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N
QC, Alignment, and Visualization
J
Pipelines
QC and Alignment
Visualization

ChIP-seq Pipelines
Cloud-based

CCBR/NCI

Name

. CCBR ChIPSeq Pipeline_ Slngle End_No Repllcates

- CBR_ChIPSeq_Pipeline_Single_En

i_No_Replic.

. CCBR _ChIPSeq_Pipeline_ Slngle End_Two, Repllcates
e Pipeline_Single_End_Two_Replica

ChlPSeq_P

Cost (Ingress/Egress/Compute/Storage)
Secure (FISMA-Moderate)
Share-able outside NIH

Type

Global Workflow

Global Workflow

National Human Genome Research Institute

DNAnNexus

AAzure

aws
~—

Latest Version v Region

0.0.6 -

ENCODE histone ChIP-seq (specify reference)

ENCODE histone ChIP-seq Unary Control (specify reference)

ENCODE histone ChIP-seq Unary Control Unreplicated (specify reference)
ENCODE histone ChIP-seq Unreplicated (specify reference)

ENCODE TF ChlP-seq (specify reference)

ENCODE TF ChIP-seq Unary Control (specify reference)




5/27/20

ChIP-seq Pipelines

HIGH PERFORMANCE COMPUTING AT THE NIH

BIOWUL |-

Biowulf-based  ccer/ncer
INPUT:
X CCBR Pipeliner: 4.0 Fastq files
File View Help
Project Informati i QC metrics:
Project Id |project (Examples: CCBR-nnn,Labname or short project name) Trim adapters and remove Kraken
Blacklisted reads e '
Email address | (Mandatory field: must use @nih.gov email address) FastqC
7 Preseq
Flow Cell ID \s(a(s (Examples: FlowCelllD, Labname, date or short project name)
BWA alignment
~Global Sefting
Pipeline Fanily: - ChiPseq — | Genome:  Selectthe genome — |
5 Filterin
Deeptools OC
Project Description | ChiPseq | spearman correlation
- PCA
Data Directary: Open Directory Picard(PE) / MACS2(SE) e

FastQ files Found: 0

Deduplication

Snakemake workflows

Genomes supported

QC, Alignment, and Visualization

Pipelines
QC and Alignment
Visualization

Working Directory: Open Directory l—* ° hg19
Initialize Directory Dry Run Run ° hg38
~Options
d * mm9
Pipeline: InfialChiPseq@C  — Deeptools Deeptools MultioC e mm10
InitialChiPseg@C | RPGC normalization TS
Sample Inft o — fF ——>| NSC,RSC, [*—

seq | read extension profile plots NRFE etc.

Set Peak Information bigwig creation ’—> (TSS and o

N\
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Pipeline: Basic bioinformatics concepts

Read runs into adapter

Read — Sequencing Reads
— S — —

Adapter - —
I Adapter within read

I e
Removed sequence 1 ——

= PCR Duplicates

Base quality trimming
+
Adapter removal

CutAdapt BWA

Alignment or “Mapping”

Deduplication or
Duplicate removal

Picardtools or MACS2

Blacklists

TECHNOLOGY REPORT ARTICLE
published: 10 Apri 2
3389/fgene.2014.000:

GENETICS S 4

Impact of artifact removal on ChlP quality metrics in
ChlP-seq and ChlP-exo data

Thomas S. Carroll’*', Ziwei Liang?', Rafik Salama’’, Rory Stark’ and Ines de Santiago™*

’ Cambridge Institute CRUS
? Lymphocyte Development,

Journal of Computational Biology, Vol. 27,No.2 | Conference Papers &) Full Access
PeakPass: Automating ChIP-Seq Blacklist
Creation

Charles E. Wimberley 1 and Steffen Heber

Published Online: 6 Feb 2020 | https://doi.org/10.1089/cmb.2019.0295

i= Sections B View article & Tools < Share

Article | Open Access | Published: 27 June 2019

The ENCODE Blacklist: Identification of
Problematic Regions of the Genome

Haley M. Amemiya, Anshul Kundaje &1 & Alan P. Boyle &

Scientific Reports 9, Article number: 9354 (2019) | Cite this article
7208 Accesses | 25 Citations | 44 Altmetric | Metrics

ChlIP-Seq blacklists contain
genomic regions that
frequently produce artifacts
and noise in ChIP-Seq
experiments.

Remove reads to these
regions to improve signal-
to-noise ratio

Reference genome specific
lists are calculated in a
manually curated +
automated manner
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Blacklists

Classes of 226 ultra-high signal artifacts

1% 2% 3%

High_Mappability_island
Low_mappability_island
Satellite_repeat

centromeric_repeat

snRNA

telomeric_repeat

“A comprehensive collection of signal artifact blacklist regions in the human genome”, by Anshul Kundaje

o . ' H P

BirdsEye” View ——
2. start coordinate H :
3. end coordinate Standard BED file fields {j
oeme g
5. score
6. strand
7. signalValue - Measurement of overall enrichment for the region
8. pValue - Statistical significance (-log10) narrowPeak specific fields
9. qValue - Statistical significance using false discovery rate (-log10)

10. peak - Point-source called for this peak; 0-based offset from chromStart

:
';& - [

p

Fastgs ‘

v
@SRR001666.1 071112 SLXA-EAS1 s_7:5:1:817:345
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACCAAGTTACCC!
+SRR001666.1 071112 SLXA-EAS1_s_7:5:1:817:345
ITITITITIITIIIIIIIIITIIIIIIIIIIIIOIGOICIIIIIIIIIL

“Pipeline”

10
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MultiQC report

General Stats

Multi®@C

T, (AT

Sample Name % Dups % GC Length % Failed M Segs Kew garameter .
fastQC | mMMW_H3K4me3_mmdmF2.R1.trim.fastq.gz 18.9% 50% 74 bp 17% 35.1 « Number of reads
fastQC | mMW_Input_mmF.R1.trim.fastq.gz 10.7% 42% 74 bp 25% 35.4 e GC
fastQC | mMWT_H3K4me2 mmdmF1.R1.trim.fastq.gz 7.0% 45% 74 bp 17% 38.4 * Mapping percentage
fastQC | mWT_H3K4me2_mmdmF2.R1.trim.fastq.gz 6.9% 46% 74 bp 17% 35.0
fastQC | mMWT_H3K4me3_mmdmF1.R1.trim.fastq.gz 18.5% 50% 74 bp 17% 34.3
fastQC | mWT_H3K4me3_mmdmF2.R1.trim.fastq.gz 18.8% 50% 74 bp 17% 327
fastQC | mWT_Input_mmF.R1.trim.fastq.gz 13.4% 41% 74 bp 25% 435
rawfastQC | mJP_H3K4me2_mmdmF1.R1.fastq.gz 9.6% 45% 75 bp 8% 38.7
rawfastQC | mJP_H3K4me2_mmdmF2.R1.fastq.gz 7.2% 45% 75bp 8% 38.1
rawfastQC | mJP_H3K4me3_mmdmF1.R1.fastq.gz 13.9% 49% 75bp 8% 35.5
rawfastQC | mJP_H3K4me3_mmdmF2.R1.fastq.gz 19.4% 49% 75 bp 8% 39.4
rawfastQC | mJP_Input_mmF.R1.fastq.gz 12.4% 42% 75 bp 17% 377
rawfastQC | mMMW_H3K4me2_mmdmF1.R1.fastq.gz 7.9% 45% 75 bp 8% 33.0
rawfastQC | mMMW_H3K4me2_mmdmF2.R1.fastq.gz 9.1% 45% 75bp 8% 31.9
rawfastQC | mMMW_H3K4me3_mmdmF1.R1.fastq.gz 20.4% 49% 75 bp 8% 38.8
11
M M - PITTTS A
ultiQC report Mu t|Q( —
Sequence-related metrics > FASTQC
. Per Seauence
Sequence Quality Quali
uality Scores
FastQC: Mean Quality Scores FastQC: Per Sequence Quality Scores
W0 25000000
35
’_/ - 20000000

Phred Score
s

40
Position (bp)

Count

15000000

10000000

5000000

5 10 15 20 25
Mean Sequence Quality (Phred Score)

12
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MultiQC report

Sequence-related metrics = FASTQC

GC Content

FastQC: Per Sequence GC Content

Read Count

................. .

3

Multi®@C

Length Distribution

FastQC: Sequence Length Distribution

50000000

40000000

30000000

20000000

10000000

40 50 60 70
Sequence Length (bp)

13

MultiQC report

Duplication Levels

FastQC: Sequence Duplication Levels

% of Library

Sequence-related metrics 2 FASTQC

Sequence Duplication Level

Multi®@C

Other metrics:

* Over-represented
sequences

* Adapter Content

14
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MultiQC report:
Contaminants

FastQ screen

FastQ Screen

FQscreen | HDF_HCF1_hs1.R1.trim_screen.txt

FQscreen | HDF_Input_hs2.R1.trim_screen.txt

FQscreen | HDF_Pol2_hs2.R1.trim_screen.txt

FQscreen | JP_HCF1_hs2.R1.trim_screen.txt

FQscreen | JP_input_hs2.R1.trim_screen.ixt
F( FQscreen | MW Pol2 hsLRLtrim screen.txt
93

Multi@C

Kraken + Krona

e
S
s
e

Fqsd Human 7 862 (95,25 | —— B
Mouse: 219 (0.0 |
Fas 1490 (0.25) | i
Fung 233 (0.0% -
Fas| Fu L -
Virus: 2 009
FQs<' Multiple Genomes: 24997 (2.5%)
Faser 19991 2.0%
FQscreen? [JP_HCFL_RsTRLtim screen ot
FQscreen2 | JP_Input_hs1.RL.trim_screen.txt
FQscreen | JP_Pol2_hs1R1.trim_screen.txt
FQscreen? | MW_HCF1_hs1.R1trim_screen.txt
FQscreen2 | MW_Input_hs1.R1.trim_screen.txt
FQscreen2 | MW_Pol2_hs1.R1.trim_screen.txt
-10 o 10 20 30 0 50 60 7 80 %0 100
© Human @ Mouse Bacteria Fungi  ® Virus @ Uni_Vec fRNA @ Multiple Genomes No hits

Created with Multiac

15

MultiQC report

Fingerprint plot

Fingerprint plot

Signal fingerprint according to plotFingerprint

viims: (2

deepTools: Fingerprint plot

Export Plot

°

O deeptools | mMW Input mmF
0.7272679155069978: 0.53

Fraction w.r.t. bin with highest coverage

02

Created with Multiac

FYTTTTTT. (AP

Multi G

this is an aimoat
perfoet “fingerprint”

N e difference
for aninput sample behweon irgut and
o 1 o / \y CHI signal is less
< A . / s bas
. / | a .
A Y
/ } Iy
/ |
L B ] w W ‘Ivn To W s () W .
- ¢ i :h the .
) attention to where the curves start HaK27me3 is a mark that yields broad
i b el sl P f bl = comains nsiaad of narw paka
maximum number of reads are reached, ie. 3% “mm":do’ how Mll; ::' m 9':""3 g
you sequenced at all (ie. bing
ofﬁngenovmcoma:a:rglsrgefmcmno( o 220 roads - for this example, 5 e
ca 10% of the entire gename do not RS T 0 datingl
hee ang riadl input and ChIR it does not mean,
this indicates very localized, very . however, that this partioular
o CHID experiment failed

nrichmente!
s wvery bickesgat heps fr in & CAID for
{BKcAma3)

Answers the question “Did my ChIP work?”
Input close to 45° as possible
Input above IP

. 0
Broad histones = farther away from 45 deepTools

16
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MultiQC report M u It i QC

ChIPSeq specific metrics

SampleName FragmentLength NRF NSC NUnigMappedReads ~PBC1 PBC2 Qtag RSC Quantifying library complexity
mJP_H3K4me2 mmdmF1 1950 09 127 32632674 09 12.7 1.0 14 *  NRF: Number of distinct mapping reads after
mJP_H3K4me2_ mmdmF2 2000 09 116 32703188 09 76 |10 |13 removing dupllcates/tota.l number of reads
e PBC1: Number of genomic locations where
mJP_H3K4me3_mmdmF1 205.0 08 172 29085 910 09 85 1.0 13 .
exactly one read maps uniquely/number of
mJP_H3K4me3_mmdmF2 2150 07 223 30561565 08 ) . i distinct genomic locations to which one read
mJP_Input_mmF 200.0 08 102 29028810 09 18.4 20 16 maps uniquely
mMW_H3K4me2_mmdmF1  185.0 0.9 114 27677038 0.9 17.9 1.0 13 *  PBC2: Number of genomic locations where only
one read maps uniquely/number of genomic
mMW_H3K4me2_mmdmF2 205.0 09 124 26 437 979 09 15.2 1.0 14 . R
locations where two reads map uniquely
mMW_H3K4me3_mmdmF1 210.0 0.7 239 29 444 767 08 6.0 1.0 14
mMW_H3K4me3_mmdmF2 2100 07 247 27208103 08 66 1.0 14 Quantifxing CrossCorrelation
mMW_Input_mmF 200.0 09 1.01 27400 816 1.0 25.7 1.0 1.4 * NSC: cross-correlation value/minimum cross-
mWT_H3K4me2_mmdmF1 185.0 09 1.15 33087 511 09 17.8 1.0 12 correlation
e o P < 264 633 09 168 o 2 * RSC: (cross-correlation value - minimum cross-
WT_H3Kd4me2_mmdmF2 X X s X i ! ‘ - .
mVT_HoKAdmez mmdm correlation) / (correlation at phantom peak -
mWT_H3K4me3_mmdmF1 210.0 07 252 26 755 416 08 6.8 1.0 14 minimum cross-correlation)
mWT_H3K4me3_mmdmF2 215.0 0.7 267 25521266 0.8 6.6 1.0 14 * Qtag: Overall Quality score
mWT_Input_mmF 200.0 08 102 34283983 09 127 20 1.9

National Human Genome Research Institute

Library Complexity 7
[

I

ENCODE guidelines

<05 <1 Severe <05 Concerning Orange
0.5=PBC1<0.8 1=PBC2<3 Moderate 0.5<NRF <0.8 | Acceptable Yellow
0.8=<PBC1<0.9 3=PBC2<10 Mild 0.8=<NRF <0.9 Compliant None
209 =10 None >0.9 Ideal None
PCR Bottlenecking Coefficient 1 (PBC1) PCR Bottlenecking Coefficient 2 (PBC2)
* PBC1=My/MpsTincT Where « PBC2=M;/M, where
© Mj: number of genomic locations where exactly one read maps uniquely © M;: number of genomic locations where only one read maps uniquely
o Mpsminet: humber of distinct genomic locations to which some read maps uniquely o Mj: number of genomic locations where two reads map uniquely

Non-Redundant Fraction (NRF) - Number of distinct uniquely mapping reads (i.e. after removing duplicates) / Total number of reads.




5/27/20

Cross correlation

Successful

e o ™ )
} selected 3 :I
e fragments = cc(read_length)
+ fio = ] e i — ce(ragment length)
é s NSC = min(cc)
8
§ 81
N _ cc(fragment length)—min(cc)
TFBS §< RSC = cc(read length) —min(cc)
b3
¢ min(cc) )
o 100 % %0 @
+ d shift
Marginal Failed
i Phantom Peak
" ChiP Peak
+ ’ |
{::i— sequencing
. —=—=— | reads "
strandshift Landt et al 2012. Genome Res
19
NEe P RSC .
>1.1 Optimal >1 Optimal
1.05-11  |Acceptable 08-1 Acceptable
<105 low signal to noise or very few <08 poor quality Ch.'P' low read
) peaks (biological or technical) : sequence quality, shallow
sequencing depth, or few peaks
NSC - Normalized Strand Co-efficient
RSC > Relative Strand Co-efficient
Qtag > is a thresholded version of RSC (-2:veryLow, -1:Low, 0:Medium, 1:High, 2:veryHigh)
NUnigMappedReads PBC1 PBC2 Qtag RSC NRF NSC
Sample 1 26070339 0.9 125 2.0 16 0.9 1.0
Sample 2 20297 073 0.6 2.3 2.0 2.0 0.6 1.3
Sample 3 22696844 0.4 1.9 2.0 45 05 1.1
20

10
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MultiQC report: =~~~ T %
More library complexity MUItlQC= —

Preseq: Complexity curve Export Plot

Preseq

30.00M

* Answers the question: Do /

”more” Sequences mean ”new” O preseq | mwT H3K4m;3 mmdmF2.ccurve

Seq uences? i:’ 20,00 M 18.09 M unique molecules: 25.00 M total molecules
* Inputs are expected to be closer i
T 15.00M
to the dotted line than 5
corresponding IP-ed sample 10.00M
5.00M
0.00M

0.00M 5.00 M 10.00 M 15.00 M 20.00M 25.00 M 30.00 M
Total molecules (including duplicates)

MultiQC report: -
inter-sample comparison MUItIQC=

v & & oo & &

Deeptools PCA G LSS
s Deeptools Heatmap

* “Inputs” Ily togeth &
nputs” are generally together e v v v v e s e e s s o
* Verify replicate concordance - W_HaKAme3, 2
PCA |: ). MMW_H3K4me3_mmdmF1
¥ MWT_H3K4me3_mmdmF2
0.3 4 [ X MWT_H3K4me3_mmdmF1
[ |o mJP_H3K4me3_mmdmF2
_ 0.2 L [0 mJP_H3K4me3_mmdmF1
T
‘% MWT_H3K4me2_mmdmF2
a 0.1
> MWT_H3K4me2_mmdmF1
E 0.0 e bereenne e e e mJP_H3K4me2_mmdmF2
:u MMW_H3K4me2_mmdmF1
n
< -0.1 4 mMW_H3K4me2_mmdmF2
o
o mJP_H3K4me2_mmdmF1
g

MWT_input_mmF

mP_Input_mme

—-0.2 4
Inputs.
o

—0:31 34 0.76 | 0.72| 0.74]| 0.77 | 0.75 | 0.76 | 0.77 [ 0.77 | 0.73| 0.71 | 0.72| 0.73 | 0.73 [ mMW_Input.
0.00 005 0.10 015 020 025 030 0.35 deepTools
PC1 (50.8% of var. explained) 0.0 02 0.4 0.6 08 10

11
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MultiQC report:

inter-sample comparison MUItIQC=

Deeptools correlation plot

: * ® 94 .87 0 | N L
Replicate2 i L 20 o

i 10 ’
i i b.wh .
° ® N spearman=0.87 F 30
Replicatel L 20
1] 10
g’,‘_,_m

Q "Q ,\QQ
INPUT

................. .

3

‘ deepTools

23
INPUTS IP-ed samples ™
Deeptools metagene heatmap P
Y ‘
» X-axis: Normalized to all protein-coding aj: /L
’ . /k__ N |
genes 10TsS TEBOKD -10TSS TEBOKb -1.0TSS TEEOKb -1.0TSS TEE.0Kb
* Y-axis: Normalized to 1x genome-wide =
coverage =t 3!
* Expect enrichment around TSS for IP-ed = !i
samples s ;
‘deeﬂwls T o S
24

12
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il

[ QC, Alignment, and Visualization | = L —=

J \_

r

Pipelines

r
\

\
J

QC and Alignment

r
\

\
J

Visualization

r
\

Duplication

BigWigs

Normalization

25

Duplication

]
| S — Y
e [}
e
Typical ChIP-seq peak

*
Low-complexity ChiP-seq peak

Landt et. al. Genome Res. 2012

26

13
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Do you need to remove duplicates?

All reads

Histogram of width(all)

J

1

1

Frequency
Frequency

1

1000 2000 3000 4000 5000 6000 7000

o -

U

800

200 400 600 1000

width(all)
61,314
84,157,874

# peaks
# bases covered

400 600 800 1000

200

o

No Duplicates

Histogram of width(DD)

200

|

T
400 600

width(DD)
25,175
36,168,022

My

1000

27

Two ways to remove duplicates

e Partial duplicate removal

* Uses a binomial distribution of read
numbers across the entire genome
and removes the upper quantile.

* Remove all duplicates

* If reads map to the same start and
end position, remove all but one of
the reads.

N, o)

A

02

25% |

Wikipedia. 2020.

28

14
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Effect of partial/total duplicate removal

All reads No Duplicates Partial
Histogram of width(all) Histogram of width(DD) Histogram of width(auto)
g _
g g
. 2
g €7 2
8 g
<
8 s
3 87 H s
S 4
s &
> S > o
g 3 g ®
£ 81 8 A
g 4 s
g | N g
g
S
° g 4 s
o J o J o
T 1

r T T r T T T 1 r T T T 1
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

width(all) width(DD) width(auto)
# peaks 61,314 25,175 47,479
# bases covered 84,157,874 36,168,022 69,159,165

29

Effect of partial/total duplicate removal

No Duplicates Partial
48 . 1896
50+
40+
! 1373
2 324 » E] w»
x @ x
& 4 P 304 =
£ T z <
8 3 < -—
S 20 E §2C‘ e
a [ d‘: '8
3 §
56 10 275 z
8

gr===——= Z22Z. et AELIXRL.

8 % ; g 5 ? g 3 8 ;J g :‘1 T T T T T T T T T T

338 3 Jd 325 2ggya eegPzz 2338 35 3

I g | £ £38”~*?2 333 %243 3 382 2 5 @

g § 8 % 33585358 °%2

30
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J

[ QC, Alignment, and Visualization

J \\

Pipelines

r
\

N\
7

QC and Alignment

r
\

N\
7

Visualization

r
\

Duplication

BigWigs

Normalization

31

BigWig generation:
Read extension for single end sequencing data

- W
sequenced section
("tag” or “read”)

align to
reference genome

“"“@
: t—s

: (_ antisense tags
A

Wilbanks et. al. PLOS ONE. 2010.

32

16
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Calculating the read extension

cross—correlation

’ T T
0 500 1000

strand-shift (180)

T
1500

33

[ QC, Alignment, and Visualization

Pipelines

QC and Alignment

Visualization

Duplication

BigWigs

Normalization

34

17
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Normalization for library size

* RPKM:

* reads per kilobase per million reads
* defined as:
* RPKM (per bin) = # of reads per bin / (# of mapped reads (in millions) * bin length (kb))
* RPGC:
* reads per genomic content

* used to normalize reads to 1x depth of coverage
* defined as:

* RPGC = (total # of mapped reads * fragment length) / effective genome size

35
— o e —— T
pl3.2 pl3.1 pl2 pll.2 pll.l qll.2 q q21. q21.31 q21.33 q22 q23.1 q23.3 q24.2 q24.3 q25.1 q25.3
7,927 kb
35,000 kb 36,000 kb 37,000 kb 38,000 kb 39,000 kb 40,000 kb 41,000 kb 42,000 kb
| | | | | | | | |
I
[0-6.00)
| Input
©0-600 l ChlP
REERE Subtraction
PRI I L ,JMWAMM@M@
| 1WA TR e o
36
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ChiP-seq Considerations ]

[ QC, Alignment, and Visualization ]

~ >

[ Peak Calling and Follow Up Analysis ]

37

S

[ Peak Calling and Follow Up Analysis

y

r Different Types of Peaks

Peak Calling |

Annotations
Motifs
Differential Binding

38

19
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Proteins bind in different ways

* Transcription factor
* Tight, high peaks
* RNA Pol Il
* Enriched at TSS but bound throughout the gene
body
* Histones

* Some are sharper and located near TSS

* Some are broader and spread out across the
length of active or inactive genes

H3F3A
H3K27me3
H3K36me3
H3K4mel
H3K79me2
H3K79me3
H3K9mel
H3K9me2
H4K20mel

H2AFZ
H3ac
H3K27ac
H3K4me2
H3K4me3
H3K9ac

39
Proteins bind in different ways
i [ CTCF
: ‘ RNA Pol II
. | M H3K36me3
H3K27me3
;_j ------------------------------------- SYN3 --------- Park et al 2009. Nat Rev Genet
40

20
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What causes these different shapes?

A B
F VAAVAVA

e
sequenced section

SNANNNN

Sense strand W

LAYV

WNNNNN

5 3 5’
3 5 3
m Antisense strand

refereEr]1|cl:gengt:nome l . l
ég >
((_fi- N S
«—9 Wilbanks et al 2010. PLOS ONE
41
N
[ Peak Calling and Follow Up Analysis
J
Different Types of Peaks
Peak Calling
Annotations
Motifs
Differential Binding
42

21
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How are peaks called?

ChlP-seq fragments  —

_

s

]

4

Sequence & align tags
= ==

Mahoney and Pugh et al 2015. Criti Rev Biochemi and MolBio

43
General concept of most peak callers
Count the number of reads within a window and determine
whether this number is above background
Peak-finding Peak-pairing
1) Shift or extend tags %~ .. 1)Build stranded tag
gy :/__9\‘-‘3’\&\\ density landscapes
2) Build tag density landscape v 2) Find max. locations
A L - on each strand
)
3 Find.max. ¢ 3) Pair opposite strand
: P Tt
o_ o
Predicted binding event location
Mahoney and Pugh et al 2015. Criti Rev Biochemi and MolBio
44

22



5/27/20

There are many peak callers out there...

GEM CCAT Fseq Hotspot Spp-msp
BCP ChIPDiff QUEST Qeseq Sole-Search
MUSIC ERANGE RSEG Hpeak CisGenome
MACS2 PeakSeq TPIC BayesPeak  Gene Track
ZINBA SICER W-ChIPPekas spp-wtd FindPeaks
Genrich SISSRs PolyPeak spp-mtc etc...

Thomas et al 2017. Briefings in Bioinformatics

45

Each peak caller has different
methods and benefits

©
) S o >
@ Q S > & & <&
© © 3 & S e P &
¥ /P £ A & CIO LA ESR \
& o 4 e“\ (\(‘a ‘KOQQ’\ ' o o‘b S S QQ’\ @} (&o 050
3 e /& < N o & 2 ) W LA 2" &
R AN E VL &SNS ¥ @ 9 O 2 /0 © >
Y o SIS zf'qﬁ éé\é‘DQ «°§ “éb'z?oo & 00\8"’” é'b:i\& &
L/ O/ SN2 L S & © o« 2 L/ Ly g
/& /R /. RPN A N & 3§ A
Program Q_é &S S S B R E f S 0°&&‘Q > 0°(°o°° 00(2&" <
o conditional
CisGenome | 28 | 1.1 | X* | X X X X X binomial model
Minimal ChipSeq 1
Peak Finder O |poi a
chromsome scale
E-RANGE| 27 | 3.1 X X Poisson dist.
MACS| 13 [1.3.5 X X X X local Poisson dist.
o chromsome scale
QuEST| 14 | 23 X X X X Poisson dist.
HPeak| 29 | 1.1 X X X Hidden Markov Model
Sole-Search | 23 | 1 X | X X X X One sample t-test
21 |1.01 conditional
PeakSeq 0 X X X binomial model
SISSRS| 32 |14 X X X
spp package 31|17 3
(wtd & mtc) i} X X X X X
Generating density Peak Adjustments w. Significance relative to
profiles assignment control data control data

X* = Windows-only GUI or cross-platform command line interface
X** = optional if sufficient data is available to split control data
X' = method exludes putative duplicated regions, no treatment of deletions

Wilbanks et al 2010. PLOS ONE
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Peak calling: things to keep in mind

* Peak callers are designed to deal with different types of peaks
* Pay attention to what they’re designed to handle

* Peak callers are optimized for a specific type of peak/dataset
* Tuning the parameters is often important
* Including the p-value, g-value, and/or FDR

* Peaks will not completely overlap across replicates or tools

47
MACS works well for narrow peaks | %
while SICER is designed for broad peaks ﬁ:]
10kb |
Wnt6 H-— - Wnt10a 4 l =]
H3K27me3 '
in mES cell . I '. - 'II . l
MACS — - a - T -
SICER | —-

48
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* control sample

* genome background
* large local region

* small local region

Model-based Analysis of ChIP-Seq (MACS)

* Extend reads and scale to library size

* Call candidate peaks relative to:

* Calculate FDR by calling peaks in the control relative to the ChIP

Feng et al 2012. Nature Protocols

49

* Uses windows and gaps to
identify ”islands” of
enrichment

* Gaps allow for short regions
lacking binding within an
island, more pattern
variability across island

* Compares to a randomized
background and control
background to calculate FDR

Spatial Clustering for Identification of
ChIP-Enriched Regions (SICER)

10kp ———————4 G=3
a

ntt
H3K27me3
inmES el PP VIRV T Y
B

W =200

10kb b—— W=200

WG s - Wnt10a
H3K27me3
in mES cell " “ . I nu .‘

G=3

Xu et al 2014. Methods Mol Biol

50

25



5/27/20

Output file formats —
* https://genome.ucsc.edu/FAQ/FAQformat.html 3

This format is used to provide called peaks of signal enrichment based on pooled, normalized (interpreted) data. It is a BED6+4 forr

1. chrom - Name of the chromosome (or contig, scaffold, etc.).
2. chromStart - The starting position of the feature in the chromosome or scaffold. The first base in a chromosome is numberec

3. chromEnd - The ending position of the feature in the chromosome or scaffold. The chromEnd base is not included in the disf
defined as chromStart=0, chromEnd=100, and span the bases numbered 0-99.

4. name - Name given to a region (preferably unique). Use "." if no name is assigned.

(4

. score - Indicates how dark the peak will be displayed in the browser (0-1000). If all scores were "'0"' when the data were sub
value. |deally the average signalValue per base spread is between 100-1000.

. strand - +/- to denote strand or orientation (whenever applicable). Use "." if no orientation is assigned.
. signalValue - Measurement of overall (usually, average) enrichment for the region.
. pValue - Measurement of statistical significance (-log10). Use -1 if no pValue is assigned.

. gValue - Measurement of statistical significance using false discovery rate (-log10). Use -1 if no qValue is assigned.

o © ® N O

10. peak - Point-source called for this peak; 0-based offset from chromStart. Use -1 if no point-source called.
Here is an example of narrowPeak format:

track type=narrowPeak visibility=3 db=hgl9 name="nPk" description="ENCODE narrowPeak Example"
browser position chrl:9356000-9365000

chrl 9356548 9356648 . 0 . 182 5.0945 -1 50
chrl 9358722 9358822 . 0 . 91 4.6052 -1 40
chrl 9361082 9361182 . 0 . 182 9.2103 -1 75

FRIP (Fraction of Reads in Peaks)

* Measures global ChIP enrichment
Percentage of Reads In Peaks

* Quick understanding of quality of Chi2_1 Ch12_2

the IP and peak calling algorithm 10
* Good quality FRiP for a transcription 75 -
factor: > 5%
50 -
25 - (9.4%) (16.4%)
o Reads
z . omen N B e

OutSide

de Santiago, Carroll 2017. Chromatin Immunoprecipitation
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[ Peak Calling and Follow Up Analysis

7

Different Types of Peaks

Peak Calling

Annotations

Motifs

Differential Binding

53

Annotations: questions to ask

* |s this protein enriched around promoters?
* Many tools are biased towards promoters/TSS sites

* What is a gene?
* Do you have a reason to include pseudogenes, lincRNAs, etc?

* Do you care about introns/alternative transcripts?

* What happens if a peak overlaps multiple genes?

54
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Annotation tools

HOMER

* Straight-forward to use

* Only protein coding genes

e Focused on nearest TSS

* One annotation per peak

UROPA

* More complicated to set up

* Takes any gene list input

* Focuses where the user decides

* Creates two tables: one of top
annotation per peak, and one of
all possible annotations given
the input conditions

Heinz et al 2010. Mol Cell

Kondili et al 2017. Scientific Reports

55

Annotation tools: example HOMER output table &=

o f— —— c 1D i | E F G H | 1 | J K| I M N | © P | | R
1 |PeakiD Chr Start End Strand Peak Sco Focus Rz Annotation  Detailed Anno Distance to T Nearest Pror PromoterID Nearest Unig Nearest Refs Nearest Ense Gene Name Gene Alias  Gene Descrig|
P |chr18-1 chrl8 69007968 69008268 + 593  0.939 intron (NR_O3: intron (NR_03: 74595 NR_034133 400655 Hs.579378 NR_034133 LOC400655 - hypothetical
B |chro1  chr9 | 88209966 88210266 + 531.9 0.946 Intergenic Intergenic -50894 NM_001185( 79670 Hs.597057 NM_001185( ENSGO0000C ZCCHC6  DKFZp666B1 zinc finger, C
4 |chr14-1  chrid | 62337073 62337373 + 505.4 0.918 intron (NM_17intron (NM_17 244485 NM_172375 27133 Hs.27043  NM_139318 ENSG000001 KCNHS EAG2|H-EAG potassium v(|
5 |chri71  chr17 5076243 5076543 + 4921  0.936 intron (NR_O3: intron (NR_03: 2414 NM_207103 388325 Hs.462080 NM_207103 ENSGO00001C170rf87  FLI32580| Mt chromosome
b |chr17-2  chrl7 = 47851714 47852014 + 4762 0.824 Intergenic Intergenic -259488 NM_001082! 56934 Hs.463466 NM_001082! ENSGO00001 CA10 CA-RPX| CAR carbonic anh
7 |chr10-1  chrl0 98420680 98420980 + 4749  0.967 intron (NM_1E intron (NM_15 49439 NM_152309 118788 Hs.310456 NM_152309 ENSGOO0001PIK3AP1  BCAP|RP11-iph i
5 |chro-2  chr9 81294389 81294689 + 4563  0.957 Intergenic  Intergenic -82159 NM_007005 7091 Hs.444213  NM_007005 ENSG000001 TLE4 BCE-1| BCE1 | transducin-li
P chr14-2  chrid 36817736 36818036 + 4523 0.757 intron (NM_1Z intron (NM_13 81017 NM_001195. 145282 Hs.660396 NM_001195: ENSGO00001MIPOL1 DKFZp313M: mirror-image
0 |chr18-2 chrl8 = 20049825 20050125 + 449.7  0.853 intron (NM_OE intron (NM_OE 56219 NM_018030 114876 Hs.370725 NM_018030 ENSG0000010SBPLIA  FLI10217|OF oxysterol bin|
[1 [chr7-1 chr7 12226829 12227129 + 4457  0.901 intron (NM_O1 intron (NM_01 9606 NM_001134; 54664 Hs.396358 NM_001134 ENSGO00001 TMEM1068 FLI11273|Mitransmembri
2 [chr14-3  chrl4 88712188 88712488 + 4431  0.844 intron (NM_OCintron (NM_OC 240869 NM_005197 1112 Hs.621371  NM_001085: ENSGO0000C FOXN3 C140rf116|C forkhead bo
3 |chr18-3  chrl8 62951924 62952224 + 4431 0947 Intergenic  Intergenic -382689 NR_033921 643542 Hs.652901 NR_033921 LOC643542 - hypothetical
4 |chr3-1  chr3 32196769 32197069 + 4431 0.87 Intergenic  Intergenic -58256 NM_178868 152189 Hs.154986 NM_178868 ENSGO00001CMTMS8  CKLFSF8|CKL CKLF-like MA
5 |chr1l-1 chrll 110685448 110685748 + 425.8  0.907 Intergenic  Intergenic -9849 NR_034154 399948 Hs.729225 NR_034154 Cllorfd2  DKFZp781P1 chromosome
6 |chra-1  chr4 81755366 81755666 + 4232 0.908 intron (NM_1%intron (NM_15 279618 NM_152770 255119 Hs.527104 NM_152770 ENSG000001C4orf22  MGC35043 chromosomg
Heinz et al 2010. Mol Cell
56
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UROPA output figures

A UROPA summary

There were 14989 peaks in the input bed file,
UROPA annotated 13544 peaks

query feature distance feature.anchor internals strand direction filter.attribute attribute.value show.attributes
query00 gene 10000 start True both any_direction gene_type protein_coding c("genc_name", "genc_type")
query01 gene 10000 start Tiue both any_direction  gene_type NCRNA None
query02 gene 10000 start True  both any_direction gene_type  misc_RNA None

priority: False

Input: ENCFF001VFA.bed
Anno: gencode.v19.annotation.gtf

Distance to features across final hits Genomic location of 'gene’ across final hits
0.0015 *

feature .
[Clgene location

I downstream (2%)

| FeaturelnsidePeak (1.7%)
B overlapEnd (1.4%)

I overlapStart (54.1%)

I PeaklnsideFeature (32.6%)
1 upstream (8.2%)

8

Relative count

00005 *

00000 +

0 2000 4600 6000

Distance to feature Kondili et al 2017. Scientific Reports

Annotation tools

PAVIS Grear  [QREAT

* Online tool * Online tool

* Annotates based on nearest TSS * Annotates based on nearest TSS

* Has an “intuitive” interface * Each peak can be( associatedhwith
. . . . up to two genes (one in eac

manticore.niehs.nih.gov/pavis2 direction)

* Only works with four reference
genomes (human and mouse)

* Also includes functional
enrichment analyses

http://great.stanford.edu/

Huang W et al 2013. Bioinformatics
McLean CY et al 2010. Comp Biol
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[ Peak Calling and Follow Up Analysis |
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Different Types of Peaks

Peak Calling

Annotations

Motifs

Differential Binding

59

Motifs: things to consider

* Transcription factor motifs: Myc
* Tends to be small and robust; often centrally located in peaks CAC T
) C C

* Other proteins:
* More varied, degenerated motifs, if any at all
* Rarely centrally located

* Motifs are identified as enriched in peaks relative to some
background: should it be the entire genome, just promoters, or
something else?

e Search for known motifs or novel motifs?

60
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Motif Calling Tools

MEME Suite

* MEME-ChIP: novel motifs
MEME
DREME: small, robust motifs
Centrimo: centrally enriched motifs

e AME: known motifs

i MEME-ChIP

* Motif Analysis of Large Nucleotide Datasets

AME

Analysis of Motif Enrichment

HOMER

* Runs for both known and novel
motifs simultaneously

Heinz et al 2010. Mol Cell
Bailey et al 2009. Nucleic Acids Research

61

MEME-ChIP performs comprehensive motif
analysis (including motif discovery) on LARGE
sets of (typically nucleotide) sequences such
as those identified by ChiP-seq or CLIP-seq
experiments (sample output from sequences).
Note: The input sequences should be
centered on a 100 character region
expected to contain motifs. See this Manual
for more information.

i, MEME-ChIP

Motif Analysis of Large Nucleotide Datasets
Version 5.0.5

—| Data Submission Form

Perform motif discovery, motif enrichment analysis and clustering on large nucleotide datasets.

Select the motif discovery and enrichment mode [Z|
© Classic mode Discriminative mode Di: ial Enrich: mode {"2%

Select the sequence alphabet
Use sequences with a standard alphabet or specify a custom alphabet.

© DNA, RNA or Protein * Custom

Input the primary sequences
Enter the (equal-length) nucleotide seq to be analyze

Upload sequences %) | Choose File No file chosen

Input the motifs
Select, upload or enter a set of known motifs.

[ Eukaryote DNA
[ Vertebrates (In vivo and in silico)

Input job details
(Optional) Enter your email address. 2]

MEME: meme-suite.org

FYTTTTTT (PP

C

AME identifies known user-provided motifs
that are either relatively enriched in your
sequences compared with control sequences,
that are enriched in the first sequences in your
input file, or that are enriched in sequences

AME

Analysis of Motif Enrichment

with small values of scores that you can
specify with your input sequences (sample
output from sequences, control sequences and
motifs). See this Manual or this Tutorial for
more information.

Version 5.0.5

—| Data Submission Form

Perform standard (non-local) motif enrichment analysis.

Select the type of control sequences to use
© Shuffled input sequences User-provided control sequences NONE 2088

Select the sequence alphabet
Use sequences with a standard alphabet or specify a custom alphabet. [2]

© DNA, RNA or Protin ) Custom

Input the primary sequences
Enter the sequences in which you want to find enriched motifs.

Upload sequences %] | Choose File | Nofile chosen

Input the motifs
Select a motif database or enter the motifs you wish to test for enrichment. [?]

[ Eukaryote DNA

[ Vertebrates (In vivo and in silico)

: Al SRR

Coalaaiile

62
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MEME-ChIP output

. Di: y/Enri E-val Known or Similar
Motif Found Program [ Motifs 2
2
" 1.9e- KIfl (MA0493.1)
21 T MEME 2.87 KLF9 (MA1107.1)
x g Kif12 (MA0742.1)
0. 4 C S s
~ 8 m e n o N @O o ¢

Reverse Complement &  Show 26 More 72 CentriMo Group [*2

N y/Enri E-val Known or Similar
Motif Found Program Motifs
GATAS (MAQ766.1)
24 5.7e- GATAL::TAL1
s T DREME 041 (MA0140.2)
. A GATA3 (MA0037.3)

- N o ¢ v oo

Reverse Complement &  Show 22 More 2  CentriMo Group 2]

Discovery/
Enrichment Program

24 ’ 3.0e-
i c | ACQ — 008
=2 1132 E
- ~ e e s ¢ ou

Reverse Complement <

Known or Similar

% E-value
Motif Found Motifs

PAXS (MAQ014.3)

Distribution

Distribution

Distribution

Machaniak et al 2011. Bioinformatics
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.
Motif seach: tabular outputs
AME output - e ™ > o
7] 7 7
Logo Database () Alt ID vae vae Thsh (%) (%)
’ JASPAR2018
5 : 3.93e-  5.52e- 410 112
‘ &QQACACCC_‘% redundant oL K 2 w0 PF L asew (62w
JASPAR2018
5 N 7.8%e- l.11le- 405 170
J ::e%r:::::t MA1107.1  KLF9 o3 8o 1.64 (445%)  (9.4%)
HOMER output
. g log % of |% of STD(Bg . Motif
Rank [Motif P-value P-pvalue  [Targets [Background|STD) Best Match/Details File
NFkB-p65(RHD)/GM12787- motif
1 AAT I I C le-1835|-4.228¢+03[28.11%|5.16% |, 0P [P6S-ChIP-Seq/Homer g\
=l C A (63.1bp) More Information | Similar | - .
. - - Motifs Found
PB0058.1_Sfpil_1 motif
2 A_A1A_ AA A A T 1e-1716|-3.953e+03(34.50%|8.65% 46728;? More Information | Similar |file
==LAGM ==x (62.8%9)otifs Found marix
O A A TA 41 8bp MAO0102.1_Cebpa motif

64
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[ Peak Calling and Follow Up Analysis
J
Different Types of Peaks
Peak Calling
Annotations
Motifs
Differential Binding

65

Key assumption of differential peak calling:
most peaks are similar across conditions

Unique Unique Shared Shared
(single enrichment) (differential) (differential) (similar)

Conditions

____________________________________________________

Wu et al 2015. Front Genet
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Differential peak calling is dependent on
peak calling quality

Rep! _nllliie. el ettt Sl st
Rep?m_-.‘.

LOSET T NE au pe——

Input

= I —

Gene

Rep! mumm o mu s =
Rep2 wmmm wm mm s e -

Repd mu— ———

Yang et al 2014. Comput Struct Biotechnol J

67
Sharp or Broad
ChIP Enrichment?,
Biological Ly Sharp Broad o] Biological
Replicates? | "1  Replicates?
F d |, YES NO | Predefined | YES NO | predefined
Region Set? | | Region Set? Region Set? | | Region Set?
YES NO YESJ NO YES NO YES NO
A \i 4 Y A A\ Y Y
- ChiPComp - MAnorm - MAnomm }.mn.;‘
- - ChiPComo Home
- DiffBind hiPal - Homes - DiffBind - diffReps-nb - unique Peaks MAGS? baadt
2ChiPa - MACS2 bdgdiff QChiPat ODIN-poigi-t
- ODIN-bin .RSEG
. SICER
Steinhauser et al 2016. Brief Bioinformatics
68
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Differential peak calling tools

MANORM DIFFBIND
* Cannot handle replicates * Requires replicates of all
conditions

* Lacks statistical power

* Needs peaks to be defined from
an outside source * Needs peaks to be defined from
an outside source

e Has a statistical framework

* Works for both narrow and
broad peaks * Works for both narrow and

broad peaks

Ross-Innes et al 2012. Nature
Shao et al 2012. Genome Biology
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Comparing your data to other ChIP-seq data =3
* ENCODE (Encyclopedia of DNA Elements)
* www.encodeproject.org
* Visualizations and peak analyses of mouse, human, Drosophila, and C. elegans data
in healthy control conditions. Data types include ChIP-seq, DNase-seq, ATAC-seq, HiC,
and more.
* Cistrome
* cistrome.org
* Cistrome Analysis Pipeline, Cistrome Data Browser, Cistrome Cancer, Cistrome-GO,
CistromeDB Toolkit, Landscape In Silico deletion Analysis
* Visualizations and peak analyses of many public mouse and human ChlIP-seq, DNase-
seq, and ATAC-seq datasets reanalyzed using their pipeline
* GTRD (Gene Transcription Regulation Database)
* gtrd.biouml.org
* Used DNase-seq, ChlP-seq, and motif databases to identify transcription factor
binding sites for human and mouse genomes
70

35


https://www.encodeproject.org/
http://cistrome.org/
http://gtrd.biouml.org/

5/27/20

Conclusions

*ChlP-seq is not trivial.

*Every experiment is unique.

e Experimental design is critical for ChIP-seq.
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