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Agenda

11:00AM Opening Remarks

11:45AM Lunch

12:30PM Workshop #1: Accelerating Variant Calls with Apache Spark

1:30PM Workshop #2: Characterizing Genetic Variants with Spark SQL

2:30PM Workshop #3: Disease Risk Scoring with Machine Learning



Unified data analytics platform for accelerating innovation across 
data science, data engineering, and business analytics

Original creators of popular data and machine learning open source projects 

Global company with 5,000 customers and 450+ partners 



Genomic Data Powers a Precision Revolution
Genomics married to EHR data gives direct insight to molecular phenotype
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Big Data, Bigger Problems
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“Hidden Technical Debt in Machine Learning Systems,” Google NIPS 2015  

Figure 1:  Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small 
green box in the middle.  The required surrounding infrastructure is vast and complex.



Supporting genomic-scale data
Supporting genomics at the scale of millions of patients

We can build easy onramps that allow medical data scientists, bioinformaticians,
and biostaticians to ask and answer population health questions



Solve for “production” in the life sciences
Integrating reproducible and interpretable ML in the life sciences

We can provide a ML ecosystem that ensures that ML models are reproducible and
interpretable, while maximizing access to ML



Agility with security
Provide elastic compute with fine grained security

We can build a platform where each component provides fine-grained security and auditibility,
while minimizing the impact of security on the end user



DATABRICKS WORKSPACE

Databricks Delta                                                                        ML Frameworks

DATABRICKS CLOUD SERVICE

DATABRICKS RUNTIME

Reliable & Scalable Simple & Integrated

Databricks Unified Analytics Platform

APIs

Jobs Models

Notebooks

Dashboards End to end ML lifecycle



BAM VCF

FASTQ BED

Unified Analytics Platform for Genomics

DELTA Dashboarding

Accelerate 
time to impact

Real-time 
visualizations

Machine 
Learning

Databricks Notebooks

Rapid 
Pipelines

✓ GATK4 best practices
✓ DNA, RNA, Cancer Seq
✓ Custom pipelines

✓ Joint-Genotyping
✓ Parallelize legacy tools
✓ GWAS

Scalable Tertiary 
Analytics 

DELTA

Introducing Unified Analytics for Genomics
Collaborative platform for interactive genomic data processing and analytics at massive scale
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The power of big genomic data

12

Accelerate 
Target 

Discovery

Reduce Costs 
via Precision 
Prevention

Improve 
Survival with 

Optimized 
Treatment



The power of big genomic data
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The power of big genomic data
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C Van Hout, et al. (2019) Whole exome sequencing and 
characterization of coding variation in 49,960 individuals in the UK 

Biobank. bioRxiv.

Het pLOF carrier counts by gene 
with increasing sample size• Identifying carriers of rare, putative 

loss-of-function (pLOF) variants 
across all genes requires large 
sample sizes

• Homozygous pLOF carriers 
(“human knockouts”) are even 
more rare (~1k genes have >= 1 
carrier in 50k samples)

• Detecting protective pLOF disease 
associations requires many carriers 
per gene



How do we analyze our data to gain 
novel insights?
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• Approach:

1. Sequence a large number of individuals from 
many cohorts (>70 to date)

2. Obtain paired phenotypic data (e.g. 
de-identified electronic medical records)

3. Run all-vs-all association tests between all 
mutations and traits

4. Mine association results to extract actionable 
insights

5. Design for scalability & automation
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How do we analyze our data to gain 
novel insights? It’s complicated.
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• Hard to scale: Data is decentralized, 
assumes single node architecture

• Rigid tools: Data is organized in different 
ways (e.g., not squared off, transposed, 
custom representations and indexing)

• Hard to move to tertiary analyses: Asking 
simple questions at scale requires 
time-consuming data wrangling steps

txt



• Open-source toolkit for large-scale genomic analysis
• Built on Spark for biobank scale
• Query and use built-in commands with familiar languages using 

Spark SQL
• Compatible with existing genomic tools and formats, as well as big 

data and ML tools
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Built-in functions
• Convert genotype probabilities to hard calls
• Normalize variants
• Liftover between reference assemblies
• Annotate variants
• Genome-wide association studies
• ...
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Built-in functions
• Convert genotype probabilities to hard calls
• Normalize variants
• Liftover between reference assemblies
• Annotate variants
• Genome-wide association studies
• ...
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GWAS pipeline
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GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot
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spark.read.format("vcf") \

  .load(“genotypes.vcf”)



GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot
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variant_df.selectExpr("*", \

     "expand_struct(call_summary_stats(genotypes))", \

     "expand_struct(hardy_weinberg(genotypes))") \

  .where((col("alleleFrequencies").getItem(0) >= \

           allele_freq_cutoff) & \

         (col("alleleFrequencies").getItem(0) <= \

           (1.0 - allele_freq_cutoff)) & \

         (col("pValueHwe") >= hwe_cutoff))



GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot
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qc_df.write \

  .format(“delta”) \

  .save(delta_path)



GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot
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matrix.computeSVD(num_pcs)



GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot
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genotypes.crossJoin( \

  phenotypeAndCovariates) \

  .selectExpr(

    “expand_struct( ” \

    “linear_regression_gwas( ” \

    “genotype_states(genotypes), ” \

    “phenotype_values, covariates))”)



GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot
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gwas_results_rdf <- as.data.frame(gwas_results)

install.packages("qqman",

  `repos="http://cran.us.r-project.org") library(qqman)

png('/databricks/driver/manhattan.png')

manhattan(gwas_results_rdf)



GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot
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mlflow.log_artifact( \

  '/databricks/driver/manhattan.png')



Migrating VCF ingestion to Glow
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• With Glow, we no longer need a 
custom VCF derivative for Spark 
ingestion

• Greatly reduces ETL code 
complexity/scalability:

• pVCF now available as Delta table

• Similar process for BGENs



Glow VCF Reader: Processing a 6Tb 
pVCF with 2000 cores in 5 hours
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• Parallelization for 
“free” with Spark

• ~100% CPU 
utilization

• ~12Tb RAM usage

• Splittable VCF read: 
scales linearly with 
cluster size

• Output has a schema!

- Columnar

- Can use Spark SQL, 
Python, Scala, R, piping



Stroke Prediction with Real World Evidence

ETL Pipeline Parquet Tables Reproducible Results

RESULTS ● Prior to Azure Databricks:  Static on-prem spark cluster shared with 80 
people (MapR); hard to manage; frequent job failures

● On Azure Databricks: It just works!

9 deep learning 
models for disease 

prediction

250B records;  
~10TB

Model Training

de-identified 
claims data
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Deep learning on cellular imaging

RESULTS ● Prior to Databricks: takes 1 week to process 700GB of whole slide 
images, cannot scale to full internal dataset

● On Databricks: leverage Horovod runner to accelerate 1 week training 
time down to 15 minutes

ETL from TIFF

Parallelize training 
with Horovod Model for 

segmentation

Use custom TF model 
without modification
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Running Genomics Pipelines 
on Databricks



UAP4G DNA-seq pipeline
• Pipeline is a “functionally equivalent” pipeline

• Supports common preprocessing steps (MarkDups, Qual Binning, BQSR), 
with full read-level concordance

• Runs HaplotypeCaller for genotyping, can emit both VCF- and gVCF-style 
output

• Can optionally run annotation (via SnpEff) on all called sites
• Accepts FASTQ, SAM/BAM/CRAM as input, can support 

multi-flow cell library designs
• Defaults to emit data in Parquet/Delta, but can save back to VCF
• Is a “zero-setup” pipeline



Pipeline Architecture
MultiSamplePipeline

pipelineStages

Align sample=normal
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Compare/contrast vs. GATK4
• OSS GATK4 Spark-based variant calling pipeline is in beta:

• Significant concordance issues in Spark HaplotypeCaller
• Significant performance issues in Spark BQSR

• Differences relative to GATK4:
• Use ADAM’s BQSR and duplicate marking implementations
• Use highly optimized custom SQL transformer for quality score binning
• Use custom parallelization of HaplotypeCaller

• Custom sharding of HaplotypeCaller regions achieves full 
concordance with GATK4 single-node

• Additionally, use custom memory management strategy to 
allow use of compute-optimized instances



Alignment pipeline

• Can load reads from SAM/BAM/CRAM/FASTQ
• Executes GATK BWA JNI bindings from within Spark to 

parallelize alignment
• Custom preprocessing stages are >3x faster than GATK4 stages
• Reads are saved to Parquet and can be saved to BAM as well

Align sample=normal

Load 
Reads

Align

Mark 
Dups BQSR Bin 

Qualities
Save 

Reads
BWA 
via 
JNI



Preprocessing stages pipeline
• Custom implementation, based on ADAM MarkDups (which 

is based on Picard MarkDups), ~6x faster than GATK
• 100% concordant with Picard, with support for chimeras

Mark 
Dups

BQSR

Bin 
Qualities

• Leverages ADAM’s BQSR implementation
• >99% concordant with GATK3, >2x faster

• Custom Spark SQL implementation, effectively free



Variant calling pipeline
• Complete rewrite of parallelization 

infrastructure in GATK4 OSS:
• Achieves full concordance on a 

locus-by-locus basis for HaplotypeCaller/M2
• Achieves a 2x performance improvement 

with scalability to 1000’s of cores
• Leverages direct reuse of core 

HaplotypeCaller/M2 algorithms
• Saves to both Parquet and VCF

CallVariants

Shard 
by locus

Load 
Reads

Save 
Variants

HC



Benchmarks
Platform Coverage Reference 

Confidence
Mode

Runtime

Databricks 30x VCF 24m29s

Databricks 30x GVCF 39m23s

Edico 30x VCF 1h27m

Edico 30x GVCF 2h29m

• Scale out to 300x coverage WGS = 2.6hrs at a compute cost of 
$65

• Compare to GATK4 Spark pipeline at >4hrs, >$15
• Compare to GATK4 single node at >30hrs, ~$5 for VCF
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GWAS on Spark



GWAS Workflow

VCF

BGEN

DELTA

✓ QC
✓ GWAS
✓ Parallelize legacy tools

Scalable Tertiary 
Analytics 

Dashboarding

Real-time 
visualizations

Machine 
Learning

DELTA

TSV

• Ingest VCF/BGEN and GWAS summary statistics into Delta
• Run QC and GWAS on Delta tables through either R or Python
• GWAS summary statistics in Delta support interactive query for 

exploration/dashboarding
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ML on Gene Expression



ML Lifecycle and  Challenges

Delta

Tuning Model Mgmt

Raw Data ETL TrainFeaturize Score/Serve
Batch + Realtime

Monitor 
Alert, Debug

Deploy

AutoML, 
Hyper-p. search

Experiment 
Tracking

Remote Cloud 
Execution

Project Mgmt
(scale teams)

Model 
Exchange

Data
Drift

Model
Drift

Orchestration 
(Airflow, Jobs)

A/B
Testing

CI/CD/Jenkins 
push to prod

Feature 
Repository 

Lifecycle 
mgmt.

RetrainUpdate FeaturesProduction Logs

Zoo of Ecosystem Frameworks

Collaboration Scale Governance

An open source platform for the 
machine learning lifecycle



MLflow Components

Standard packaging format for reproducible ML 
runs

• Folder of code + data files with a “MLproject” description 
file

Tracking

Record and query
experiments: code,
data, config, results

Projects

Packaging format
for reproducible runs
on any platform

Models

General model format 
that supports diverse
deployment tools



Notebooks

Local Apps

Cloud Jobs

Tracking Server

UI

API

Python or 
REST API



Project Spec

Code DataConfig

Local Execution

Remote Execution



Model Format

Flavor 2Flavor 1

Run Sources

Inference Code

Batch & Stream Scoring

Cloud Serving Tools
Simple model flavors 
usable by many tools



Questions?


