br>Number of Reads                                        | 0.17<br>partial<br>intron<br>entage of Reads                                                         | Percentage in Genome                                | Enrichment compared to Genome                                 |         |
| 50 %<br>0 %<br>0 %<br>0 %<br>0 %<br>0 %<br>0 %<br>0 %<br>0 %<br>0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.74<br>9.74<br>exon<br>promoters<br>of Genome Percent<br>Number of Reads<br>7698046                             | 0.17<br>partial<br>intron<br>entage of Reads<br>Percentage of Reads<br>88.4%                         | Percentage in Genome<br>5.7%                        | Enrichment compared to Genome<br>15.5                         |         |
| 50 %<br>0 % 0.05<br>0 % 0.0                                                                                                                                                  | 9.74<br>promoters<br>of Genome Perce<br>Number of Reads<br>7698046<br>218211                                     | 0.17<br>partial<br>intron<br>entage of Reads<br>Percentage of Reads<br>88.4%<br>2.5%                 | Percentage in Genome<br>5.7%                        | Enrichment compared to Genome<br>15.5                         |         |
| 50 % 0.05<br>0 % 0.05<br>0 % regenic regio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.74<br>promoters exon<br>promoters Percer<br>Number of Reads<br>7698046<br>218211<br>566581                     | 0.17<br>partial<br>intron<br>Percentage of Reads<br>88.4%<br>2.5%<br>6.5%                            | Percentage in Genome<br>5.7%<br>-<br>37.8%          | Enrichment compared to Genome<br>15.5<br>-<br>0.2             |         |
| 50 % 0.05<br>0 % 0<br>0 % 0<br>0<br>0 % 0<br>0<br>0 % 0<br>0<br>0<br>0 | 9.74<br>promoters exon<br>promoters Percent<br>Number of Reads<br>7698046<br>218211<br>566581<br>225247          | 0.17<br>partial<br>intron<br>entage of Reads<br>Percentage of Reads<br>88.4%<br>2.5%<br>6.5%<br>2.6% | Percentage in Genome<br>5.7%<br>-<br>37.8%<br>56.5% | Enrichment compared to Genome<br>15.5<br>-<br>0.2<br>0.0      |         |
| 50 %<br>0 % 0 %<br>0 % 0 %<br>0 % recent credit<br>Percent age of<br>Percent age of<br>Partial<br>intron<br>Intergenic regions<br>Sum of above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.74<br>promoters exon<br>promoters Perce<br>Number of Reads<br>7698046<br>218211<br>566581<br>225247<br>8708085 | 0.17<br>partial<br>intron<br>Percentage of Reads<br>88.4%<br>2.5%<br>6.5%<br>2.6%<br>100.0%          | Percentage in Genome<br>5.7%<br>-<br>37.8%<br>56.5% | Enrichment compared to Genome<br>16.6<br>-<br>0.2<br>0.0<br>- |         |

The read classification results can also be shown as pie charts; the left graph shows the fractions of the different annotations in the genome; the right diagram shows the percentages of the corresponding read annotations:





## **Biology of differentially expressed genes**

With the Genomatix Pathway System (GePS), you can generate gene networks and identify the biology that is overrepresented in a set of genes. Depending on the organism, there is a selection of biological categories, e.g. signal transduction pathway associations, GeneOntology (GO), diseases, and tissues.

From the *Differential Expression Analysis* section, run the Genomatix Pathway System for the down-regulated genes. To do this, remove the number from the field for the up-regulated genes, and change the entry for the down-regulated genes to 2300 to include all of them; then press the *Go* button.

| Pathway and Network analysis                               |                       |
|------------------------------------------------------------|-----------------------|
| Start Genomatix Pathway System                             |                       |
| with the top                                               |                       |
| and with the top 2300 Ovn-regulated genes                  | (3)                   |
| and name result Tbx20_ko_expression_GePS                   | Go (opens new window) |
| Use orthologous genes in human of for the pathway analysis | 45                    |

In the output, you'll find lists of overrepresented terms in the different categories based on the Gene ID list you uploaded.

The top enriched literature mining based pathway is PPAR alpha, which plays an important role in heart physiology.

Click on the first entry to display the corresponding literature-based gene network.



The input genes are shown with a orange (weak down-regulation) to blue (strong down-regulation) colored background. Details will be shown during the workshop.



Other overrepresented biological annotations include *mitochondrion* in the GO *Cellular Components* category, *cardiomyopathies* among the *literature-mining based diseases*, and *heart tissue* based both on *literature mining* and *UniGene tissue* annotation.

| Cellular Components (G                                                                                                                                                                                                                                                                | 90)<br>90)                                                                                                                                                               | (0/198)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Diseases (Genomatix Lit                                                                                                                                                                                                                                                                      | terature Mining)                                                                                                                                                            | (0/663)                                                                                               |             |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------|---|
| mitochondrion                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | CARDIOMYOPATHIES                                                                                                                                                                                                                                                                             |                                                                                                                                                                             |                                                                                                       |             |   |
| p-value: 2.02e-164                                                                                                                                                                                                                                                                    | 515 of 1664 genes                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -      | p-value: 1.22e-35                                                                                                                                                                                                                                                                            | 105 of 291 genes                                                                                                                                                            |                                                                                                       | 0           | ۲ |
| mitochondrial part                                                                                                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U.     | PEARSON'S MARROW PA                                                                                                                                                                                                                                                                          | ANCREAS SYNDRO                                                                                                                                                              | ME                                                                                                    |             |   |
| p-value: 1.27e-94                                                                                                                                                                                                                                                                     | 244 of 647 genes                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | p-value: 3.30e-24                                                                                                                                                                                                                                                                            | 49 of 100 genes                                                                                                                                                             |                                                                                                       | 0           |   |
| cytoplasmic part                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | NICOTINAMIDE ADENINE                                                                                                                                                                                                                                                                         | DINUCLEOTIDE C                                                                                                                                                              | DE                                                                                                    |             |   |
| p-value: 7.09e-92                                                                                                                                                                                                                                                                     | 944 of 6158 genes                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U.     | p-value: 7.85e-23                                                                                                                                                                                                                                                                            | 31 of 43 genes                                                                                                                                                              |                                                                                                       | 0           |   |
| cytoplasm                                                                                                                                                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | LEIGH DISEASE                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                       |             |   |
| p-value: 3.46e-90                                                                                                                                                                                                                                                                     | 1235 of 9227 genes                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | p-value: 1.38e-18                                                                                                                                                                                                                                                                            | 32 of 57 genes                                                                                                                                                              |                                                                                                       | 0           |   |
| mitochondrial inner memb                                                                                                                                                                                                                                                              | orane                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | MITOCHONDRIAL DISEA                                                                                                                                                                                                                                                                          | SES                                                                                                                                                                         |                                                                                                       |             |   |
| p-value: 4.72e-83                                                                                                                                                                                                                                                                     | 170 of 363 genes                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | p-value: 2.79e-18                                                                                                                                                                                                                                                                            | 47 of 120 genes                                                                                                                                                             |                                                                                                       | 0           |   |
| mitochondrial membrane                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | SUDDEN CARDIAC DEAT                                                                                                                                                                                                                                                                          | н                                                                                                                                                                           |                                                                                                       |             |   |
| p-value: 1.08e-80                                                                                                                                                                                                                                                                     | 197 of 496 genes                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U.     | p-value: 1.13e-17                                                                                                                                                                                                                                                                            | 59 of 184 genes                                                                                                                                                             |                                                                                                       | 0           |   |
| mitochondrial envelope                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U.     | HEART FAILURE                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                       |             |   |
| p-value: 1.73e-79                                                                                                                                                                                                                                                                     | 202 of 527 genes                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | p-value: 1.23e-16                                                                                                                                                                                                                                                                            | 82 of 328 genes                                                                                                                                                             |                                                                                                       | 0           |   |
| organelle inner membran                                                                                                                                                                                                                                                               | 0                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •      | DILATED CARDIOMYOPA                                                                                                                                                                                                                                                                          | THY                                                                                                                                                                         |                                                                                                       |             | • |
|                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | P                                                                                                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                       |             |   |
| Tissues (Genomatix Lite                                                                                                                                                                                                                                                               | erature Mining)                                                                                                                                                          | (0/372)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Tissues (UniGene)                                                                                                                                                                                                                                                                            |                                                                                                                                                                             | (0/49)                                                                                                |             |   |
| Tissues (Genomatix Lite                                                                                                                                                                                                                                                               | erature Mining)                                                                                                                                                          | (0/372)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      | Tissues (UniGene)<br>heart                                                                                                                                                                                                                                                                   |                                                                                                                                                                             | (0/49)                                                                                                |             |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64                                                                                                                                                                                                                          | arature Mining)<br>303 of 1181 genes                                                                                                                                     | (0/372)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _<br>_ | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86                                                                                                                                                                                                                                              | 1301 of 9787 genes                                                                                                                                                          | (0/49)                                                                                                | 0           |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART                                                                                                                                                                                                                 | erature Mining)<br>303 of 1181 genes                                                                                                                                     | (0/372)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system                                                                                                                                                                                                                     | 1301 of 9787 genes                                                                                                                                                          | (0/49)                                                                                                | 0           |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59                                                                                                                                                                                            | 293 of 1172 genes                                                                                                                                                        | (0/372)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85                                                                                                                                                                                                | 1301 of 9787 genes                                                                                                                                                          | (0/49)                                                                                                | 0           |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59<br>SKELETAL MUSCLE STR                                                                                                                                                                     | 303 of 1181 genes<br>293 of 1172 genes<br>207 URE                                                                                                                        | (0/372)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85<br>central nervous system                                                                                                                                                                      | 1301 of 9787 genes                                                                                                                                                          | (0/49)                                                                                                | 0           |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59<br>SKELETAL MUSCLE STR<br>p-value: 3.52e-49                                                                                                                                                | 293 of 1181 genes<br>293 of 1172 genes<br>CUCTURE<br>246 of 986 genes                                                                                                    | (0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/372)<br>(0/ |        | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85<br>central nervous system<br>p-value: 9.39e-41                                                                                                                                                 | 1301 of 9787 genes<br>1316 of 9967 genes<br>1428 of 12752 gene                                                                                                              | (0/49)                                                                                                | 0<br>0<br>0 |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59<br>SKELETAL MUSCLE STR<br>p-value: 3.52e-49<br>MUSCLE                                                                                                                                      | 293 of 1181 genes<br>293 of 1172 genes<br>2000 CTURE<br>246 of 986 genes                                                                                                 | (0/372)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85<br>central nervous system<br>p-value: 9.39e-41<br>nervous system                                                                                                                               | 1301 of 9787 genes<br>1316 of 9967 genes<br>1428 of 12752 gene                                                                                                              | (0/49)                                                                                                |             |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59<br>SKELETAL MUSCLE STR<br>p-value: 3.52e-49<br>MUSCLE<br>p-value: 2.55e-47                                                                                                                 | 293 of 1181 genes<br>293 of 1172 genes<br>246 of 986 genes<br>258 of 1087 genes                                                                                          | (0/372)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85<br>central nervous system<br>p-value: 9.39e-41<br>nervous system<br>p-value: 9.39e-41                                                                                                          | 1301 of 9787 genes<br>1316 of 9967 genes<br>1428 of 12752 gene                                                                                                              | (0/49)                                                                                                |             |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59<br>SKELETAL MUSCLE STR<br>p-value: 3.52e-49<br>MUSCLE<br>p-value: 2.55e-47<br>MYOCARDIUM                                                                                                   | 293 of 1181 genes<br>293 of 1172 genes<br>246 of 986 genes<br>258 of 1087 genes                                                                                          | (0/372)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85<br>central nervous system<br>p-value: 9.39e-41<br>nervous system<br>p-value: 9.39e-41<br>brain                                                                                                 | 1301 of 9787 genes<br>1316 of 9967 genes<br>1428 of 12752 gene<br>1428 of 12752 gene                                                                                        | (0/49)<br>;<br>;<br>;;                                                                                |             |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59<br>SKELETAL MUSCLE STR<br>p-value: 3.52e-49<br>MUSCLE<br>p-value: 2.55e-47<br>MYOCARDIUM<br>p-value: 7.60e-27                                                                              | 293 of 1181 genes<br>293 of 1172 genes<br>UCTURE<br>246 of 986 genes<br>258 of 1087 genes<br>132 of 522 genes                                                            | (0/372)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85<br>central nervous system<br>p-value: 9.39e-41<br>nervous system<br>p-value: 9.39e-41<br>brain<br>p-value: 9.39e-41                                                                            | 1301 of 9787 genes<br>1316 of 9967 genes<br>1428 of 12752 gene<br>1428 of 12752 gene                                                                                        | (0/49)                                                                                                |             |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59<br>SKELETAL MUSCLE STR<br>p-value: 3.52e-49<br>MUSCLE<br>p-value: 2.55e-47<br>MYOCARDIUM<br>p-value: 7.60e-27<br>MUSCLE CELLS                                                              | 293 of 1181 genes<br>293 of 1172 genes<br>293 of 1172 genes<br>2000<br>246 of 986 genes<br>258 of 1087 genes<br>132 of 522 genes                                         | (0/372)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85<br>central nervous system<br>p-value: 9.39e-41<br>nervous system<br>p-value: 9.39e-41<br>brain<br>p-value: 9.39e-41<br>integumental system                                                     | 1301 of 9787 genes<br>1316 of 9967 genes<br>1428 of 12752 gene<br>1428 of 12752 gene<br>1428 of 12752 gene                                                                  | (0/49)                                                                                                |             |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59<br>SKELETAL MUSCLE STR<br>p-value: 3.52e-49<br>MUSCLE<br>p-value: 2.55e-47<br>MYOCARDIUM<br>p-value: 7.60e-27<br>MUSCLE CELLS<br>p-value: 5.20e-22                                         | 293 of 1181 genes<br>293 of 1172 genes<br>2000 OF 1172 genes<br>246 of 986 genes<br>258 of 1087 genes<br>132 of 522 genes<br>140 of 638 genes                            | (0/372)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85<br>central nervous system<br>p-value: 9.39e-41<br>nervous system<br>p-value: 9.39e-41<br>brain<br>p-value: 9.39e-41<br>integumental system<br>p-value: 1.94e-36                                | 1301 of 9787 genes<br>1316 of 9967 genes<br>1428 of 12752 gene<br>1428 of 12752 gene<br>1428 of 12752 gene<br>1428 of 12752 gene                                            | (0/49)<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;                     |             |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59<br>SKELETAL MUSCLE STR<br>p-value: 3.52e-49<br>MUSCLE<br>p-value: 2.55e-47<br>MYOCARDIUM<br>p-value: 7.60e-27<br>MUSCLE CELLS<br>p-value: 5.20e-22<br>CARDIAC MYOCYTE                      | avaluate Mining)<br>303 of 1181 genes<br>293 of 1172 genes<br>UCTURE<br>246 of 986 genes<br>258 of 1087 genes<br>132 of 522 genes<br>140 of 638 genes                    | (0/372)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85<br>central nervous system<br>p-value: 9.39e-41<br>nervous system<br>p-value: 9.39e-41<br>brain<br>p-value: 9.39e-41<br>integumental system<br>p-value: 1.94e-36<br>tongue                      | 1301 of 9787 genes<br>1316 of 9967 genes<br>1428 of 12752 gene<br>1428 of 12752 gene<br>1428 of 12752 gene<br>1428 of 12752 gene                                            | (0/49)<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>; |             |   |
| Tissues (Genomatix Lite<br>ENTIRE HEART<br>p-value: 2.50e-64<br>HEART<br>p-value: 2.23e-59<br>SKELETAL MUSCLE STR<br>p-value: 3.52e-49<br>MUSCLE<br>p-value: 2.55e-47<br>MYOCARDIUM<br>p-value: 7.60e-27<br>MUSCLE CELLS<br>p-value: 5.20e-22<br>CARDIAC MYOCYTE<br>p-value: 4.95e-21 | erature Mining)<br>303 of 1181 genes<br>293 of 1172 genes<br>UCTURE<br>246 of 986 genes<br>258 of 1087 genes<br>132 of 522 genes<br>140 of 638 genes<br>164 of 823 genes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | Tissues (UniGene)<br>heart<br>p-value: 7.19e-86<br>cardiovascular system<br>p-value: 2.16e-85<br>central nervous system<br>p-value: 9.39e-41<br>nervous system<br>p-value: 9.39e-41<br>brain<br>p-value: 9.39e-41<br>integumental system<br>p-value: 1.94e-36<br>tongue<br>p-value: 1.22e-35 | 1301 of 9787 genes<br>1316 of 9967 genes<br>1428 of 12752 gene<br>1428 of 12752 gene<br>1428 of 12752 gene<br>1428 of 12752 gene<br>1558 of 14509 gene<br>551 of 3764 genes | (0/49)                                                                                                |             |   |



# Chip-sequencing analysis

# ChIP-Seq workflow: regions bound by Tbx20 in the adult mouse heart

In the next example, you will learn how to analyze ChIP-Seq data, including peak finding and TFBS analysis.

## Available peak finding algorithms

As ChIP-Seq data are inherently noisy, clustering of mapped ChIP-Seq reads is a prerequisite step for their analysis. Clustering algorithms use a distribution model of the reads for separating signal from noise.

Three different algorithms are available in RegionMiner for cluster detection in ChIP-Seq data: NGS Analyzer, and the public algorithms MACS (Model based Analysis for ChIP-Seq) and SICER (Spatial clustering for Identification of ChIP-Enriched Regions).

**NGS Analyzer** was developed by Genomatix; it identifies local enrichments (clusters) representing genomic regions bound by protein (ChIP-Seq) or being expressed (RNA-Seq). By default, the threshold applied by the clustering algorithm takes the density of the data set into account, assuming a Poisson distribution.

A control data file can be provided. A quantitative comparison of the clustered reads in the experimental data file to the reads in corresponding regions in the control file uses the Audic-Claverie algorithm (Audic & Claverie, 1997).

**MACS** was originally designed specifically for clustering of ChIP-Seq data with narrow peaks as you typically get from transcription factor binding. It uses a sliding window approach and assumes a Poisson distribution of the reads just as NGS Analyzer does. However, it uses a peak model generated from high confidence read cluster regions in the data to shift the reads to the assumed center of a protein binding region. It also uses the local read density background for peak calling, which NGS Analyzer does not do. MACS comes with its own quantitative background subtraction method against a control file.

MACS has been developed at the Dana-Farber Cancer Institute (Zhang et al, 2008). The GGA provides both versions 1.4 and 2 of the MACS implementation; the latter can also be used for broader peaks.

**SICER** (Zang et al., 2009) is particularly recommended for the analysis of histone modifications, which form broad peaks. It scores non-overlapping windows (typically of nucleosome length) based on the read count, assuming a Poisson distribution. Windows are flagged eligible based on a read count significance threshold, and adjacent eligible windows are grouped as islands (peaks). Small gaps of ineligible windows can be allowed within islands. The island score is the sum of the scores of the eligible windows in the island.



In the first step of the analysis, we will identify genomic regions bound by Tbx20 in wild type adult mouse heart, and run some downstream analyses on these ChIP peak regions.

For this we will use the Chip-Seq workflow, which is an automated process that includes a number of analyses: peak finding, read and peak classification, creation of a peak sequence file, and TFBS overrepresentation analysis.

Additionally, a de novo definition of TF binding sites from the ChIP cluster sequences is possible. This uses the program CoreSearch, which can, of course, also be run separately.

The raw sequence tags from the experiment have been mapped to the human genome using the GMS. You find the files once more in the folder *workbench\_home/Demo/NGS\_Seminar/mmu\_heart* on the GGA.

Please open the Genomatix Genome Analyzer in your browser, and select "ChipSeq Workflow" in the NGS Analysis menu.



On the input page, press the Add BED files button.





In the upload dialog, select the GGA for the file import and press the *Browse GGA* button.

#### **BED** File Upload

#### Current Project: "workshop"

| Upload genomic region                                             | IS CONTRACTOR OF CONTRACTOR |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                   | Import BED / bigBed file(s) from<br>vour local computer the GMS the GGA                                         |
| Upload                                                            | Assuming input is for Mus musculus / NCBI build 38                                                              |
| file(s) with genomic<br>regions<br>in <u>BED file format</u><br>Ø | → Browse GGA                                                                                                    |
|                                                                   | Note, that bigBed files must have the extension '.bb'                                                           |
|                                                                   | Optional name/prefix for your BED<br>file(s) on the server:                                                     |

Select the last two files (input DNA and Tbx20 ChIP-Seq) in the folder *workbench\_home/Demo/NGS\_Seminar/mmu\_heart*, and click on *Submit*.





Press Submit in the upload dialog to start the import process.

| Upload genomic region                                                       | S                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upload<br>file(s) with genomic<br>regions<br>in <u>BED file format</u><br>? | Import BED / bigBed file(s) from<br>vour local computer to the GMS the GGA<br>Assuming input is for Mus musculus / NCBI build 38<br>Multiple files can be uploaded:<br>Browse GGA<br>x mmu_heart_inputdna.bb<br>x mmu_heart_tbx20_chipseq.bb<br>Note, that bigBed files must have the extension '.bb'<br>Optional name/prefix for your BED<br>file(s) on the server: |
| Email option (for very la                                                   | arge, zipped files)                                                                                                                                                                                                                                                                                                                                                  |
| Your <u>email address</u><br>Ø                                              | <ul> <li>Show result directly in browser window</li> <li>Send the URL of the result to COURSES@genomatix.de<br/>Use the email option for long-running jobs, to avoid server-timeout messages<br/>You may set a default email address by filling or modifying the 'email address' field on your<br/>personal account page</li> </ul>                                  |
| Submit Reset Forr                                                           | n                                                                                                                                                                                                                                                                                                                                                                    |

#### When the upload has finished, press the Close this window button.

The following input file(s) were successfully uploaded to the project "workshop" and are now available in the relevant tasks:

- mmu\_heart\_inputdna.bb (41091391 regions)
- mmu\_heart\_tbx20\_chipseq.bb (5963202 regions)

To delete, rename or protect the uploaded file(s) from automatic deletion please use the Project Management

Close this window or add more BED files...



In the *Available files* list, choose the Tbx20 ChIPSeq data set as treatment file. Activate the option *Use second set of input files...* and select the input DNA data set as control file. Please leave the workflow parameters at the default values.

| Input file(s) with read positions (<br>Note: multiple files are treated a | Sample or Treatment)<br>s replicates                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Available files                                                           | Listing files for Mus musculus / NCBI build 38:<br>Select  BED files or  BAM files mmu_heart_expression wt_3.bb (7845462 regions) mmu_heart_inputdna.bb (1091391 regions) mmu_heart_tbx20_chipseq bb (5963202 regions) Tbx20_ko_expression_transcripts_down.bed (10338 regions) (You can use shift/ctrl.keys to select multiple files)                                                                                                                       |  |  |  |  |
| Control files (optionally with repl                                       | licates)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Optional:<br><u>control file(s)</u><br>for differential analysis          | <ul> <li>Use second set of input files (control files) for differential analysis</li> <li>Select BED files or BED files or BED files or BED files</li> <li>mmu_heart_expression_wt_3.bb (7845462 regions)</li> <li>mmu_heart_inputdina bb (41091391 regions)</li> <li>mmu_heart_inputdina bb (41091391 regions)</li> <li>Tbx20_ko_expression_transcripts_down.bed (10338 regions)</li> <li>(You can use shift/ctrl-keys to select multiple files)</li> </ul> |  |  |  |  |
| Workflow parameters                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Read Classification                                                       | <ul> <li>Sample Read Classification and Statistics (exons, introns, promoters and intergenic reads)</li> </ul>                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Peak Finding<br>(mandatory)                                               | Peak Finding / Cluster Generation with Senomatix NGSAnalyzer Window size 100 bp Min. number of reads per peak © calculate automatically from the data by applying a Poisson distribution 0 100 reads Strand specificity: Reads were sequenced in a strand specific manner MACS2/MACS - Model based Analysis for ChIPSeq                                                                                                                                      |  |  |  |  |
|                                                                           | SICER - Spatial clustering for Identification of ChIP-Enriched Regions (for histone modifications) (v1.1)                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Replicate Parameters                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Replicate treatment                                                       | O No replicate data was selected as input above.                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |

In this example, we'll also use the defaults of the peak evaluation and downstream analysis parameters. Please provide a result name, and start the analysis with the standard e-mail option.

| Peak Evaluation                            |                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <u>Differential Analysis</u><br>Parameters | Currently 1 BED file is selected as control.         Method for differential analysis: <ul> <li>Audic-Claverie (only if no replicates available) (details •)</li> <li>DESeq, recommended only for replicates (details •)</li> <li>DESeq2, recommended only for replicates (details •)</li> <li>DESeq2, recommended only for replicates (details •)</li> <li>List regions as significant, if:</li></ul> |  |  |
| Downstream Analysis                        |                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Peak Classification                        | Peak Classification and Statistics                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Sequence Extraction                        | Extraction of Sequences for all Peaks                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| TFBS Overrepresentation                    | ☑ Transcription Factor Binding Site Overrepresentation in Peaks                                                                                                                                                                                                                                                                                                                                        |  |  |
| Definition of new TFBS                     | <ul> <li>Find new Binding Sites in Peaks (CoreSearch)</li> <li>using the 1000 best-scoring peaks</li> </ul>                                                                                                                                                                                                                                                                                            |  |  |
| Output                                     |                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Result                                     | Result name: Tbx20_chipseq     (special characters except -+.,^ are not allowed and will be replaced by _)                                                                                                                                                                                                                                                                                             |  |  |
| Your <u>email address</u>                  | <ul> <li>Show result directly in browser window</li> <li>Send the URL of the result to courses@genomatix.de</li> <li>Use the email option for long-running jobs, to avoid server-fimeout messages</li> <li>You may set a default email address by filling or modifying the 'email address' field on your <u>personal account page</u></li> </ul>                                                       |  |  |
| Submit Reset Form                          |                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |



You'll see a message informing you that the job has been started.

#### The task "Complete Workflow for ChIP-Seq Analysis" has been started!

As soon as the result/data is available on the server, a mail with a link to the output will be sent to courses@genomatix.de

You can stop this job via the project management

When the job has finished, open your project folder and the result group "ChIP-Seq Workflow" and click on the entry to open the result.



## **Peak finding**

The output page has its own navigation bar, which is used to access each workflow result. The peak finding result is shown by default.

In the experimental sample, 3374 peaks were found originally, of which 2698 enriched peaks remain after Audic-Claverie evaluation. 1.04% of the reads are in peaks, which is relatively low.

| Read Classification                                                                                                                             | Peak Finding                                  | Peak Classification                       | Sequence Extraction | TFBS Overrepresentation | Definition of new TFBS | Download of Results |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|---------------------|-------------------------|------------------------|---------------------|--|--|
|                                                                                                                                                 |                                               |                                           |                     |                         |                        |                     |  |  |
|                                                                                                                                                 | Peak Finding / Cluster Generation             |                                           |                     |                         |                        |                     |  |  |
| Peak finding in input                                                                                                                           | data (mmu_hea                                 | rt_tbx20_chipseq.bb)                      | with NGSAnalyzer    |                         |                        |                     |  |  |
| Read and Cluster in                                                                                                                             | formation                                     |                                           |                     |                         |                        |                     |  |  |
| Total number of peaks                                                                                                                           | 3374                                          |                                           |                     |                         |                        |                     |  |  |
| Total reads in peaks                                                                                                                            | 205538                                        |                                           |                     |                         |                        |                     |  |  |
| Percentage of reads in                                                                                                                          | peaks 3.45%                                   |                                           |                     |                         |                        |                     |  |  |
| Average peak length                                                                                                                             | 144.5 bp                                      |                                           |                     |                         |                        |                     |  |  |
| Evaluation with Audi                                                                                                                            | c-Claverie Algor                              | tor peak finding step for<br>ithm         | the input data.     |                         |                        |                     |  |  |
| 2814 peaks were found t<br>2698 of these show a sig                                                                                             | to be significant with<br>Inificant enrichmen | h an adjusted p-value of 0<br>t of reads. | .05,                |                         |                        |                     |  |  |
| Read and Cluster in                                                                                                                             | formation                                     |                                           |                     |                         |                        |                     |  |  |
| Total number of peaks                                                                                                                           | 2698                                          |                                           |                     |                         |                        |                     |  |  |
| Total reads in peaks                                                                                                                            | 61950                                         |                                           |                     |                         |                        |                     |  |  |
| Percentage of reads in                                                                                                                          | peaks 1.04%                                   |                                           |                     |                         |                        |                     |  |  |
| Average peak length                                                                                                                             | 152.5 bp                                      |                                           |                     |                         |                        |                     |  |  |
| Complead BED file of the 2698 significantly enriched peaks (104Kb)                                                                              |                                               |                                           |                     |                         |                        |                     |  |  |
| Save BED file to project management                                                                                                             |                                               |                                           |                     |                         |                        |                     |  |  |
|                                                                                                                                                 |                                               |                                           |                     |                         |                        |                     |  |  |
| <ul> <li><u>Louminoau p-value inity</u>, iau-separateu iorinat (212Ku), containing tite 2014 significant peaks plus auditutial inity</li> </ul> |                                               |                                           |                     |                         |                        |                     |  |  |



Please save the BED file with significantly enriched clusters to the project management.

| Save selected BED file as | Tbx20_peaks.bed |
|---------------------------|-----------------|
| to project                | workshop -      |
| Save                      |                 |

## **Read classification**

The read classification in shows that enrichment in promoters is only slightly higher for the Tbx20 ChIP-Seq reads than for the input control:

| Read Classification on mmu_heart_tbx20_chipseq.bb |           |  |  |
|---------------------------------------------------|-----------|--|--|
| General Statistics                                |           |  |  |
| Total number of Reads:                            | 5963202   |  |  |
| Total basepairs:                                  | 214675272 |  |  |
| Minimum Read length:                              | 36        |  |  |
| Maximum Read length:                              | 36        |  |  |
| Average Read length:                              | 36.0      |  |  |



| Type of genomic element | Number of Reads | Percentage of Reads | Percentage in Genome | Enrichment compared to Genome |
|-------------------------|-----------------|---------------------|----------------------|-------------------------------|
| Exon                    | 560195          | 9.4%                | 5.7%                 | 1.6                           |
| Partial                 | 62348           | 1.0%                | -                    | -                             |
| Intron                  | 2569635         | 43.1%               | 37.8%                | 1.1                           |
| Intergenic regions      | 2771024         | 46.5%               | 56.5%                | 0.8                           |
| Sum of above            | 5963202         | 100.0%              | -                    | -                             |
| Promoters               | 360351          | 6.0%                | 2.7%                 | 2.2                           |

Distribution of Reads on the Genome

>>> show details <<<</p>


### Read Classification on mmu\_heart\_inputdna.bb

| General Statistics     |            |
|------------------------|------------|
| Total number of Reads: | 41091391   |
| Total basepairs:       | 1479290076 |
| Minimum Read length:   | 36         |
| Maximum Read length:   | 36         |
| Average Read length:   | 36.0       |

Enrichment General



| Type of genomic element | Number of Reads | Percentage of Reads | Percentage in Genome | Enrichment compared to Genome |
|-------------------------|-----------------|---------------------|----------------------|-------------------------------|
| Exon                    | 3489333         | 8.5%                | 5.7%                 | 1.5                           |
| Partial                 | 379444          | 0.9%                | -                    | -                             |
| Intron                  | 17134331        | 41.7%               | 37.8%                | 1.1                           |
| Intergenic regions      | 20088283        | 48.9%               | 56.5%                | 0.9                           |
| Sum of above            | 41091391        | 100.0%              | -                    | -                             |
| Promoters               | 2206277         | 5.4%                | 2.7%                 | 2.0                           |

Distribution of Reads on the Genome

>>> show details <<<</p>



# **Peak classification**

The enrichment in promoters is 4.56 fold for peaks, approximately double of that for reads.

| Peak Classification on claverie | _result.bed |
|---------------------------------|-------------|
| General Statistics              |             |
| Total number of Peaks:          | 2698        |
| Total basepairs:                | 411423      |
| Minimum Peak length:            | 36          |
| Maximum Peak length:            | 4808        |
| Average Peak length:            | 152.5       |



| Type of genomic element | Number of Peaks | Percentage of Peaks | Percentage in Genome | Enrichment compared to Genome |
|-------------------------|-----------------|---------------------|----------------------|-------------------------------|
| Exon                    | 272             | 10.1%               | 5.7%                 | 1.8                           |
| Partial                 | 183             | 6.8%                | -                    | -                             |
| Intron                  | 1190            | 44.1%               | 37.8%                | 1.2                           |
| Intergenic regions      | 1053            | 39.0%               | 56.5%                | 0.7                           |
| Sum of above            | 2698            | 100.0%              | -                    | -                             |
| Promoters               | 332             | 12.3%               | 2.7%                 | 4.6                           |

| Distribution | of   | Peaks   | on   | the | Genome |
|--------------|------|---------|------|-----|--------|
| >>>          | s st | now det | ails | <<< |        |

### **Sequence extraction**

The peak sequences can be saved in the next section:

| Read Classification                                                    | Peak Finding                                                                                                                                                              | Peak Classification                                                                                                                                                                     | Sequence Extraction                                                                                                                                                                              | TFBS Overrepresentation                                   | Definition of new TFBS | Download of Results |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|---------------------|--|
|                                                                        |                                                                                                                                                                           |                                                                                                                                                                                         | Fortunation of                                                                                                                                                                                   | Or many free all Dealer                                   |                        |                     |  |
| 2698 sequences with a                                                  | total of 411423 base                                                                                                                                                      | epairs were extracted (621)                                                                                                                                                             | Extraction of                                                                                                                                                                                    | Sequences for all Peaks                                   | •                      |                     |  |
| First few lines of                                                     | the result file:                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                                  |                                                           |                        |                     |  |
| <pre>&gt;Region 1 chr=1 s AGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</pre> | tart=4412567   e<br>GAGCTTTTCCACAG<br>CARTCCCTTTTAAGC<br>TTTCCTGCCTG<br>tart=7819512   e<br>CCGCCCGATGGGCTG<br>tart=11003565  <br>TCAGGTTTCTGG<br>C<br>c<br>tart=14227616 | nd=4412753 str=+ be<br>socranaccrococcrecan<br>resocranacscrococcan<br>nd=7819581 str=+ be<br>casccanacageartacc<br>end=11003662 str=+ ]<br>GTTTCRAACCTTAGCTCAA<br>end=14227812 str=+ ] | d_id=1 score=9.12e-1:<br>TTGAGCAGTGTCTCCAATTCCI<br>CAAGCACCAAACTTGGAGGCT<br>d_id=2 score=0.0141<br>aCGTCCTAGGCGGAGGATAA<br>bed_id=3 score=2.63e<br>cCAGGATGTAGCCCTTTCAAG<br>bed_id=4 score=4.42e | 3<br>AAGGCTCCAG<br>FCCTCTGCCA<br>-08<br>GGTTCCACAT<br>-25 |                        |                     |  |
| <u>Download sequence</u><br>Save sequences to                          | <u>e file</u> (621Kb)<br>o project manageme                                                                                                                               | nt                                                                                                                                                                                      |                                                                                                                                                                                                  |                                                           |                        |                     |  |



### **TFBS** overrepresentation

Listing of all TE Families

Next, we'll have a look which transcription factor binding sites can be found in the clusters. A short summary of the TFBS analysis is given in the overview: V\$TALE is most overrepresented, both against a genomic and a promoter background.

| Read Classification                                | Peak Finding                               | Peak Classification                                    | Sequence Extraction                                  | TFBS Overrepresentation                                       | Definition of new TFBS | Download of Results |
|----------------------------------------------------|--------------------------------------------|--------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|------------------------|---------------------|
|                                                    |                                            | Transcriptio                                           | n Eastar Binding Site                                | Overrepresentation in P                                       | aaka                   |                     |
|                                                    |                                            | nanscriptio                                            | IT FACTOR BINDING SITE                               | overrepresentation in P                                       | eans                   |                     |
| 2698 sequence(s) with                              | a total of 411423 ba                       | sepairs were analyzed.                                 |                                                      |                                                               |                        |                     |
| V\$TALE is most overrep<br>V\$TALE is most overrep | presented (Z-score=<br>presented (Z-score= | 42.89) compared to the ge<br>45.17) compared to the ba | enomic background (1980<br>ackground of promoters (1 | matches in 1293 sequences)<br>1980 matches in 1293 sequences) |                        |                     |
| See the <u>complete list</u> of                    | transcription factors                      | and their distribution                                 |                                                      |                                                               |                        |                     |

Click the "complete list" link to open the detailed result page.

You'll see some statistics on top and then a table containing all transcription factor binding site matches together with overrepresentation values and Z-scores. V\$BRAC, the binding site family for Tbx20, ranks second after V\$TALE in the overrepresentation.

|   |                |                          |                                       |                               |                  |   |                                    |   |                                    |   |                     | _ |                                       |   |                                       | _ |                        |
|---|----------------|--------------------------|---------------------------------------|-------------------------------|------------------|---|------------------------------------|---|------------------------------------|---|---------------------|---|---------------------------------------|---|---------------------------------------|---|------------------------|
| ¢ | TF<br>Families | Prom.<br>assoc.<br>known | Nr. of<br>Input<br>Seq. with<br>Match | Nr. of<br>Matches in<br>Input | Match<br>details | ¢ | Expected<br>(genome) ±<br>Std.dev. | ÷ | Over<br>representation<br>(genome) | ¢ | Z-Score<br>(genome) | ¢ | Expected<br>(promoters) ±<br>Std.dev. | ¢ | Over<br>representation<br>(promoters) | ¢ | Z-Score<br>(promoters) |
|   | V\$TALE        | no                       | 1293                                  | 1980                          | list/seq         |   | 781.52±27.93                       |   | 2.53                               |   | 42.89               |   | 746.54±27.30                          |   | 2.65                                  |   | 45.17                  |
|   | V\$BRAC        | no                       | 1444                                  | 2198                          | list/seq         |   | 944.36±30.70                       |   | 2.33                               |   | 40.83               |   | 873.14±29.52                          |   | 2.52                                  |   | 44.87                  |
|   | V\$MYOD        | no                       | 913                                   | 1782                          | list/seq         |   | 834.02±28.85                       |   | 2.14                               |   | 32.84               |   | 1028.98±32.04                         |   | 1.73                                  |   | 23.49                  |
|   | V\$NF1F        | no                       | 671                                   | 1000                          | list/seq         |   | 414.95±20.36                       |   | 2.41                               |   | 28.71               |   | 463.37±21.51                          |   | 2.16                                  |   | 24.92                  |
|   | V\$ZF5F        | yes                      | 137                                   | 318                           | list/seq         |   | 84.52±9.19                         |   | 3.76                               |   | 25.34               |   | 697.82±26.39                          |   | 0.46                                  |   | -14.41                 |
|   | V\$ZF11        | no                       | 398                                   | 475                           | list/seq         |   | 157.44±12.55                       |   | 3.02                               |   | 25.27               |   | 240.11±15.49                          |   | 1.98                                  |   | 15.13                  |
|   | V\$CTCF        | yes                      | 524                                   | 725                           | list/seq         |   | 294.94±17.17                       |   | 2.46                               |   | 25.02               |   | 836.10±28.89                          |   | 0.87                                  |   | -3.86                  |
|   | V\$AP4R        | no                       | 352                                   | 451                           | list/seq         |   | 151.13±12.29                       |   | 2.98                               |   | 24.36               |   | 228.73±15.12                          |   | 1.97                                  |   | 14.67                  |
|   | V\$AP1R        | no                       | 1197                                  | 2099                          | list/seq         |   | 1263.12±35.49                      |   | 1.66                               |   | 23.54               |   | 1271.20±35.60                         |   | 1.65                                  |   | 23.24                  |
|   | V\$AP2F        | yes                      | 439                                   | 708                           | list/seq         |   | 309.95±17.60                       |   | 2.28                               |   | 22.59               |   | 676.47±25.99                          |   | 1.05                                  |   | 1.19                   |
|   | V\$NRF1        | yes                      | 157                                   | 313                           | list/seq         |   | 99.57±9.98                         |   | 3.14                               |   | 21.34               |   | 589.03±24.25                          |   | 0.53                                  |   | -11.40                 |
|   | V\$E2FF        | yes                      | 725                                   | 1239                          | list/seq         |   | 695.03±26.34                       |   | 1.78                               |   | 20.63               |   | 1732.38±41.53                         |   | 0.72                                  |   | -11.89                 |
|   | V\$MYRF        | no                       | 267                                   | 285                           | list/seq         |   | 89.46±9.46                         |   | 3.19                               |   | 20.62               |   | 117.76±10.85                          |   | 2.42                                  |   | 15.37                  |
|   | O\$MTEN        | yes                      | 174                                   | 226                           | list/seq         |   | 67.62±8.22                         |   | 3.34                               |   | 19.20               |   | 328.87±18.13                          |   | 0.69                                  |   | -5.70                  |
|   | V\$HDBP        | yes                      | 60                                    | 91                            | list/seq         |   | 15.57±3.95                         |   | 5.84                               |   | 18.99               |   | 186.21±13.64                          |   | 0.49                                  |   | -7.02                  |

The list is sorted by the Z-score of the overrepresentation over the genome. The overrepresentation for V\$BRAC is about 2.3 - 2.5 fold over genome and promoter background, respectively, and the Z-scores are quite high, indicating that it is statistically highly unlikely to find such an overrepresentation. You can click any column header to sort by that column; repeated clicking inverts the sort order.



### Definition of new TFBS

The TFBS overrepresentation analysis uses pre-defined binding site matrices from the MatBase/MatInspector library provided with the Genomatix Genome Analyzer. It is, however, also possible to define your own matrices from the data generated by the ChIP-Seq experiment. In the workflow, the Tbx20 cluster sequences were submitted to CoreSearch to generate a new Tbx20 binding site matrix.

The next item in the workflow output overview is the CoreSearch result. The sequences of all clusters were used to generate a new matrix. The IUPAC consensus of the defined motif is shown. For details, please click the "complete CoreSearch result" link.

| Read Classification                                                                   | ation Peak Finding Peak Classification Sequence Extraction TFBS Overrepresentation Definition of new TFBS Download of |                            |                               |                         |       |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|-------------------------|-------|--|
|                                                                                       |                                                                                                                       |                            | Find new Binding              | Sites in Peaks (CoreSea | arch) |  |
| Sequences for the 1000<br>Average length of seque                                     | ) best peaks were ex<br>ences is 194 bp                                                                               | dracted for CoreSearch (se | orted by lowest p-values, mir | n. 80 bp, max. 3000 bp) |       |  |
| A motif was defined from<br>IUPAC consensus of th<br><u>re-value</u> Ø of the final r | m 910 sequences<br>e final motif: NNSTG<br>notif: <b>1.69</b>                                                         | NTGACAGSN                  |                               |                         |       |  |
| See the complete Core                                                                 | Search resu                                                                                                           |                            |                               |                         |       |  |
| Download sequence<br>Save sequences to                                                | <u>e file</u> (272Kb)<br>o project managemei                                                                          | nt                         |                               |                         |       |  |

Here is an outline of the CoreSearch algorithm: as a first step, CoreSearch randomly picks sets of 100 input sequences to generate 5 matrices, which are grouped into a family. The IUPAC sequences of the matrices are displayed in the output below the list of input sequences:

| Solution parameter          | rs                   |                                       |                                          |                 |         |
|-----------------------------|----------------------|---------------------------------------|------------------------------------------|-----------------|---------|
| Sequence file:              | 1                    | Tbx20_chipseq_best_1000.seq (1000 :   | sequences)                               |                 |         |
| Length of core:             | (                    | 6 bp                                  |                                          |                 |         |
| Min. number of sequen       | ices:                | 750 sequences ( 75 % of 1000)         |                                          |                 |         |
| Number of motif match       | es per sequence: a   | at most one                           |                                          |                 |         |
| A priori frequency of nu    | ucleotides:          | determined from input sequences (A: 0 | 0.23, C: 0.27, G: 0.26, T: 0.23)         |                 |         |
| Strand(s) searched:         | 1                    | both strands                          |                                          |                 |         |
| Matrix similarity thresh    | iold:                | 0.80                                  |                                          |                 |         |
| Maximum number of m         | notifs:              | 1                                     |                                          |                 |         |
| Input Sequences             |                      |                                       |                                          |                 |         |
| No.                         | Sequence Name        |                                       | Sequence Descrip                         | tion            | Length  |
|                             |                      |                                       | Show all sequences                       |                 |         |
| 1 Region_2                  | 2390                 | Region_2390 chr=17 start=3            | 39846458 end=39846796 str=+ bed_id=1288  |                 | 339 bp  |
| 2 Region_1                  | 1766                 | Region_1766 chr=11 start=1            | 109011644 end=109012100 str=+ bed_id=570 |                 | 457 bp  |
| 3 Region_2                  | 2393                 | Region_2393 chr=17 start=3            | 39847175 end=39848831 str=+ bed_id=1291  |                 | 1657 bp |
| 4 Region_8                  | 889                  | Region_889 chr=5 start=146            | 5260991 end=146261359 str=+ bed_id=2364  |                 | 369 bp  |
| 5 Region_4                  | 484                  | Region_484 chr=3 start=586            | 50624 end=5860823 str=+ bed_id=1886      |                 | 200 bp  |
| Motifs defined fron         | n subsets            |                                       |                                          |                 |         |
| 5 motifs defined from 5 su  | ıbsets               |                                       |                                          |                 |         |
| Motif                       |                      |                                       | Re-value                                 | IUPAC consensus |         |
| U\$s1_Tbx20_chip            | pseq_c               |                                       | 0.84                                     | NSTGNTGACAGN.   |         |
| U\$s2 Tbx20 chip            | oseq c               |                                       | 1.51                                     | NNTGNTGACAGSN   |         |
| U\$s3_Tbx20_chip            | pseq_c               |                                       | 1.31                                     | NGTGNTGACAGS .  |         |
| U\$s4_Tbx20_chip            | pseq_c               |                                       | 1.26                                     | NGTGNTGACAGN.   |         |
| U\$s5_Tbx20_chip            | pseq_c               |                                       | 2.20                                     | .NNNNTGWCAGN.   |         |
| Average similarity of motif | fs: 0.610            |                                       |                                          |                 |         |
| At least one motif match f  | found in 975 of 1000 | sequences.                            |                                          |                 |         |

All input sequences are then scanned for matches to the new matrix family, and the best match of each sequence is used to generate the final matrix. Its conservation profile is displayed at the end of the output page.



### Final Motif

Number of aligned sequences: 910 Number of rejected sequences: 65

| Sequence Name        | Position | Str.      | Alignment                                                                                                          | Matrix Similarity |
|----------------------|----------|-----------|--------------------------------------------------------------------------------------------------------------------|-------------------|
|                      |          | Show alig | ned sequences                                                                                                      |                   |
| Conservation profile |          |           | ** ** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** *** ** **** ** ****** |                   |
| IUPAC consensus      |          |           | NNSTGNTGACAGSN                                                                                                     | Re-value: 1.69    |

Additional information

547 out of 910 sequences are recognized by matrix family <u>V\$BRAC</u>.
 598 out of 910 sequences are recognized by matrix family <u>V\$TALE</u>.

A bit more than half of the sequences used for generation of the matrix are also recognized by the existing V\$BRAC matrix family.

You can save any of the new matrices (the final one as well as the five matrices generated in the first step) in the 'Save Matrices to your user-defined Matrix Library' section at the bottom of the page. They are then available in tools applying matrix searches, such as MatInspector.

| ave Matrice | es to your user-defined I | latrix Library     |                 |               |                        |
|-------------|---------------------------|--------------------|-----------------|---------------|------------------------|
| Select      | Matrix family             | Matrix name        | IUPAC consensus | Invert matrix | ]                      |
| <b>V</b>    | Tbx20                     | f_Tbx20            | NNSTGNTGACAGSN  |               |                        |
|             | s1_Tbx20                  | s1_Tbx20_chipseq_c | NSTGNTGACAGN    |               |                        |
|             | s2_Tbx20                  | s2_Tbx20_chipseq_c | NNTGNTGACAGSN   |               | Save Selected Matrices |
|             | s3_Tbx20                  | s3_Tbx20_chipseq_c | NGTGNTGACAGS    |               | 3                      |
|             | s4_Tbx20                  | s4_Tbx20_chipseq_( | NGTGNTGACAGN    |               |                        |
|             | s5_Tbx20                  | s5_Tbx20_chipseq_( | NNNNTGWCAGN     |               |                        |

You can view your new matrices if you click the 'Personal Matrix Library' link in the menu:





Select the "personal matrix library" link as shown below:

### GEMS Launcher: Edit user-defined matrix library

| Matrix Library        |                                                                                                                                                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current Status        | View status of your personal matrix library                                                                                                                                                                        |
| Modify Matrix Library | Delete families Delete matrices from families Edit a family (family name, description) Edit a matrix (matrix name, description, references) Add a matrix/family by uploading a binary matrix library file Continue |
| Matrix Subsets        | Edit matrix subsets                                                                                                                                                                                                |

Click on the first matrix name to display detailed information for this matrix.

| User-de | defined Matrices              |                                     |             |  |  |  |  |  |  |  |
|---------|-------------------------------|-------------------------------------|-------------|--|--|--|--|--|--|--|
| 1 n     | natrices in 1 families (User- | defined Matrix Library Version 7.0) |             |  |  |  |  |  |  |  |
| - 11    | Family                        | Family Information                  | Matrix Name |  |  |  |  |  |  |  |

| Family          | Family Information    | Matrix Name | Information           | Opt. |
|-----------------|-----------------------|-------------|-----------------------|------|
| <u>U\$Tbx20</u> | created by CoreSearch | U\$f_Tbx20  | created by CoreSearch | 0.94 |

You'll see some statistics and the nucleotide distribution including IUPAC translation and consensus index for each position, which is a measure for conservation.

| Matrix U\$f_Tbx20                             |              |                          |        |       |       |       |      |      |      |      |      |      |      |      |      |
|-----------------------------------------------|--------------|--------------------------|--------|-------|-------|-------|------|------|------|------|------|------|------|------|------|
| Matrix Name:                                  | U\$f_Tb>     | U\$f_Tbx20               |        |       |       |       |      |      |      |      |      |      |      |      |      |
| Description:                                  | created      | created by CoreSearch    |        |       |       |       |      |      |      |      |      |      |      |      |      |
| Family:                                       | U\$Tbx2      | <u>0</u> (cre            | ated k | oy Co | reSea | arch) |      |      |      |      |      |      |      |      |      |
| References:                                   |              |                          |        |       |       |       |      |      |      |      |      |      |      |      |      |
| Statistical Basis:                            | 910 sec      | 310 sequences            |        |       |       |       |      |      |      |      |      |      |      |      |      |
| Random Expectation<br>(re-value):             | 1.69 ma      | 1.69 matches per 1000 bp |        |       |       |       |      |      |      |      |      |      |      |      |      |
| Promoter Matches:                             | 0.0 % (      | /erteb                   | rate p | romot | ters) |       |      |      |      |      |      |      |      |      |      |
| <u>Optimized Matrix</u><br><u>Threshold</u> : | 0.94         |                          |        |       |       |       |      |      |      |      |      |      |      |      |      |
| Length:                                       | 15 bp        |                          |        |       |       |       |      |      |      |      |      |      |      |      |      |
|                                               | Pos.         | 1                        | 2      | 3     | 4     | 5     | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   |
|                                               | А            | 253                      | 221    | 71    | 130   | 92    | 208  | 11   | 8    | 632  | 18   | 902  | 25   | 123  | 245  |
| Nuclearly Distribution                        | С            | 204                      | 180    | 256   | 135   | 90    | 261  | 5    | 8    | 88   | 863  | 0    | 9    | 351  | 233  |
| Matrix:                                       | G            | 272                      | 340    | 459   | 82    | 645   | 214  | 6    | 887  | 68   | 19   | 7    | 865  | 333  | 162  |
| matrix                                        | Т            | 181                      | 169    | 124   | 563   | 83    | 227  | 888  | 7    | 122  | 10   | 1    | 11   | 103  | 270  |
|                                               | <b>IUPAC</b> | N                        | N      | S     | Т     | G     | N    | Т    | G    | A    | С    | A    | G    | S    | N    |
|                                               | <u>Ci</u>    | 14.7                     | 16.4   | 27.1  | 33.2  | 42.7  | 14.1 | 91.4 | 91.0 | 41.5 | 84.0 | 96.7 | 84.7 | 22.2 | 14.9 |



The conservation profile of the binding site definition is also shown in a column chart and as a sequence logo.





## TFBS module overrepresentation

The TFBS overrepresentation analysis in the ChIP-Seq workflow considers only single binding site matches. As TFs often work in concert, it makes sense to analyze the ChIP regions for combinations of binding sites that could represent transcriptional modules, or parts thereof. Let's see if there are any combinations with other binding sites that can be found more often than others in our Tbx20 peaks.

Please select "Overrepresented TFBS" from the Gene Regulation menu



On the input page, select the Tbx20 peak file you saved on the ChIP-Seq workflow output in the list of previously uploaded BED files.

| Input (BED file or Sequences)         |                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Available BED files                   | Listing files for Muse museulus / NCBI build 38:<br>Tbx20_ko_expression_transcripts_down.bed (14028 regions)<br>Tbx20_peaks_correlated bed (208 regions)<br>Tbx20_peaks_correlated bed (208 regions)<br>Tbx20_peaks_correlated bed (208 regions)                                                 |
| Your sequences                        | G2P_sequences seq<br>SelectedPeaks_TFs.out<br>SelectedPeaks_withBRAC.seq<br>SelectedPeaks_withBRAC.seq_500bp.bed.seq                                                                                                                                                                             |
| Select organism<br>for sequence input | Input is from organism:<br>(see <u>available genome builds</u> )                                                                                                                                                                                                                                 |
| Options                               |                                                                                                                                                                                                                                                                                                  |
| <u>Analysis</u> 📀                     | Using Matrix Family Library Version 9.3 Overrepresentation of single TF binding sites (using MatBase) Overrepresentation of modules (i.e. pairs of TF sites, 10-50 bp) Overrepresentation of user-defined matrix matches Matches to matrix families (recommended) Matches to individual matrices |
| Background                            | Calculate overrepresentation against Calculate overrepresentation against Calculate overrepresentation against Promoter Background User-defined Background                                                                                                                                       |
| Continue Reset Form                   |                                                                                                                                                                                                                                                                                                  |

In the "options" section, click the radio button next to "Module overrepresentation (i.e. pairs of TF sites, 10-50 bp)", and continue.



On the next page, choose one TF binding site family as a partner for searching for modules. Otherwise the number of possible combinations would be too high to calculate meaningful results in appropriate time. Of course, we choose the 'V\$BRAC' family (containing transcription factor binding sites for Tbx20 matrices). Provide a result name, and press the Submit button.

| Parameters                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Partner in module search  | Search for modules where one of the partners is           V\$PELUT           V\$BHLF           V\$BHLF |  |  |  |  |  |  |
| Strand-sepcificity        | check for strand-specific modules     i.e. same-strand modules (+/- and -/-) from different-strand modules (+/- and -/+) are listed separately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Output                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| <u>Result</u>             | Result name: Tbx20peaks_BRACmodules 2<br>(special characters except +,.^are not allowed and will be replaced by _)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Your <u>email address</u> | Show result directly in browser window     Send the URL of the result to [courses@genomalix.de]     Use the email option for long-running jobs, to avoid server-timeout messages You may set a default email address by filling or modifying the 'email address' field on your <u>personal account page</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Submit Reset Form         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |

This is the start of the output list:

| Listir | ig of all Modu             | les with V\$I     | BRAC                     |                                    |                               |                  |                                    |                                    |                     |                                       |                                       |                        |
|--------|----------------------------|-------------------|--------------------------|------------------------------------|-------------------------------|------------------|------------------------------------|------------------------------------|---------------------|---------------------------------------|---------------------------------------|------------------------|
|        | Modules<br>with<br>V\$BRAC | Distance<br>Score | Prom.<br>assoc.<br>known | Nr. of Input<br>Seq. with<br>Match | Nr. of<br>Matches in<br>Input | Match<br>details | Expected<br>(genome) ±<br>Std.dev. | Over<br>representation<br>(genome) | Z-Score<br>(genome) | Expected<br>(promoters) ±<br>Std.dev. | Over<br>representation<br>(promoters) | Z-Score<br>(promoters) |
|        | V\$BRAC-<br>V\$TALE        | 2.161             | no                       | 490                                | 879                           | list             | 184.63±13.58                       | 4.76                               | 51.08               | 150.68±12.27                          | 5.83                                  | 59.30                  |
|        | V\$BRAC-<br>V\$MYOD        | 2.802             | no                       | 355                                | 843                           | list             | 188.02±13.71                       | 4.48                               | 47.74               | 201.72±14.20                          | 4.18                                  | 45.13                  |
|        | V\$AP1R-<br>V\$BRAC        | 2.024             | no                       | 472                                | 908                           | list             | 249.56±15.79                       | 3.64                               | 41.66               | 230.86±15.19                          | 3.93                                  | 44.55                  |
|        | V\$BRAC-<br>V\$NF1F        | 4.847             | no                       | 286                                | 459                           | list             | 84.76±9.21                         | 5.42                               | 40.60               | 84.39±9.19                            | 5.44                                  | 40.73                  |
|        | V\$AP4R-<br>V\$BRAC        | 2.142             | no                       | 142                                | 235                           | list             | 31.77±5.64                         | 7.40                               | 35.97               | 41.23±6.42                            | 5.70                                  | 30.10                  |
|        | V\$BRAC-<br>V\$ZF11        | 1.858             | no                       | 156                                | 216                           | list             | 27.51±5.24                         | 7.85                               | 35.84               | 40.40±6.36                            | 5.35                                  | 27.55                  |
|        | V\$BRAC-<br>V\$CTCF        | 3.152             | yes                      | 205                                | 306                           | list             | 55.85±7.47                         | 5.48                               | 33.41               | 112.92±10.63                          | 2.71                                  | 18.13                  |
|        | V\$AP2E-<br>V\$BRAC        | 2.738             | no                       | 172                                | 319                           | list             | 62.51±7.91                         | 5.10                               | 32.38               | 105.76±10.28                          | 3.02                                  | 20.69                  |
|        | V\$BRAC-<br>V\$EGRF        | 1.595             | no                       | 202                                | 442                           | list             | 115.03±10.72                       | 3.84                               | 30.44               | 217.41±14.74                          | 2.03                                  | 15.20                  |
|        | VSBRAC-<br>VSP53F          | 3.862             | no                       | 237                                | 476                           | list             | 129.60±11.38                       | 3.67                               | 30.39               | 121.81±11.03                          | 3.91                                  | 32.05                  |
|        | V\$BRAC-<br>V\$SP1E        | 2.244             | no                       | 236                                | 391                           | list             | 99.45±9.97                         | 3.93                               | 29.19               | 186.04±13.64                          | 2.10                                  | 14.99                  |
|        | VSBRAC-<br>VSHAND          | 1.980             | no                       | 412                                | 679                           | list             | 233.31±15.27                       | 2.91                               | 29.15               | 226.40±15.04                          | 3.00                                  | 30.06                  |
|        | VSBRAC-<br>VSNEUR          | 3.513             | no                       | 283                                | 433                           | list             | 119.61±10.93                       | 3.62                               | 28.61               | 116.49±10.79                          | 3.72                                  | 29.28                  |
|        | VSBRAC-<br>VSEBOX          | 2.193             | no                       | 255                                | 445                           | list             | 126.43±11.24                       | 3.52                               | 28.29               | 145.64±12.07                          | 3.06                                  | 24.77                  |

V\$TALE, V\$MYOD, V\$AP1R, and V\$NF1F are the most overrepresented partners of Tbx20 sites in modules consisting of two sites with a distance of 10 to 50 bp in between.

The distance score can be used for sorting module matches with one or a few preferred distances between the sites in the input sequences. A high score would indicate a strong distance preference.

To see a profile of the distribution of distances between the binding sites in any model, please click the corresponding *list* link in the *match detail* column.



The distance profile of the pair of BRAC-NF1F combinations, with a distance score of 4.847, clearly shows a peak at 183 bp over a low background.



In contrast, the top overrepresented combination of BRAC with TALE has lower distance score (2.161), and doesn't show a clear peak:



In summary, regions of Tbx20 binding sometimes show specific distanceconserved patterns of BRAC sites with other TF binding sites. The fraction of matches with preferred distances can be up to 20% of the total matches in the regions.



# Integration of expression and ChIP-Seq data

# Positional correlation of Tbx20 peaks with differentially expressed transcripts

In the next step, we will predict which genes that are differentially expressed in Tbx20 knock-out mouse hearts are direct targets of Tbx20. For this, we will use the program GenomeInspector and visualize the positional correlation of the starts of the down-regulated transcripts with the Tbx20 ChIP peaks.

GenomeInspector uses one BED file as anchor set and, based on the genomic positions of the regions in the file, draws a correlation graph for up to 6 other BED files (the partner sets). The graph shows the summarized coverage with regions from the partner sets in the vicinity of the regions in the anchor set.

Please start GenomeInspector from the Gene & Genomes menu.



Select the BED file of down-regulated transcripts from your files in the anchor set list.

| input data                                                                |                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anchor Set <b>?</b><br>Genomic elements used as anchor<br>for correlation | Select one of the following data sets:         Your files         Transcripts         Promoters         Repeats         ENCODE TF Data         Genomatix ChIP-Seq Data         Other Public Data |



Select the Tbx20 peaks as partner set.

|                | Select one or several (up to 6 se | ts) of the following data sets:                                                          |
|----------------|-----------------------------------|------------------------------------------------------------------------------------------|
|                | Your files                        | mind_neur_expression_m_e.s.b (1040+02 regions)                                           |
|                | Transcripts                       | mmu_heart_inputdna.bb (41091391 regions)<br>mmu_heart_tbx20_chipseq.bb (5963202 regions) |
| Partner Set(s) | Promoters                         | Tbx20_ko_expression_transcripts_down.bed (14028 regions) Tbx20_peaks.bed (2698 regions)  |
|                | Repeats                           | (You can use shift/ctrl-keys to select multiple files)                                   |
| Anchor Set     | ENCODE TF Data                    | J Add BED IIICS                                                                          |
|                | Genomatix ChIP-Seq Data           |                                                                                          |
|                | Other Public Data                 |                                                                                          |
|                |                                   |                                                                                          |

Set the range to the surrounding 20000 bps; in this way, also more distal regulatory regions will be included. Make sure the anchor position is at the start of the anchor set (i.e. the transcript starts), provide a result name, and start the analysis.

| Output                  |         |                                                                                                                                                                                                                                                                 |
|-------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Range and Elements      | 0       | Check the surrounding 20000 ① p of the elements in Anchor Set for elements of Partner Sets<br>Anchor position for elements from Anchor Set: Start (5') ⑦ Middle ⑦ End (3')<br>I Use only distinct elements from Anchor Set 2 g only distinct transcript starts) |
| Graphics Options        |         |                                                                                                                                                                                                                                                                 |
| Colors                  | 0       | > more                                                                                                                                                                                                                                                          |
| Nucleotide Content      | 0       | more                                                                                                                                                                                                                                                            |
| Result                  | 0       | Result name: DownRegTranscripts_Tbx20_correlation<br>(special characters except -+., <sup>A</sup> are not allowed and will be replaced by _)                                                                                                                    |
| Start Analysis Reset th | is form |                                                                                                                                                                                                                                                                 |



The graph shows a narrow peak around the transcript start sites, representing the region with the highest density of Tbx20 peaks. There is also a slightly elevated plateau ranging from about 6 kbp upstream to 11 kbp downstream of the TSS.



# Identification of direct regulatory targets based on correlation

Next, we will identify the potential Tbx20 target genes whose down-regulated transcripts have a positional correlation with a Tbx20 peak in the range defined by the -6kbp/+11kbp plateau above. Correlations between the elements in the two data sets, as well as regions from the anchor (down-regulated transcripts) and partner (Tbx20 peaks) set, can be extracted based on the distances.



To retrieve the list of correlated transcripts and genes for the Tbx20 peaks in the -6kbp/+11kbp plateau, select the extraction of elements from the anchor set (the down-regulated transcripts), enter the range, and click on *Submit*.



Al list of correlations will be shown, including distances and gene names (only the first 100 entries).

### GenomeInspector: 635 correlations were found

| Extracted El<br>with a corre<br>within -6000 | Extracted Elements from Tbx20_ko_expression_transcripts_down.bed / Start<br>with a correlation to Tbx20_peaks.bed<br>within -6000 to 11000 bp |      |          |          |        |                                                       |  |  |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|----------|----------|--------|-------------------------------------------------------|--|--|--|--|--|
| Number                                       | GenomeBrowser                                                                                                                                 | Chr. | Begin    | End      | Strand | Bed Id / Score                                        |  |  |  |  |  |
| Nr. 1                                        | GenomeBrowser                                                                                                                                 | chr1 | 3999403  | 4409266  | (-)    | GXT_26095811/XM_006495473/Rp1 / -2.04                 |  |  |  |  |  |
| Nr. 2                                        | GenomeBrowser                                                                                                                                 | chr1 | 23995939 | 24005640 | (-)    | GXT_13127351/NM_026503/1110058L19Rik / -1.34          |  |  |  |  |  |
| Nr. 3                                        | GenomeBrowser                                                                                                                                 | chr1 | 23995968 | 24005598 | (-)    | GXT_13007139/AK003789/1110058L19Rik / -1.48           |  |  |  |  |  |
| Nr. 4                                        | GenomeBrowser                                                                                                                                 | chr1 | 24002966 | 24005630 | (-)    | GXT_24302361/ENSMUST00000155767/1110058L19Rik / -1.79 |  |  |  |  |  |
| Nr. 5                                        | GenomeBrowser                                                                                                                                 | chr1 | 52845044 | 52885337 | (+)    | GXT_24324887/ENSMUST00000161125/Hibch / -1.69         |  |  |  |  |  |
| Nr. 6                                        | GenomeBrowser                                                                                                                                 | chr1 | 52845046 | 52920860 | (+)    | GXT_13033472/NM_146108/Hibch / -1.56                  |  |  |  |  |  |
| Nr. 7                                        | GenomeBrowser                                                                                                                                 | chr1 | 52845048 | 52920860 | (+)    | GXT_12942462/AK076038/Hibch / -1.56                   |  |  |  |  |  |
| Nr. 8                                        | GenomeBrowser                                                                                                                                 | chr1 | 75383556 | 75384975 | (+)    | GXT_24322105/ENSMUST00000146705/Speg / -1.51          |  |  |  |  |  |
| Nr. 9                                        | GenomeBrowser                                                                                                                                 | chr1 | 75384700 | 75387948 | (+)    | GXT_24322106/ENSMUST00000125118/Speg / -1.39          |  |  |  |  |  |
| Nr. 10                                       | GenomeBrowser                                                                                                                                 | chr1 | 75384828 | 75391923 | (+)    | GXT_23717585/ENSMUST00000132228/Speg / -1.32          |  |  |  |  |  |

Press the *EXCEL file* download button at the end of the list, and open the file in Excel.

| Nr. 98  | GenomeBrowser | chr2 | 132690283 | 132751055 | (+) | GXT_23381210/NM_028637/1110034G24Rik / -2.18     |
|---------|---------------|------|-----------|-----------|-----|--------------------------------------------------|
| Nr. 99  | GenomeBrowser | chr2 | 146239879 | 146512004 | (-) | GXT_25620894/ENSMUST00000109986/Ralgapa2 / -1.54 |
| Nr. 100 | GenomeBrowser | chr2 | 146239879 | 146512321 | (-) | GXT_26122546/XR_374469/Ralgapa2 / -1.54          |

Note: 635 correlations were found. The list is too long to be displayed. Only the first 100 matches are listed, the complete list can be downloaded.

Download regions as BED file Save BED file to project management as gi\_anchors\_extracted\_from\_-6000\_to\_110

Extract table as EXCEL file tab-separated file



The *Bed Id* column for the anchor set contains the internal transcript identifiers (GXT\_...), the transcript accession numbers, and the corresponding gene symbols. Note that you may need to adjust the column width to see the complete content.

| Extracted   | Elements      | from Tb | x20_ko_exp | ression_tra | anscripts | down.bed / Start                              |       |
|-------------|---------------|---------|------------|-------------|-----------|-----------------------------------------------|-------|
| with a corr | relation to T | bx20_pe | aks.bed    | _           |           |                                               |       |
| within -600 | 00 to 11000   | bp      |            |             |           |                                               |       |
| Number      | GenomeB       | Chr.    | Begin      | End         | Strand    | Bed Id                                        | Score |
| 1           | /cai-bin//el  | chr1    | 3999403    | 4409266     | (-)       | GXT 26095811/XM 006495473/Rp1                 | -2.04 |
| 2           | /cgi-bin//el  | chr1    | 23995939   | 24005640    | (-)       | GXT_13127351/NM_026503/1110058L19Rik          | -1.34 |
| 3           | /cgi-bin//el  | chr1    | 23995968   | 24005598    | (-)       | GXT_13007139/AK003789/1110058L19Rik           | -1.48 |
| 4           | /cgi-bin//el  | chr1    | 24002966   | 24005630    | (-)       | GXT_24302361/ENSMUST00000155767/1110058L19Rik | -1.79 |
| 5           | /cgi-bin//el  | chr1    | 52845044   | 52885337    | (+)       | GXT_24324887/ENSMUST00000161125/Hibch         | -1.69 |
| 6           | /cgi-bin//el  | chr1    | 52845046   | 52920860    | (+)       | GXT_13033472/NM_146108/Hibch                  | -1.56 |
| 7           | /cgi-bin//el  | chr1    | 52845048   | 52920860    | (+)       | GXT 12942462/AK076038/Hibch                   | -1.56 |
| 8           | /cgi-bin//el  | chr1    | 75383556   | 75384975    | (+)       | GXT_24322105/ENSMUST00000146705/Speg          | -1.51 |
| 9           | /cgi-bin//el  | chr1    | 75384700   | 75387948    | (+)       | GXT_24322106/ENSMUST00000125118/Speg          | -1.39 |
| 10          | /cgi-bin//el  | chr1    | 75384828   | 75391923    | (+)       | GXT_23717585/ENSMUST00000132228/Speg          | -1.32 |
| 11          | /cgi-bin//el  | chr1    | 75385158   | 75432320    | (+)       | GXT_26096931/XM_006496401/Speg                | -1.29 |
| 12          | /cgi-bin//el  | chr1    | 75385512   | 75389104    | (+)       | GXT_24322107/ENSMUST00000132222/Speg          | -1.51 |
| 13          | /cgi-bin//el  | chr1    | 75385610   | 75432304    | (+)       | GXT_21814218/AK147475/Speg                    | -1.31 |
| 14          | /cgi-bin//el  | chr1    | 75385676   | 75432320    | (+)       | GXT_26096932/XM_006496400/Speg                | -1.29 |
| 15          | /cgi-bin//el  | chr1    | 75398588   | 75432320    | (+)       | GXT_26096933/XM_006496403/Speg                | -1.29 |

Use Excel functions to write the contents into separate columns: add two empty columns left of the Score column; then separate the text in the Bed Id column into different columns, using the slash (/) as separator.

Verbindungen

A Z A

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                            | Verknüpfungen bearbeiten                                                                                                                                                    | A.                                           | Erweitert                     | Spalten |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                            | rbindungen                                                                                                                                                                  |                                              | Sortieren und Filtern         | 6       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                             |                                              |                               |         |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H I I                                                                                                                                 | K I                                                                                                                                                                        |                                                                                                                                                                             | 0                                            |                               |         |
| own bed / Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       | IX L                                                                                                                                                                       | own had / Start                                                                                                                                                             | G                                            |                               |         |
| owninged / start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arial x 10 x A <sup>+</sup> x 1                                                                                                       | 🖪 🗴 9/- 000 🛹                                                                                                                                                              | own.bed / start                                                                                                                                                             |                                              |                               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A A                                                                                                                                   | 3 78 000 🗸                                                                                                                                                                 |                                                                                                                                                                             |                                              |                               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F K 🗏 🗄 🛚 🕹 🗛 🖌 📥                                                                                                                     | ★,0 ,00 ==                                                                                                                                                                 |                                                                                                                                                                             |                                              |                               |         |
| Bed Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Score                                                                                                                                 |                                                                                                                                                                            | Bed Id                                                                                                                                                                      |                                              |                               |         |
| GXT 26095811/XM 006495473/Rp1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.1 👗 Ausschneiden                                                                                                                   |                                                                                                                                                                            | GXT 26095811/XM 00649                                                                                                                                                       | 95473/Rn1                                    |                               |         |
| GXT_13127351/NM_026503/1110058L19Rik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1. D Konjeren                                                                                                                        |                                                                                                                                                                            | GXT_20000011/XM_0004                                                                                                                                                        | 03/11100581 1                                | 9Rik                          |         |
| GXT 13007139/AK003789/1110058L19Rik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.                                                                                                                                   |                                                                                                                                                                            | GXT_13007139/AK003789                                                                                                                                                       | 0/11100581 19                                | Rik                           |         |
| GXT_24302361/ENSMUST00000155767/1110058L19Rik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1. Einfügen                                                                                                                          |                                                                                                                                                                            | GXT_24302361/ENSMUS                                                                                                                                                         | T0000015576                                  | 7/1110058L19Rik               |         |
| GXT_24324887/ENSMUST00000161125/Hibch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1 Inhalte sinfügen                                                                                                                   |                                                                                                                                                                            | GXT 24324887/ENSMUS                                                                                                                                                         | T0000016112                                  | 5/Hibch                       |         |
| GXT_13033472/NM_146108/Hibch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1 Zellen einfügen                                                                                                                    |                                                                                                                                                                            | GXT_13033472/NM_1461                                                                                                                                                        | 08/Hibch                                     |                               |         |
| GXT_12942462/AK076038/Hibch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1                                                                                                                                    |                                                                                                                                                                            | GXT 12942462/AK076038                                                                                                                                                       | 3/Hibch                                      |                               |         |
| GXT_24322105/ENSMUST00000146705/Speg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.                                                                                                                                   |                                                                                                                                                                            | GXT_24322105/ENSMUS                                                                                                                                                         | T0000014670                                  | Speg                          |         |
| GXT_24322106/ENSMUST00000125118/Speg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.: Inhalte löschen                                                                                                                  |                                                                                                                                                                            | GXT_24322106/ENSMUS                                                                                                                                                         | T00000125118                                 | 3/Speg                        |         |
| GXT_23717585/ENSMUST00000132228/Speg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.: 🕾 Zellen formatieren                                                                                                             |                                                                                                                                                                            | GXT_23717585/ENSMUS                                                                                                                                                         | T00000132228                                 | 3/Speg                        |         |
| GXT_26096931/XM_006496401/Speg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.1 Spattenbreite                                                                                                                    |                                                                                                                                                                            | GXT_26096931/XM_00649                                                                                                                                                       | 96401/Speg                                   |                               |         |
| GXT_24322107/ENSMUST00000132222/Speg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.                                                                                                                                   |                                                                                                                                                                            | GXT_24322107/ENSMUS                                                                                                                                                         | T00000132222                                 | 2/Speg                        |         |
| GXT_21814218/AK147475/Speg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.: <u>A</u> usblenden                                                                                                               |                                                                                                                                                                            | GXT_21814218/AK147475                                                                                                                                                       | 5/Speg                                       |                               |         |
| GXT_26096932/XM_006496400/Speg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.1 Einblenden                                                                                                                       |                                                                                                                                                                            | GXT_26096932/XM_00649                                                                                                                                                       | 96400/Speg                                   |                               |         |
| GXT_26096933/XM_006496403/Speg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.29                                                                                                                                 |                                                                                                                                                                            | GXT_26096933/XM_00649                                                                                                                                                       | 96403/Speg                                   |                               |         |
| Textkonvertierungs-Assistent - Schritt 1 von 3         Der Textkonvertierungs-Assistent hat erkannt, dass Ihre Daten m         Wern alle Angaben korrekt sind, klicken Sie auf Weiter ', oder wäl         Ursprünglicher Datentyp         Wählen Sie den Datentyp,         Wählen Sie den Datentyp,         @ Getrennt         - Zeichen wie Z.B. Kommas oder Tabstopp         - Eeste Breite       - Felder sind in Spalten ausgerichtet, mit L         Vorschau der markierten Daten:         1         2         3         4 | 2 X<br>It Trenzeichen versehen sind.<br>hen Sie den korrekten Datentyp.<br>s trennen Felder (Excel<br>eerzeichen zwischen jedem Feld. | Textkonvertierung<br>Dieses Dialogfeld er<br>markierten Daten su<br>Trennzeichen<br>Tabstopp<br>Semikolon<br>Komma<br>Leerzeichen<br>Ø Andere: /<br>Datenvors <u>c</u> hau | s-Assistent - Schritt 2 von 3<br>möglicht es Ihnen, Trennzeicher<br>ehen, wie Ihr Text erscheinen wi<br>Aufeinanderfolgende <sup>-</sup><br>Te <u>x</u> terkennungszeichen: | i festzulegen. Si<br>rd.<br>Trennzeichen als | ein Zeichen behandeln         |         |
| Abbrechen < Zurück                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weiter > Fertig stellen                                                                                                               |                                                                                                                                                                            | Abbrechen                                                                                                                                                                   | < <u>Z</u> urück                             | Weiter >         Fertig stell | en      |



### You should end up with a structure like this:

| with a co  | prrelation to T | bx20_pe | aks.bed  |          |        |              |                    |               |       |
|------------|-----------------|---------|----------|----------|--------|--------------|--------------------|---------------|-------|
| within -60 | 000 to 11000    | bp      |          |          |        |              |                    |               |       |
| Number     | GenomeBr        | Chr.    | Begin    | End      | Strand | Bed Id       |                    |               | Score |
|            | 1 /cgi-bin//el  | chr1    | 3999403  | 4409266  | (-)    | GXT_26095811 | XM_006495473       | Rp1           | -2.04 |
|            | 2 /cgi-bin//el  | chr1    | 23995939 | 24005640 | (-)    | GXT_13127351 | NM_026503          | 1110058L19Rik | -1.34 |
|            | 3 /cgi-bin//el  | chr1    | 23995968 | 24005598 | (-)    | GXT 13007139 | AK003789           | 1110058L19Rik | -1.48 |
|            | 4 /cgi-bin//el  | chr1    | 24002966 | 24005630 | (-)    | GXT 24302361 | ENSMUST00000155767 | 1110058L19Rik | -1.79 |
|            | 5 /cgi-bin//el  | chr1    | 52845044 | 52885337 | (+)    | GXT_24324887 | ENSMUST00000161125 | Hibch         | -1.69 |
|            | 6 /cgi-bin//el  | chr1    | 52845046 | 52920860 | (+)    | GXT_13033472 | NM 146108          | Hibch         | -1.5  |
|            | 7 /cgi-bin//el  | chr1    | 52845048 | 52920860 | (+)    | GXT 12942462 | AK076038           | Hibch         | -1.5  |
|            | 8 /cgi-bin//el  | chr1    | 75383556 | 75384975 | (+)    | GXT_24322105 | ENSMUST00000146705 | Speg          | -1.5  |
|            | 9 /cgi-bin//el  | chr1    | 75384700 | 75387948 | (+)    | GXT 24322106 | ENSMUST00000125118 | Speg          | -1.3  |
| 1          | 0 /cgi-bin//el  | chr1    | 75384828 | 75391923 | (+)    | GXT_23717585 | ENSMUST00000132228 | Speg          | -1.32 |
| 1          | 1 /cgi-bin//el  | chr1    | 75385158 | 75432320 | (+)    | GXT_26096931 | XM 006496401       | Speg          | -1.2  |
| 1          | 2 /cgi-bin//el  | chr1    | 75385512 | 75389104 | (+)    | GXT_24322107 | ENSMUST00000132222 | Speg          | -1.5  |
| 1          | 3 /cgi-bin//el  | chr1    | 75385610 | 75432304 | (+)    | GXT_21814218 | AK147475           | Speg          | -1.3  |
| 1          | 4 /cgi-bin//el  | chr1    | 75385676 | 75432320 | (+)    | GXT_26096932 | XM_006496400       | Speg          | -1.29 |
| 1          | 5 /cgi-bin//el  | chr1    | 75398588 | 75432320 | (+)    | GXT_26096933 | XM 006496403       | Speg          | -1.29 |

Open the Genomatix Pathway System from the navigation bar, and start a gene set characterization.



### Genomatix Pathway System (GePS)

The Genomatix Pathway System (GePS) uses information extracted from public and proprietary databases to display canonical pathways or to create and extend networks based on literature data.

More than 400 human pathways can be displayed based on data from the NCI-Nature Pathway Interaction Database, Biocarta and various other sources which are supplemented with proprietary database content from NetPro and Genomatix in-house curated annotation. GePS also allows to create networks from an arbitrary input gene list where connections are based on literature i.e. co-citations.

#### Characterization of Co-cited genes for Co-cited genes for Pathways for one gene sets one term gene one gene Gives all canonical pathways and Creates a network with the provided input Creates a network with the provided input Opens the selected canonical pathway, biological terms with a significant gene in the center, surrounded by the term (e.g. small molecule or disease) in containing the provided input gene. enrichment of the provided input genes. most frequently co-cited genes. the center, surrounded by the most frequently co-cited genes. Mapped genes are colored according to their expression value(s). 1 **Browse human Build networks from** pathways scratch Browse, search and load canonical Build a network without an input gene list by adding genes and interactions human pathways. manually



| Extracted  | I Flements     | from Thy | 20 ko exp | ression tra | nscripts | down.bed / Start |                    |               |       |
|------------|----------------|----------|-----------|-------------|----------|------------------|--------------------|---------------|-------|
| with a cor | relation to T  | bx20 pea | ks.bed    | coordin_ard |          | dennibed / etait |                    |               |       |
| within -60 | 00 to 11000    | bp       |           |             |          |                  |                    |               |       |
|            |                |          |           |             |          |                  |                    |               |       |
| Number     | GenomeB        | r Chr.   | Begin     | End         | Strand   | Bed Id           |                    |               | Score |
| 1          | l /cgi-bin//el | chr1     | 3999403   | 4409266     | (-)      | GXT_26095811     | XM_006495473       | Rp1           | -2.04 |
| 1          | 2 /cgi-bin//el | chr1     | 23995939  | 24005640    | (-)      | GXT_13127351     | NM_026503          | 1110058L19Rik | -1.34 |
|            | 3 /cgi-bin//el | chr1     | 23995968  | 24005598    | (-)      | GXT_13007139     | AK003789           | 1110058L19Rik | -1.48 |
| 4          | /cgi-bin//el   | chr1     | 24002966  | 24005630    | (-)      | GXT_24302361     | ENSMUST00000155767 | 1110058L19Rik | -1.79 |
| !          | /cgi-bin//el   | chr1     | 52845044  | 52885337    | (+)      | GXT 24324887     | ENSMUST00000161125 | Hibch         | -1.69 |
| (          | o /cgi-bin//el | chr1     | 52845046  | 52920860    | (+)      | GXT 13033472     | NM 146108          | Hibch         | -1.56 |
|            | /cgi-bin//el   | chr1     | 52845048  | 52920860    | (+)      | GXT 12942462     | AK076038           | Hibch         | -1.56 |
| 1          | /cgi-bin//el   | chr1     | 75383556  | 75384975    | (+)      | GXT 24322105     | ENSMUST00000146705 | Speg          | -1.51 |
|            | ) /cgi-bin//el | chr1     | 75384700  | 75387948    | (+)      | GXT 24322106     | ENSMUST00000125118 | Speg          | -1.39 |
| 1(         | ) /cgi-bin//el | chr1     | 75384828  | 75391923    | (+)      | GXT 23717585     | ENSMUST0000132228  | Speg          | -1.32 |
| 11         | l /cgi-bin//el | chr1     | 75385158  | 75432320    | (+)      | GXT_26096931     | XM_006496401       | Speg          | -1.29 |
| 12         | 2 /cgi-bin//el | chr1     | 75385512  | 75389104    | (+)      | GXT_24322107     | ENSMUST00000132222 | Speg          | -1.51 |
| 13         | /cgi-bin//el   | chr1     | 75385610  | 75432304    | (+)      | GXT_21814218     | AK147475           | Speg          | -1.31 |
| 14         | /cgi-bin//el   | chr1     | 75385676  | 75432320    | (+)      | GXT_26096932     | XM_006496400       | Speg          | -1.29 |
| 1          | /cgi-bin//el   | chr1     | 75398588  | 75432320    | (+)      | GXT_26096933     | XM_006496403       | Speg          | -1.29 |

Copy the transcript accession numbers from the Excel list to the gene keyword input field (duplicates will be removed by the system). Select *Transcript Accession Numbers* as the keyword type. Select *Mus musculus* as organism, and start the search.

| Parameters                  |                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upload gene set     O       | Specify what kind of gene keywords you will provide:<br>Entrez and/or Ensembl Gene IDs<br>Affymetrix Probe Set IDs<br>Paste a list of gene keywords<br>AR162500<br>AK165865<br>AR140152<br>ENSMUST00000082405<br>AR131579<br>AK131579<br>AK131599<br>C<br>or upload a text file Containing gene keywords, optionally with corresponding expression values.<br>Durchsuchen Keine Datei ausgewählt. |
| OR © Use example gene set Ø | "Inflammation in H.sapiens"<br>The example data set is from a microarray analysis of Systemic Inflammation in Humans (Calvano et al (2005) Nature 437,1032-7; PMID:<br><u>16136080</u> ).<br>Gene expression changes relative to t=0 are displayed at 5 timepoints (2,4,6,9 and 24 hours) after inoculation with bacterial endotoxin.                                                             |
| Organism 🕜                  | Mus musculus 3                                                                                                                                                                                                                                                                                                                                                                                    |

Some accession numbers will not be mapped to a gene ID; ignore the warning the program gives you, and proceed with the analysis.

GeneRanker couldn't map the following input keywords to a gene of the selected organism and therefore they won't be used in the analysis! AK155508, AK084991, AK140265, AK139000, AK137643, AK156495, AK136371, AK084726, AK131599, ENSMUST00000082396, AK142161, AK164731, AK140152, AK040421, AK153841, AK141672, AK076583, AK156840

Proceed with GeneRanker analysis



A total of 190 genes are found in this way. Overrepresented terms include *ion binding* in *GO: Molecular Function, cardiac muscle contraction* in *GO: Biological Processes*, and *cardiomyopathies* in *Diseases*. The pathway graphs below use the hierarchical layout, which you can activate with the leftmost *Layout* button in the lower control bar:



### Cardiac muscle contraction gene network:



### Cardiomyopathies gene network:





Many of the ion binding genes are also associated with cardiomyopathies, as can be seen by selecting the ion binding network, and then ticking the checkbox for the cardiomyopathies associated genes:

| Gene lists / filters                   | (Tbx20down              | 6k11kc   | (   • )      |   | Gene lists / filte | ers (Tbx20dow             | n 6k11k   | cc         |
|----------------------------------------|-------------------------|----------|--------------|---|--------------------|---------------------------|-----------|------------|
| Signal Transduction                    | Pathways (G             | (0/3)    |              | 1 | Signal Transduct   | ion Pathways (G           | (0/3)     |            |
| Molecular Functions                    | (GO)                    | (1/61)   | ~            |   | Molecular Function | ons (GO)                  | (1/61)    | V          |
| oxidoreductase activi                  | ity                     |          |              |   | Cellular Compon    | ents (GO)                 | (0/58)    |            |
| p-value: 3.98e-5                       | 17 of 724 genes         |          |              |   | Biological Proces  | sses (GO)                 | (0/198)   |            |
| catalytic activity<br>p-value: 1.57e-4 | 61 of 5225 genes        |          |              |   | Diseases (Genom    | atix Literature           | (0/105)   |            |
| voltage-gated potassi                  | ium channel activ       | /i       |              |   | Diseases (MeSH)    |                           | (1/161)   | V          |
| p-value: 1.71e-4                       | 2 of 3 genes            |          |              |   | Cardiomyopathies   |                           |           | <b>∠</b> ∧ |
| transporter activity                   |                         |          |              |   | p-value: 9.44e-10  | 50 of 2634 ge             | nes       | 04         |
| p-value: 1.91e-4                       | 20 of 1070 genes        |          | 2            |   | Cardiomegaly       | 40 -4 0005                |           |            |
| ion binding                            | 50 of 5051              |          |              |   | p-value: 1.60e-9   | 46 of 2325 ge             | nes       | "          |
| protein binding bride                  | 35 01 300 La            |          |              |   | p-value: 2.49e-9   | 48 of 2531 ge             | nes       | 6          |
| p-value: 2.86e-4                       | 5 of 76 genes           |          | 5            |   | Cardiovascular Di  | seases                    |           | Ť          |
| protein binding                        |                         |          |              |   | p-value: 3.64e-9   | 102 of 8503 g             | enes      | 0          |
| p-value: 2.94e-4                       | 77 of 7234 genes        | Ē        | 5            |   | Cardiomegaly       |                           |           |            |
| ion channel binding                    |                         |          |              |   | p-value: 2.06e-8   | 39 of 1917 ge             | nes       | 0          |
| p-value: 3.04e-4                       | 5 of 77 genes           | (0/50)   |              |   | Muscular Disease   | S                         |           |            |
| Cellular Components                    | s (GO)                  | (0/58)   |              |   | p-value: 4.60e-8   | 52 of 3143 ge             | nes       | •          |
| Biological Processe                    | s (GO) (                | (0/198)  |              |   | Metabolism, Inbor  | n Errors<br>55 of 3525 ge | nes       | <b>a</b> I |
| Diseases (Genomatiz                    | CLiterature (           | (0/105)  |              |   | Metabolism Inbor   | n Errors                  |           | Ť.         |
| Diseases (MeSH)                        | (                       | (1/161)  | $\checkmark$ |   | p-value: 1.44e-7   | 55 of 3547 ge             | nes       | 0          |
| Tissues (Genomatix                     | Literature M            | (0/56)   |              |   | Tissues (Genoma    | atix Literature M.        | (0/56)    |            |
| Tissues (UniGene)                      |                         | (0/24)   |              | 1 | Tissues (UniGene   | 2)                        | (0/24)    |            |
| Co-cited genes (Gen                    | omatix Lit              | (0/347)  |              |   | Co-cited genes (   | Genomatix Lit             | (0/347)   |            |
| Co-cited TFs (Genor                    | natix Literat           | (0/25)   |              |   | Co-cited TFs (Ge   | nomatix Literat           | . (0/25)  |            |
| Pharmacological Su                     | bstances (G             | (0/46)   |              |   | Pharmacological    | Substances (G.            | (0/46)    |            |
| More gene lists                        |                         | (0/1)    |              |   | More gene lists    |                           | (0/1)     |            |
| ⊖or ⊙and 🛛 🗨                           | <b>\$1 •</b> • <b>(</b> | 3 B      | I            |   | ⊖or ⊙and           | <b>₹</b> ! ▼·             | 1 🐼 🗄     |            |
| e.g. annotation nam                    | e Gener                 | ate netw | ork          |   | e.g. annotation n  | iame Ge                   | nerate ne | twork      |
|                                        |                         |          |              | J |                    |                           | -         |            |

Only ion binding network genes fulfilling both criteria are shown with a colored background.





# In-depth transcription factor binding site analysis of correlated peaks

The next analysis step will take a closer look at the peak regions which form the correlation plateau in the GenomeInspector graph. You will retrieve a BED file of the correlated peaks, prepare it in the BED file toolbox for downstream analysis, and find common transcription factor binding site patterns that include Tbx20 binding sites, which will then be assessed further.

Go back to the GenomeInspector output or open the result from the project management, and select the extraction of elements from the partner set (the Tbx20 peaks), again setting the distance range to -6kbp/+11kbp.

Continue to

- view correlations as list
- extract genomic elements from Anchor Set (Tbx20\_ko\_expression\_transcripts\_down.bed)
- extract genomic elements from Partner Set

from correlation

Tbx20\_ko\_expression\_transcripts\_down.bed / Tbx20\_peaks.bed

involved in a correlation within -6000 to 11000 bp distance (max. -20000 bp to 20000 bp)





### 208 correlated peaks are found.

### GenomeInspector: 208 correlations were found

| Extracted Element<br>with a correlation<br>within -6000 to 11 | nts from Tbx20_peaks.bed<br>n to Tbx20_ko_expression_transcrij<br>000 bp | ots_down.bed / S | tart      |           |        |                |
|---------------------------------------------------------------|--------------------------------------------------------------------------|------------------|-----------|-----------|--------|----------------|
| Number                                                        | GenomeBrowser                                                            | Chr.             | Begin     | End       | Strand | Bed Id / Score |
| Nr. 1                                                         | GenomeBrowser                                                            | chr1             | 4412567   | 4412753   | (+)    | 1 / 9.12e-13   |
| Nr. 2                                                         | GenomeBrowser                                                            | chr1             | 24010974  | 24011102  | (+)    | 12 / 1.01e-06  |
| Nr. 3                                                         | GenomeBrowser                                                            | chr1             | 52844928  | 52845037  | (+)    | 40 / 1.66e-07  |
| Nr. 4                                                         | GenomeBrowser                                                            | chr1             | 75393329  | 75393513  | (+)    | 70 / 1.31e-10  |
| Nr. 5                                                         | GenomeBrowser                                                            | chr1             | 75549351  | 75549552  | (+)    | 71 / 1.47e-14  |
| Nr. 6                                                         | GenomeBrowser                                                            | chr1             | 79776017  | 79776139  | (+)    | 77 / 2.95e-05  |
| Nr. 7                                                         | GenomeBrowser                                                            | chr1             | 82291491  | 82291596  | (+)    | 78 / 3.87e-06  |
| Nr. 8                                                         | GenomeBrowser                                                            | chr1             | 97761621  | 97761790  | (+)    | 93 / 8.83e-09  |
| Nr. 9                                                         | GenomeBrowser                                                            | chr1             | 118479426 | 118479585 | (+)    | 108 / 2.31e-10 |
| Nr. 10                                                        | GenomeBrowser                                                            | chr1             | 118481924 | 118482088 | (+)    | 109 / 1.1e-08  |
| Nr. 11                                                        | GenomeBrowser                                                            | chr1             | 135850907 | 135851029 | (+)    | 137 / 1.16e-05 |
| Nr. 12                                                        | GenomeBrowser                                                            | chr1             | 155234365 | 155234481 | (+)    | 157 / 7.66e-07 |

Scroll down to the end of the list and save the regions as BED file in your project management.

| Nr. 100                                      | GenomeBrowser                                                                                  | chr8                                          | 68908384    | 68908503 | (+) | 2793 / 2.95e-05 |  |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|----------|-----|-----------------|--|--|
| Note: 208 correlatio<br>Only the first 100 m | ons were found. The list is too lon<br>atches are listed, the complete li                      | ng to be displayed.<br>ist can be downloaded. |             |          |     |                 |  |  |
| Download regio                               | Download regions as BED file Save BED file to project management as Tbx20_peaks_correlated.bed |                                               |             |          |     |                 |  |  |
| Extract table as                             | Extract table as EXCEL file tab-separated file                                                 |                                               |             |          |     |                 |  |  |
|                                              |                                                                                                |                                               |             |          |     |                 |  |  |
| Save sele                                    | ected BED file as                                                                              | Tbx20_pea                                     | aks_correla | ted.bed  |     |                 |  |  |
| to project workshop -                        |                                                                                                |                                               |             |          |     |                 |  |  |
| Save                                         | 5                                                                                              |                                               |             |          |     |                 |  |  |



### Trimming and conversion to sequence

For downstream analysis, the peak data need to be modified in two ways: one, some of the regions are too long to be accepted as input for the FrameWorker program, which we will use for detection of common transcription factor binding site patterns in the peaks. Therefore, we will give the peaks a uniform length. Secondly, FrameWorker needs sequences as input; therefore we will generate a sequence file from the modified BED file.

Open the BED file tools in the navigation bar.



Select the file with the correlated peaks in the list. Then select the option *Trim* regions to the same size, set the size to 500bp, and select the option symmetrical around the center of the regions; then press *Submit*.

| Input                                                                                 |                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Available files                                                                       | Listing files for Mys musculus / NCBI build 38:<br>mmu_heart_tbx20_chipseq.bb (5963202 regions)<br>Tbx20_ko_expression_transcripts_down.bed (14028 regions)<br>Tbx20_peaks.bed (2698 regions)<br>Tbx20_peaks_correlated.bed (208 regions) |
| Select a task:                                                                        |                                                                                                                                                                                                                                           |
| $\frac{\text{Conversion}}{\text{BED} \rightarrow \text{File}} \qquad \textcircled{0}$ | <ul> <li>Convert BED file to DNA sequence file (max. 2000000 regions)</li> <li>Create a custom track file for <u>UCSC Genome Browser</u></li> </ul>                                                                                       |
| <u>Conversion</u><br>File → BED �                                                     | <ul> <li>Upload a GFF file to be converted to BED format</li> <li>Upload a wiggle file to be converted to BED format</li> <li>Upload an Illumina _export.txt-file (from GERALD) to be converted to BED format</li> </ul>                  |
| Pileup Removal 🕜                                                                      | $\odot$ Maximum pileup size: 1 $\rightarrow$ all duplicate reads with same chromosome and position are removed)                                                                                                                           |
| Subsets of regions @                                                                  | EXtract a subset of regions in BED file                                                                                                                                                                                                   |
| Extension/Trimming 🛛 (                                                                | <ul> <li>Extend regions by 50 bp in both directions </li> <li>Trim/extend regions to the same size: 500 3 bp symmetrical around center of the regions </li> <li>Leave shorter sequences as they are</li> </ul>                            |
| Sorting @                                                                             | Sort the input BED file                                                                                                                                                                                                                   |
| Comparing Ø                                                                           | Compare input BED file (selected above) to a second BED file (selected here) to find unique or overlapping regions (max. 750000 regions)                                                                                                  |
| Concatenation                                                                         | Concatenate BED files (the BED file selected above and all the files selected here)                                                                                                                                                       |
| Mapping 🛛                                                                             | Convert sequence file to BED file via mapping (time-consuming!)                                                                                                                                                                           |
| Submit Reset Form                                                                     |                                                                                                                                                                                                                                           |



Save the file to the project management.

### First few lines of the result file:

| #BED fi<br>#extens | le create<br>ion/trimm | d with G | enomatix | BED file | e toolbo<br>500 bp | x        |   |
|--------------------|------------------------|----------|----------|----------|--------------------|----------|---|
| #ElDora            | do: E30R1              | 410      |          | ,        | 1                  |          |   |
| #TaxonI            | D: 10090               |          |          |          |                    |          |   |
| chr1               | 4412410                | 4412910  | 1        | 9.12e-13 |                    | +        |   |
| chr1               | 24010788               |          | 24011288 | : 1      | L2                 | 1.01e-06 | + |
| chr1               | 52844732               |          | 52845232 | 2 4      | 40                 | 1.66e-07 | + |
| chr1               | 75393171               |          | 75393671 | . 7      | 70                 | 1.31e-10 | + |
| chr1               | 75549201               |          | 75549701 | . 7      | 71                 | 1.47e-14 | + |
| chr1               | 79775828               |          | 79776328 | 1 7      | 17                 | 2.95e-05 | + |
|                    |                        |          |          |          |                    |          |   |
|                    |                        |          |          |          |                    |          |   |

<u>Download BED file</u> of trimmed regions (12Kb)

Save BED file to project management

Back to BED File Toolbox

| Save selected BED file as | Tbx20_peaks_correlated_trimmed.bed |
|---------------------------|------------------------------------|
| to project                | workshop -                         |
| Save                      |                                    |

Open the BED file tools once more to convert the trimmed file to a sequence file. Select the trimmed file in the list, and activate the Convert BED file to DNA sequence file function. Start the conversion, and save the result in your project management.

| Input                                    |                                                                                                                                                                                                                                                                    |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Available files                          | Listing files for Mus musculus / NCBI (build 38:         Tbx20_ko_expression_transcripts_down.bed (14028 regions)         Tbx20_peaks.bed (2698 regions)         Tbx20_peaks_correlated.bed (208 regions)         Tbx20_peaks_correlated_trimmed.bed (208 regions) |
| Select a task:                           |                                                                                                                                                                                                                                                                    |
| <u>Conversion</u><br><u>BED → File</u> Ø | <ul> <li>Convert BED file to DNA sequence file (max. 2000000 regions)<br/>and extract + 0 bp upstream and + 0 bp downstream of each region</li> <li>Create a custom track file for <u>UCSC Genome Browser</u> </li> </ul>                                          |
| Save selected se                         | equence file as Tbx20_peaks_correlated_trimmed.bed.seq                                                                                                                                                                                                             |
| to project                               | workshop 👻                                                                                                                                                                                                                                                         |
| Save                                     |                                                                                                                                                                                                                                                                    |



### FrameWorker: common TFBS patterns

The next step in the analysis will employ FrameWorker, which searches for common patterns of TF binding sites in a set of input sequences – here, the Tbx20 peaks which are correlated with genes that are down-regulated in Tbx20 knock-out mouse hearts.

You'll find the program in the navigation bar under *Gene Regulation - Regulatory Pattern Definition & Search - FrameWorker*:

| Gene Regulation Literature & Pathw     | UPAC-Search: Scan sequence with IUPAC-patterns        |  |  |  |  |
|----------------------------------------|-------------------------------------------------------|--|--|--|--|
| Matinspector                           | )iAlign TF: Multiple alignment plus TF sites          |  |  |  |  |
| Mathispector                           | FrameWorker: Definition of common frameworks          |  |  |  |  |
| Common TFs                             | ModelInspector: Search for promoter modules           |  |  |  |  |
|                                        | Search for phylogenetically conserved promoter models |  |  |  |  |
| MatBase (TF database)                  | MatDefine: Definition of weight matrices              |  |  |  |  |
| Pagulatony Pattorn Definition & Search | CoreSearch: Definition of common motifs               |  |  |  |  |
| (GEMS Launcher) >>>                    | FastM: Definition of models                           |  |  |  |  |
| (OLINO Launcher)                       | SNPInspector: TF sites affected by SNPs               |  |  |  |  |
|                                        | SequenceShaper: Design of regulatory sequences        |  |  |  |  |
|                                        | PromoterInspector: Search for mammalian promoters     |  |  |  |  |
|                                        | SMARTest: Search for S/MARs                           |  |  |  |  |
|                                        | Repeats: Search for genomic repeats                   |  |  |  |  |
|                                        | Primers: Get primers for a sequence                   |  |  |  |  |
|                                        | DiAlign: Local multiple alignment                     |  |  |  |  |
|                                        | ExonMapper: Exon mapping on your sequence(s)          |  |  |  |  |
|                                        | ExonMapper: Exon mapping against database             |  |  |  |  |



Select the saved sequence file in the list and continue by clicking the *Load Sequence* button.

| Sequence Input                 |                                                                                                                                                                                              |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Your <u>sequences</u> G        | Tbx20_peaks_correlated_trimmed_bed_seq         Image: Choose a previously uploaded sequence file for the analysis         Image: Choose a previously uploaded sequence file for the analysis |
| © or enter accession number(s) | (separated by spaces or commas)                                                                                                                                                              |
| Load Sequence Reset Form       |                                                                                                                                                                                              |

The next step lets you choose the elements the frameworks can be made up of. For this analysis, please leave the settings at the defaults.

| Library selection                                                                 |   |                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Library version                                                                   | 0 | Matrix Library 9.3                                                                                                                                                                                                                                                                                                                        |
| <u>Matrix group</u><br>( Check transcription factor <-> matrix family assignment) | 0 | <ul> <li>Fungi</li> <li>Plants</li> <li>Insects</li> <li>User-defined Matrices</li> <li>Miscellaneous</li> <li>Vertebrates</li> <li>General Core Promoter Elements</li> <li>use all matrices from selected groups</li> <li>continue with subset definition from selected groups</li> <li>use previously defined matrix subsets</li> </ul> |
| <u>Matrix filters</u><br>(only available for vertebrates)                         | 0 | ▶ more                                                                                                                                                                                                                                                                                                                                    |
| Core similarity                                                                   | 0 | 0.75 🔹                                                                                                                                                                                                                                                                                                                                    |
| <u>Matrix similarity</u>                                                          | 0 | Optimized 💌                                                                                                                                                                                                                                                                                                                               |
|                                                                                   |   |                                                                                                                                                                                                                                                                                                                                           |

Continue Reset Form

### Ignore the warning on the next page, and press Continue.

WARNING: No pairwise similarity check was performed, because of too many sequences!





In the next step, parameters defining the stringency of the pattern search are set. Specifically the quorum constraint, and sometimes also the distance constraints, are usually changed in an iterative process, checking the result and adapting the stringency so that a handful of patterns of the desired complexity are found, which are then further evaluated.

For this example, please set the parameters as follows:

- Quorum constraint = 7 of 208
- Distance constraints: maximum distance variance = 20
- Element constraints: V\$BRAC (the binding site for Tbx20) mandatory element.

Then start the analysis.

| ameWorker Parameters                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quorum constraint<br>for framework    | Minimum number of input sequences to contain a framework: 7 of 208 (3 %) (1) - of input sequences                                                                                                                                                                                                                                                                                                                                                                                             |
| Sequence constraints NEW              | <ul> <li>Mandatory sequences (sequences that must contain framework, max. 10):</li> <li>Region_1         <ul> <li>Region_2</li> <li>Region_3</li> <li>Region_4</li> <li>Region_5</li> <li>Region_5</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                     |
| Distance constraints<br>for framework | Maximum distance VARIANCE between two elements: 20 (max: 100)     Distance between two elements: min. 5 max. 200 (max: 500)     Do restricted model search     (FrameWorker lists more specific models where distance variations are as small as possible)                                                                                                                                                                                                                                    |
| Element constraints                   | Number of elements in models: min.       2       max.       6       •         Show intermediate models (else only the longest models are shown)         Mandatory elements for models (max. 5):       >>       >>         V\$BHLH       •       •       •         V\$BNCF       •       •       •         V\$BPTS       •       •       •         Combination of mandatory elements:       •       •       •         • ALL selected elements must be present in model       •       •       • |
| Output Options                        | more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>p-values</u>                       | Determine p-values of models                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Your <u>email address</u>             | <ul> <li>Show result directly in browser window</li> <li>Send the URL of the result to Courses@genomatix.de<br/>Use the email option for long-running jobs, to avoid server-timeout messages<br/>You may set a default email address by filling or modifying the 'email address' field on your <u>personal account page</u></li> </ul>                                                                                                                                                        |
| Result name (optional)                | (special characters like "#\$%&+./.;<=>?@ not allowed)                                                                                                                                                                                                                                                                                                                                                                                                                                        |



194 models checked

3 models checked

One model with 4 elements is found. Click the link to jump to the description.

1 model found

0 models found

4 elements 5 elements

| Graphical View | Model Overview | Model Details | Common Elements                           |                     |        |                |
|----------------|----------------|---------------|-------------------------------------------|---------------------|--------|----------------|
| Overview: M    | odels common   | to at least 7 | sequences (3%)                            |                     |        |                |
| Models         | consisting of  |               | # of different mo<br>containing mandatory | odels<br>element(s) | # of n | nodels checked |
| sing           | e element      |               | 417 common elemen                         | its found           |        | -              |
| 2 e            | elements       |               | 2544 models for                           | und                 | 40586  | models checked |
| 0              | la manta       |               | 400 medala 6                              | - 4                 | 5002   |                |

The model consists of two SORY sites, a TALE site, and the mandatory BRAC site. You can click on the links for each binding site symbol to find more information about it. The V\$SORY binding site family binds, among others, the Sox6 protein, which has a role in cardiomyocyte differentiation. V\$TALE can bind Meis1, which is a regulator of the cardiomyocyte cell cycle.

| Graphical View | Model Ove        | erview Model De      | ails Common Elements |         |                                             |  |
|----------------|------------------|----------------------|----------------------|---------|---------------------------------------------|--|
|                |                  |                      |                      |         |                                             |  |
| 1 model wit    | h 4 eleme        | nts:                 |                      |         |                                             |  |
|                |                  |                      |                      |         |                                             |  |
| Model "model   | 4el 1": (click o | pens graphics)       |                      |         |                                             |  |
| Save this mo   |                  |                      |                      |         |                                             |  |
| 1)             | del as OOKT_C    | BORT_IALL_BIORD      |                      |         |                                             |  |
| Element        | Strand           | Matrix sim.          | Oistance to next     | element | Common to                                   |  |
| 1 V\$SORY      | -                | Optimized (min. 0.71 | 5 - 12 bp            |         |                                             |  |
| 2 V\$SORY      | +                | Optimized (min. 0.73 | 83 - 101 b           | p       |                                             |  |
| 3 V\$TALE      | +                | Optimized (min. 0.89 | 5 - 10 bp            |         | 8 matches in 7 seq. (3%), 7 non-overlapping |  |
| 4 V\$BRAC      | -                | Optimized (min. 0.90 |                      |         |                                             |  |
|                |                  |                      |                      |         |                                             |  |
|                |                  |                      |                      |         |                                             |  |
| Check all Mode | Is Uncheck       | c all Models Invert  | Selection            |         |                                             |  |
|                | <u></u>          | 3)                   |                      |         |                                             |  |
| Save sel       | ectea models     | an the prefix        | as mode              | ISUDSET |                                             |  |

From the associated biology, the pattern could be of interest. Please tick its checkbox, marking it for saving, give it a name, e.g. SORY\_SORY\_TALE\_BRAC, and press the *Save selected models* button.



### ModelInspector: check for relevant biology

For further evaluation of the model, we will run a ModelInspector search, and try to find patterns matches in a mouse promoter database. The output will include an overrepresentation analysis for GO terms in the categories biological process, molecular function, and cellular component, which allows us to assess whether the binding site pattern is associated with relevant biology.

ModelInspector uses model definitions as are generated by FrameWorker to scan DNA sequences for matches. A model is defined as a set of various individual elements (here: transcription factor binding sites), their strand orientation, their sequential order, and their distance ranges.

Click on the *ModelInspector* link on the notification page you see after the model has been saved.



We will scan all mouse promoters of annotated genes. Click the *more...* option in the *Database Input* section to display the available parameters, then check *Mouse Promoters* in the section *Promoters of annotated genes* and proceed with *Load Sequence*.

| or Database Input |                                                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 • more          |                                                                                                                                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                    |
| Ger               | omatix Promoter Data                                                                                                                                                             | base: Promoters of anno                                                                                                                                                   | tated genes from ElDorado 06                                                                                                                                                                                                                                          | -2015:                                                                                                                                                                             |
| Ger               | Human Promoters 🗹 Mo                                                                                                                                                             | buse Promoters 🔲 Rat Pron                                                                                                                                                 | noters<br>enes from ElDorado 06-2015:                                                                                                                                                                                                                                 |                                                                                                                                                                                    |
|                   | Anopheles Promoters<br>Arabidopsis Promoters<br>Baker's Yeast Promoters<br>C.elegans Promoters<br>Carpenter Ant Promoters<br>Chicken Promoters<br>Com Promoters<br>Com Promoters | Dog Promoters Drosophila Promoters Fission Yeast Promoters Frog Promoters Honey Bee Promoters Horse Promoters Human Promoters (all) Jumping Ant Promoters Mause Promoters | <ul> <li>Neurospora Crassa Promoters</li> <li>Opossum Promoters</li> <li>Pig Promoters</li> <li>Plasmodium Promoters</li> <li>Platypus Promoters</li> <li>Poplar Promoters</li> <li>Rabbit Promoters</li> <li>Rat Promoters (all)</li> <li>Phone Promoters</li> </ul> | <ul> <li>Rice Promoters</li> <li>Sorghum Promoters</li> <li>Soybean Promoters</li> <li>Wine Grape Promoters</li> <li>Zebra Finch Promoters</li> <li>Zebrafish Promoters</li> </ul> |



On the following parameter screen, select *User defined models* and *continue with subset selection* and continue.

| Model Library Selection   |          |                                                                                                                                                                                                                                                                                                                                           |
|---------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Library version           | 0        | Module Library 5.9                                                                                                                                                                                                                                                                                                                        |
| Model groups              | <b>1</b> | See our <u>list of models!</u> Vertebrate_Modules Plant_Modules User-defined models Use all models from this group Use previously defined model subsets Continue with subset selection                                                                                                                                                    |
| Search Parameters         |          |                                                                                                                                                                                                                                                                                                                                           |
| Max. number of matches    | 0        | 1000 (max: 20000)                                                                                                                                                                                                                                                                                                                         |
| Threshold                 | 0        | 100 (% of number of elements)                                                                                                                                                                                                                                                                                                             |
| Strand                    | 0        | Search only top strand                                                                                                                                                                                                                                                                                                                    |
| Ranking                   | 0        | ☑ Evaluate results by GeneOntology ranking                                                                                                                                                                                                                                                                                                |
| Output Parameters         |          |                                                                                                                                                                                                                                                                                                                                           |
| Output options            |          | > more                                                                                                                                                                                                                                                                                                                                    |
| Your <u>email address</u> | 0        | <ul> <li>Show result directly in browser window</li> <li>Send the URL of the result to Courses@genomatix.de</li> <li>Use the email option for long-running jobs, to avoid server-timeout messages</li> <li>You may set a default email address by filling or modifying the 'email address' field on your personal account page</li> </ul> |
| Result                    |          |                                                                                                                                                                                                                                                                                                                                           |
| Result name (optional)    |          | (special characters like "#\$%&+,/:;<=>?@ not allowed)                                                                                                                                                                                                                                                                                    |
| Start Task                |          |                                                                                                                                                                                                                                                                                                                                           |

Select the newly saved model in the list and start.

### Please select a number of models for ModelInspector to check your sequence:



Please make sure you selected at least one checkbox!

The analysis will run in the background; repeatedly check in your project management if the job is still running:

| Your submi | itted jobs                                  |         |                     |            |
|------------|---------------------------------------------|---------|---------------------|------------|
| Job-ID     | Task                                        | State   | Submitted at        | Remove job |
| 488        | ModelInspector: Search for promoter modules | RUNNING | 2015-07-16T14:41:58 | Remove job |
|            |                                             |         |                     |            |

When it is done, click the link in the results directory to open the result page.



There are 376 matches in the promoter database. Click on *Evaluation* in the table header to display the GO statistics for the matching genes.

|                                                                                                                                                                                                                      | Output overview of M                                                                                                                                                                                                                                                      | odelInspector matches           | 376 mat           | ches)  |                                    |                 |              |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|--------|------------------------------------|-----------------|--------------|------------|
|                                                                                                                                                                                                                      | go to:[ Output ov                                                                                                                                                                                                                                                         | verview][Detailed output][Stati | stics ]           |        |                                    |                 |              |            |
| ModelInspector Release 5.6.8                                                                                                                                                                                         | .7 Nov 2013                                                                                                                                                                                                                                                               |                                 |                   |        |                                    |                 | Thu Jul 16 1 | 4:41:58 20 |
| Solution parameters:                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                 |                   |        |                                    |                 |              |            |
| Sequence file:<br>Models:<br>Matrix library:<br>Strand(s) searched:<br>Threshold for number of elem<br>Output sorted by:<br>Output filtered for:<br>Maximum number of matches<br>Match List<br>Evalue<br>Match List: | Mouse Promoters<br>User-defined/SORY_SORY_TALE_BRAC.model<br>Matrix Family Library Version 9.3<br>both strands<br>rents: 100.0 % (4 of 4 elements)<br>match positions on the sequences<br>sequences with at least 1 different model matches<br>: 1000<br>Further Analysis |                                 |                   |        |                                    |                 |              |            |
|                                                                                                                                                                                                                      | Sequence                                                                                                                                                                                                                                                                  | Model<br>Name                   | Position          | Strand | Genomic<br>Position                | Select<br>Match |              |            |
| GXP_5056712 [GXP<br>Gpr143, GXL_49,<br>G protein-coupled rec                                                                                                                                                         | 5056712] (1 - 601)<br>GenelD: 18241, Mus musculus chr. X<br>eptor 143                                                                                                                                                                                                     | SORY_SORY_TALE_BRAC             | <u>246 - 120</u>  | (-)    | chrX: 152797998 -<br>152798124 (-) | V               |              |            |
| GXP_5039589 [GXP<br>II1a, GXL_2277,<br>interleukin 1 alpha                                                                                                                                                           | <u>5039589]</u> (1 - 856)<br>GeneID: 16175, Mus musculus chr. 2                                                                                                                                                                                                           | SORY_SORY_TALE_BRAC             | <u>825 - 706</u>  | (-)    | chr2: 129309031 -<br>129309150 (+) |                 |              |            |
| GXP_5039672 [GXP<br>SIc23a2, GXL_23<br>solute carrier family 2                                                                                                                                                       | 5039672] (1 - 601)<br>26, GenelD: 54338, Mus musculus chr. 2<br>3 (nucleobase transporters), member 2                                                                                                                                                                     | SORY_SORY_TALE_BRAC             | <u> 268 - 400</u> | (+)    | chr2: 132103666 -<br>132103798 (-) | V               |              |            |
| OVD FRANCES LOVD                                                                                                                                                                                                     | 50005451 (4 COA)                                                                                                                                                                                                                                                          |                                 |                   |        |                                    |                 |              |            |

One of the overrepresented terms in the *Molecular Functions* category is *ion binding*, with a model match in the promoters of 105 genes. The same term was also overrepresented in the list of genes that were downregulated in Tbx20 knockout hearts and in the subset of down-regulated transcripts with a correlated Tbx20 ChIP-Seq peak in a +/- 10kb window around the TSS. This last analysis shows that the model finds the term also in all promoters, independent of expression or ChIP-Seq analysis results.

| Annotation Type: Molecular Fun                      | ctions (GO)                  |                   |                       |                       |                     |
|-----------------------------------------------------|------------------------------|-------------------|-----------------------|-----------------------|---------------------|
| Number of input genes mapped to                     | GO-Terms: 322                |                   |                       |                       |                     |
| Number of significant GO-Terms:                     | 111                          |                   |                       |                       |                     |
| Show/Hide column GO-Term                            | <ul> <li>Show all</li> </ul> | columns Show defa | ult columns           |                       |                     |
| Displayed rows: 1-10 / 111                          |                              | <  < Page 1 - of  | 12 <b>&gt;  &gt;</b>  | Res                   | sults per page 10 👻 |
|                                                     |                              |                   |                       |                       |                     |
| GO-Term                                             | GO-Term id                   | P-value           | # Genes<br>(observed) | # Genes<br>(expected) | # Genes<br>(total)  |
| binding                                             | GO:0005488                   | 2.24e-06          | 202                   | 160.84                | 11365               |
| cAMP-dependent protein kinase                       | <u>GO:0008603</u>            | 2.64e-06          | 4                     | 0.11                  | 8                   |
| ion binding                                         | <u>GO:0043167</u>            | 1.05e-05          | 105                   | 71.62                 | 5061                |
| smail molecule binding                              | 00.0030034                   | 2.008-00          | 50                    | 33.11                 | 2000                |
| transferase activity                                | GO:0016740                   | 3.53e-05          | 51                    | 28.57                 | 2019                |
| natural killer cell lectin-like receptor<br>binding | <u>GO:0046703</u>            | 4.75e-05          | 4                     | 0.21                  | 15                  |
| adenyl ribonucleotide binding                       | GO:0032559                   | 7.45e-05          | 38                    | 19.61                 | 1386                |
| adenyl nucleotide binding                           | GO:0030554                   | 8.28e-05          | 38                    | 19.71                 | 1393                |
| nucleotide binding                                  | GO:0000166                   | 1.09e-04          | 51                    | 29.86                 | 2110                |
| nucleoside phosphate binding                        | GO:1901265                   | 1.09e-04          | 51                    | 29.86                 | 2110                |



In order to find more associated biology for the genes with a model match in the promoter, we'll use the program GeneRanker. Go back to the ModelInspector match list output, and scroll down to the end of the page. Here, press the 'Extract GeneIDs' button to open a page showing the GeneIDs.

| Extraction Options  |                                                                                                                                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sequence Extraction | <ul> <li>Selected elements with start/end ± 0 bp</li> <li>Complete sequence  reverse complement</li> <li>FASTA format  GenBank format</li> <li>Extract Sequence(s)</li> </ul> |
| GeneID Extraction   | Extract GeneIDs by Chromosome<br>e.g. for input into <u>GenomatixPathwaySystem</u> <b>2</b> (GePS)                                                                            |
| Match Extraction    | Export Matches as Excel file tab-separated file BED file                                                                                                                      |

Select the Gene IDs on this page and copy them to the clipboard.



Open GeneRanker from the Literature & Pathways menu in the navigation bar.





Paste the Gene IDs from the clipboard into the keyword field, select the mouse as organism, and start the analysis.

| Parameters                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Upload gene set                                            | Specify what kind of gene keywords you will provide: <ul> <li>Entrez and/or Ensembl Gene IDs</li> <li>Transcript Accession Numbers</li> <li>Gene Symbols/Names</li> <li>Affymetrix Probe Set IDs</li> </ul> Paste a list of gene keywords       13682, 14859, 213056, 209630, 277463, 241915, 100038008, 433801, 243764, 235441, 16728, 56292, 171207, 108912, 432995, 68897, 100038948, 624910, 56554, 379043, 667281, 20715, 238393, 27643, 214601, 100169864, 432572, 59036, 50779, 791340, 108800, 666955, 239510, 108013, 277250, 12894, 80890, 338349, 100072, 26561, 76580, 72587, 320127, 236266, 12288, 14802         or upload a text file Containing gene keywords, optionally with corresponding expression values.         Durchsuchen       Keine Datei ausgewählt. |
| OR           OR           O           Use example gene set | "Inflammation in H.sapiens"<br>The example data set is from a microarray analysis of Systemic Inflammation in Humans (Calvano et al (2005) Nature 437,1032-7; PMID:<br><u>16136080</u> ).<br>Gene expression changes relative to t=0 are displayed at 5 timepoints (2,4,6,9 and 24 hours) after inoculation with bacterial endotoxin.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u>Organism</u> 🕜                                          | Mus musculus (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

The result shows the cardiomyopathy *hypertrophy, left ventricular* in the top ten overrepresented *MeSH Disease* terms, and several heart associated terms in the category *Tissues* (*Genomatix Literature Mining*).

| Signal Transduction Pathways (Genomati       | ix Literature Minin | ng) Molecular Functions (GO)        | Cellular Com     | ponents (GC | )) Biologia         | al Processes (G       | O) Disea             | ises (Genomatix L | iterature Mining) Diseases (Me         | iH)                                  |
|----------------------------------------------|---------------------|-------------------------------------|------------------|-------------|---------------------|-----------------------|----------------------|-------------------|----------------------------------------|--------------------------------------|
| Tissues (Genomatix Literature Mining)        | Tissues (UniGen     | e) Co-cited genes (Genomatix        | Literature Minin | ig) Co-c    | ited TFs (Geno      | matix Literature      | e Mining)            | Pharmacologica    | I Substances (Genomatix Literature     | Mining)                              |
| MeSH-Term                                    |                     | MeSH-Term id(s)                     |                  | P-value 🔶   | Adjusted<br>p-value | # Genes<br>(observed) | # Genes<br>(expected | d) (total)        | List of observed genes                 | Gene ids                             |
| Neoplasms                                    | 9                   | <u>C04</u>                          | 1.7              | '3e-04      | n/a                 | 232                   | 207.76               | 13767             | Galk2, Abcc12, Hagh, Raet1e, Cacn      | a 69976, 244562, 14651, 379043, 1228 |
| Pathologic Processes                         | 9                   | C23.550                             | 1.8              | 31e-04      | n/a                 | 238                   | 214.97               | 14245             | Hagh, Raet1e, Cacna1d, Eps15I1, S      | c 14651, 379043, 12289, 13859, 19474 |
| Neoplasms by Site                            | 9                   | C04.588                             | 6.1              | 17e-04      | n/a                 | 210                   | 185.51               | 12293             | Galk2, Abcc12, Hagh, Raet1e, Cach      | a 69976, 244562, 14651, 379043, 1228 |
| Digestive System Neoplasms                   | 9                   | C04.588.274                         | 2.6              | 67e-03      | n/a                 | 152                   | 128.73               | 8530              | Abcc12, Hagh, Raet1e, Eps15I1, Ac      | r 244562, 14651, 379043, 13859, 6671 |
| Digestive System Neoplasms                   | 9                   | C06.301                             | 2.9              | 91e-03      | n/a                 | 152                   | 128.95               | 8545              | Abcc12, Hagh, Raet1e, Eps15I1, Ac      | r 244562, 14651, 379043, 13859, 6671 |
| Congenital, Hereditary, and Neonatal Disease | es and Abnormaliti  | C16                                 | 4.3              | 33e-03      | n/a                 | 169                   | 147.21               | 9755              | Abcc12, Hagh, Cacna1d, Eps15I1, S      | k 244562, 14651, 12289, 13859, 19474 |
| Joint Instability                            | 9                   | C05.550.521                         | 5.0              | 00e-03      | n/a                 | 8                     | 2.63                 | 174               | B3galt6, Serpina3f, II1a, Ift172, Cox4 | 1117592, 238393, 16175, 67661, 1285  |
| Hyperammonemia                               | 9                   | C23.550.421                         | 5.3              | 35e-03      | n/a                 | 8                     | 2.66                 | 176               | Sirt4, Hmgcl, II1a, Cpt1a, Npr2, Kcnj  | 1 75387, 15356, 16175, 12894, 230103 |
| Hypertrophy, Left Ventricular                | 9                   | C23 300 775 250 400, C14 280 195 40 | Q 5.4            | l1e-03      | n/a                 | 23                    | 12.90                | 855               | Fkbp1a, Rock1, Ldb3, Slc6a8, II1a, I   | 9 14225, 19877, 24131, 102857, 16175 |
| Consciousness Disorders                      | 9                   | C23 888 592 604 359                 | 5.7              | '0e-03      | n/a                 | 12                    | 5.13                 | 340               | Hmgcl, II1a, Pah, Naca, Nr2c1, Chrn    | d 15356, 16175, 18478, 17938, 22025, |
| Number of input genes mapped to MeSI         | I-Terms: 272        |                                     |                  |             |                     |                       |                      |                   |                                        |                                      |
| P EXCEL D TSV                                |                     |                                     |                  | e 😽 Page    | 1 of 3 ⋗            | ▶1 10 ▼               |                      |                   |                                        | View 1 - 10 of 25                    |

| Signal Transduction Pathways (Genomatix  | Literature Mining) | Molecular Functions (GO)  | Cellular Con    | nponents (GO                  | Biologic            | al Processes (G       | O) Diseas             | ses (Genomatix Li    | iterature Mining)    | Diseases (MeS      | H)                                     |
|------------------------------------------|--------------------|---------------------------|-----------------|-------------------------------|---------------------|-----------------------|-----------------------|----------------------|----------------------|--------------------|----------------------------------------|
| Tissues (Genomatix Literature Mining)    | Tissues (UniGene)  | Co-cited genes (Genomatix | Literature Mini | ng) Co-cit                    | ed TFs (Geno        | matix Literature      | e Mining)             | Pharmacologica       | I Substances (Geno   | matix Literature   | Mining)                                |
| Tissue                                   |                    | Tissue id                 |                 | P-value 🔶                     | Adjusted<br>p-value | # Genes<br>(observed) | # Genes<br>(expected) | # Genes<br>) (total) | List of obser        | rved genes         | Gene ids                               |
| ENTIRE HEART                             | <u>C1</u> 2        | 281570                    | 3.              | 17e-04                        | n/a                 | 35                    | 18.93                 | <u>1181</u>          | Uaca, Ucn3, Pde3     | b, Foxk1, Gpt2, Fk | 172565, 83428, 18576, 17425, 108682,   |
| HEART TISSUE                             | <u>C12</u>         | 272575                    | 1.              | 13e-03                        | n/a                 | 14                    | 5.40                  | 337                  | Fkbp1a, Serpina3f,   | Trpm3, Cpt1a, Cd   | 14225, 238393, 226025, 12894, 12554    |
| SPINAL CORD WHITE MATTER STRUCTURE       | <u>C04</u>         | 158457                    | 1.              | 70e-03                        | n/a                 | 5                     | 0.87                  | <u>54</u>            | Sptbn4, Gria4, Itpr  | 1, Tnc, Grm5       | 80297, 14802, 16438, 21923, 108071     |
| HEART                                    | <u>C0</u> (        | 18787                     | 2.              | 21e-03                        | n/a                 | 32                    | 18.78                 | 1172                 | Ucn3, Pde3b, Gpt2    | , Fkbp1a, Rbfox1,  | 83428, 18576, 108682, 14225, 268859    |
| ENTIRE ANTERIOR CRURAL MUSCLE            | <u>C04</u>         | 148479                    | 2.              | 48e-03                        | n/a                 | 2                     | 0.08                  | 5                    | Fkbp1a, Cs           |                    | 14225, 12974                           |
| SKELETAL MYOCYTES                        | <u>C1</u>          | 04336                     | 3.              | 37e-03                        | n/a                 | 19                    | 9.50                  | <u>593</u>           | Sirt4, Foxk1, Clic5  | , Gpt2, Fkbp1a, Lo | 175387, 17425, 224796, 108682, 14225   |
| PHOTORECEPTORS                           | <u>C00</u>         | 031760                    | 3.              | 38e-03                        | n/a                 | 16                    | 7.42                  | 463                  | Vsx1, Cacna2d4, S    | Slc6a8, Kif17, Ank | 114889, 319734, 102857, 16559, 2082    |
| INTESTINAL WALL TISSUE                   | <u>C1</u>          | 708548                    | 4.              | 21e-03                        | n/a                 | 21                    | 11.15                 | 696                  | Abcc12, Eps1511,     | Ahctf1, Shkbp1, C  | 244562, 13859, 226747, 192192, 1255    |
| EMBRYONIC HEART                          | <u>C15</u>         | 16821                     | 4.              | 43e-03                        | n/a                 | 9                     | 3.14                  | 196                  | Cacna1d, Fkbp1a,     | Ldb3, Erbb4, Sem   | a 12289, 14225, 24131, 13869, 20356, 1 |
| ENTIRE SPINAL CORD WHITE MATTER          | <u>C12</u>         | 281097                    | 4.              | 48e-03                        | n/a                 | 4                     | 0.67                  | 42                   | Gria4, Itpr1, Tnc, G | irm5               | 14802, 16438, 21923, 108071            |
| Number of input genes mapped to tissues: | 275                |                           |                 |                               |                     |                       |                       |                      |                      |                    |                                        |
| P EXCEL D TSV                            |                    |                           |                 | <ul> <li>&lt; Page</li> </ul> | of 2 🕨              | ▶ 10 ▼                |                       |                      |                      |                    | View 1 - 10 of 19                      |



## Annotation of Tbx20 binding regions – target prediction

An alternative way for finding potential regulatory targets of a transcription factor based on ChIP-Seq peaks, which can also be applied in the absence of expression data, is to analyze the genomic annotation in the vicinity of the TF peak positions and look for overlapping and neighboring promoters and gene loci.

The program "Annotation & Statistics" annotates your input regions for features such as promoter overlaps or neighboring loci. Please start this task from the Genes & Genomes menu in the navigation bar:

| Genes & Genomes     | Gene Regulation |
|---------------------|-----------------|
| Genomatix Annota    | tion (ElDorado) |
| Genome Browser      |                 |
| Transcriptome Vie   | wer             |
| Gene2Promoter       |                 |
| Annotation & Statis | stics N         |
| Orthologous Regi    | ons             |
| Variant Analysis    |                 |
| GenomeInspector     |                 |



Please set the analysis parameters as below: select the BED file with the Tbx20 peaks from the BED file list, and activate the *Next Neighbor Analysis*, *Exons/Introns*, and *Promoters* checkboxes, This is necessary for identification of neighboring and overlapping promoters and loci. To include the information which peaks have a match for a Tbx20 binding site, click on the TF analysis *more...* option, tick the TFBS search checkbox, and select V\$BRAC from the binding site list. Provide a result name, make sure that you selected the e-mail option, and start the analysis. As we have more than 2000 regions to analyze in detail, the analysis will take about 10 minutes.

| Input                                                       |                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Available files                                             | Listing files for Max musculus / ICBI build 38: (signed)         Tbx20_ko_expression transcripts_down.bed (14028 regions)         Tbx20_beaks_bed (2698 regions)         Tbx20_peaks_correlated bed (208 regions)         Tbx20_peaks_correlated_trimmed bed (208 regions)                                   |
| Transcript Options                                          |                                                                                                                                                                                                                                                                                                              |
| Source of transcripts                                       | All sources (non-redundant transcripts)     NCBI RefSeq     Essembl     NCBI GenBank                                                                                                                                                                                                                         |
| Statistics                                                  |                                                                                                                                                                                                                                                                                                              |
| Statistics and Classification                               | <ul> <li>Iclassification of regions (statistics of overlap with exons, introns, promoters, intergenic)</li> <li>Include this classification for each input region in the output (warning. large output!)</li> </ul>                                                                                          |
| Analysis Options<br>Note: these analyses are limited to max | : 2000000 regions with at most 250000 bp each                                                                                                                                                                                                                                                                |
| Detailed Region Analysis                                    | ②       ⑦ Next Neighbor Analysis         and/or detailed check of overlap with the following elements:         ③       MicroRNAs         ③       ⑦ Promoters         ③       ⑦ Promoters                                                                                                                     |
| <u>TF Analysis</u>                                          | <ul> <li>more</li> <li>Search for transcription factor binding sites:</li> <li>Library: Matrix Library 9.3 •</li> <li>Matrix similarity: Optimized •</li> </ul>                                                                                                                                              |
| Output                                                      |                                                                                                                                                                                                                                                                                                              |
| Result                                                      | Result name: Tbx20peaks_annotation 8     (special characters except +-,^* are not allowed und will be replaced by _)                                                                                                                                                                                         |
| Your <u>email address</u>                                   | Show result directly in browser window     Send the URL of the result to: COURSES@genomatix.de     Use the email goals for hory-uning lobs, for avoid senser (Imeaut messages     You may set a default email address by filling or modifying the 'email address' field on your <u>personal account page</u> |
| Submit Reset Form                                           |                                                                                                                                                                                                                                                                                                              |



When the analysis has completed, please open it in the project management. A classification table displays the numbers for the overlap of genome annotation with your input regions.

| egion Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Overlap Statistics                                         | Detailed Annotation and Downlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ad                                                              |                             |                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|----------------------------------------------|
| egion Classificatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n on Tbx20_peal                                            | ks.bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                             |                                              |
| General Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                             |                                              |
| Total number of Regions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            | 2698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                             |                                              |
| Total basepairs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | 411423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |                             |                                              |
| /linimum Region length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |                             |                                              |
| /laximum Region length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            | 4808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |                             |                                              |
| verage Region length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            | 152.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 |                             |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                             |                                              |
| Enrichment Gener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | al                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                             |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                             |                                              |
| 25 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.56                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                             |                                              |
| 0 % 0 % Percenta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | egions e<br>promoters                                      | xon partial<br>intron<br>Percentage of Regions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                             |                                              |
| 0 % of energies in the second | egions e<br>promoters<br>ge of Genome                      | partial<br>intron<br>Percentage of Regions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Basantan is Car                                                 |                             |                                              |
| 0 % intergenic r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | egions e<br>promoters<br>ge of Genome m<br>nt Number of Re | partial<br>intron<br>Percentage of Regions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Percentage in Genome                                            | Enrichment compared to Genc | ome                                          |
| 0 % genomic eleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | egions e<br>promoters ge of Genome m                       | partial<br>intron<br>Percentage of Regions<br>272 10.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Percentage in Genome<br>5.7%                                    | Enrichment compared to Genc | <mark>ome</mark><br>1.8                      |
| 0 % intergenic r<br>0 Percentar<br>/pe of genomic eleme<br>on<br>tial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | egions e<br>promoters ge of Genome m                       | Percentage of Regions       272     10.1%       183     6.8%       1400     14.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Percentage in Genome<br>5.7%                                    | Enrichment compared to Genc | 2000 2010 2010 2010 2010 2010 2010 2010      |
| 0 %<br>0 %<br>Percentag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | egions e<br>promoters ge of Genome m                       | Image: system of the system | Percentage in Genome<br>5.7%<br>37.8%                           | Enrichment compared to Genc | о <mark>те</mark><br>1.8<br>-<br>1.2         |
| O % intergenic r     O % Percentag     Precentag     Precentag     Precentag     Precentag     Precentag     Precentag     Precentag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | egions e<br>promoters e                                    | Image: constraint of the second sec       | Percentage in Genome<br>5.7%<br>-<br>37.8%<br>56.5%             | Enrichment compared to Genc | 0me<br>1.8<br>-<br>1.2<br>0.7                |
| O % O % O % O % O % O % O % O % O % O %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | egions e<br>promoters e                                    | Image: constraint of the second sec       | Percentage in Genome<br>5.7%<br>-<br>37.8%<br>56.5%<br>-<br>0.7 | Enrichment compared to Genc | 0me<br>1.8<br>-<br>1.2<br>0.7<br>-<br>-<br>- |

Overlap details can be viewed in the Overlap Statistics section.

| Region Classification      | Overlap Statistics          | Detailed Annotation and Download                                            |
|----------------------------|-----------------------------|-----------------------------------------------------------------------------|
|                            |                             |                                                                             |
| Overlap Statistics         | a abaakad (=100%)           |                                                                             |
| A total of 2050 regions wa | s checked (= 100%)          |                                                                             |
| Number of<br>input regions | Percentage<br>input regions | Description                                                                 |
| 1645                       | 61.0%                       | overlap with at least one locus                                             |
| 1053                       | 39.0%                       | overlap with intergenic regions                                             |
| 455                        | 16.9%                       | overlap with at least one exon (of alternative transcripts)                 |
| 1472                       | 54.6%                       | overlap with at least one intron (of alternative transcripts)               |
| 332                        | 12.3%                       | overlap with promoters                                                      |
|                            |                             | >>> show details <<< on exon and intron overlap                             |
| 1444                       | 53.5%                       | regions have a match to the matrix family V\$BRAC (a total of 2198 matches) |



Based on this annotation, different data sets can be generated. Select *Detailed Annnotation and Download*.

Select the option Browse table with details..., and start the task.

| Region Classification                 | Overlap Statistics              | Detailed Annotation and Download                                                                                                                                                                                                                      |
|---------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                 |                                                                                                                                                                                                                                                       |
| Detailed annotatio                    | n for all regions o             | r subsets                                                                                                                                                                                                                                             |
| For details of the <b>next n</b> e    | e <b>ighbor analysis</b> please | use the download-details or browse-table option below.                                                                                                                                                                                                |
|                                       |                                 | Select regions cortaining a match to V\$BRAC<br>Select regions overlapping with at least one exon<br>Select regions overlapping with it least one intron<br>Select regions overlapping with promoters<br>(Use shift/ctrl-keys to select combinations) |
|                                       |                                 | Invert Selection (i.e. not this type of element)                                                                                                                                                                                                      |
| Available tasks for                   | selected regions                |                                                                                                                                                                                                                                                       |
| Download detail                       | s in EXCEL format               |                                                                                                                                                                                                                                                       |
| Download detail                       | s in tab-separated format       |                                                                                                                                                                                                                                                       |
| 🔍 🔍 Export regions t                  | o BED file format               |                                                                                                                                                                                                                                                       |
| <ol> <li>Browse table with</li> </ol> | th details for selected reg     | ons                                                                                                                                                                                                                                                   |
| Extract GenelDs                       | of genes overlapping inp        | ut region                                                                                                                                                                                                                                             |
| Extract Symbols                       | s of genes overlapping inp      | ut region                                                                                                                                                                                                                                             |
| Extract GenelDs                       | s of genes where the regio      | n overlaps with promoter                                                                                                                                                                                                                              |
| Extract GenelDs                       | of neighboring genes            |                                                                                                                                                                                                                                                       |
| that are max 10                       | 00000 bps both                  | i directions 💌 of selected regions                                                                                                                                                                                                                    |
| and 🗖 keep re                         | gion assignment                 |                                                                                                                                                                                                                                                       |
| Name for extracted fi                 | e: Tbx20peaks_annotati          | on_extracted                                                                                                                                                                                                                                          |
| Start Selected                        | Ask Reset Form                  |                                                                                                                                                                                                                                                       |

The output shows the neighboring gene loci for each region in both directions and on both strands, as well as overlaps with promoters, exons, and introns, and the number of V\$BRAC binding site matches in each peak.




Next, please go back to the overview page, and select the option *Extract GeneIDs* of neighboring genes. For this example, set the maximum distance to 10,000 bp. To include the identifiers of the corresponding peaks, activate the *keep region* assignment option. Provide a file name, and save the file with the GeneIDs on your local computer.

| Ava          | ailable tasks for selected regions                               |  |  |  |  |
|--------------|------------------------------------------------------------------|--|--|--|--|
| 0            | Download details in EXCEL format                                 |  |  |  |  |
| 0            | Download details in tab-separated format                         |  |  |  |  |
| 0            | Export regions to BED file format                                |  |  |  |  |
| 0            | Browse table with details for selected regions                   |  |  |  |  |
| 0            | Extract GeneIDs of genes overlapping input region                |  |  |  |  |
| 0            | Extract Symbols of genes overlapping input region                |  |  |  |  |
| 0            | Extract GeneIDs of genes where the region overlaps with promoter |  |  |  |  |
| (A)          | Extract GeneIDs of neighboring genes                             |  |  |  |  |
| $\mathbf{U}$ | that are max 10000 (2) bps both directions 🚽 of selected regions |  |  |  |  |
|              | and 🔟 keep region assignment                                     |  |  |  |  |
| Nai          | me for acted file: Genes_within10kb_of_Tbx20peaks 4              |  |  |  |  |
|              | Start Selected Task                                              |  |  |  |  |

The file contains the GeneIDs and associated peak identifiers based on the peak IDs in the BED file.

| 11287 | Region_1019 |             |            |            |            |            |
|-------|-------------|-------------|------------|------------|------------|------------|
| 11304 | Region_571  |             |            |            |            |            |
| 11426 | Region_699  |             |            |            |            |            |
| 11430 | Region_1774 | Region_1774 |            |            |            |            |
| 11459 | Region_1330 |             |            |            |            |            |
| 11461 | Region_884  | Region_884  | Region_885 | Region_885 | Region_886 | Region_886 |
| 11464 | Region_392  | Region_393  |            |            |            |            |
| 11465 | Region_676  |             |            |            |            |            |
| 11472 | Region_1902 |             |            |            |            |            |
| 11504 | Region_2308 |             |            |            |            |            |
| 11512 | Region_2214 | Region_2214 |            |            |            |            |
| 11520 | Region_659  |             |            |            |            |            |
| 11539 | Region_107  |             |            |            |            |            |
| 11639 | Region_674  | Region_675  |            |            |            |            |
| 11652 | Region_1053 |             |            |            |            |            |
| 11790 | Region_54   | Region_54   |            |            |            |            |
| 11804 | Region_1379 |             |            |            |            |            |
| 11811 | Region_2405 |             |            |            |            |            |
| 11818 | Region_1765 |             |            |            |            |            |
| 11829 | Region_2473 |             |            |            |            |            |



## Comparison of Tbx20-neighboring genes with regulated genes

As we have expression data available, we can now compare the list of Tbx20neighboring genes with the previously saved lists of up- and down-regulated genes in Tbx20 knock-out mouse hearts.

Start the *List comparison* tool from the *Tools* menu in the navigation bar.



As you will compare three lists to one another, namely the list of Tbx20 neighboring genes the list of up-regulated genes, and the list of down-regulated genes from the expression analysis, set the number of lists accordingly to 3 (marked with 1 in the screenshot below). Provide a name for each list (2,4,7), and upload the corresponding files from your computer (3,5,8).

| List Input      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Number of Lists | How many lists do you want to compare? 3 1000 (Venn diagrams will be available for 2-, 3- and 4-list comparisons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| <u>List1</u> 📀  | <ul> <li>Name for List 1: 10kb neighb 2</li> <li>Enter your list elements separated by blanks, newlines or commas:</li> <li>Optional: enter a list of associated values (must be same number and order as the list elements)</li> <li>or alternatively upload a text file containing List1:</li> <li>DurchsuchenGenes_within10kb_of_Tbx20peaks.bt</li> <li>and limit analysis to the first 2 columns</li> <li>Format: one element per line, first value is used for comparison, optionally tab-delimited associated value(s).<br/>Note: text files only, i.e. binary Excel files will not be accepted</li> </ul> |  |  |  |  |
| List 2 🔮        | Name for List 2: upreg_genes 4<br>Enter list elements: Optional: Associated values<br>or alternatively upload a text file containing List2 (and opt. associated values):<br>Durchsuchen Tox20_ko_expression_diff_expressed_genes_up.list 5<br>Limit analysis to the first 3 6 olumns                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| List 3 🛛 Ø      | Name for List 3: downreg_gel       Image: Control of the containing List3 (and opt. associated values):         Durchsuchen       Tbx20_ko_expression_diff_expressed_genes_down list         Limit analysis to the first 3 (and soft. associated values)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |



The list comparison tool allows to include associated values in the output. For uploaded tab-separated text files, you can select how many columns should be evaluated for each file. the default is 2, i.e. the identifier column plus one column with associated values. Set this value to 3 for the files with up- and down-regulated genes (6,9). This will included fold change values and gene names in addition to the gene IDs.

To keep the case as it is in the uploaded files, activate the *Case Sensitivity* option (otherwise lower case will be converted to upper case in the output). This also makes the ID comparison case-sensitive. The start the comparison.

| Options                                   |                                             |  |  |  |
|-------------------------------------------|---------------------------------------------|--|--|--|
| Case Sensitivity                          | v Treat elements in lists CaSe-SeNsitiVe    |  |  |  |
| Header Line                               | Temove the first line of all uploaded files |  |  |  |
| Compute Probability<br>(only for 2 lists) | more                                        |  |  |  |
| Compare lists Reset Form                  |                                             |  |  |  |

In the result, you'll find a Venn diagram with the overlap numbers. Of the 1107 neighboring genes, 134 are also found in the up-regulated list, and 207 in the down-regulated list.





To see the complete comparison, export the union of all lists to Excel.

| Union / Intersection                                 |               |                                                                                                                                 |  |  |  |
|------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Union                                                |               |                                                                                                                                 |  |  |  |
| ①   Union of 3 lists                                 | 5697 elements | 100017, 100034251, 100036535, 100036537, 100037258, 100037282, 100038347, 100038353, 100038355, 100038356, (list truncated)     |  |  |  |
| Intersection                                         |               |                                                                                                                                 |  |  |  |
| Common to exactly 3 Lists                            | 4 elements    | 108000, 212307, 58194, 64291                                                                                                    |  |  |  |
| © Common to exactly 2 Lists                          | 345 elements  | 100039027, 100040872, 100303644, 100379605, 100502602, 100503434, 100503471, 100503659, 100504518, 100705, (list truncated)     |  |  |  |
| Single Lists                                         |               |                                                                                                                                 |  |  |  |
| 10kb_neighbours (Input List1)                        | 1107 elements | $100037258,100038347,100038353,100038381,100038388,100038412,100038424,100038512,100038543,100038570,\dots(list\ truncated)$    |  |  |  |
| O Non-redundant in List1                             | 1107 elements | $100037258,100038347,100038353,100038381,100038388,100038412,100038424,100038512,100038543,100038570,\dots,(list\ truncated)$   |  |  |  |
| Duplicates within List1                              | 0 elements    |                                                                                                                                 |  |  |  |
| $^{\odot}$ Elements only in List1 (in no other list) | 770 elements  | 100037258, 100038347, 100038353, 100038381, 100038388, 100038412, 100038424, 100038512, 100038543, 100038570 , (list truncated) |  |  |  |
| upreg_genes (Input List2)                            | 2729 elements | 100017, 100034251, 100036535, 100036537, 100038355, 100038369, 100038405, 100038452, 100038468, 100038531 , (list truncated)    |  |  |  |
| © Non-redundant in List2                             | 2729 elements | 100017, 100034251, 100036535, 100036537, 100038355, 100038369, 100038405, 100038452, 100038468, 100038531 , (list truncated)    |  |  |  |
| Duplicates within List2                              | 0 elements    | ·                                                                                                                               |  |  |  |
| $^{\odot}$ Elements only in List2 (in no other list) | 2583 elements | 100017, 100034251, 100036535, 100036537, 100038355, 100038369, 100038405, 100038452, 100038468, 100038531 , (list truncated)    |  |  |  |
| downreg_genes (Input List3)                          | 2214 elements | 100037282, 100038356, 100038368, 100038395, 100038453, 100038564, 100038605, 100038712, 100038761, 100039027 (list truncated)   |  |  |  |
| © Non-redundant in List3                             | 2214 elements | 100037282, 100038356, 100038368, 100038395, 100038453, 100038564, 100038605, 100038712, 100038761, 100039027, (list truncated)  |  |  |  |
| Duplicates within List3                              | 0 elements    | •                                                                                                                               |  |  |  |
| © Elements only in List3 (in no other list)          | 1995 elements | 100037282, 100038356, 100038368, 100038395, 100038453, 100038564, 100038605, 100038712, 100038761, 100040293 (list truncated)   |  |  |  |

Export selected list as Excel file tab-separated file



Genes that were present in each input list have an associated value (Region ID for neighboring genes; log fold change and gene symbol for regulated genes); the others get only a dash in the value columns.

| Element 🔄 value(s) from 10kb neighbours 💽 | value(s) from upreg_genes 💌 | <b>•</b>      | value(s) from downreg_genes 💌 | <b>•</b>      |
|-------------------------------------------|-----------------------------|---------------|-------------------------------|---------------|
| 100017 -                                  | 1.307                       | Ldlrap1       | -                             | -             |
| 100034251 -                               | 1.782                       | Wfdc17        | -                             | -             |
| 100036535 -                               | 2.338                       | Gm9913        | -                             | -             |
| 100036537 -                               | 2.263                       | Gm11149       | -                             | -             |
| 100037258 Region_2099                     | -                           | -             | -                             | -             |
| 100037282 -                               | -                           | -             | -1.645                        | Rsph3b        |
| 100038347 Region_1097                     | -                           | -             | -                             | -             |
| 100038353 Region_2543                     | -                           | -             | -                             | -             |
| 100038355 -                               | 2.291                       | Runx2os1      | -                             | -             |
| 100038356 -                               | -                           | -             | -1.313                        | Gm15612       |
| 100038368 -                               | -                           | -             | -1.474                        | Gm10609       |
| 100038369 -                               | 1.653                       | F630201L12Rik | -                             | -             |
| 100038381 Region_1416                     | -                           | -             | -                             | -             |
| 100038388 Region_1318                     | -                           | -             | -                             | -             |
| 100038395 -                               | -                           | -             | -1.49                         | 1700061E17Rik |
| 100038405 -                               | 3.872                       | Gm10827       | -                             | -             |
| 100038412 Region_1195                     | -                           | -             | -                             | -             |
| 100038424 Region_606                      | -                           | -             | -                             | -             |
| 100038452 -                               | 2.469                       | Gm13372       | -                             | -             |
| 100038453 -                               | -                           | -             | -2.452                        | Gm12522       |
| 100038468 -                               | 2.654                       | Gm10684       | -                             | -             |
| 100038512 Region_635                      | -                           | -             | -                             | -             |
| 100038531 -                               | 1.503                       | D030062O11Rik | -                             | -             |
| 100038543 Region_2235                     | -                           | -             | -                             | -             |
| 100038548 -                               | 2.36                        | Gm10521       | -                             | -             |
| 100038564 -                               | -                           | -             | -1.81                         | Gm10524       |
| 100038570 Region_1775                     | -                           | -             | -                             | -             |
| 100038605 -                               | -                           | -             | -1.512                        | E030047D23Rik |
| 100038610 Region_1606                     | -                           | -             | -                             | -             |

Thus you can use Excel functionality to filter e.g. for up-regulated Tbx20neighboring genes (which would correspond to genes whose expression is probably directly repressed by Tbx20).

| Element 💌 | value(s) from 10kb neighbours | ✓ value(s) from upreg_genes ✓ | <b>•</b>     | value(s) from downreg_genes 💌 | <b>•</b> |
|-----------|-------------------------------|-------------------------------|--------------|-------------------------------|----------|
| 100379605 | Region_1501                   | 2.152                         | Gm15270      | -                             | -        |
| 100503434 | Region_2453                   | 2.537                         | Gm19689      | -                             | -        |
| 100503471 | Region_176                    | 1.943                         | Gm15867      | -                             | -        |
| 100503659 | Region_1562                   | 1.453                         | Dos          | -                             | -        |
| 102595    | Region_1413                   | 1.302                         | Plekho2      | -                             | -        |
| 102631551 | Region_2547                   | 1.669                         | LOC102631551 | -                             | -        |
| 105245    | Region_1933                   | 1.336                         | Txndc5       | -                             | -        |
| 105988    | Region_2224                   | 2.486                         | Espl1        | -                             | -        |
| 106205    | Region_2236                   | 1.071                         | Zc3h7a       | -                             | -        |
| 107702    | Region_1192                   | 1.722                         | Rnh1         | -                             | -        |
| 107765    | Region_2582                   | 2.879                         | Ankrd1       | -                             | -        |
| 108000    | Region_161                    | 2.281                         | Cenpf        | -1.399                        | Cenpf    |
| 108099    | Region_773                    | 1.074                         | Prkag2       | -                             | -        |
| 108903    | Region_1787                   | 1.214                         | Tbcd         | -                             | -        |
| 108912    | Region_2059                   | 2.517                         | Cdca2        | -                             | -        |
| 11304     | Region_571                    | 1.87                          | Abca4        | -                             | -        |
| 11459     | Region_1330                   | 1.127                         | Acta1        | -                             | -        |
| 11461     | Region_884                    | 1.774                         | Actb         | -                             | -        |
| 11465     | Region_676                    | 1.771                         | Actg1        | -                             | -        |
| 11504     | Region_2308                   | 2.044                         | Adamts1      | -                             | -        |
| 11520     | Region_659                    | 1.241                         | Plin2        | -                             | -        |
| 12181     | Region_2177                   | 1.276                         | Bop1         | -                             | -        |
| 12523     | Region_147                    | 3.191                         | Cd84         | -                             | -        |
| 12606     | Region_1057                   | 1.915                         | Cebpa        | -                             | -        |
| 12982     | Region_2617                   | 1.834                         | Csf2ra       | -                             | -        |
| 14087     | Region_1329                   | 2.129                         | Fanca        | -                             | -        |

The identifiers can then, for example, be uploaded to the Genomatix Pathway System for further analysis.



## Literature

Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res 10, 986-995 (1997).

Sakabe NJ, Aneas I, Shen T, Shokri L et al. Dual transcriptional activator and repressor roles of TBX20 regulate adult cardiac structure and function. Hum Mol Genet 21(10), 2194-2204 (2012).

Stacklies W, Redestig H, Scholz M, Walther D, Selbig J: pcaMethods - a Bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164-1167 (2007).

Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W: A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952-1958 (2009)

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nussbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9), R137 (2008).



List of resources available on the web:

Gene Expression Omnibus: http://www.ncbi.nlm.nih.gov/geo/

Further reading: <a href="http://www.genomatix.de/expertise/publications.html">http://www.genomatix.de/expertise/publications.html</a>

This tutorial was compiled for Genomatix Genome Analyzer v3.51106.

Please note that depending on the program versions and database releases used slight variations in results (e.g. gene numbers) may occur.

ElDorado and GEMS Launcher are registered trademarks of Genomatix Software GmbH in the USA and other countries. All other trademarks, service marks and trade names appearing in this publication are the property of their respective owners.