
Accelerating Genomic Discovery
with Apache Spark

Databricks Unified Analytics Platform for Life Sciences

Agenda

11:00AM Opening Remarks

11:45AM Lunch

12:30PM Workshop #1: Accelerating Variant Calls with Apache Spark

1:30PM Workshop #2: Characterizing Genetic Variants with Spark SQL

2:30PM Workshop #3: Disease Risk Scoring with Machine Learning

Unified data analytics platform for accelerating innovation across
data science, data engineering, and business analytics

Original creators of popular data and machine learning open source projects

Global company with 5,000 customers and 450+ partners

Genomic Data Powers a Precision Revolution
Genomics married to EHR data gives direct insight to molecular phenotype

Accelerate
Target

Discovery

Reduce Costs
via Precision
Prevention

Improve
Survival with

Optimized
Treatment

Big Data, Bigger Problems

ML
Code

Configuration
Data Collection

Data
Verification

Feature
Extraction

Machine
Resource

Management

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

“Hidden Technical Debt in Machine Learning Systems,” Google NIPS 2015

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small
green box in the middle. The required surrounding infrastructure is vast and complex.

Supporting genomic-scale data
Supporting genomics at the scale of millions of patients

We can build easy onramps that allow medical data scientists, bioinformaticians,
and biostaticians to ask and answer population health questions

Solve for “production” in the life sciences
Integrating reproducible and interpretable ML in the life sciences

We can provide a ML ecosystem that ensures that ML models are reproducible and
interpretable, while maximizing access to ML

Agility with security
Provide elastic compute with fine grained security

We can build a platform where each component provides fine-grained security and auditibility,
while minimizing the impact of security on the end user

DATABRICKS WORKSPACE

Databricks Delta ML Frameworks

DATABRICKS CLOUD SERVICE

DATABRICKS RUNTIME

Reliable & Scalable Simple & Integrated

Databricks Unified Analytics Platform

APIs

Jobs Models

Notebooks

Dashboards End to end ML lifecycle

BAM VCF

FASTQ BED

Unified Analytics Platform for Genomics

DELTA Dashboarding

Accelerate
time to impact

Real-time
visualizations

Machine
Learning

Databricks Notebooks

Rapid
Pipelines

✓ GATK4 best practices
✓ DNA, RNA, Cancer Seq
✓ Custom pipelines

✓ Joint-Genotyping
✓ Parallelize legacy tools
✓ GWAS

Scalable Tertiary
Analytics

DELTA

Introducing Unified Analytics for Genomics
Collaborative platform for interactive genomic data processing and analytics at massive scale

11

projectglow.io

&

The power of big genomic data

12

Accelerate
Target

Discovery

Reduce Costs
via Precision
Prevention

Improve
Survival with

Optimized
Treatment

The power of big genomic data

13

Accelerate
Target

Discovery

Reduce Costs
via Precision
Prevention

Improve
Survival with

Optimized
Treatment

The power of big genomic data

14

C Van Hout, et al. (2019) Whole exome sequencing and
characterization of coding variation in 49,960 individuals in the UK

Biobank. bioRxiv.

Het pLOF carrier counts by gene
with increasing sample size• Identifying carriers of rare, putative

loss-of-function (pLOF) variants
across all genes requires large
sample sizes

• Homozygous pLOF carriers
(“human knockouts”) are even
more rare (~1k genes have >= 1
carrier in 50k samples)

• Detecting protective pLOF disease
associations requires many carriers
per gene

How do we analyze our data to gain
novel insights?

15#EntSAIS14

• Approach:

1. Sequence a large number of individuals from
many cohorts (>70 to date)

2. Obtain paired phenotypic data (e.g.
de-identified electronic medical records)

3. Run all-vs-all association tests between all
mutations and traits

4. Mine association results to extract actionable
insights

5. Design for scalability & automation

MM

Individuals

M
ut

at
io

ns

TM Tr
ai

ts

Individuals

AR

Mutation : Trait

Analytical
engine

Association Results

Mutation Matrix Trait Matrix

Desired goal

How do we analyze our data to gain
novel insights? It’s complicated.

16#EntSAIS14

MM

Individuals

M
ut

at
io

ns

TM Tr
ai

ts

Individuals

AR

Mutation : Trait

Analytical
engine

Association Results

Mutation Matrix Trait Matrix

Desired goalReality

MM

Individuals

M
ut

at
io

ns

TM

Traits

In
di

vi
du

al
s

txt txtpVCF

AR

R
es

ul
ts

 F
ile

s

Mutation : Trait

• Hard to scale: Data is decentralized,
assumes single node architecture

• Rigid tools: Data is organized in different
ways (e.g., not squared off, transposed,
custom representations and indexing)

• Hard to move to tertiary analyses: Asking
simple questions at scale requires
time-consuming data wrangling steps

txt

• Open-source toolkit for large-scale genomic analysis
• Built on Spark for biobank scale
• Query and use built-in commands with familiar languages using

Spark SQL
• Compatible with existing genomic tools and formats, as well as big

data and ML tools

17

Built-in functions
• Convert genotype probabilities to hard calls
• Normalize variants
• Liftover between reference assemblies
• Annotate variants
• Genome-wide association studies
• ...

18

Built-in functions
• Convert genotype probabilities to hard calls
• Normalize variants
• Liftover between reference assemblies
• Annotate variants
• Genome-wide association studies
• ...

19

GWAS pipeline

20

VCF DF QC’d
DataFrame

GWAS
hits

Phenotypes

Ancestry

GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot

21

spark.read.format("vcf") \

 .load(“genotypes.vcf”)

GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot

22

variant_df.selectExpr("*", \

 "expand_struct(call_summary_stats(genotypes))", \

 "expand_struct(hardy_weinberg(genotypes))") \

 .where((col("alleleFrequencies").getItem(0) >= \

 allele_freq_cutoff) & \

 (col("alleleFrequencies").getItem(0) <= \

 (1.0 - allele_freq_cutoff)) & \

 (col("pValueHwe") >= hwe_cutoff))

GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot

23

qc_df.write \

 .format(“delta”) \

 .save(delta_path)

GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot

24

matrix.computeSVD(num_pcs)

GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot

25

genotypes.crossJoin(\

 phenotypeAndCovariates) \

 .selectExpr(

 “expand_struct(” \

 “linear_regression_gwas(” \

 “genotype_states(genotypes), ” \

 “phenotype_values, covariates))”)

GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot

26

gwas_results_rdf <- as.data.frame(gwas_results)

install.packages("qqman",

 `repos="http://cran.us.r-project.org") library(qqman)

png('/databricks/driver/manhattan.png')

manhattan(gwas_results_rdf)

GWAS
• Load variants
• Perform quality control
• Control for ancestry
• Run regression against trait
• Log Manhattan plot

27

mlflow.log_artifact(\

 '/databricks/driver/manhattan.png')

Migrating VCF ingestion to Glow

28#EntSAIS14

MM

Individuals

M
ut

at
io

ns

Mutation Matrix

Individuals

M
ut

at
io

ns

txt

pVCF

txtconvert
to txt

.

.

.

Custo
m

Spark
ETL

MM

Individuals

M
ut

at
io

ns

Mutation Matrix

Individuals

M
ut

at
io

ns

pVCF

Custo
m

Spark
ETL

Glow
VCF

Reader Delta
Table
(pVCF)

Old
Way

New Way

• With Glow, we no longer need a
custom VCF derivative for Spark
ingestion

• Greatly reduces ETL code
complexity/scalability:

• pVCF now available as Delta table

• Similar process for BGENs

Glow VCF Reader: Processing a 6Tb
pVCF with 2000 cores in 5 hours

29#EntSAIS14

• Parallelization for
“free” with Spark

• ~100% CPU
utilization

• ~12Tb RAM usage

• Splittable VCF read:
scales linearly with
cluster size

• Output has a schema!

- Columnar

- Can use Spark SQL,
Python, Scala, R, piping

Stroke Prediction with Real World Evidence

ETL Pipeline Parquet Tables Reproducible Results

RESULTS ● Prior to Azure Databricks: Static on-prem spark cluster shared with 80
people (MapR); hard to manage; frequent job failures

● On Azure Databricks: It just works!

9 deep learning
models for disease

prediction

250B records;
~10TB

Model Training

de-identified
claims data

31

Deep learning on cellular imaging

RESULTS ● Prior to Databricks: takes 1 week to process 700GB of whole slide
images, cannot scale to full internal dataset

● On Databricks: leverage Horovod runner to accelerate 1 week training
time down to 15 minutes

ETL from TIFF

Parallelize training
with Horovod Model for

segmentation

Use custom TF model
without modification

Agenda

11:00AM Opening Remarks

11:45AM Lunch

12:30PM Workshop #1: Accelerating Variant Calls with Apache Spark

1:30PM Workshop #2: Characterizing Genetic Variants with Spark SQL

2:30PM Workshop #3: Disease Risk Scoring with Machine Learning

Running Genomics Pipelines
on Databricks

UAP4G DNA-seq pipeline
• Pipeline is a “functionally equivalent” pipeline

• Supports common preprocessing steps (MarkDups, Qual Binning, BQSR),
with full read-level concordance

• Runs HaplotypeCaller for genotyping, can emit both VCF- and gVCF-style
output

• Can optionally run annotation (via SnpEff) on all called sites
• Accepts FASTQ, SAM/BAM/CRAM as input, can support

multi-flow cell library designs
• Defaults to emit data in Parquet/Delta, but can save back to VCF
• Is a “zero-setup” pipeline

Pipeline Architecture
MultiSamplePipeline

pipelineStages

Align sample=normal

Load
Reads

Align

Mark
Dups BQSR Bin

Qualities
Save

Reads
BWA
via
JNI

CallVariants

Shard
by locus

Load
Reads

Save
Variants

HC

Compare/contrast vs. GATK4
• OSS GATK4 Spark-based variant calling pipeline is in beta:

• Significant concordance issues in Spark HaplotypeCaller
• Significant performance issues in Spark BQSR

• Differences relative to GATK4:
• Use ADAM’s BQSR and duplicate marking implementations
• Use highly optimized custom SQL transformer for quality score binning
• Use custom parallelization of HaplotypeCaller

• Custom sharding of HaplotypeCaller regions achieves full
concordance with GATK4 single-node

• Additionally, use custom memory management strategy to
allow use of compute-optimized instances

Alignment pipeline

• Can load reads from SAM/BAM/CRAM/FASTQ
• Executes GATK BWA JNI bindings from within Spark to

parallelize alignment
• Custom preprocessing stages are >3x faster than GATK4 stages
• Reads are saved to Parquet and can be saved to BAM as well

Align sample=normal

Load
Reads

Align

Mark
Dups BQSR Bin

Qualities
Save

Reads
BWA
via
JNI

Preprocessing stages pipeline
• Custom implementation, based on ADAM MarkDups (which

is based on Picard MarkDups), ~6x faster than GATK
• 100% concordant with Picard, with support for chimeras

Mark
Dups

BQSR

Bin
Qualities

• Leverages ADAM’s BQSR implementation
• >99% concordant with GATK3, >2x faster

• Custom Spark SQL implementation, effectively free

Variant calling pipeline
• Complete rewrite of parallelization

infrastructure in GATK4 OSS:
• Achieves full concordance on a

locus-by-locus basis for HaplotypeCaller/M2
• Achieves a 2x performance improvement

with scalability to 1000’s of cores
• Leverages direct reuse of core

HaplotypeCaller/M2 algorithms
• Saves to both Parquet and VCF

CallVariants

Shard
by locus

Load
Reads

Save
Variants

HC

Benchmarks
Platform Coverage Reference

Confidence
Mode

Runtime

Databricks 30x VCF 24m29s

Databricks 30x GVCF 39m23s

Edico 30x VCF 1h27m

Edico 30x GVCF 2h29m

• Scale out to 300x coverage WGS = 2.6hrs at a compute cost of
$65

• Compare to GATK4 Spark pipeline at >4hrs, >$15
• Compare to GATK4 single node at >30hrs, ~$5 for VCF

Agenda

11:00AM Opening Remarks

11:45AM Lunch

12:30PM Workshop #1: Accelerating Variant Calls with Apache Spark

1:30PM Workshop #2: Characterizing Genetic Variants with Spark SQL

2:30PM Workshop #3: Disease Risk Scoring with Machine Learning

GWAS on Spark

GWAS Workflow

VCF

BGEN

DELTA

✓ QC
✓ GWAS
✓ Parallelize legacy tools

Scalable Tertiary
Analytics

Dashboarding

Real-time
visualizations

Machine
Learning

DELTA

TSV

• Ingest VCF/BGEN and GWAS summary statistics into Delta
• Run QC and GWAS on Delta tables through either R or Python
• GWAS summary statistics in Delta support interactive query for

exploration/dashboarding

Agenda

11:00AM Opening Remarks

11:45AM Lunch

12:30PM Workshop #1: Accelerating Variant Calls with Apache Spark

1:30PM Workshop #2: Characterizing Genetic Variants with Spark SQL

2:30PM Workshop #3: Disease Risk Scoring with Machine Learning

ML on Gene Expression

ML Lifecycle and Challenges

Delta

Tuning Model Mgmt

Raw Data ETL TrainFeaturize Score/Serve
Batch + Realtime

Monitor
Alert, Debug

Deploy

AutoML,
Hyper-p. search

Experiment
Tracking

Remote Cloud
Execution

Project Mgmt
(scale teams)

Model
Exchange

Data
Drift

Model
Drift

Orchestration
(Airflow, Jobs)

A/B
Testing

CI/CD/Jenkins
push to prod

Feature
Repository

Lifecycle
mgmt.

RetrainUpdate FeaturesProduction Logs

Zoo of Ecosystem Frameworks

Collaboration Scale Governance

An open source platform for the
machine learning lifecycle

MLflow Components

Standard packaging format for reproducible ML
runs

• Folder of code + data files with a “MLproject” description
file

Tracking

Record and query
experiments: code,
data, config, results

Projects

Packaging format
for reproducible runs
on any platform

Models

General model format
that supports diverse
deployment tools

Notebooks

Local Apps

Cloud Jobs

Tracking Server

UI

API

Python or
REST API

Project Spec

Code DataConfig

Local Execution

Remote Execution

Model Format

Flavor 2Flavor 1

Run Sources

Inference Code

Batch & Stream Scoring

Cloud Serving Tools
Simple model flavors
usable by many tools

Questions?

