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Cell Hashing



The term “cell hashing” originates from 
computer science

• A hash is a function that converts one value to another.

• Hashing data is common practice in computer science.

• “Cell Hashing” is based on the concept of using hash functions 
to index datasets with specific features.

• Hashtags define a “lookup table” that assign each multiplexed 
cell to its original sample (e.g, KO vs WT or STIM vs CONT) by 
converting the detection of cell surface proteins into a 
sequenceable readout.

• Cell hashing enables “super-loading” commercial droplet-based 
systems (significantly higher cell concentration than usual).

Stoeckius et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome biology. 2018 Dec;19(1):224.

Cell Hashing uses oligo-tagged antibodies against highly 
expressed surface proteins to place a “sample barcode” on 

each single cell, enabling different samples to be 
multiplexed together and run in a single experiment.



Cell Hashing with barcoded antibodies

• Multiplexing mitigates batch effects that can 
mask the biological signal in the integrated 
analysis of multiple scRNA-seq experiments.

• Multiplexing achieves increased experimental 
throughput while reliably identifying multiplets 
(expression profiles corresponding to more 
than one cell).

• Multiplets are expected to generate higher 
complexity libraries (more UMIs detected) 
compared to singlets. 

• The strength of this signal is not always 
sufficient for unambiguous multiplet 
identification.

Cell hashtags allow for robust sample multiplexing, 
confident multiplet identification, and discrimination 

of low-quality cells from ambient RNA.



Doublets/multiplets are present in single cell data

• scRNA-seq technologies co-encapsulate cells and barcoded primers in a small 
reaction volume (droplets or wells).

• mRNA molecules in each cell have unique DNA barcodes. 

• Multiplets arise when two or more cells are captured within the same reaction, 
generating a hybrid transcriptome (per barcode).

• Multiplets can impact downstream analysis of scRNA-seq data (detecting 
intermediate cell states not actually present in the samples before sequencing).

Cell Hashing enables robust identification of 
doublets originating from multiple samples.

Wolock et al. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell systems. 2019 Apr 24;8(4):281-91.
Stoeckius et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome biology. 2018 Dec;19(1):224.



Demultiplexing and doublet detection using 
k-medoids clustering

• Cells with background expression for each HTO are called 
“negative cells”, remaining cells have positive signal for at least 
one HTO.

• Use k-medoid clustering on the normalized HTO values to 
separate cells into k (# of samples)+1 clusters.  

• Each cluster enriched for normalized expression of one HTO.

• Remaining cluster highly enriched for cells with low expression of 
all HTOs (negative cells).

Barcodes positive for only one HTO 
are classified as singlets. 

K-medoids clustering finds k data points (medoids) such that the total cost 
(distance) between each data point and the closest medoid is minimal.

Barcodes positive for two or more 
HTOs classified as multiplets 

(assigned sample IDs based on the 
top expressed HTOs). Barcodes negative for all eight HTOs 

classified as “negative.”

• After initial clustering, the following is repeated independently 
for each HTO.

– Identify the k-medoids cluster with the highest average HTO 
expression (excluded these cells from following steps). 

– Fit a negative binomial distribution to remaining HTO values 
(after removing the highest 0.5% values as potential 
outliers). 

– Calculate the q = 0.99 (or lower) quantile of the fitted 
distribution and threshold each cell in the dataset based on 
this HTO-specific value.



Seurat workflow for demultiplexing and doublet 
detection

(HTO) count matrix generated with CITE-seq-Count that processes the fastq files 
https://github.com/Hoohm/CITE-seq-Count

# Load in the UMI/feature matrix from Seurat
pbmc.umis <- readRDS("../data/pbmc_umi_mtx.rds")

#Load in the hashtag (HTO) count matrix 
pbmc.htos <- readRDS("../data/pbmc_hto_mtx.rds")

# Select cell barcodes detected by both RNA and HTO
joint.bcs <- intersect(colnames(pbmc.umis), colnames(pbmc.htos))

# Subset RNA and HTO counts by joint cell barcodes
pbmc.umis <- pbmc.umis[, joint.bcs]

pbmc.htos <- as.matrix(pbmc.htos[, joint.bcs])



Seurat workflow for multiplexing and 
doublet detection

The HTODemux threshold for classification of cells can be adjusted:.
https://rdrr.io/github/satijalab/seurat/man/HTODemux.html

Clara uses a k-medoid clustering function for 
large sets (k-means used for smaller sets)

# Setup Seurat object
pbmc.hashtag <- CreateSeuratObject(counts = pbmc.umis)

# Normalize RNA data using log-normalization
pbmc.hashtag <- NormalizeData(pbmc.hashtag)

# Add HTO data as a new assay independent from RNA
pbmc.hashtag[["HTO"]] <- CreateAssayObject(counts = pbmc.htos)

# Normalize HTO data using centered log-ratio (CLR) transformation, add as “HTO” assay
pbmc.hashtag <- NormalizeData(pbmc.hashtag, assay = "HTO", normalization.method = "CLR”)

# Demultiplex cells based on their HTO enrichment
#Seurat function HTODemux() assigns single cells back to their sample origins.

pbmc.hashtag <- HTODemux(pbmc.hashtag, assay = "HTO", kfunc = "clara”, 
positive.quantile = 0.99)

CLR transformation:
Counts divided by the 
geometric mean.

xi= count of an HTO in cell i

n=total # cells



Results of demultiplexing & doublet detection

Stoeckius et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome biology. 2018 Dec;19(1):224.

• HTOHeatmap in Seurat draws a heatmap of hashtag oligo 
signals across singlets/doublets/negative cells. 

• HTOHeatmap(pbmc.hashtag, assay = "HTO", ncells = 5000)

• Subsampling cells to generate heatmaps quickly with ncells.

HTO-A and HTO-B signals 
are mutually exclusive 

between A and B singlets.

Remaining singlets are at 
the bottom left of the 

HTO-A/B expression space.

Ridgeline plots



Visualization of demultiplexing & doublet 
detection results

Stoeckius et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome biology. 2018 Dec;19(1):224.

• Cells mapped to HTOs A-H form distinct clusters on the t-
SNE based on their overall expression profiles.

• Remaining clusters of doublets are clearly separated 
from clusters formed by singlets.

• Distribution of number of UMIs shift up in multiplets and 
down in the negative group.

• Wide UMI range in multiplets shows the difficulty of 
identifying/predicting multiplets using only a UMI cut-off 
(conventional QC filtering).

• Clustering of singlets show seven distinct hematopoietic 
subpopulations interspersed across all 8 donors (HTO-A 
through HTO-H)



Validation of demultiplexing & doublet using 
demuxlet (genotype driven sample fingerprinting)

Stoeckius et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome biology. 2018 Dec;19(1):224.

• Strong concordance between HTO-based 
classifications of HTODemux and 
genotype-based classifications (demuxlet).

• Comparison made between fraction of cell 
barcodes in agreement between the two 
classifications.

• Number of reads supporting the highest 
expressed HTO distributed the same way 
in discordant & concordant cells

• Discordant cells have lower UMI counts 
(below minumum depth for demuxlet for 
genotype based classification).

• Barcodes classified as doublets by both 
techniques have positive shift in their UMI 
distribution (increased library complexity).

• Demuxlet has lower doublet confidence 
for discordant doublet/singlet calls.



Wrapping-up

• Cell hashing with barcoded antibodies

• Demultiplexing and doublet detection

• Seurat workflow for integrating RNA and HTO 
assays, demultiplexing and doublet detection

• Visualization of results with heatmaps, scatter, 
violin and ridgeline plots

• Validation of cell hashing results using demuxlet
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