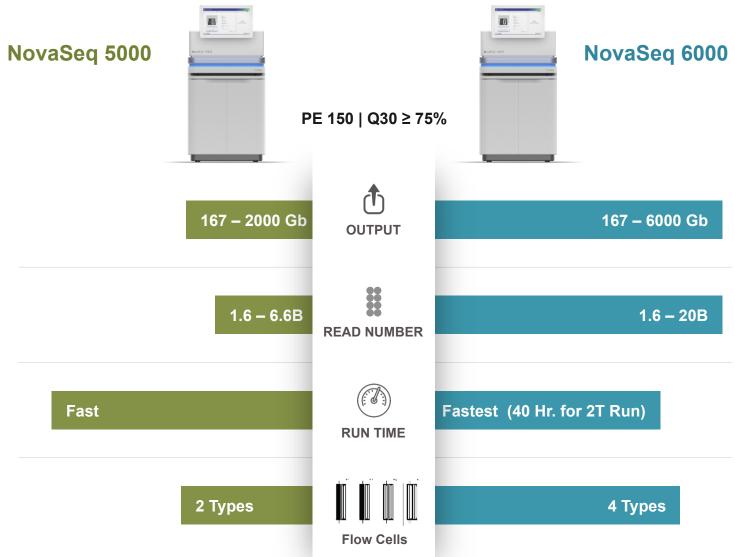

Sequencing Power for Every Scale

Systems for every application. For every lab.



NovaSeq System Configurations

NovaSeq Series

Any Genome. Any Method. Any Scale.

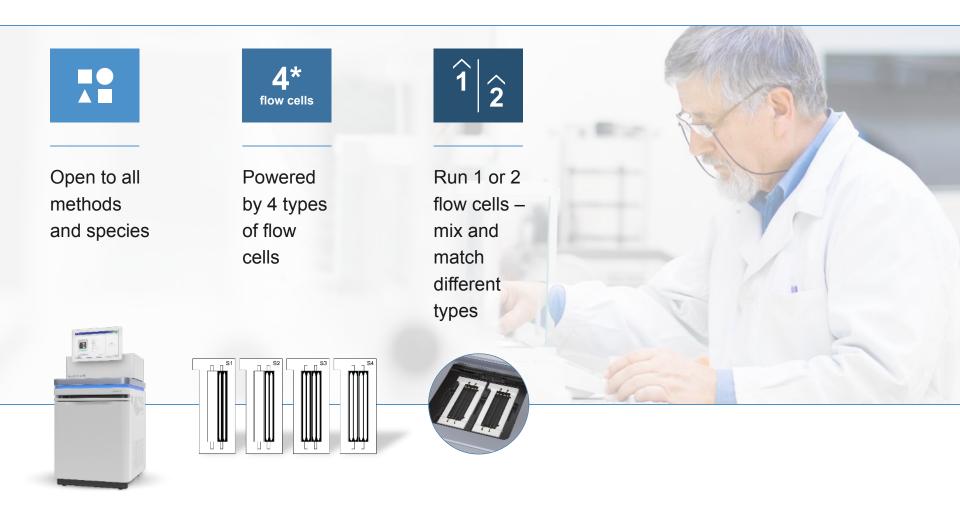
Scalable Throughput

Complete studies faster and more economically

Run times: <1 to ~2.5d based on system, FC and read length

Configure output to match your application and study size

Single flow cell output (1 or 2 can run simultaneously)


					Output (Gb) per Flow Cell		
	Flow Cell Type	NovaSeq 5000	NovaSeq 6000	Reads per Flow Cell	100 cycles	200 cycles	300 cycles
	S4*		•	10B			3000
	S3*		•	6.6B			2000
_	S2	•	•	3.3 B	333	666	1000
	S1*	•	•	1.6 B	167	333	500

*S1, S2 and S4 flow cells not currently released

Highly Flexible

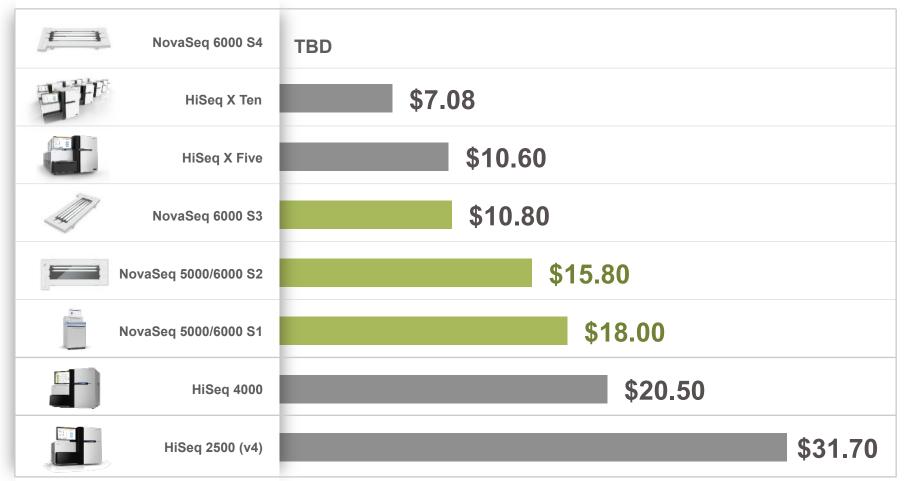
Configurable to support the broadest range of applications

Streamlined Operation

Increase lab efficiency with a simplified workflow

Cartridge
based reagents
reduce hands
on time and
prevent
misloading

RFID encoded consumables provide traceability and ensure compatibility


Onboard cluster gen reduces hands on time and run variability

NovaSeq Series

Compelling price per data point enables highly-powered studies

List Price per Gb

HiSeq 2500 based on 250 cycle kit, all others based on 300 cycle kit

Key Technology Enablers

Redesigned from the ground up

High Density Flow Cell

Higher density flow cell format (624nm pitch)

New surface chemistry

Increased signal:noise via smaller, brighter clusters

New superior imaging

4x faster scanning

Diffractionlimited performance

Data management

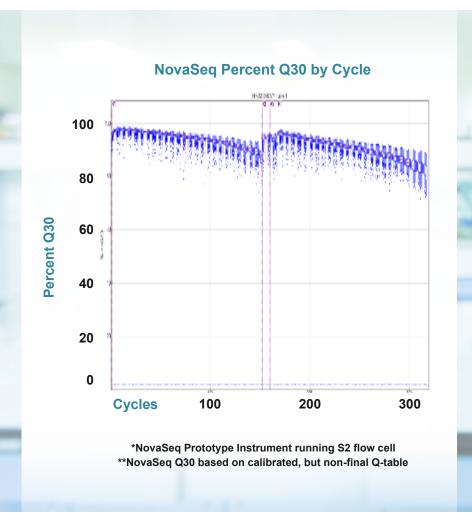
8x increase in primary analysis speed

Data footprint reduced by 25%

Reformulated chemistry

Reengineered nucleotide dyes

Optimization of 8 different subformulations


NovaSeq Performance and Data Quality

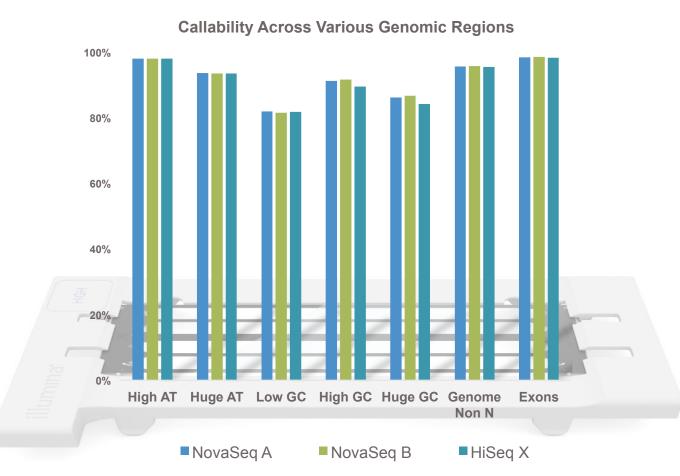
Initial Data Quality

- Data quality as good as HiSeq with initial release significant opportunity for further improvements
 - Major R&D focus on further optimizing 2-channel chemistry with patterned flow cells
- High data quality enabled by superior optics and reformulated chemistry
 - Diffraction-limited performance optics
 - New surface chemistry, dye-sets and enzymes

NovaSeq Performance

Platform	Read Length	Output	Percent Q30**
NovaSeq*	2 x 151	>2000G	92.3
NovaSeq*	2 x 151	>2000G	88.5
HiSeq X	2 x 151	>2000G	82.8
HiSeq v4	2 x 126	~1000G	85.7

Human Genome Performance on NovaSeq


Genome build quality highly concordant with HiSeq

	NovaSeq (n4)	HiSeq X (n2)	HiSeq v4 (n2)	NextSeq (n2)
Genome Coverage (x)	30.6	30.5	29.8	30.1
Autosome Coverage	95%	95%	91%	94%
Autosome Callability	95%	95%	93%	93%
Autosome Exon Callability	98%	98%	91%	95%
SNP Precision	100%	100%	100%	100%
SNP Recall	97%	97%	96%	96%
Indel Precision	97%	98%	97%	96%
Indel Recall	95%	95%	88%	88%

Human Genome Performance on NovaSeq

Genome build quality meets or exceeds HiSeq

For Research Use Only. Not for use in diagnostic procedures.

NovaSeq Configurations and Key Methods

Configurable to support broad range of methods and accommodate rapid turn around

S1	S2	S3	S4
•	•		
•	•		
•	•	•	1125
•	•	•	
•	•	•	•
•	•	•	•
Ø	•	Ø	Ø
	<!--</td--><td></td><td></td>		

NovaSeq 5000 & 6000

NovaSeq 6000

BaseSpace®

Workflow | Storage | Analysis | Sharing

Third Party Applications

>4,000 Instruments

>30,000 Users

>240,000 Runs

> >60 Apps

BaseSpace Labs Apps

Illumina Core

Metagenomics

MethylSeq

Amplicon DS

RNA Express

TruSeq Phasing

Analysis

BWA & Isaac Enrichment

Small RNA

BWA & Isaac WGS

Cufflinks Assembly & DE

TopHat Alignment

Tumor Normal

TruSeq Amplicon

DNAStar

GENIUS Metagenomics: Know Now

Melanoma Profiler

OncoMD

OncoMD

DeepChek-HBV,

HCV, HIV

Genomatix Pathway System (GePS)

PEDANT

RNA-Seq

Translator

Third-Party

EDGC

Annotator

Genome Profiler

iPathwayGuide

Elastic Genome

Browser

GeneTalk Variant

Analyzer

LoFreq Rare

Variant Caller

Novoalign Generic MyFLq DNA pipeline

BaseSpace Labs

TruSeq Long-

Read Assembly

FASTQ Toolkit

FASTQC

Prokka

Prokka Genome

Annotation

TruSeq Targeted

RNA

Kraken Metagenomics

SRA Import

NextBio Annotates RNA-Sea

SRA

Submission

VariantStudio

NextBio Transporter

SRST2

Protein Expression

The Broad's IGV

PathSEQ Virome

Protein Expression Workflow

Variant Interpreter

PEDANT Sequence-Analyzer

Phy-Mer

Assembler

Protein Expression Assembler

SPAdes Genome

SWATHAtlas Ion Library Generator

PicardSpace

Variant Calling Assessment Tool

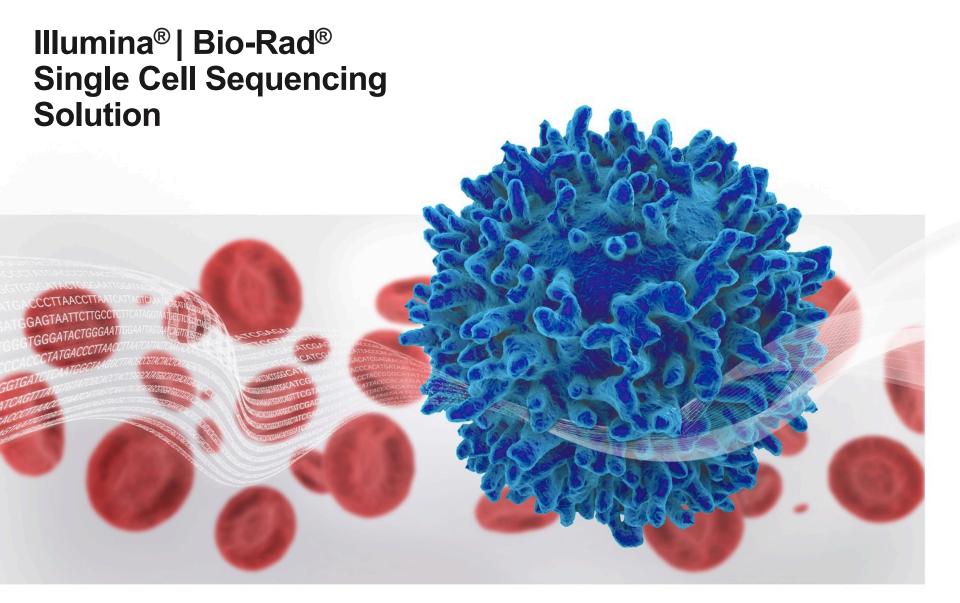
Velvet de novo Assembly

Tiers and Introductory Pricing

		_	
	Basic	Professional	Enterprise
Available	Now!	February 10 th , 2016	March 30 th , 2016
Features	 Run set up, monitoring, data streaming, storage & sharing, push-button data analytics with 70+ Apps Test Drive Sequencing Hub Maximum 1TB storage (limit imposed from Feb 10th, 2016) 250 iCredits for Apps (available March 30th, 2016) Additional Storage and compute cannot be purchased 	 All Basic features Purchase additional storage and compute Multiple user access to pooled resources 8 hours of professional services support 	 Private domain & single signon Access Control 24 hours of professional services support Audit Trail & PHI Security/ Privacy compliance
Target Markets	All customers	Routine testing labsSmall research core labs	 Routine Testing Labs needing HIPAA Large research core lab
Cost / Year	Free	\$4,995	1% of connected instrument value (\$30K minimum)

Prices in USD. Regional prices may vary

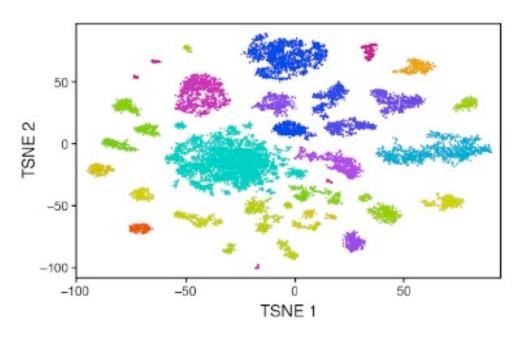
Cloud Storage and Compute Introductory Pricing


	Professional	Enterprise	
Available	February 10 th , 2016	March 30 th , 2016	
Features	 1TB for free (one time) Pre-paid yearly storage subscriptions Available as 1TB, 5TB, 10TB, 50TB Purchased via quote No cancellations or refunds 	 Compute hours monitored via iCredits 250 iCredits free (one time) Pre-purchase Purchased via quote No cancellations or refund after 30 days 	
Cost	after 30 days \$360/TB/yr**	\$1 / iCredit ^{&}	

Prices in USD. Regional prices may vary

^{**} Reflects AWS storage / compute prices

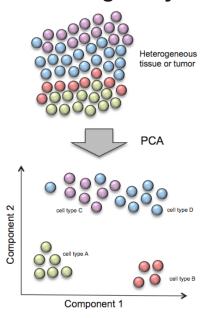
[&]amp; Each compute hour will cost ~1-2 iCredits depending on application

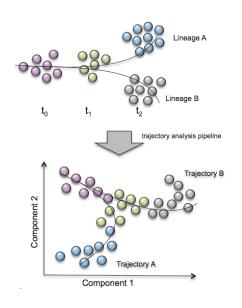


For Research Use Only. Not for use in diagnostic procedures.

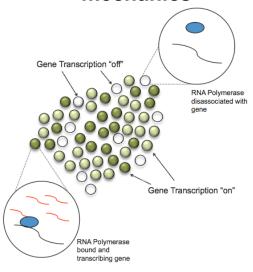
The importance of single cell sequencing

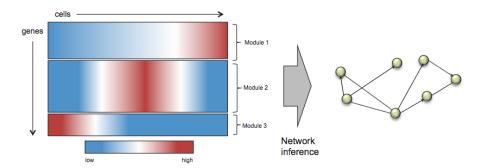
Macosko et al, Cell: May, 2-15

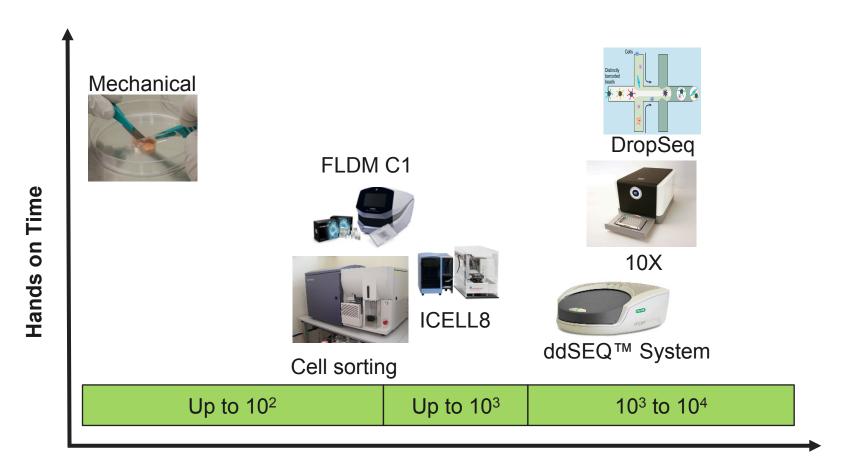

"The single cell 'omics revolution is firmly underway. Nearly every expression study worth doing will be worth doing at single cell level..." Ewan Birney, EMBL



Why Perform Single Cell Analysis?

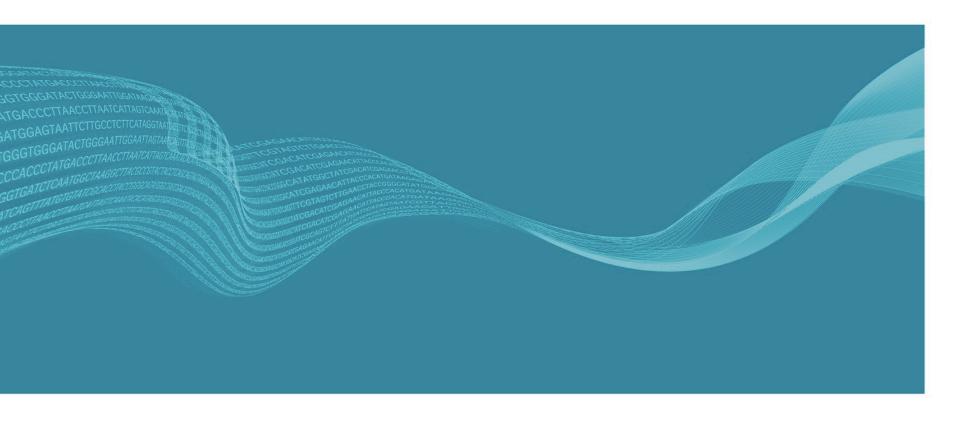

1. Assess cell-to-cell heterogeneity


2. Map cell trajectories

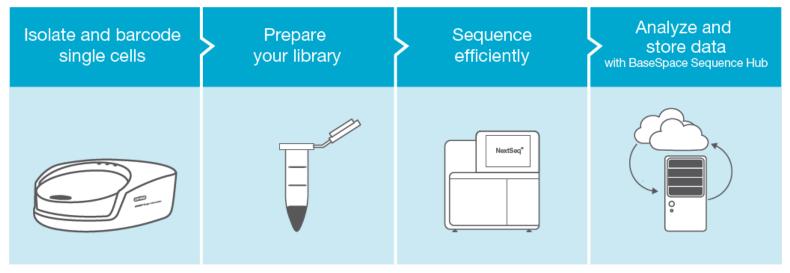

3. Dissect transcriptional mechanics

4. Infer gene regulatory networks

Single cell sample prep: Low vs High-Throughput



Cell Through-put

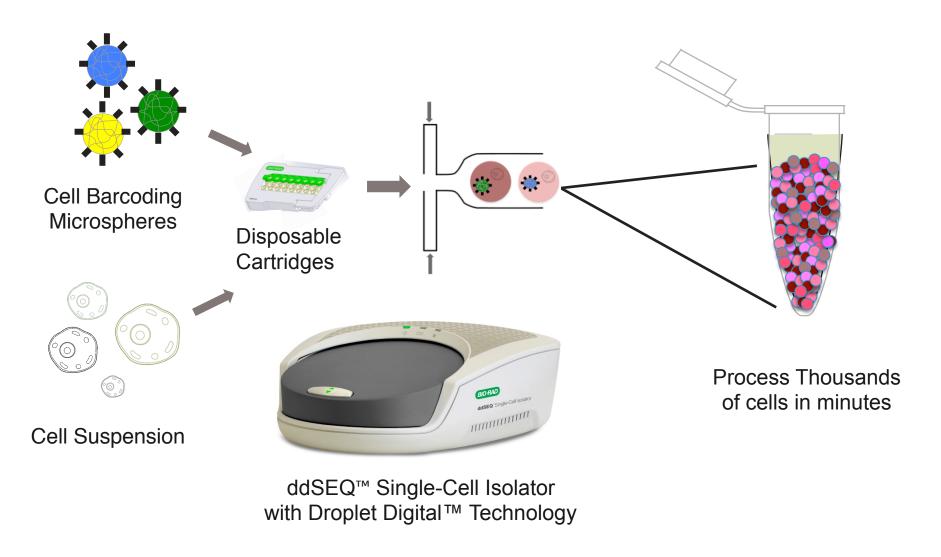

Illumina[®] | Bio-Rad[®] Single Cell Sequencing Solution

The Illumina | Bio-Rad Single Cell Sequencing Solution

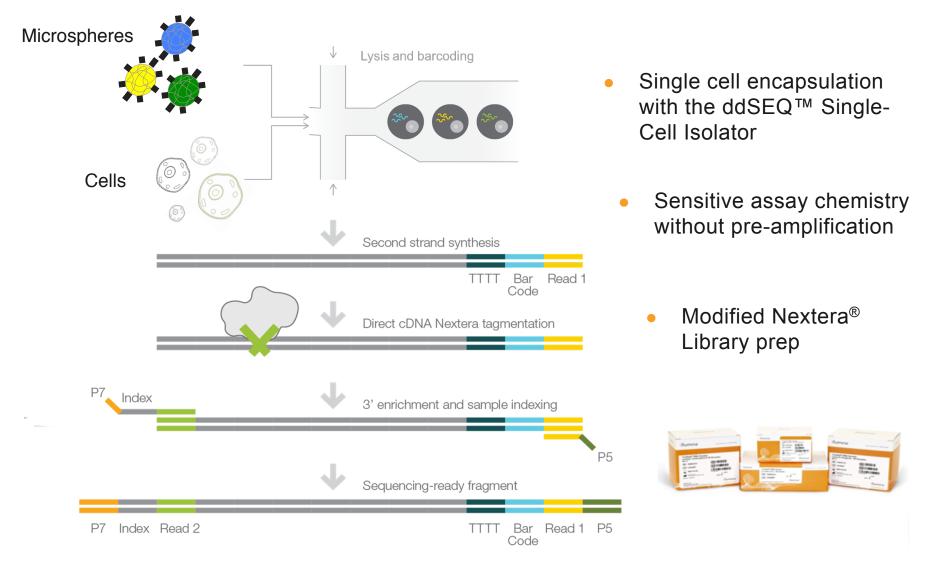
High-throughput single-cell sequencing workflow. Integrating the Bio-Rad industry-leading Droplet Digital partitioning technology with leading Illumina next-generation sequencing (NGS) technologies, Bio-Rad and Illumina will launch an isolation-to-analysis commercial solution that will enable high-throughput sequencing of thousands of individual cells quickly and cost effectively.

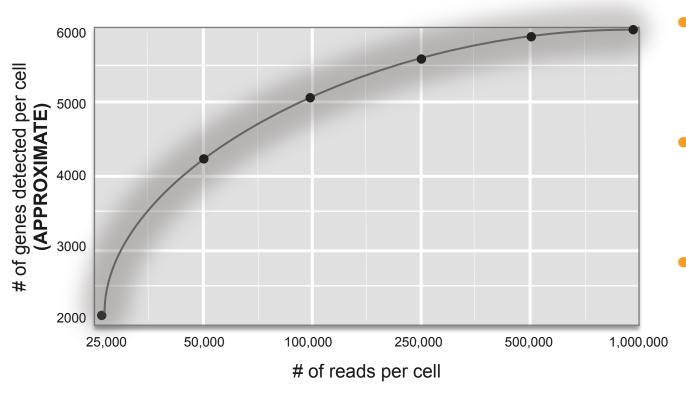
ddSEQ Single-Cell Isolator

NextSeq & HiSeq

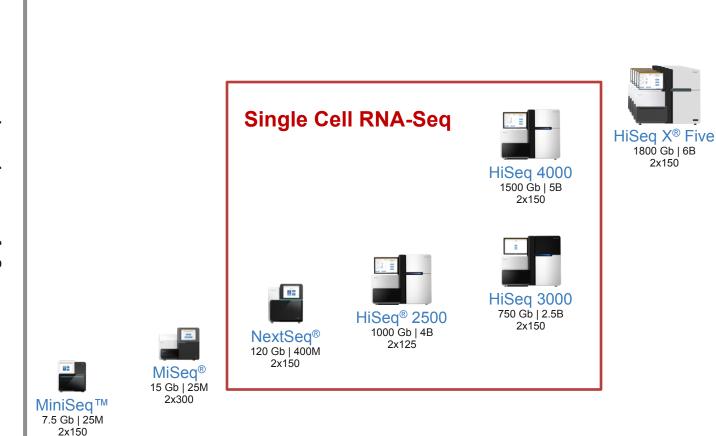

SureCell WTA 3' Library Prep Kit

Single Cell RNA Seq v1.0.0


Encapsulate Thousands of Cells in < 5 min

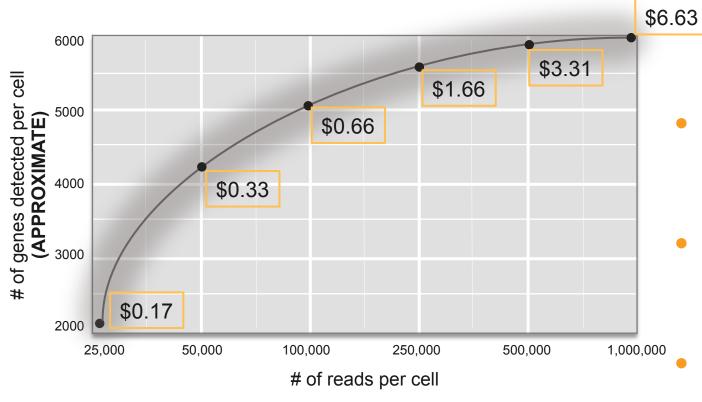

SureCell™ WTA 3' Library Prep Kit for the ddSEQ™ System

How much sequencing will I need?


- How many genes do I want to detect per cell?
- Am I looking for potentially rare cell types?
- Saturation of # detected genes requires more reads

Range depends on cell type and expression levels and also the biological question you're asking

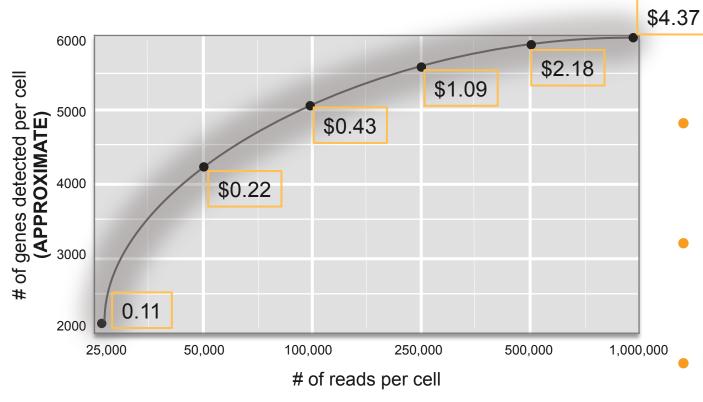
Sequencing Power for Every Scale



Decreasing price per GB

Sequencing cost per cell

Range depends on cell type and expression levels and also the biological question you're asking


NextSeq 500

- How many genes do I want to detect per cell?
- Am I looking for potentially rare cell types?
- Saturation of # detected genes requires more reads

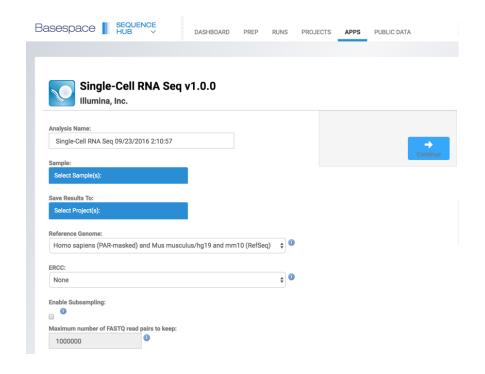
Sequencing cost per cell

Range depends on cell type and expression levels and also the biological question you're asking

HiSeq 3000

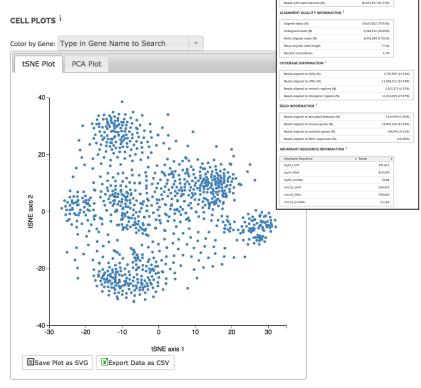
- How many genes do I want to detect per cell?
- Am I looking for potentially rare cell types?
- Saturation of #
 detected genes
 requires more
 reads

What about data analysis?



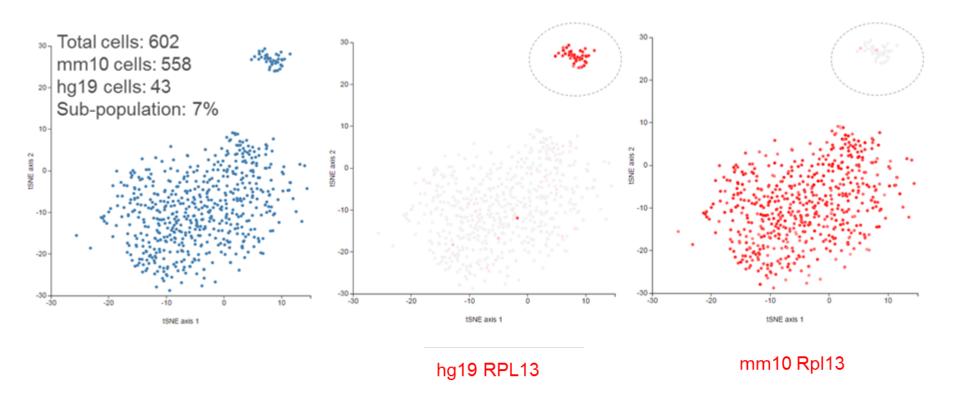
BaseSpace® Single-Cell RNA App

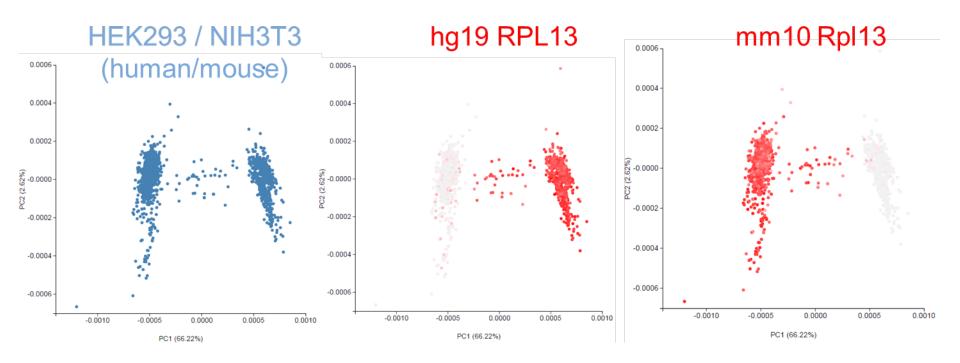
- Simple analysis setup for samples across multiple sequencing runs
 - Up to 96 samples per analysis
- Easily choose analysis parameters
 - Reference genome
 - ERCC spike-ins
 - Subsampling for QC
- Rapid alignment, cell and gene counting, and filtering

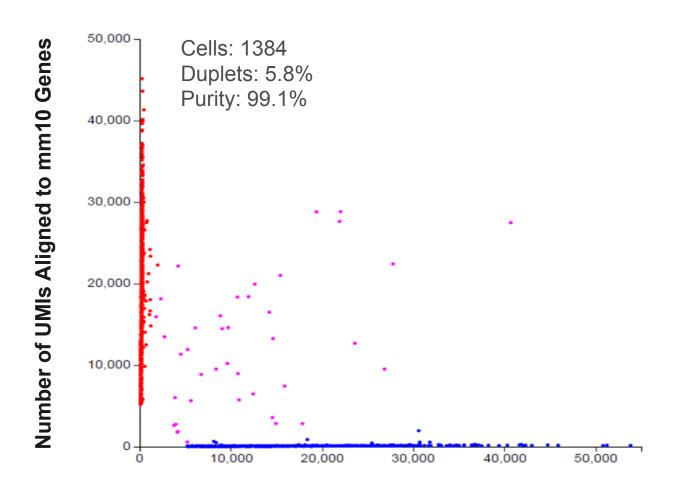


BaseSpace® Single-Cell RNA App

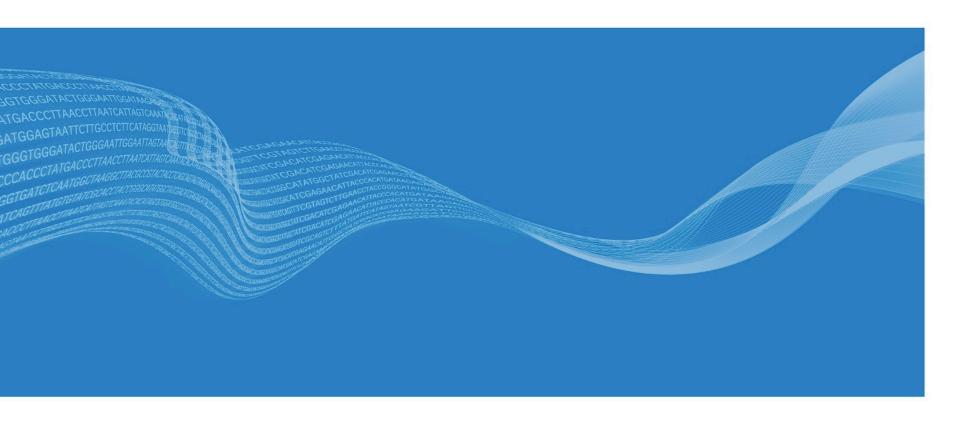
- Per-sample reports available inbrowser and as PDF
 - Alignment quality
 - Coverage information
 - Abundant sequences
- Perform global PCA and tSNE clustering
- Cell-cycle heatmap
- All output files available for download, or as input into downstream applications
 - Includes cell-gene expression table


CELL CYCLE HEATMAP I


T-SNE analysis identifies a sub-population in a heterogeneous cell mixture mouse/human

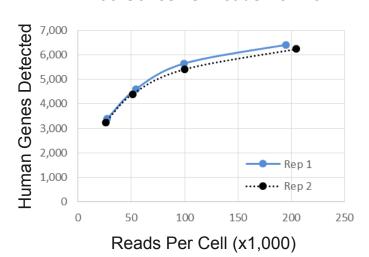

PCA clustering of 1:1 mixture of 1,400 mouse and human cells detects distinct population

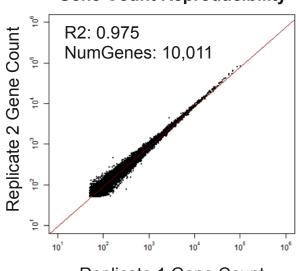
Two-species cell mixture (HEK293/NIH3T3) demonstrates low crosstalk and high purity



Number of UMIs Aligned to hg19 Genes

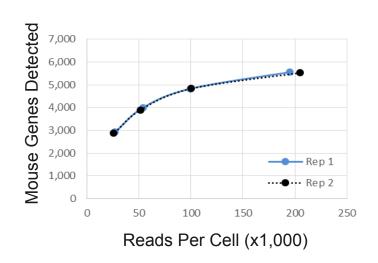
System performance on reference cells



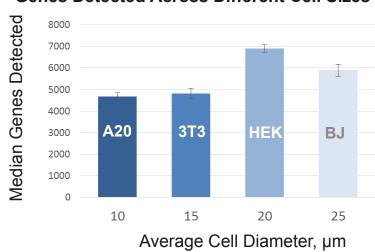


Sensitivity & Reproducibility Across Cell Lines

HEK293 Genes vs. Reads Per Cell

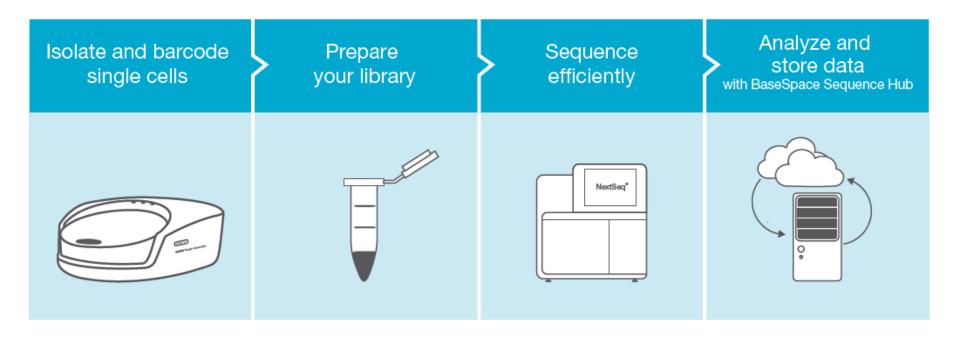


Gene Count Reproducibility



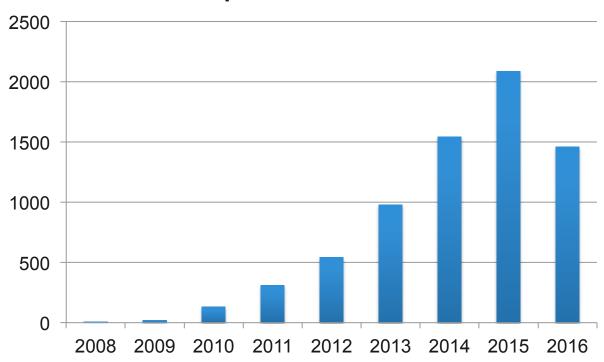
Replicate 1 Gene Count

NIH3T3 Genes vs. Reads Per Cell


Genes Detected Across Different Cell Sizes

The Illumina | Bio-Rad Single Cell Sequencing Solution

- 1. Isolation and barcoding of several thousand single cells in minutes
- 2. Affordable platform
- 3. Scalable to profile increasing number of cells in a cost-effective manner
- 4. Proven Illumina library prep with streamlined workflow
- 5. Single-Cell RNA-Seq BaseSpace® App available



RNA-Seq is still growing in popularity

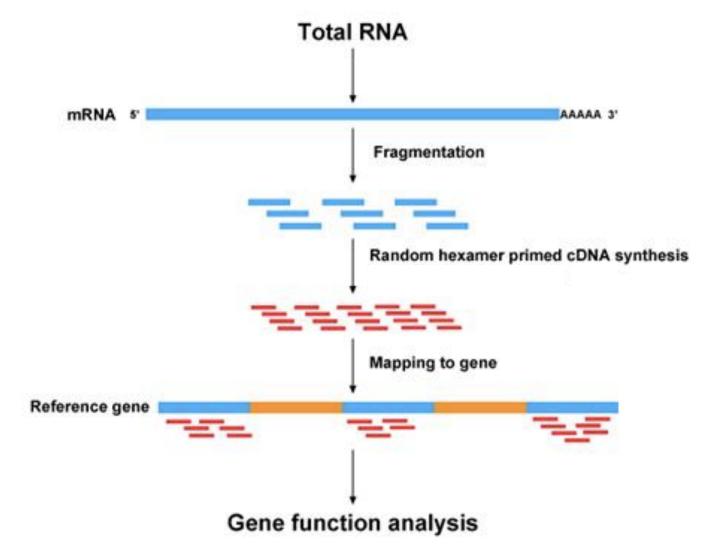
RNA-Seq Publications in PubMed

RNA-Seq is Impacting All Areas of Biological Research

Genomic Expression makes Red Herring "Top 100" for disprupting cancer care with RNA-Seq www.redherring.com June 2016

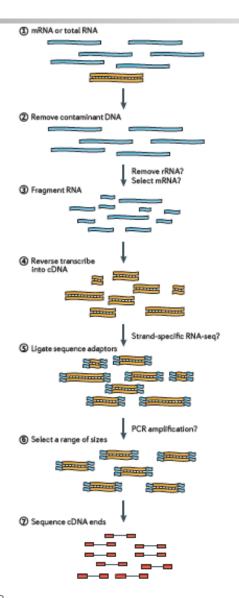
Using big data, scientists discover biomarkers that could help give cancer patients better survival estimates USLA Newsroom June 2017

RNA-Seq identifies novel myocardial gene expression
signatures of heart failure


Yu et al., Science Direct February 2015

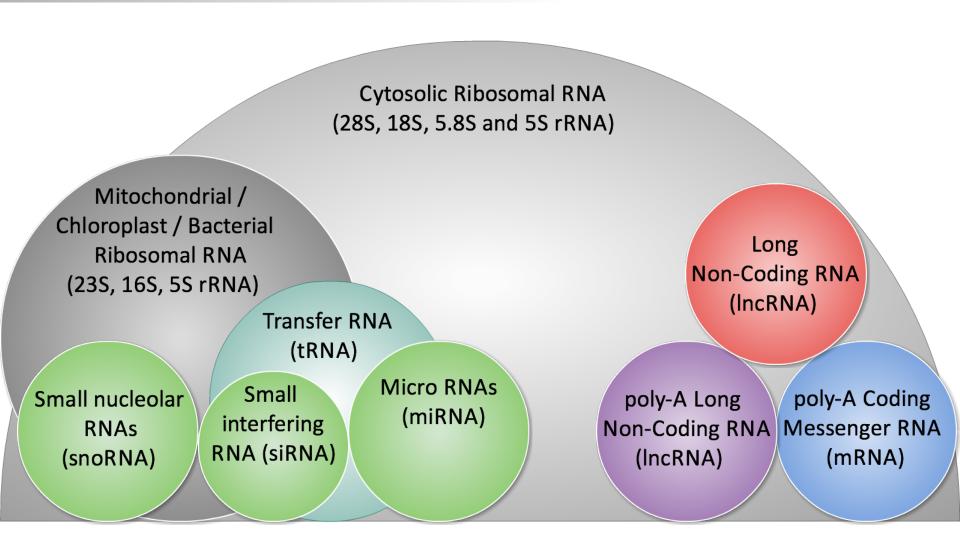
Single-cell RNA sequencing reveals human brain houses diverse populations of neurons

RNASeqBlog June 2016



How RNA-Seq Works

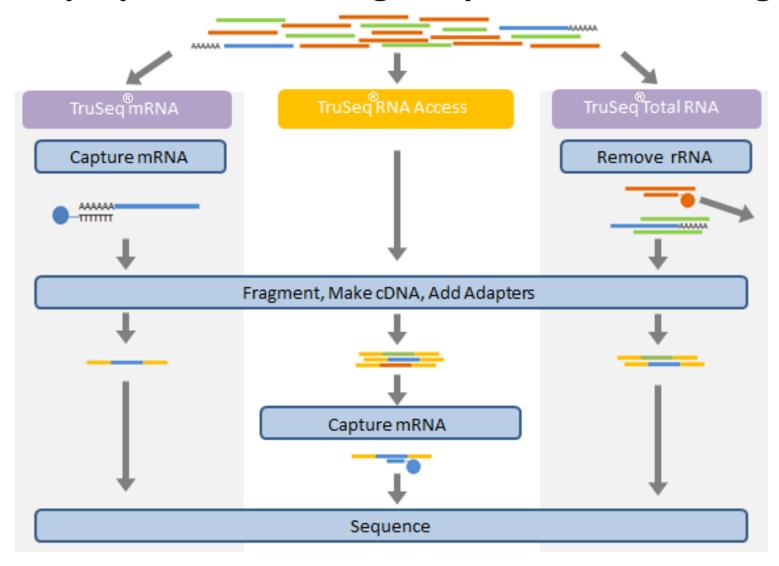
Considerations for RNA-Seq Library Preparation



- What is the integrity of the input RNA?
- What is the source of the RNA? (FFPE?)
- Which RNA Type is of interest (mRNA or Total RNA)
- How much Total RNA is available per Sample?
- Which RNA-Seq application is planned (counting, discovery)?

From: Martin, J. A., and Z. Wang, 2011 Next-generation transcriptome assembly. Nat Rev Genet **12:** 671-682.

Many different RNAs exist - Ribosomal RNA is most abundant RNA species – and least dynamic



Illumina's Suite of RNA Library Prep Solutions

Total RNA-Seq	mRNA-Seq/ (GEx Profiling	Targeted Profiling	miRNA Analysis
TruSeq Stranded Total RNA	TruSeq Stranded mRNA	TruSeq RNA Access	TruSeq Targeted RNA Expression	TruSeq small RNA
 Coding + ncRNA Transcript-level abundance Splicing Analysis Fusion Discovery FFPE compatible 	 Coding RNA Transcript-level abundance Splicing Analysis Fusion Discovery 	 Coding RNA Transcript-level abundance Splicing Analysis Fusion Discovery FFPE Compatible 	 10s-1,000s of targets Coding + ncRNA Transcript-level abundance Fusion Validation FFPE Compatible 	 miRNA abundance isomiR detection

RNA-Seq Experimental Design Depends on Your Target

Four Easy Steps to RNA-Seq Results

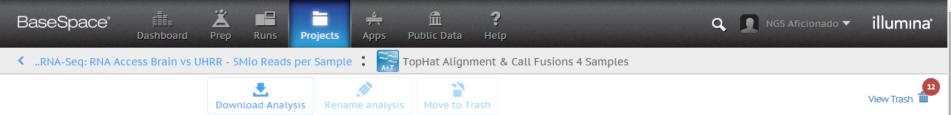
1. Set up/run TopHat

2. QC of TopHat results

 Filter out challenging samples as needed

3. Set up/run Cufflinks

- Name/select control group
- Name/select comparison group


4. Visualize Group 1: Group 2

GEX correlation

App Session Name:	TopHat Alignme	nt 03/15/2015 10:50:29	(1)	
Save Results To:	Select Project(s):		0	
	Workshop		×	
Samples:	Select Sample(s)	:	0	
		Stranded		
	Select All	<u>•</u>		
	UHR-Access-2-5M	•	×	
	Brain-Access-2-5M	•	×	
	UHR-Access-1-5M	●	×	
	Brain-Access-1-5M	•	×	
Reference Genome:	Homo sapiens/h	ng19 (RefSeq)		•
	0			
Options				
Call Fusions:	(i) ⊘			
Trim TruSeq Adapters:	•			

→ Inputs

Output Files

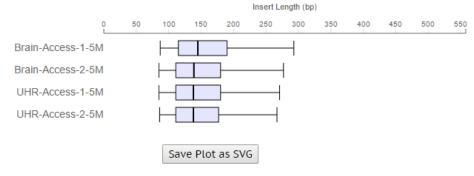
Analysis Reports

Summary

UHR-Access-1-5M

Brain-Access-1-5M

Brain-Access-2-5M


UHR-Access-2-5M

App Session TopHat Alignment & Call Fusions 4 Samples

Summary i

	Reads	Number of Reads	% Total Aligned	% Abundant	% Unaligned	Median CV Coverage Uniformity	% Stranded	
Brain- Access-1-5M	76/76	2,500,000	98.25%	3.75%	1.75%	1.03	98.21%	
Brain- Access-2-5M	76/76	2,500,000	98.30%	3.06%	1.70%	1.03	98.45%	contact
UHR-Access- 1-5M	76/76	2,500,000	98.32%	3.29%	1.68%	0.93	99.44%	et us
UHR-Access- 2-5M	76/76	2,500,000	98.21%	3.64%	1.79%	0.94	99.41%	

Insert Length Distribution i

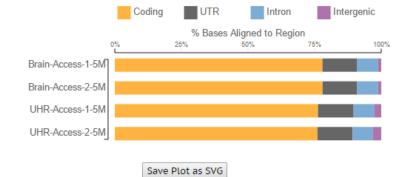
Alignment Distribution i

Q NGS Aficionado ▼ illumina

i Analysis Info

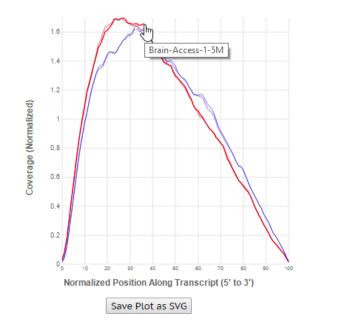
BaseSpace®

■ Inputs


Summary

UHR-Access-1-5M

Brain-Access-1-5M Brain-Access-2-5M


UHR-Access-2-5M

Alignment Distribution i

TopHat Alignment & Call Fusions 4 Samples

Transcript Coverage i

î Public Data Help

TopHat Alignment & Call Fusions 4 Samples

i Analysis Info

BaseSpace®

■ Inputs

Analysis Reports

Summary

UHR-Access-1-5M

Brain-Access-1-5M

Brain-Access-2-5M

UHR-Access-2-5M

Results for UHR-Access-1-5M

Primary Analysis Information i

	Read 1	Read 2
Read Length	76	76
Number of Reads	2,500,000	2,500,000
Bases (GB)	0.19	0.19
Q30 Bases (GB)	0.18	0.18

Insert Information i

Insert Length Mean	161.04
Insert Length S.D.	84.29
Duplicates (% Reads)	7.40%

Alignment Quality i

	Read 1	Read 2
Total Aligned Reads (% Reads)	99.00%	97.63%
Abundant Reads (% Reads)	3.30%	3.28%
Unaligned Reads (% Reads)	1.00%	2.37%
Reads with spliced alignment (% Aligned Reads)	36.53%	39.93%
Reads aligned at multiple loci (% Aligned Reads)	8.26%	8.26%

i Analysis Info

→ Inputs

Output Files

Analysis Reports

Summary

UHR-Access-1-5M

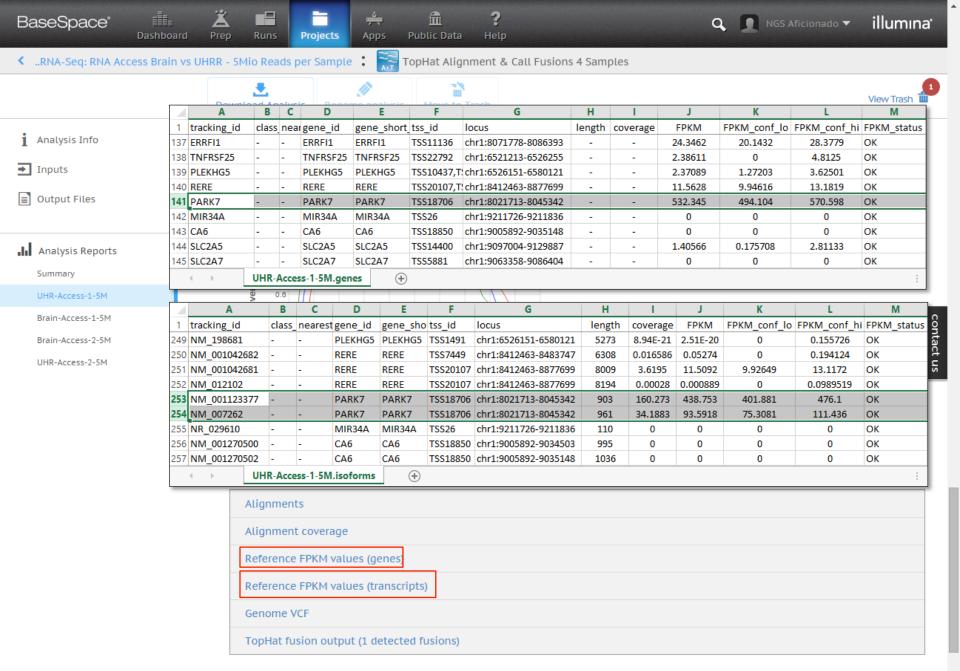
Brain-Access-1-5M

Brain-Access-2-5M

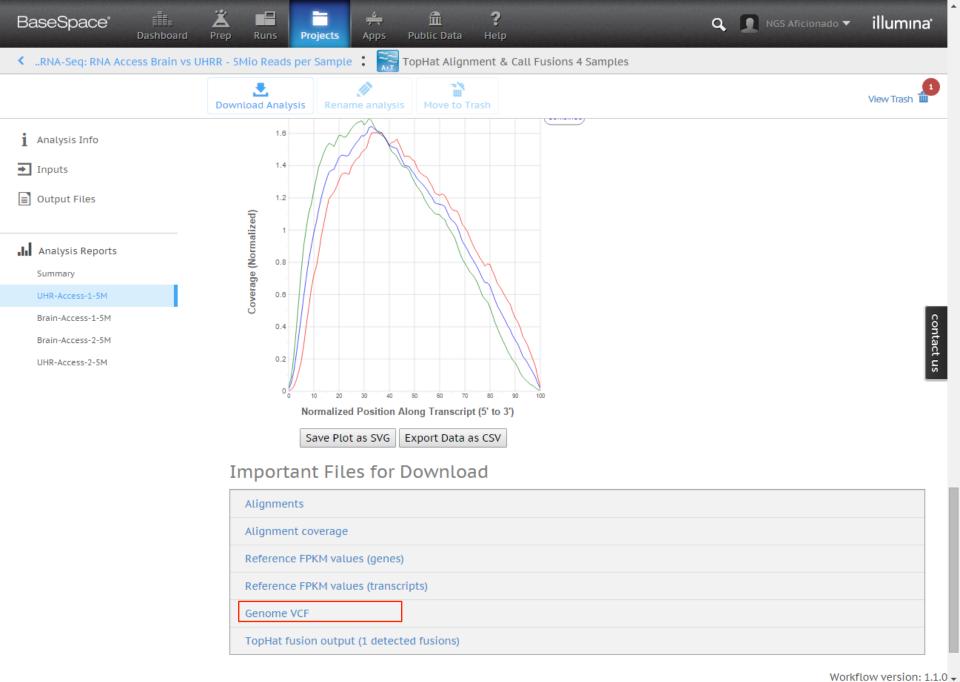
UHR-Access-2-5M

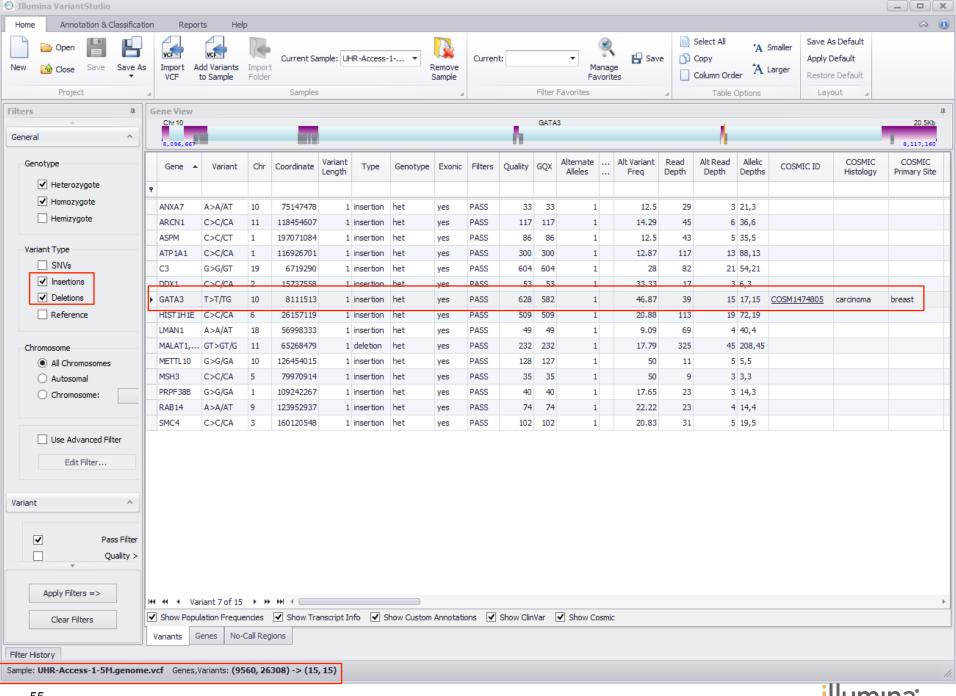
Coverage Uniformity i

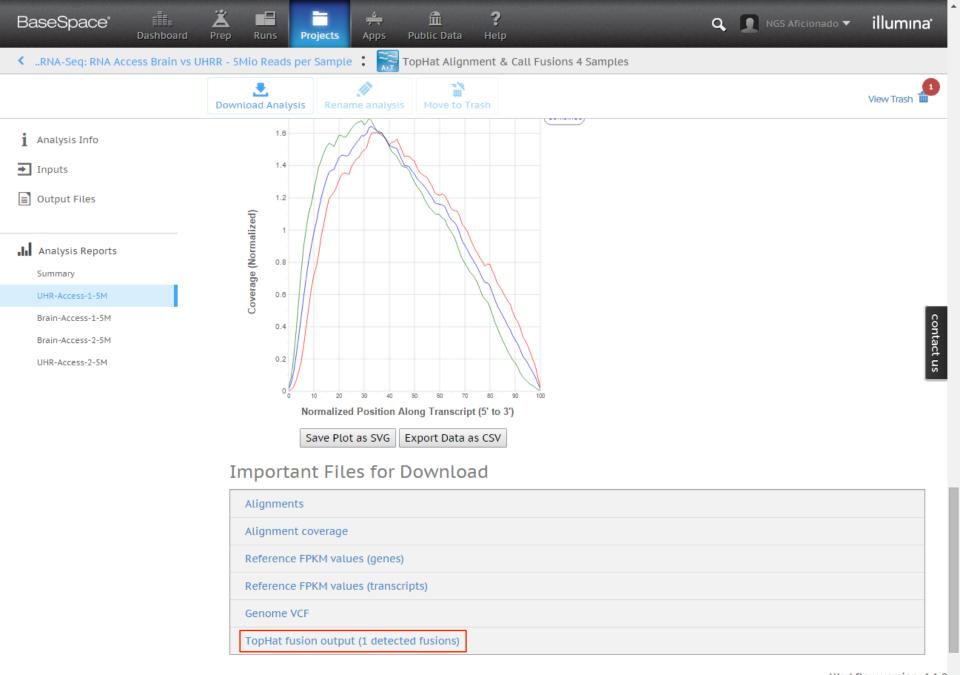
	Read 1	Read 2	Combined
Median CV	1.08	1.04	0.93
Median 3'	0.00	0.00	0.00
Median 5'	0.00	0.05	0.03
Reads aligned to correct strand	99.43%	99.44%	99.44%


Alignment Information i

Region	Fold Coverage	% Bases
Coding	8.97x	76.27%
UTR	1.32x	13.34%
Intron	0.03x	7.73%
Intergenic	0.01x	2.67%


Variant Calls i


Homozygous reference	759,661
Heterozygous	3,396
Homozygous variant	48
SNV	3,429
Indel	15
T_n/T_v	2.80



Candidate fusion list

The following tables show fusion candidates where fusions are grouped based on their genomic locations (table description).

1. chr9-chr22 rr

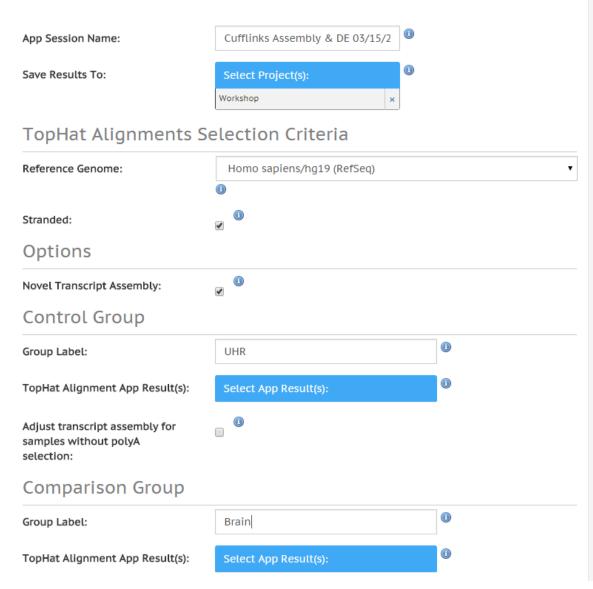
ABL1 chr9 133729450 BCR chr22 23632599 6 2 8 392.06

table description

- 1. Gene on the "left" side of the fusion
- Chromosome ID on the left
- Coordinates on the left
- Gene on the "right" side
- Chromosome ID on the right
- Coordinates on the right
- Number of spanning reads
- Number of spanning mate pairs
- 9. Number of spanning mate pairs where one end spans a fusion (reads spanning fusion with only a few bases are included)

If you follow the the 9th column, it shows coordinates "number1:number2" where one end is located at a distance of "number1" bases from the left genomic coordinate of a fusion and "number2" is similarly defined

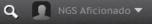
ABL1 chr9 13	33729450 BC	R chr22	23632599	<u>6</u> 2	28<
--------------	-------------	---------	----------	------------	-----


Left flanking sequence Right flanking sequence

ACTCAGACCCTGAGGCTCAAAGTCAGATGCTACTGGCCGCTGAAGGGCTT TTGAACTCTGCTTAAATCCAGTGGCTGAGTGGACGATGACATTCAGAAAC

```
reads
 chr9 chr9 133730249 133729613 63m563n10m
                                                                     CTTTAGTTATGCTTAGAGTGT
chr9 chr9 133730239 133729602 53m563n21m
                                                                     CTTTAGTTATGCTTAGAGTGTTAT
CTTTAGTTATGCTTAGAGTGTTAT
CTTTAGTTATGCTTAGAGTGTTATCTCCACTGGCCAC
chr9 chr9 133730235 133729599 49m563n24m
chr9 chr9 133730223 133729586 37m563n37m
                                                                     CTTTAGTTATGCTTAGAGTGTTATCTCCACTGGCCAC
chr9 chr9 133729659 133729586 73m
                                                                      TTTAGTTATGCTTAGAGTGTTATCTCCACTGGCCACAAAATCATACAGTGCAACGAAAAGGTTGGGGTCATTTT
TGCTTAGAGTGTTATCTCCACTGGCCACAAAATCATACAGTGCAACGAAAAGGTTGGGGTCATTTT
CGCTTAGAGTGTTATCTCCACTGGCCACAAAATCATACAGTGCAACGAAAAGGTTGGGGTCATTTTCACTGGGT
 chr9 chr9 133729622 133729548 74m
chr9 chr9 133729614 133729540 74m
                                                                                                GTTATCTCCACTGGCCACAAAATCATACAGTGCAACGAAAAGGTTGGGGTCATTTTCACTGGGTCCAGCGAGA
GGCCACAAAATCATACAGTGCAACGAAAAGGTTGGGGTCATTTTCACTGGGTCCAGCGAGAAGGTTTTCCTTGG
chr9 chr9 133729504 133729531 73m
chr9 chr9 133729592 133729518 74m
chr9 chr9 133729589 133729515 74m
                                                                                                                       CACAAAATCATACAGTGCAACGAAAAGGTTGGGGTCATTTTCACTGGGTCCAGCGAGAAGGTTTTCCTTGGAGT
                                                                                                                            AAAATCATACAGTGCAACGAAAAGGTTGGGGTCATTTTCACTGGGTCCAGCGAGAAGGTTTTCCTTGGAGTTCC
chr9 chr9 133729586 133729512 74m
chr9 chr9 133729574 133729500 74m
                                                                                                                                               TGCAACGAAAAGGTTGGGGTCATTTTCACTGGGTCCAGCGAGAAGGTTTTCCTTGGAGTTCCAACGAGCGGCTT
                                                                                                                                                             GGTTGGGGTCATTTTCACTGGGTCCAGCGAGAAGGTTTTCCTTGGAGTTCCAACGAGCGGCTTCACTCAGACCC
chr9 chr9 133729563 133729489 74m
                                                                                                                                                                          TCATTTTCACTGGGTCCAGCGAGAAGGTTTTCCTTGGAGTTCCAACGAGCGGCTTCACTCAGACCCTGAGGCTC
chr9 chr9 133729555 133729481 74m
chr9 chr9 133729521 133729449 72m
                                                                                                                                                                                                                            TGGAGTTCCAACGAGCGGCTTCACTCAGACCCTGAGGCTCAAAGTCAGATGCTACTGGCCGCTGAAGGGCTT
                                                                                                                                                                                                                                                          TCACTCAGACCCTGAGGCTCAAAGTCAGATGCTACTGGCCGCTGAAGGGCTT TTGAACTCTGCTTAAATCCAG
chr9 chr22 133729501 23632578 52m23632600F21m
                                                                                                                                                                                                                                                                                    TCAAAGTCAGATGCTACTGGCCGCTGAAGGGCTT TTGAACTCTGCTTAAATCCAGTGGCTGAGTGGACGATGAC
TCAAAGTCAGATGCTACTGGCCGCTGAAGGGCTT TTGAACTCTGCTTAAATCCAGTGGCTGAGTGGACGATGAC
TCAAAGTCAGATGCTACTGGCCGCTGAAGGGCTT TTGAACTCTGCTTAAATCCAGTGGCTGAGTGGACGATGAC
chr9 chr22 133729483 23632559 34m23632600F40m
chr9 chr22 133729483 23632559 34m23632600F40m
                                                                                                                                                                                                                                                                                                          ACTGGCCGCTGAAGGGCTT TTGAACTCTGCTTAAATCCAGTGGCTGAGTGGACGATGACATTCAGAAACCCAT
CCGCTGAAGGGCTT TTGAACTCTGCTTAAATCCAGTGGCTGAGTGGACGATGACATTCAGAAACCCATAGAGCC
CCGTGAAGGGCCT TTGAACTCTGCTTAAATCCAGTGGCTGAGTGGACGGTAGACATTCAGAAACCCATA
chr9 chr22 133729468 23632545 19m23632600F54m
chr9 chr22 133729463 23632539 14m23632600F60m
chr9 chr22 133729462 23632538 13m23632600F61m
                                                                                                                                                                                                                                                                                                                                 GCTT TTGAACTCTGCTTAAATCCAGTGGCTGAGTGGACGATGACATTCAGAAACCCATAGAGCCCCGGAGACTC
chr9 chr22 133729453 23632529 4m23632600F70m
                                                                                                                                                                                                                                                                                                                                 GCTT TIGACTCTGCTTAAATCCAGTGGCTGAGTGGACGATGACATTCAGAAACCCATAGAGCCCCGGAGACTC
ACTCTGCTTAAATCCAGTGGCTGAGTGGACGATGACATTCAGAAACCCATAGAGCCCCGGAGACTC
ACTCTGCTTAAATCCAGTGGCTGAGTGGACGATGACATTCAGAAACCCATAGAGCCCCGGAGACTCATCAT
chr9 chr22 133729453 23632529 4m23632600F70m
chr22 chr22 23632595 23631804 71m717n3m
                                                                                                                                                                                                                                                                                                                                                   CTGCTTAAATCCAGTGGCTGAGTGGACGATGACATTCAGAAACCCATAGAGCCCCGGAGACTCATCAT
chr22 chr22 23632592 23631803 68m717n4m
                                                                                                                                                                                                                                                                                                                                                            AAATCCAGTGGCTGAGTGGACGATGACATTCAGAAACCCATAGAGCCCCGGAGACTCATCAT
GTGGCTGAGTGGACGATGACATTCAGAAACCCATAGAGCCCCGGAGACTCATCAT
chr22 chr22 23632586 23631796 62m717n11m
chr22 chr22 23632579 23631790 55m717n17m
                                                                                                                                                                                                                                                                                                                                                                           GCTGAGTGGACGATGACATTCAGAAACCCATAGAGCCCCGGAGACTCATCAT
chr22 chr22 23632576 23631785 52m717n22m
                                                                                                                                                                                                                                                                                                                                                                               GAGTGGACGATGACATTCAGAAACCCATAGAGCCCCGGAGACTCATCAT
GAGTGGACGATGACATTCAGAAACCCATAGAGCCCCGGAGACTCATCAT
chr22 chr22 23632573 23631783 49m717n24m
chr22 chr22 23632569 23631778 45m717n29m
                                                                                                                                                                                                                                                                                                                                                                                               GACATTCAGAAACCCATAGAGCCCCGGAGACTCATCAT
chr22 chr22 23632562 23631771 38m717n36m
                                                                                                                                                                                                                                                                                                                                                                                                   ATTCAGAAACCCATAGAGCCCCGGAGACTCATCAT
CAGAAACCCATAGAGCCCCGGAGACTCATCAT
CAGAAACCCATAGAGCCCCGGAGACTCATCAT
chr22 chr22 23632559 23631768 35m717n39m
chr22 chr22 23632556 23631765 32m717n42m
                                                                                                                                                                                                                                                                                                                                                                                                            AAACCCATAGAGCCCCGGAGACTCATCAT
chr22 chr22 23632553 23631762 29m717n45m
                                                                                                                                                                                                                                                                                                                                                                                                                              CCCCGGAGACTCATCA
chr22 chr22 23632541 23631750 17m717n57m
chr22 chr22 23632548 23631747 14m717n60m
                                                                                                                                                                                                                                                                                                                                                                                                                                   CGGAGACTCATCAT
                                                                                                                                                                                                                                                                                                                                                                                                                                          ACTCATCAT
chr22 chr22 23632533 23631742 9m717n65m
```


This app is free.



Cufflinks Novel Assembly & DE Brain v UHRR

■ Inputs

Analysis Reports

Cufflinks-Report

Overview

Control samples (UHRR)

- UHR-Access-1-5M
- UHR-Access-2-5M

Comparison samples (Brain)

- Brain-Access-1-5M
- Brain-Access-2-5M

FPKM tables: Genes / Transcripts

Assembly i

	Control	Comparison	Merged			
Gene Count	24,358	24,388	24,383			
Transcript Count	49,045	50,236	52,862			
Link to gene models	GTF result	GTF result	GTF result			
Relation to reference transcripts						
Equal (=)	43,507	43,504	43,513			
Potentially novel (j)	5,469	6,638	9,215			
Unknown, intergenic (u)	54	70	99			
Overlap with opposite-strand exon (x)	3	16	18			
Other	12	8	17			

..RNA-Seq: RNA Access Brain vs UHRR - 5Mio Reads per Sample :

Cufflinks Novel Assembly & DE Brain v UHRR

i Analysis Info

→ Inputs

Output Files

Analysis Reports

Cufflinks-Report

Differential Expression i

Gene Count 24,383 ∆Gene Count 7,216 Transcript Count 52,847 ∆Transcript Count 5,565 differential gene expression differential transcript expression CuffDiff results

4	Α	В	С	D	E	F	G	Н	- 1	J	K	L	M	N
1	test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value	significant
60	XLOC_000059	XLOC_000059	THAP3	chr1:6684924-6761966	UHRR	Brain	OK	5.544	7.417	0.420	0.571		0.508114	no
61	XLOC_000060	XLOC_000060	CAMTA1	chr1:6845383-7829766	UHRR	Brain	OK	23.242	35.323	0.604	1.816	0.0282	0.042372	yes
62	XLOC_000061	XLOC_000061	VAMP3	chr1:7831328-7841492	UHRR	Brain	OK	9.196	8.234	-0.159	-0.445	0.5663	0.612817	no
63	XLOC_000062	XLOC_000062	PER3	chr1:7844762-7905237	UHRR	Brain	OK	7.813	28.922	1.888	7.467	5.00E-05	0.00013	yes
64	XLOC_000063	XLOC_000063	PARK7	chr1:8021713-8045342	UHRR	Brain	OK	568.514	517.327	-0.136	-0.668	0.3358	0.383859	no
65	XLOC_000064	XLOC_000064	SLC45A1	chr1:8384389-8404227	UHRR	Brain	OK	0.296	10.106	5.093	3.418	0.11235	0.147374	no
66	XLOC_000065	XLOC_000065	ENO1-AS1	chr1:8921058-8939943	UHRR	Brain	NOTEST	0.000	0.000	0.000	0.000	1	1	no
67	XLOC_000066	XLOC_000066	CA6	chr1:9005892-9035148	UHRR	Brain	NOTEST	0.000	0.000	0.000	0.000	1	1	no
68	XLOC_000067	XLOC_000067	H6PD	chr1:9294862-9331394	UHRR	Brain	OK	7.293	3.533	-1.046	-3.604	5.00E-05	0.00013	yes
	UHRR_vs_Brain.gene_exp													

	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N
1	test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value	significant
134	TCONS_00000133	XLOC_000062	PER3	chr1:7844762-7905237	UHRR	Brain	OK	5.213	7.826	0.586	0.711	0.3021	0.372398	no
135	TCONS_00000134	XLOC_000062	PER3	chr1:7844762-7905237	UHRR	Brain	OK	0.805	5.151	2.678	1.199	0.3896	0.455824	no
136	TCONS_00000135	XLOC_000062	PER3	chr1:7844762-7905237	UHRR	Brain	OK	0.933	9.629	3.367	2.073	0.17475	0.276365	no
137	TCONS_00000136	XLOC_000063	PARK7	chr1:8021713-8045342	UHRR	Brain	OK	456.931	288.738	-0.662	-2.505	0.00045	0.001868	yes
138	TCONS_00000137	XLOC_000063	PARK7	chr1:8021713-8045342	UHRR	Brain	OK	111.583	228.589	1.035	2.260	0.00635	0.019173	yes
139	TCONS_00000138	XLOC_000064	SLC45A1	chr1:8384389-8404227	UHRR	Brain	OK	0.296	10.106	5.093	3.418	0.11235	0.21789	no
140	TCONS_00000139	XLOC_000065	ENO1-AS1	chr1:8921058-8939943	UHRR	Brain	NOTEST	0.000	0.000	0.000	0.000	1	1	no
141	TCONS_00000140	XLOC_000066	CA6	chr1:9005892-9035148	UHRR	Brain	NOTEST	0.000	0.000	0.000	0.000	1	1	no
142	TCONS_00000141	XLOC_000066	CA6	chr1:9005892-9035148	UHRR	Brain	NOTEST	0.000	0.000	0.000	0.000	1	1	no
	< → UHRF	R_vs_Brain.isofo	rm_exp (1)	(+)								:	4	

Cufflinks Novel Assembly & DE Brain v UHRR

i Analysis Info

→ Inputs

Output Files

Analysis Reports

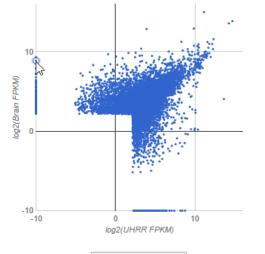
Cufflinks-Report

Differential Expression Gene Browser

Filters

[log2(ratio)]

0.0


Significant

Choose a value... ▼

Status

ОК▼

Gene

Save Plot as SVG

Test ID	Gene	Locus	Status	log ₂ (UHRR FPKM)	log 2 (Brain FPKM)	log ₂ (Ratio)	q Value	Significant
XLOC_003980	PHLDA2	chr11:2949502-2950650	OK	3.33	-10.00	-13.33	0.000	✓
XLOC_003981	NAP1L4	chr11:2965659-3013607	OK	5.96	5.71	-0.25	0.148	X
XLOC_003983	CARS	chr11:3022151-3078681	OK	4.60	4.15	-0.46	0.030	✓
XLOC_003987	ZNF195	chr11:3379156-3400452	OK	3.26	2.50	-0.76	0.005	✓
XLOC_003991	NUP98	chr11:3696239-3847601	OK	5.48	4.50	-0.98	0.000	✓
XLOC_003992	RHOG	chr11:3848207-3862213	OK	3.11	2.17	-0.94	0.043	✓
XLOC_004009	HBB	chr11:5246695-5248301	OK	-10.00	8.85	18.85	0.000	✓
XLOC_004012	HBG1,HBG2	chr11:5269501-5276066	OK	9.96	0.15	-9.80	0.035	✓
XLOC_004013	HBE1	chr11:5289579-5291373	OK	8.76	-10.00	-18.76	0.000	✓
XLOC_004031	FAM160A2	chr11:6232563-6255941	OK	2.12	2.41	0.29	0.354	X
XLOC_004033	APBB1	chr11:6416354-6440644	OK	2.24	7.09	4.85	0.000	✓

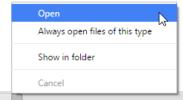


Integrative Genomics Viewer (IGV)

Broad Institute of MIT and Harvard

The Integrative Genomics Viewer (IGV) app is a powerful genome browser that displays next-generation sequencing data. It displays alignments and variants from multiple samples for performing complex variant analysis. The Broad Institute of MIT and Harvard developed IGV, and Illumina modified it to display BaseSpace data.

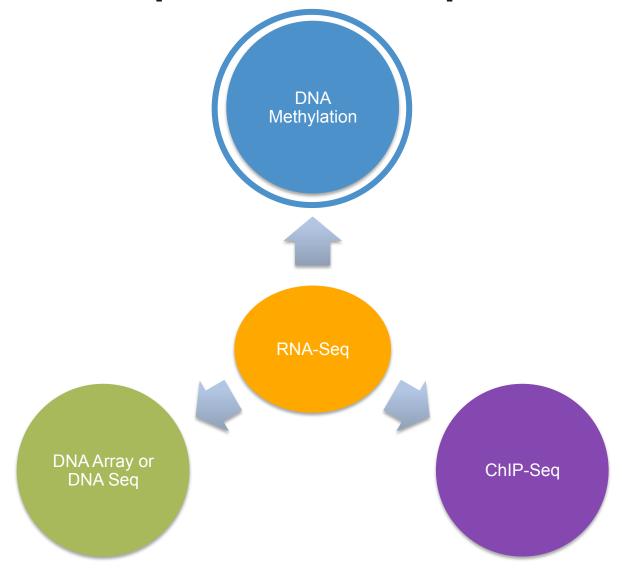
Your download should begin automatically. If the desktop app doesn't open automatically, you may need to manually open the ".jnlp" file that your browser downloaded.


First time downloading?

Install or Upgrade Java

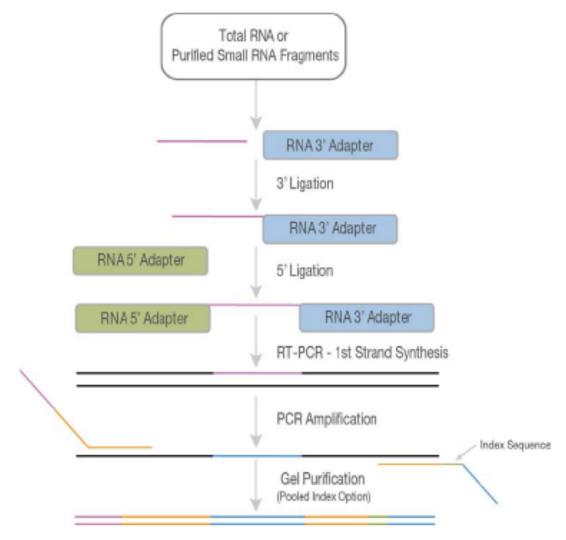
Java version 7 or higher is required.

Launch IGV


. If the download doesn't start automatically, click the Launch IGV button above. This will download a jnlp file, which you may need to manually open.

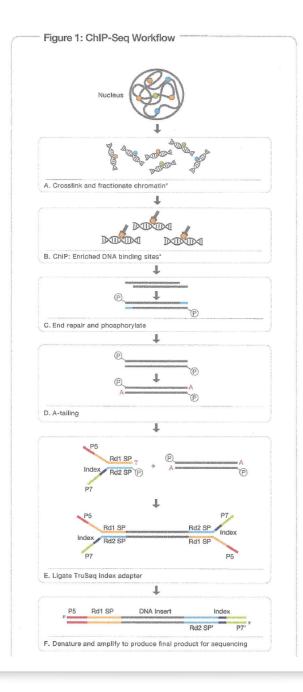
MultiOmics

Taking RNA-Seq to the Next Step



Short RNAs are key players of gene regulation

TruSeq small RNA

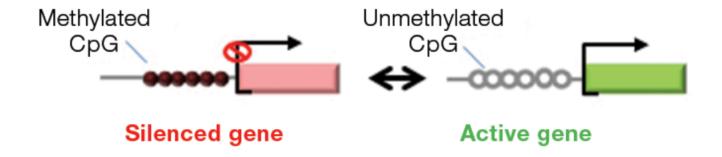


TruSeq small RNA

Арр	Description	Details	Cons
Small RNA Illumina, Inc.	Alignment to abundant, mature miRNA, other RNA and genomic. Outputs mature miRNAs, isomiRs and piRNAs. Optional novel precursor discovery and pairwise differential expression analysis.		 Adapter trimming not included No target gene info available Not compatible with Functional Impact or Pathway Analysis apps
miRNAs analysis miRNAs Analysis B&Gu @ University of Torino	Differential miRNA expression analysis between 2 conditions	 Includes adapter trimming miRBase 21 supported for human and mouse and optional download of latest miRBase DB Choice of Outlier replacement from DESeq2 	 Rat genome not supported No miRNA precursor discovery Not compatible with Functional Impact or Pathway Analysis apps

TruSeq ChIP

ChIP-Seq


ChIP-Seq for Protein-DNA interaction

Арр	Description	Details	Cons
ChIPSeq BaseSpace Labs	Enriched region identification of Chromosome IP (ChIP-Seq) experiments and motive discovery.	 Alignment & Peak Calling: MACS Peak annotation and Motive Enrichment: HOMER Pairwise analysis recommended ChIP vs Input and ChIP vs ChIP comparisons supported Single ChIP analysis (no control) possible as well 	 Identifies "narrow" peaks (i.e transcription factor binding sites), not "broad" peaks (i.e histone modifications). hg19 only reference

How does DNA Methylation affect gene expression?

 Chemical modification to our DNA (typically cytosine) that compacts chromatin and effects gene expression.

Why Is Methylation Important?

Methylation affects it all: Cancer, development, Alzheimer's, aging, ADHD, obesity, diabetes, addiction, infection...

New Approaches for Breast Tumor Diagnostics:

Epigenetic Profiles

Huffington Post April 2015

How Genes and Environment Conspire to Trigger Diabetes

Endurance training alters skeletal muscle 'at an epigenetic level' WhatIsEpigenetics.com January 2015

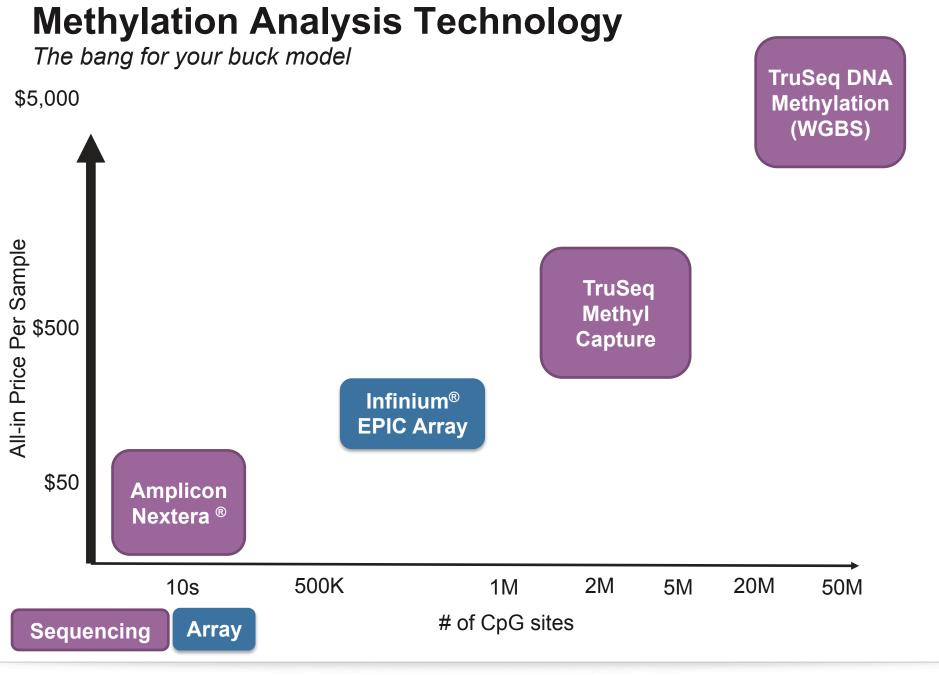
Twins Data Reshaping Nature Versus Nurture
Debate

NPR.org January 2012

Why Is Studying Methylation Important?

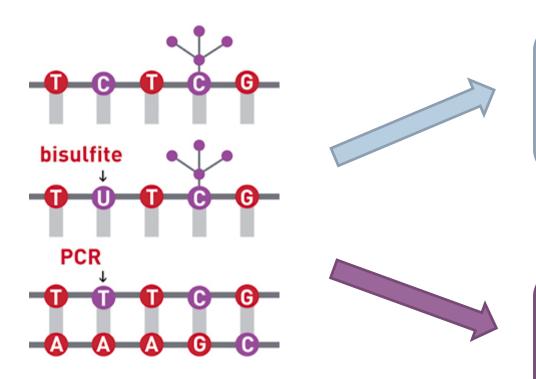
- Methylation can be changed = actionable!
 - Medicine can alter methylation
 - Exercise, your environment and actions can alter methylation
 - Methylation changes before DNA in tumors, giving us earlier warnings

Epigenetic Therapy of Cancer With 5-Aza-2'-Deoxycytidine (decitabine)


Momparler Seminars in oncology 2005

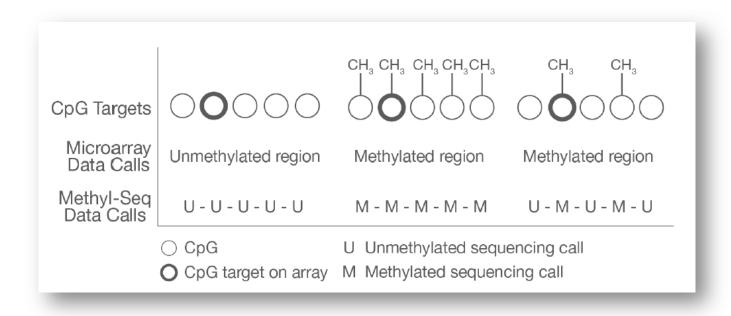
Effects of the Social Environment and Stress on Glucocorticoid Receptor Gene Methylation: A Systematic Review

Turecki et al., Biological psychiatry 2016



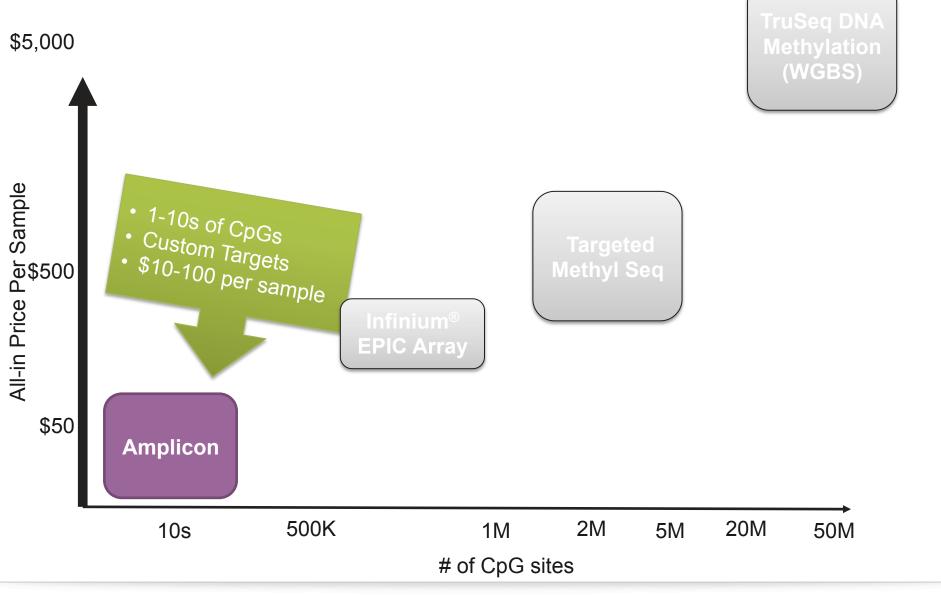
How does this technology work?

Methylation Analysis With Bisulfite Conversion



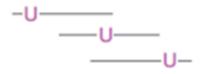
Methylation Arrays:
Identify the difference between a
C and A at ~850,000 discreet
sites of interest

Methylation Sequencing:
Identify the difference between a
C and A in targeted regions up to
38M+ CpG sites in complete
regions

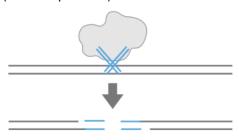

Methylation Arrays or Sequencing

- Arrays are cost effective for large scale screens
- Sequencing provides deep information across CpG rich regions and can call SNPs, indels within the region covered

Methylation Technology Options



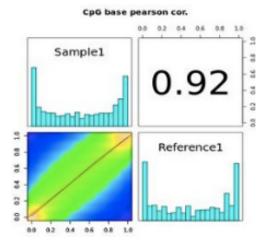
Amplicon Bisulfite Sequencing Workflow


Prepare Libraries
Nextera XT

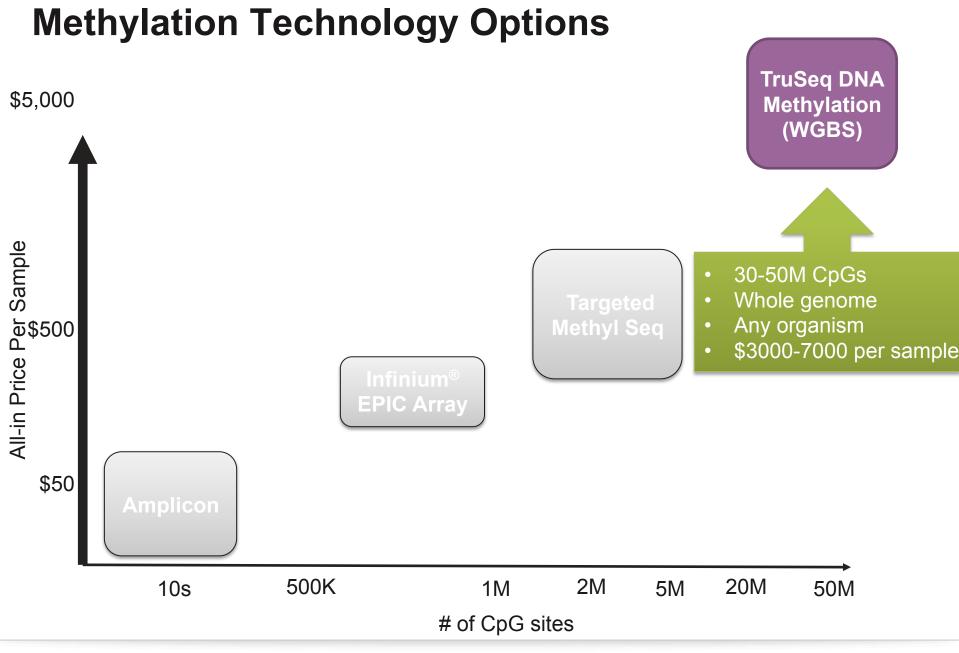
Sequence MiniSeq™ or MiSeq®

Analyze
BaseSpace®

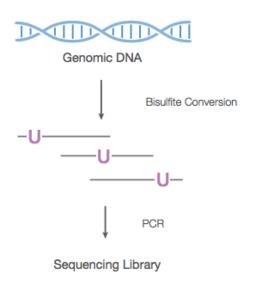
PCR Amplify converted DNA (custom primers)



Nextera XT Library Prep



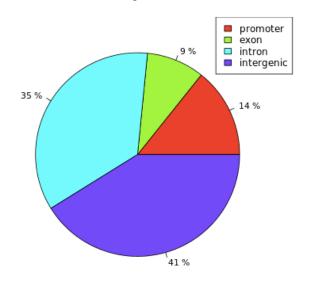
- 1-10s of CpGs
- Custom Targets
- \$10-100 per sample

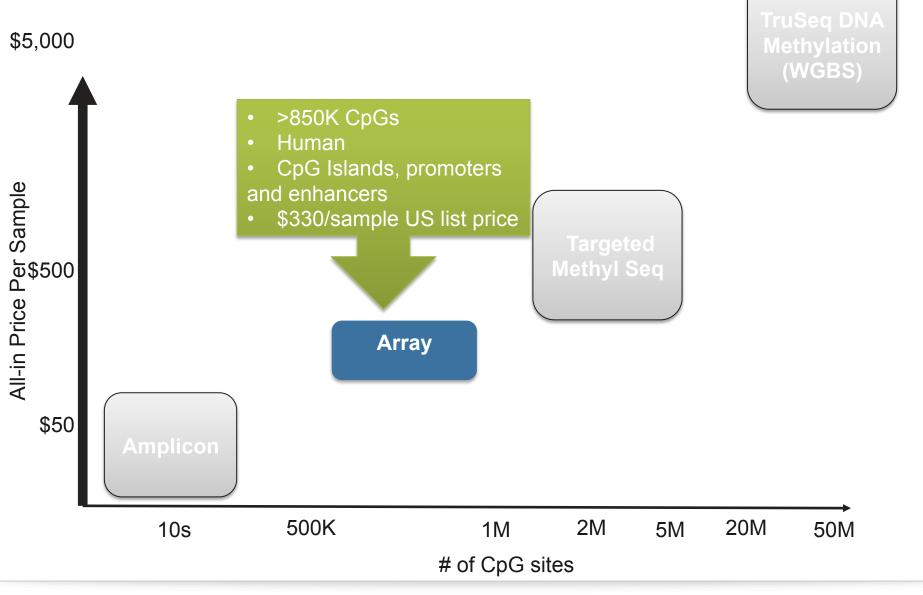


Whole Genome Bisulfite Sequencing Workflow

Prepare Libraries
TruSeq DNA Methylation

SequenceNextSeq or HiSeq

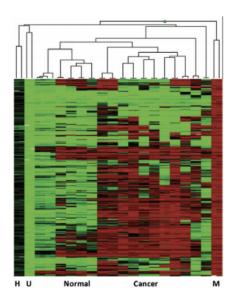

AnalyzeBaseSpace



differential methylation annotation

Methylation Technology Options

Methylation Array Workflow


Prepare Samples
Infinium® MethylationEPIC

Scan
iScan® or HiScan®

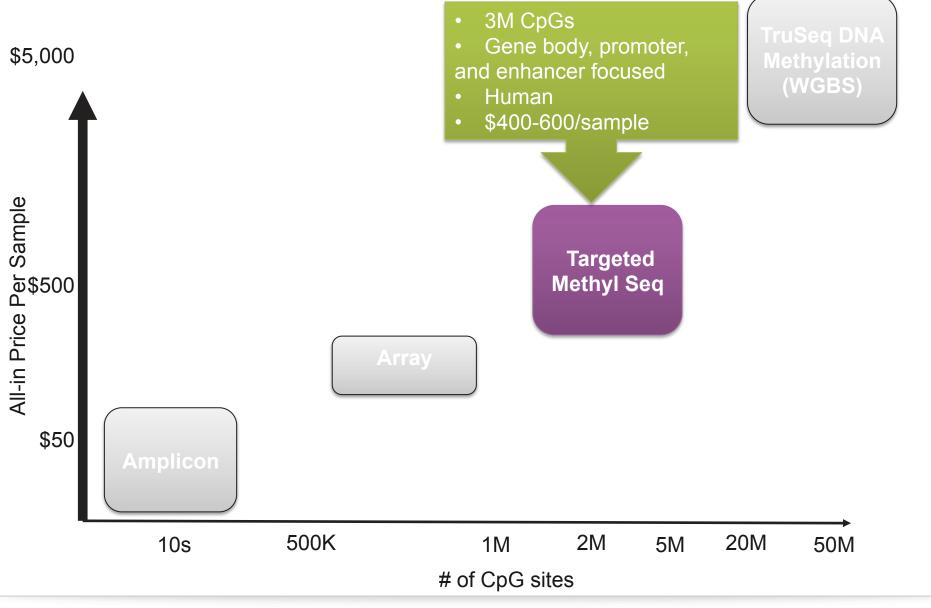
Analyze
GenomeStudio and
BioConductor Apps

Infinium[®] Methylation Arrays

- New chemistry
- 1000+ publications
- Focused on gene bodies and promoters
- EWAS studies

2015: EPIC Array

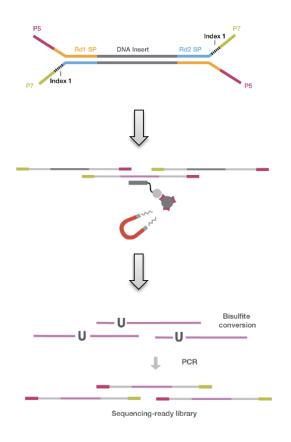
- Same trusted chemistry, refreshed content
- Enhancer regions (as identified by ENCODE, FANTOM5) added
- >90% backwards compatible with 450K content
- 98%+ R² for samples run on each array side by side



2007: 27K Array

First Infinium
 Methylation array

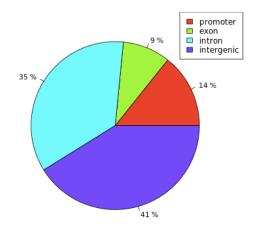
Methylation Technology Options

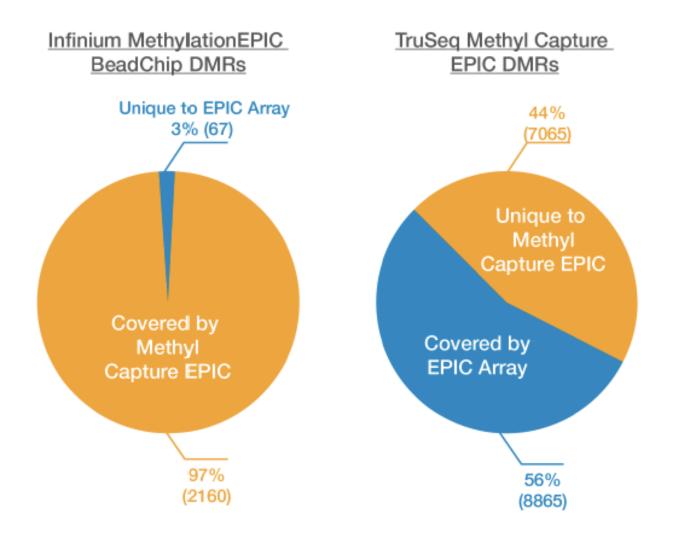


TruSeq Methyl Capture Workflow

Prepare LibrariesTruSeq Methyl Capture

Sequence NextSeq® or HiSeq®

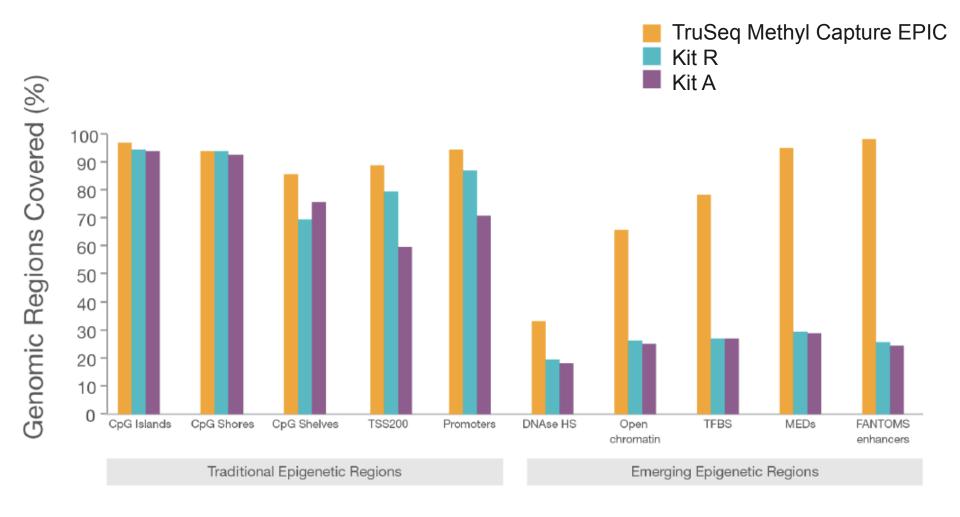

AnalyzeBaseSpace



differential methylation annotation

Sequencing Content Compared to Array

DMRDifferentially
Methylated
Region



TruSeq Methyl Capture Content

	Genome	TruSeq Methyl Capture, EPIC	Kit R	Kit A
Total Size	3000 Mb	107 Mb	84 Mb	81 Mb
CpG Sites	28.22M	3.34M	3.15M	2.80M
Differentially Methylated Regions from WGBS	1.9M	345K	240K	227K
Transcription Factor Binding Sites	229K	180K	62K	62K
FANTOM5 Enhancers	28.5K	28.2K	56.0K	53.7K

TruSeq Methyl Capture Content

Sequencing a TruSeq Methyl Capture Library

	Sequencing System	Samples / Run
NovtCog@	Mid-Output Flow Cell	2
NextSeq®	High-Output Flow Cell	8
HiSeq® 2500	Rapid Run Mode, Dual Flow Cell	10
	High-Output Mode, Dual Flow Cell	72
HiSeq® 3000	Single Flow Cell	45
HiSeq® 4000	Dual Flow Cell	90

Methylation Sequencing Analysis Workflow

MethylSeq Illumina, Inc.

BaseSpace Labs

Align Data

- Map sequencing reads to a reference genome
- Define that reference for targeted sequencing (manifest)
- Bisulfite conversion specific aligner like BISMARK

Call CpG Methylation

- Based on bisulfite conversion rate
- Calculated as % methylated
- Also uses BISMARK

Compare Samples

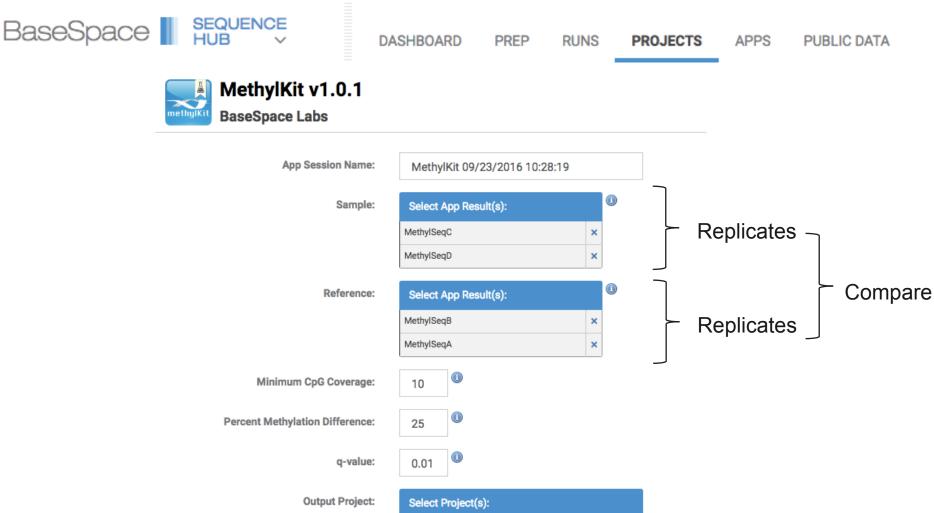
- Differential methylation between samples with MethylKit
- Tumor/Normal, Treated/untreated, etc

Analysis Name:	MethylSeq 07/29/2016 10:39:08			
Save Results To:	Select Project(s):	0		
	MethylTest	×		
Sample:	Select Sample(s):	1		
	NA18507-4M	×		
Library prep kit (human only) is directional (2 strands) or non-directional (4 strands):				
► Advanced				

Analyses

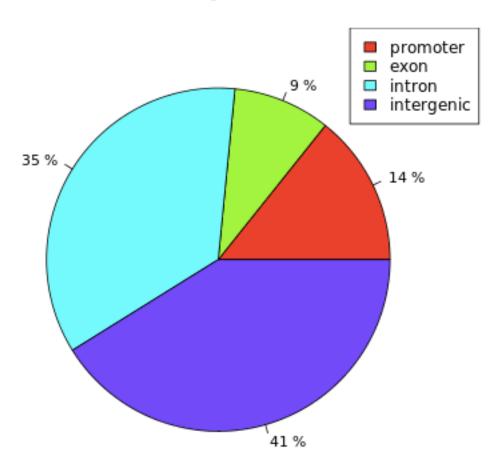
Showing 4 of 4

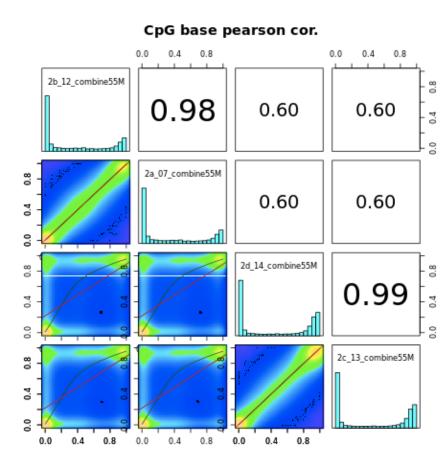
NAME	LAST MODIFIED	APPLICATION
MethylSeqv2 Beta 07/27/2016 1:52:15	Jul 28, 2016	MethylSeqv2 Beta
MethylKit 06/14/2016 9:17:25- WG	Jun 14, 2016	MethylKit
MethylKit 06/14/2016 10:00:13- Targeted	Jun 14, 2016	MethylKit
MethylSeqv2 06/13/2016 9:48:51	Jun 14, 2016	MethylSeqv2



METHYLATION SUMMARY

Category	C's in CpG	C's in CHG	C's in CHH
Methylated	89665270	1446786	3517887
Unmethylated	126210732	516721145	1455240390


Kicking off MethylKit analysis



MethylKit comparing samples

differential methylation annotation

Correlation

Comparing samples – Output Files

Correlating Methylation with RNA-Seq Data

MethylMix

- Differential Methylation (array or sequencing) and matched RNA-Seq analysis
- Bioconductor Package @ bioconductor.org/packages/MethylMix/
- Demo data available from TCGA

COHCAP

- Differential Methylation (array or sequencing) and matched RNA-Seq analysis
- Bioconductor Package @ bioconductor.org/packages/COHCAP/
- Discussion groups online for Q&A
- Demo data included

Chromosome Histones Chromatin Nucleosome ATAC-seq DNA helix ATGACGGATCAGCCGCAAGCGGAATTGGCGACATAA TACTGCCTAGTCGGCGTTCGCCTTAACCGCTGTATT

What is ATAC-seq?

Assay for Transposase-Accessible Chromatin sequencing

October 2015

Surveying the Chromatin Landscape with Next-Generation Sequencing

Researchers develop novel sequencing methods with the MiSeq* and HiSeq* Systems to understand the epigenome and its impact on cancer and immune disease.

Introduction

Every cell in the Truman body has long strands of deoxyribonucleic acid (DNA) compactly folded inide the runcluse. That folding is made possible by drivenselin, the complex of macromolecules that package each cells DNA from that small, condensed volume—an architecture necessary to protect its structure and sequence. Understanding chromatin and this dynamic architecture are crucial to understanding chromatin and this dynamic architecture are crucial to understanding of any structure works. Its tightly packed grooves and folds provide a unique physical landiacape for gene transcription—one that has proteound implications for our undestanding of gene regulation, replication, and expression. Scientists are now finding new ways to delve into Chromatin's many tilochemical mysteries.

William Greented, PhD, an assistant professor in Stanford University's removaned genetics department, is focused on understanding how the 2 meters of DNA in each cell nucleus are folded and stored. "About 95% of the genome is folded and sequestered away in the chromatin," Dr. Generied sids." Only a small percentage is accessible to the transcription machinery. Deciphering how that all works is infinitely and important."

iCommunity spoke with Dr. Greenleaf about his team's development of 2 new next-generation sequencing (NSS) methods to better survey the enigmatic chromatin landscape: assay for transposase-accessible chromatin sequencing (NTAC-seq) and single-cell ATAC-Seq (solATACseq)? He believes that these approaches might one day provide new insights into the development and treatment of cancer and subtimizing disease.

C: What sparked your interest in applied physics?
William Generaled (WG): I was always interested in molecular biology—particularly DNA and the molecular machinery of the genome. But as an undergrad, I wanted to avoid denientity, so I studied physics instead. I ended up getting my PhD in applied physics with a focus on single-minocular biophysics, because I was interested in undenstanding the mechanics by which individual minoculas carry out tasks within the cell. During my postdoc, I was bitten by the high-throughout sequencing buy. We were thinking a lot about new ways to approach these different complex biological questions. A sequence can make hundreds of millians or even bildins of measurements across the genome and that's what is needed to understand the complexity of this biology.

Q: What does high-throughput sequencing provide over the other methods you used previously?

WG: As a grad student, I performed experiments on individual molecules. It's labor-intensive work—and you have to deal with a lot of handorafted data. After a few years, I wanted to find a different way, I wanted to do the exact opposite—take an enormous number

of measurements very quickly. So we've been working to repurpose the infrastructure associated with high-throughput sequencers to do massive scale biochemistry on nucleic acids.

Q: What inspired you to develop new tools to study chromatin? WG: We have a great understanding of the structure of DNA—and a good understanding of a single nucleosome. However, that's where our high-resolution understanding of the nucleus ends. The question of how DNA is organized at the slickbose length solder remains a fundamental question to be answered. We don't know all that much about how the nucleosomes that brid to DNA gightly are shifting around, how the transcription factor brinding sites might be competing for DNA, and how different transcription factors may cooperate to build enhancers. These things touch and interact mechanically to make things happer. We need to understand the logic of the physical regulatory landscape—the regulatore, if you will—to see what makes

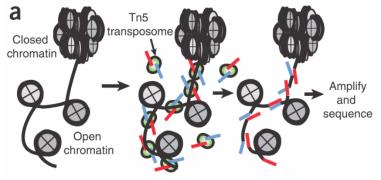
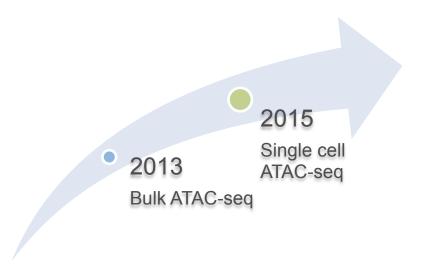
One of the significant questions is how a cell can mark and use these different elements to change their biological state. We know that all the different cells in a body have the same genome effectively, yet they do incredibly different things. I like to think of chromatin as a physical landscape that tells the cell which parts of the DNA to use and which parts to ignore. In a sense, it's a major organizational principle of biolox.

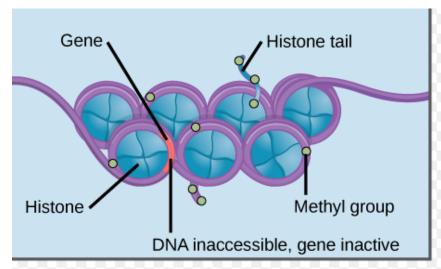
Q: Has the data from the Encyclopedia of DNA Elements (ENCODE) Consortium and Epigenetics Roadmap provided a glimpse into the regulome?

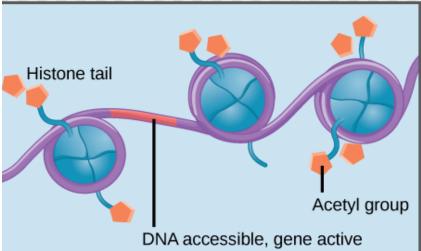
WG: Recent work from the ENCODE consortium and the Epigenomics Roadmap have tried to illustrate how different elements in DNA are functional, and how they can be marked and used. That initial

Dr. William Greenleaf is an assistant professor in the Stanford University Genetics Department.

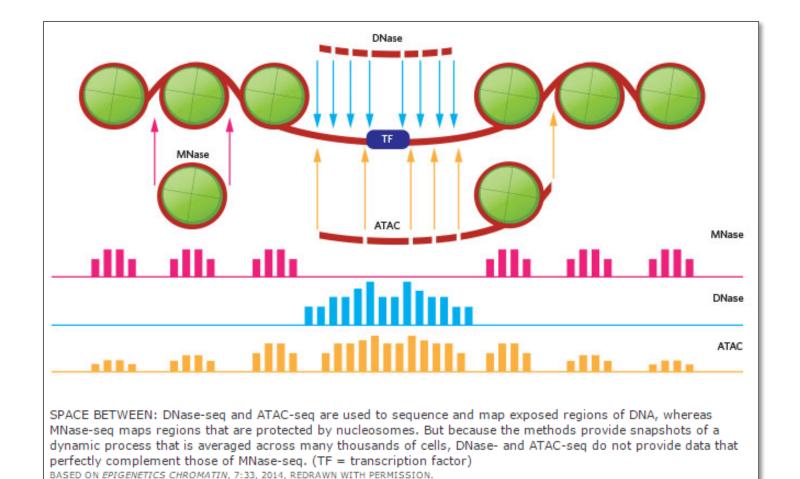
or Research Use Only. Not for use in diagnostic procedures.


Figure 1. Scheme for ATAC-seq technic. Transposase enzyme (green), bearing sequencing adaptors (red and blue), is incorporated only in regions of open chromatin (between nucleosomes in grey). Allowing to amplify those open regions by PCR. | Credit: Buenrostro et al. 2013. Nat. Methods 10, 1213–8.

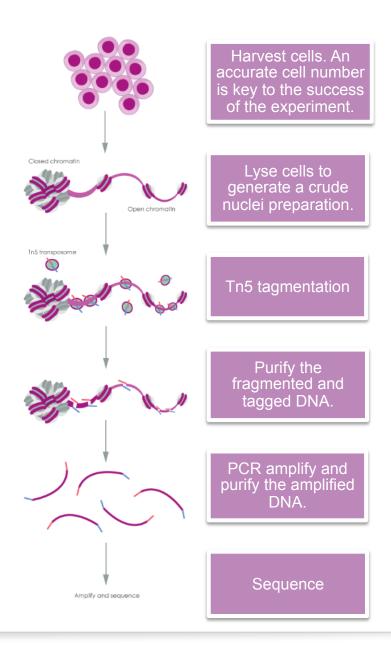

^{*} Prof Greenleaf co-founded Epinomics company

Why do researchers want to look at chromatin structures?


Methylation of DNA and histones causes nucleosomes to pack tightly together. Transcription factors cannot bind the DNA, and genes are not expressed.

Histone acetylation results in loose packing of nucleosomes. Transcription factors can bind the DNA and genes are expressed.

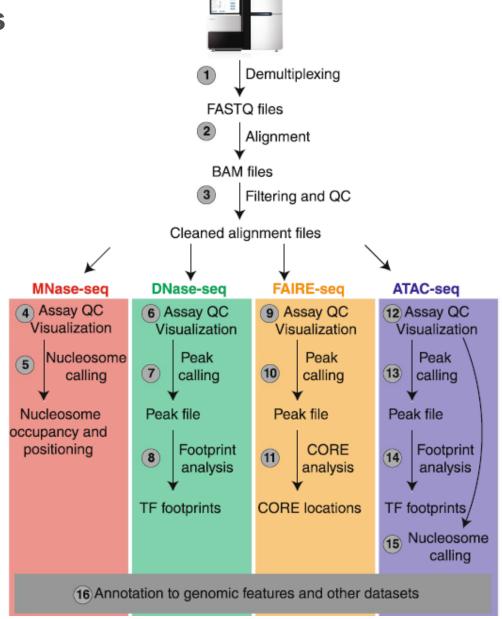
ATAC-seq combines data signal results of legacy methods MNase and DNase


http://www.the-scientist.com/?articles.view/articleNo/44772/title/Reveling-in-the-Revealed/

Tsompana and Buck: Chromatin accessibility: a window into the genome. Epigenetics & Chromatin 2014 7:33

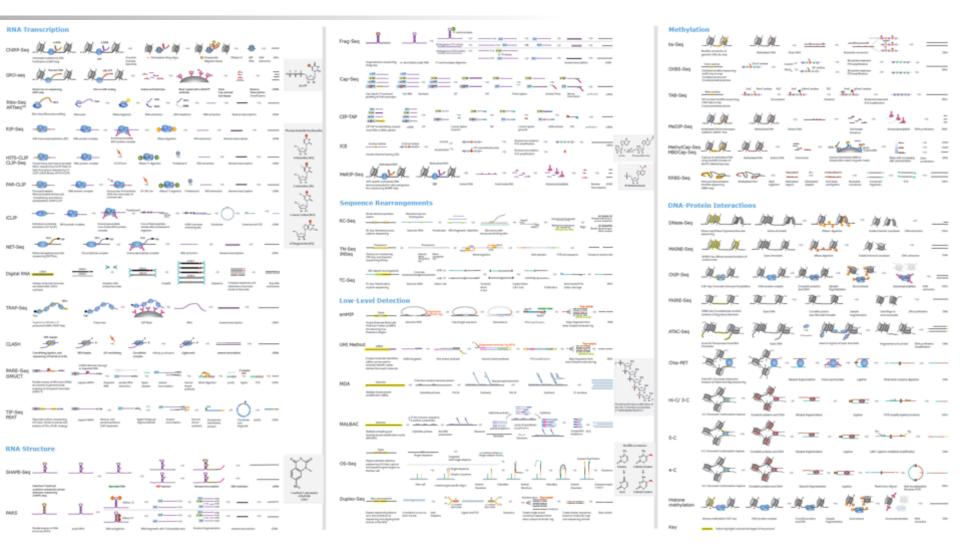
ATAC-seq workflow

- Easy, 3 hour workflow
- Requires least amount of cells compared to other methods
- Number of reads for a region correlates with how open that chromatin is at a single nucleotide resolution.



How many ATAC-seq samples can you run on a HiSeq?

ATAC-seq data analysis


- Analysis remains an evolving challenge for researchers.
- BaseSpace will launch an ATAC-seq analysis app coming soon

Tsompana and Buck: Chromatin accessibility: a window into the genome. Epigenetics & Chromatin 2014 7:33

Explosion of methods...For All You Seq

http://www.illumina.com/content/dam/illumina-marketing/documents/applications/ngs-library-prep/ForAllYouSeqMethods.pdf

Methods Selector

Methods for transcriptomic analysis:

Ribo-Seq/ART-Seq/GTI-Seq

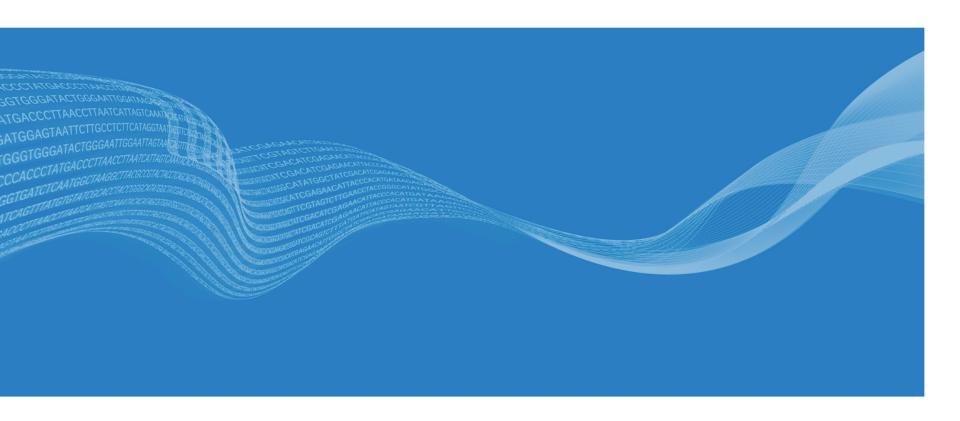
Active mRNA Translation Sequencing (ART-seq), also called ribosome profiling (Ribo-Seq) or Global Translation Initiation Sequencing (GTI-Seq), isolates RNA that is being processed by the ribosome in order to monitor the translation process. In this method ribosome-bound RNA first undergoes digestion. The RNA is then extracted and the rRNA is depleted. Extracted RNA is reverse-transcribed to cDNA. Deep sequencing of the cDNA provides the sequences of RNAs bound by ribosomes during translation.

References:

ART-Seq/Ribo-Seq: Ingolia N. T., Ghaemmaghami S., Newman J. R. and Weissman J. S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324: 218-223

GTI-Seq: Wan J. and Qian S. B. (2014) TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res 42: D845-850

Associated kits:


ARTseq/TruSeq Ribosome Profiling kit

Find the right kit

http://www.illumina.com/science/sequencing-method-explorer.html

Thank you! Questions?

