NCBI BLAST Services

Protein BLAST

Query: human MLH1, NP_000240 Program: blastp Database: refseq_protein Goals:

- Explore DNA mismatch repair proteins in vertebrates using Reference Sequences.
- Demonstrate the usefulness of organism limits, taxonomy report, and the link to multiple sequence alignment.

Procedure:

- Retrieve NP_000240 from the Entrez protein service.
- Click "Run BLAST" under the Analyze this sequence portlet.

DNA mismatch repair prote	in MIh1 isoform 1 [Homo sapiens]		
NCBI Reference Sequence: NP_000240.1	Customize view		
Identical Proteins FASTA Graphics			
<u>Go to:</u> 🕑			Analyze this sequence Run BLAST
LOCUS NP_000240	756 aa linear PRI 23-APR-2016	T	Identify Conserved Domains
DEFINITION DNA mismatch repair prote	in Mlhl isoform 1 [Homo sapiens].		Highlight Sequence Features
VERSION NP_000240.1 GI:4557757			Find in this Sequence
DBSOURCE REFSEQ: accession <u>NM_0002</u>	<u>49.3</u>		
KEYWORDS RefSeq.			
SOURCE Homo sapiens (human)			

- Select refseq_protein as the database.
- Enter "vertebrates" in the Organism input box, select from the suggested list

Choose Searc	ch Set
Database	Reference proteins (refseq_protein)
Organism Optional	vertebrates (taxid:7742) Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.
Exclude Optional	Models (XM/XP) Uncultured/environmental sample sequences
Entrez Query Optional	Fou Tube Create custom database

- Click **Algorithm Parameters** and increase the **Max target sequences** to 1000 and set the Expect threshold to a stringent value, 1e-6.

Algorithm parameter	Note: Parameter values that differ fr
General Param	neters
Max target sequences	100 ♦ Select the maximum number of aligned sequences to display ⊚
Short queries	Automatically adjust parameters for short input sequences
Expect threshold	♦ 1e-06
Word size	6 🗘 🥹
Max matches in a query range	0

- Click **BLAST** to submit the search
- The matches have different types of RefSeq accessions. The XP_ entries represent proteins derived from gene models. NP_ accessions represent proteins derived from experimentally supported expressed sequences.

Gene models may be incomplete due to missing data in the genome or may represent potential but unsupported splice variants. You can filter these from the database by using the "Exclude" option.

- From the results page, click **Edit and resubmit**
- Check the Exclude Models (XM/XP) checkbox

Choose Search	h Set
Database	Reference proteins (refseq_protein)
Organism Optional	mammals (taxid:40674) Exclude + Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.
Exclude Optional	Models (XM/XP) Uncultured/environmental sample sequences
Entrez Query Optional	Enter an Entrez query to limit search (9)

- Click **BLAST** to submit the search.
- The results now contain only NP_ style accessions, experimentally supported gene products. Click **Taxonomy report**, to see the DNA mismatch repair proteins products found in humans and other vertebrare.

Other reports: > Search Summary [Taxonomy reports] [Distance tree of results] [Related Structures] [Multiple alignment]

- Return to the BLAST results, click on the **Distance tree of results** to see a graphic presentation of the relative between the different proteins. The distinct gene products form different clustere

- You can extend this search to a Multiple Alignment with COBALT to obtain a more accurate tree.

Other reports: > Search Summary [Taxonomy reports] [Distance tree of results] [Multiple alignment]

Independent exercise: aromatic amino acid hydroxylases

Query: human tyrosine hydroxylase, NP_954986 Program: blastp Database: refseq_protein Goals:

- Identify members of the aromatic amino acid hydroxylase family in mammals and other groups

- Use taxonomy report, formatting options, TreeView, and links to explore results.
- Use the results to make a multiple alignment with COBALT and a phylogenetic tree from the COBALT alignments

Procedure:

You may need to **"Reset page"** first before starting this exercise. Follow the procedure above for creatine kinases.

- Run the search first against mammals Reference Sequences. Set the e-value cutoff to 1e-6 to see only closely related proteins. Compare the results with and without the XP_ filter.
- Use the TreeView display to examine the relationships in the group of NP_ proteins.

What are the different members of this group in humans? What is meant by "isoforms" in the case of tyrosine hydroxylase? Which one of the mammalian aromatic amino acid hydroxylases is the product of two genes? Note the e-value of the hit to phenylalanine-4-hydroxylase from *Pongo abelii*

- Click **Edit and resubmit** to get back to the search page.
- Expand Algorithm parameters and set the Max target sequences to 5000 and the Expect threshold to 1e-4.
- Remove the Organism limit.
- Remove the XP_ exclusion.
- Click **BLAST** to resubmit the search.

You can use the formatting options to now filter your results for certain kinds of hits.

- Click Formatting options
- Type "fishes" in the Organism box on the **Formatting options** page and click **Reformat**.

What two fishes are represented? Are there additional genes represented in the fish?

- Type "bacteria" in the Organism box on the Formatting options page and click Reformat.

What domain is missing in these hits that was present in the eukaryotic proteins?

- Type "hypothetical protein" in the Entrez query box on the **Formatting options** page and click **Reformat**.

What organisms are represented in these results?

-Now type Pongo abelii in the Organism box on the Formatting options page and click Reformat.

Why is the e-value different than the one you noted previously for the search against only mammalian NP_ RefSeqs?

Additional practice: Explore BLAST results for prolactin (NP_000939) for mammals especially compare mouse and rat to human. There is an additional gene family in fishes.

Nucleotide BLAST and Genomic BLAST

CDC20 and human genome

Query: Macaque CDC20 mRNA, AB168636 Program: nucleotide BLAST page with megablast and blastn Database: human genomic + transcript, mouse genomic+transcript

- Map a sequence onto various genomes
- Compare the speed and sensitivity of various algorithms
- Use the different sorting options in BLAST results
- Use formatting options, CDS feature.

Procedure:

- Retrieve AB168636 from Entrez nucleotide and follow the link to **Run BLAST**.
- Select the Human genomic + transcripts database, click BLAST.
- Examine the **Graphic summary** and **Descriptions** sections.

Notice that there are separate sections for the transcripts and genomic regions. There are two genome assemblies represented: the reference genome, GRCh38 and an alternate assembly, CHM1_1.1, a hydatidiform mole assembly. The latter is useful because it has a single haplotype. There are hits to chromosome 9 and chromosome 1 in the three assemblies. The retro-transposed pseudogene on Chromosome 9 actually ranks higher than the functional gene because the single uninterrupted single hit outscores the individual exon hits for the functional gene. Re-sorting the output by **Total score** and/or **Max Ident** bring match to the functional gene to the top of the list.

- Click on the linked hit to Homo sapiens chromosome 9, GRCh38 Primary Assembly and examine the alignment to the pseudogene.

Notice the single nearly complete alignment with no introns. The poly-A tail from the mRNA is even present in the genome. This is an example of an apparent retro-transcribed mRNA that has been inserted into the genome.

- Click the linked hit for Homo sapiens chromosome 1, GRCh38 Primary Assembly to go to the alignment
- Click Query Start position to arrange the matches according to exon order

The first aligned segment starts at position 73 of the mRNA. Megablast misses the first exon hit as well as a match to some related transcripts. Re-running the search with blastn finds this hit. You will need to set the Expect threshold to 1e-6 to avoid additional non-significant matches.

Linking to the Graphical Sequence Viewer

Displaying the BLAST hits on the annotated chromosome in the Graphical Sequence Viewer provides important genomic context for the aligned regions.

- Follow the main 'Graphics' link at the top of the alignments the hits on chromosome 9 and chromosome 1 to display the hits in the Graphical Sequence Viewer. Make a note of the surrounding genes.

Down	load v <u>Ger</u>	nBank Graphi	CS Sort by: Query st	art position 🛟		
Homo	sapiens chr	romosome 1,	GRCh38 Primary As	sembly		
Sequen	ce ID: ref NC	_000001.11 L	ength: 248956422 Nur	mber of Matches: 10		
Range 1	1: 43359166	to 43359397 G	enBank Graphics	V N	lext Match 🔺 Previou	s Match
Score		Expect	Identities	Gaps	Strand	
396 bit	:s(214)	8e-107	226/232(97%)	0/232(0%)	Plus/Plus	
Query	73	GGGCTCCGCAG	GCACCAACTGCAAGGACC		TTCCCATGGCACAAT	132
Sbjct	43359166	GGGCTCCGTAG	GCACCAACTGCAAGGACC	CCTCCCCCTGCGGGCG	CTCCCATGGCACAGT	43359225
Query	133	TCGCGTTCGAG	AGTGACCTGCACTCGCTG	CTTCAGCTGGATGCAC	CATCCCCAATGCAC	192
Sbjct	43359226	TCGCGTTCGAG	AGTGACCTGCACTCGCTG	CTTCAGCTGGATGCAC	CATCCCCAATGCAC	43359285
Query	193		TGGCAGCGCAAAGCCAAG	GAAGCCTCAGGCCCGG	CCCCTCACCCATGC	252
Sbjct	43359286	CCCCTGCGCGC	TGGCAGCGCAAAGCCAAG	GAAGCCGCAGGCCCGG	CCCCTCACCCATGC	43359345
Query	253	GGGCCGCCAAC	CGATCCCACAGCGCCGGC	AGAACTCCGGGCCGAA(CTCCTGG 304	
Sbjct	43359346	GGGCCGCCAAC	CGATCCCACAGCGCCGGC	AGGACTCCGGGCCGAA	ctcctgg 4335939	7

Notice also that the search did not find a match to the first exon of the human gene. This is a consequence of the algorithm choice (megablast). You can compare these results to what you get with discontiguous megablast and blastn. You can also compare these results to what you obtain in a search of the mouse mRNA and transcript database. You will need to use blastn rather than megablast to find the functional gene, which on chromosome 4.

Formatting Options CDS Feature

- Open Format options link, check CDS Features, click Reformat

This adds the translation to the nucleotide alignment if coding regions are annotated on the query or subject (database sequence).

- Examine the alignment to the human transcript NM_001255.

The macaque mRNA sequence has a single base deletion relative to the human transcript. This results in a frame shift making the protein translation diverge at the C- terminus. This is most likely a sequencing error as the other mammalian CDC20 proteins agree with the human sequence. You can use a blastx search with AB168636 to demonstrate this frame shift as well.

Independent exercise: Finding TP53 in the sloth (Choelepus hoffmani) assembly

Query: Human TP53 transcript variant 1, mRNA, NM_000546

Program and Database: Use the Genome BLAST finder on the BLAST homepage to get the Choelepus hoffmani genome BLAST page.

BLAST Assembled Genomes							
Find Genomic BLAST pages:							
Choloepus hoffmanni (GO					
Choloepus hoffmanni (axid:9358)						
Human	Rabbit	Zebrafish					
Mouse	Chimp	Clawed frog					
□ <u>Rat</u>	Guinea pig	Arabidopsis					
□ <u>Cow</u>	Fruit fly	Rice					
Pig	Honey bee	Yeast					
Dog	Chicken	Microbes					

BLAST	♥ » blast	n suite		Hor	ne Re	cent Results	Saved Strat	tegies	Help
	Choloep	<i>us hoffmanni</i> (Hoffmann's	s two-fingered sloth) Ge	enBank assem	nbly GCA	_000164785.2	Nucleotide	BLAST	
blastn tbl	astn tblast	<u>(</u>							
Enter	Query Sec	BLASTN programs searc	n GenBank assembly GCA_000	0164785.2 databas	es using a r	nucleotide query.	more	Reset page	Bookmark
Enter ac	cession nur	nber(s) gi(s) or FASTA segu		Clear	Quer	v subrance 🙆			
NM 000)546			Olean	atuci	y subrange 😈			
					From				
					То				
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Or, uplo	ad file	Choose File No file chosen	Θ		4				
Job Title	•	NM_000546:Homo sapiens tum	or protein p53 (TP53),						
		Enter a descriptive title for your	BLAST search 🥹						
Databas	e	C_hoffmanni-2.0.1 GenBank	assembly [GCA_00016478	5.2] (370041 seq	uences) 🌘)			
Progr	am Selecti	on							
Optimize	e for	Highly similar sequences	(megablast)						
		 More dissimilar sequence 	s (discontiguous megablast))					
		Somewhat similar sequen	ces (blastn)	, ,					
		Choose a BLAST algorithm 🛞							
BL/	AST	Search database genomic/	9358/GCA_000164785.2 us	sing Blastn (Opt	imize for s	omewhat simil	ar sequences)		
		Show results in a new window	1						

Goals:

Use megablast and blastn to identify the scaffold that contains the TP53 gene.

Independent exercise: Identifying Potato ETR2 annotation

Query: Tomato ethylene receptor homolog (ETR2), mRNA CDC20 mRNA, NM_001247224.1 **Program:** Potato genome BLAST page with megablast and blastn **Database:** SolTub 3.0 reference assembly top level

- Map a sequence onto the genomes
- Compare the speed and sensitivity of various algorithms
- Use the different sorting options in BLAST results
- Use formatting options, CDS feature.

Procedure:

- Retrieve NM_001247224.1 from Entrez nucleotide and copy to the clipboard.
- Use the genomic database finder on the BLAST homepage to find the potato genome BLAST page.
- Run BLAST
- Find corresponding potato gene.

Notes

You can find the tomato transcript very quickly by searching Nucleotide with

ETR2 tomato

Then use the Gene Sensor to link to the transcript sequence.

Nucleotide	Nucleotide ETR2 tomato Save search Advanced	8 Search
Species Plants (7) Customize Molecule types genomic DNA/RNA (5)	Display Settings: ♥ Summary, 20 per page, Sorted by Default order Send to: ♥	Filters: Manage Filters
	See ETR2 ethylene receptor normolog in the Gene database etr2 reference sequences Transcript (1) Protein (1)	Results by taxon Top Organisms [Tree] Solanum lycopersicum (5)

Solanum lycopersicum ethylene receptor homolog (ETR2), mRNA

NCBI Reference Sequence: NM_001247224.1

FASTA Graphics

Go to: 🖂

LOCUS	NM_001247224	2688 bp	mRNA	linear	PLN 30-NOV-2014
DEFINITION	Solanum lycopersicum e	thylene reco	eptor hom	olog (ETR	2), mRNA.
ACCESSION	NM_001247224				
VERSION	NM_001247224.1 GI:350	534669			
KEYWORDS	RefSeq.				
SOURCE	Solanum lycopersicum (tomato)			

Use the Genome database selector to find the potato genome BLAST page.

BLAST Assembled Genomes	
Find Genomic BLAST pages:	
Potato	GO
potato (taxid:4113)	
potatoes (taxid:4113)	
potato late blight agent (taxid:4787)	L!
potato late blight fungus (taxid:4787)	fish
Colorado potato beetle (taxid:7539)	<u>id frog</u>
sweet potato whitefly (taxid:7038)	dopsis
sweet potato (taxid:4120)	
potato aphid (taxid:13131)	bes
black scurf of potato (taxid:107832)	
Guatemalan potato tuber moth (taxid:396680)	
potato pink rot agent (taxid:4788)	
potato pink rot fungus (taxid:4788)	
peach-potato aphid (taxid:13164)	
air-potato (taxid:35874)	sing a nucleotide query
potato yam (taxid:35874)	t, discontiguous megablast
Durvillaea potatorum (taxid:91052)	
Chinese-potato (taxid:55575)	phi-blast, delta-blast
Chaco potato (taxid:4108)	
American potatobean (taxid:185702)	translated nucleotide query
potato psyllid (taxid:290155)	tabasa using a protain quant
ulastii Search translateu hucieotiue	s ualabase using a protein query

NCBI/ BLAST/ blastn	suite Solanum tuberosum (potato) N	lucleotide BLAS	Т
blastn blastp blas	tx tblastn tblastx		
Enter Over 4	BLASTN programs search nucleotide databases	s using a nucleotide qu	ery. more Reset page Bookmark
Enter Query S	sequence		
Enter accession r	number(s), gi(s), or FASTA sequence(s) 😡	Clear	Query subrange 😡
NM_001247224			From
			То
Or, upload file	Choose File No file chosen		2
Job Title	NM_001247224:Solanum lycopersicum ethylene		
	Enter a descriptive title for your BLAST search 😡		
Chasse Searc	h Sot		
Choose Searc	an Sec		
Database	Genome (SolTub_3.0 reference assembly top-level)	\$ 148	354 sequences 🥹
Exclude Optional	Models (XM/XP)		
Entrez Query			
Optional	Enter an Entrez query to limit search 😡		
Program Sele	ction		
Optimize for	Highly similar acquerase (magablest)		
	More dissimilar sequences (discentionaus more)	bloot)	
	Somewhat similar sequences (discontiguous mega	blast)	
	Observe Similar sequences (blastn)		
	Choose a BLAST algorithm 🥑		
PLACT	Search database Genome (SolTub, 3.0 reference	e assembly ton-leve	l) - Solanum tuberosum using
DEAST	Megablast (Optimize for highly similar sequence	es)	
	Show results in a new window	,	

Use the Formatting options to highlight differences (dots for identities) and show coding regions (CDS).

	Formatting options	ormat
Show	Alignment as HTML 💠 🗌 Old View Reset form to defaults	0
Alignment View	Pairwise with dots for identities	0
Display	✓ Graphical Overview □ NCBI-gi	0
Masking	Character: Lower Case Color: Grey	0
Limit results	Descriptions: 100 + Graphical overview: 100 + Line length: 60 +	0
	Organism Type common name, binomial, taxid, or group name. Only 20 top taxa will be shown.	
	Enter organism name or id-completions will be suggested Exclude +	0
	Entrez query:	0
	Expect Min: Expect Max:	0
	Percent Identity Min: Percent Identity Max:	0

Bownload v GenBan	k Graphic	Sort by: E value				
Solanum tuberosum cultivar DM 1-3 516 R44 unplaced genomic scaffold, SolTub_3.0 scf00096 Sequence ID: ref[NW_006239025.1] Length: 1753773 Number of Matches: 6						
Range 1: 1682384 to 168	13328 GenBa	ank Graphics Vext Match 🛦 Previous Match				
Score 1604 bits(868)	Expect 0.0	Identities Gaps Strand 921/97(97%) 2/947(0%) Plus/Minus				
CDS:ethylene recepto Query Sbjct CDS:PREDICTED: ethyl	1 65 1683328 1	M D C N C TGGT STTGATAAGATAAGAGTGATTCATTAAGGAGTTTGTTCATCATGGATTGTAACTGC 	124 1683271			
CDS:ethylene recepto Query Sbjct CDS:PREDICTED: ethyl	6 125 1683270 6	F D P L L P A D E L L M K Y Q Y I S D F TTCGATCCACTGTTGCCTGCCGATGAGTTGTTAATGAAGTATCAGTACATTTCTGATTTT .TG.A. F D P L L P A D E L L M K Y Q Y I S D F	184 1683211			
CDS:ethylene recepto Query Sbjct CDS:PREDICTED: ethyl	26 185 1683210 26	F I A V A Y F S I P I E L V Y F V Q K S TTCATTGCAGTTGCTTATTTTTCCATCCCAATCGAACTGGTATACTTTGTCCAGAAATCA ACG	244 1683151			
CDS:ethylene recepto Query Sbjct CDS:PREDICTED: ethyl	46 245 1683150 46	A V F P Y R W V L V Q F G A F I V L C G GCTGTTTTTCCGTATCGATGGGGGGGCTTGTGCAGTTTGGGGGGCTTTCATAGTTCTTTGTGGA A V F P Y R W V L V Q F G A F I V L C G	304 1683091			

Use the Graphic link on the first aligned segment (exon) to see the potato genome and the corresponding gene.

You can use edit and resubmit to show the increased sensitivity of blastn compared to megablast. You should pick up additional genes and match the upstream, untranslated exon and the 3' UTR.

Microbial Genomes BLAST

Query: SRA read from SRR452448, a metagenome from a Gulf of California hydrothermal vent plume (1600 – 2000 m deep)

Program: nucleotide BLAST page with megablast and blastn **Database:** microbial genomes, representative, all, complete **Purpose:** Identify and map unknown microbial sequence

Procedure:

- Copy/paste the above sequences into the microbial genomes BLAST page.
- Select the Representative genomes database, click BLAST.
- Examine the Graphic summary and Descriptions sections.
- Investigate how changing the database and the BLAST program affects the results.

Examine the Descriptions section to find the best matching bacterial or archaeal genome. In the alignments section you can see that nearby genes are identified. For the hydrothermal vent plume these 16s regions. You can see your BLAST hits in genomic context by clicking the graphics link for all matches.

Downlo	oad 🗸 🤆	GenBank G	Graphics ,	Sort by:	value		•		
Nitroso	pumilus	maritimus	s SCM1	chromoso	me, com	plete gei	nome		
Sequenc	e ID: <u>ref N</u>	IC_010085.	1 Leng	th: 1645259	Number o	of Matches	:2		
Range 1	: 896830	to 896927	GenBank	Graphics			V N	ext Match 🔺 P	revious Match
Score		E	xpect	Identities	;	Gaps		Strand	
168 bit	s(186)	1	e-39	96/98(98	3%)	0/98(0%)	Plus/Plus	3
Features	s: <u>rRNA-1</u>	L6S ribosom	nal RNA						
Query	1	ACCCCTTG	TGGTGCT	CCCCCGCCAA	ттесттта	AGTTTCAT	ACTTGC	GTACGTACTTCC(c 60
Sbjct	896830	ACCCCTTG	TGGTGCT	CCCCCGCCAA	TTCCTTTA	AGTTTCAT	ACTTGC	GTACGTACTTCC	C 896889
Query	61	AGGCGGCA	ААСТТАА	CGGCTTTCCT	GCCGCACT	GCATT 9	8		
Sbjct	896890	AGGCGGCA	AACTTAA	CGGCTTCCCT	GCAGCACT	GCATT 8	96927		
Range 2	: 896991	to 897088	GenBank	Graphics		Next Ma	tch 🔺 🖡	Previous Match	🛕 First Match
Score		Ex	pect	Identities		Gaps		Strand	
163 bit	s(180)	46	2-38	95/98(97	%)	0/98(0	%)	Plus/Minus	
Features	s: <u>rRNA-1</u>	L6S ribosom	nal RNA						
Query	103	GGTAAAAT	GCTTTGA	TCTATCGATG	ACCACCTG	TGGCGAAG	GCGGTC	TACTAGAACACG	I 162
Sbjct	897088	GGTAAAAT	CCTTTGA	TCTATTGATG	ACCACCTG	TGGCGAAG	GCGGTC	TACCAGAACACG	1 I 897029
Query	163	CCGACGGT	GAGGGAT	GAAAGCTGGG	GGAGCAAA	CCGGA 2	00		
Sbjct	897028	CCGACGGT	GAGGGAT	GAAAGCTGGG	GGAGCAAA	CCGGA 8	96991		

Nitrosopumilus maritimus SCM1 chromosome, complete genome	
NCBI Reference Sequence: NC_010085.1	
GenBank FASTA	
Link To This Page Feedba	<u>ok</u>
1 100 K 200 K 300 K 400 K 500 K 600 K 700 K 800 K <mark>24</mark> 0 K 1.M 1,100 K 1,200 K 1,300 K 1,400 K 1,645	,259
n arte elementaria de la presentaria de maral a contra de maral	14
📕 • 🖕 NC_010085.1: 896K898K (2.2Kbp) • 🔍 🗇 🖒 - 💷 🕕 + 👜 💦 • 🏟 🎘 ?	•
300 836 K 896,200 836,400 836,600 836,800 837 K 837,200 837,400 837,600 837,800 8	98 K
Sequence	
	=
Genes	
R0027	DNZ
	117
rRNA-5.8S ribosomal RNA YP_00158235	1.1
	_
Cleaned Alignments - BLAST Results for: gnl SRA SRR452448.103762 D5KHBFN1_0131:1:1101:8134:8771	

Your query will split because the SRA runs in this case are paired reads. For instance the first sequence above is the following two reads.

These hit the Nitrosopumilus 16S gene as two alignments as shown in the graphic above.

For bacteria there are sometimes multiple widely separated hits per genome because the 16S genes are in multiple copies.

Independent exercise: Identifying Function and Organism for SRA reads

Use Microbial Genomes BLAST to identify the best match for this read from Arsenic contaminated marine sediment. You will need to adjust the algorithm to find meaningful hits

The read from the contaminated sediment corresponds to a gene involved in anaerobic respiration. What is this gene? In what process is it involved?

You can also try the following 16S paired read from the hydrothermal vent plume to identify the source organism.

>gnIISRAISRR452448.103068966 D5KHBFN1_0131:1:2208:1519:200066 GGTGAGTAATGCTTGGGAACTTGCCTTTGCGAGGGGGGATAACAGTTGGAAACGACTGCTA ATACCGCATAACGTCTACGGACCAAACGGGGGCTTAGGCTCATATTCCCCACTGCTGCCTC CCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGCGGCTGATCTTCCTCTCAGTACAGCT AGAGATCGTTGCCTTGGTAA

Notice that BLAST finds multiple copies of the rRNA gene cassette in the genome. Would you expect this bacterial species to be in the deep ocean based on the information on the sequence record and linked publication?

Investigate how changing the BLAST program and the nature of the database changes your results.

SRA BLAST

We can look at gene expression in the melanoma cell lines reported in BioProject (<u>PRJNA152041</u>). The paper associated with the GEO series shows differential expression of a number of genes including (<u>CXCL8</u>) in the more metastatic melanoma cells.

Query:

Human RefSeq RNA for CXCL8, NM_000584

Program: nucleotide BLAST page with megablast and blastn Database: melanoma cell line RNA Seq dara

SRX119449 GSM873648: HEMn human normal melanocyte RNA-Seq SRX119450 GSM873649: A375 human primary melanoma RNA-Seq SRX119451 GSM873650: A2058 human metastatic melanoma RNA-Seq

Settings: Max target seqs 20000, Expect threshold 1e-16 Purpose: Find reads for target sequences in the SRA data. Notice the increased expression of CXCL8 in the metastatic cell line.

Procedure:

- Copy/paste the above sequences into the SRA BLAST page.
- Select the appropriate SRA experiment, click BLAST.
- Examine the **Graphic summary** and **Descriptions** sections.

Investigate how changing the database and the BLAST program affects the results

Independent exercise: Depth profile of ammonia oxidation

You can repeat the above exercise using other RefSeq mRNAs for genes of interest: HIF1A, THSB1.

Align two or more Sequences, Global alignment, and Multiple-alignment

<u>Align 2 sequences</u> Query 1: Human Albumin, NP_000468 Query 2: Human GC, NP_000574 Program: blastp

Procedure:

- Retrieve NP_000468 from the Entrez protein system.
- Follow the link to **Run BLAST** from the **Analyze this sequence** portlet on the protein record.
- Check the box that reads Align 2 or more sequences.
- Enter NP_000574 in the subject sequence box.
- Click BLAST
- Expand and examine the **Dot Matrix View**

Off-diagonal elements show that more than one local alignment is found between these two sequences with a repeated domain structure.

Needleman-Wunsch Global Sequence Alignment Query 1: Human Albumin, NP_000468 Query 2: Human GC, NP_000574

Program: Protein Procedure:

- Click on the **Global Sequence Alignment Tool** link in the **Specialized BLAST** section of the BLAST homepage.
- Click the **Protein** tab over the Query sequence text area.
- Click the **Align** button

The tool finds a single global alignment between the two sequences.

Align more than two sequences (BLAST) and extend to a multiple-alignment

Query 1: Human Albumin, NP_000468 Query 2: Human AFP, Human AFM, Human GC proteins NP_001125 NP_001124 NP_000574

Enter these one per line.

Procedure:

- Retrieve NP_000468 from the Entrez protein system.
- Follow the link to **Run BLAST** from the **Analyze this sequence** portlet on the protein record.
- Check the box that reads Align 2 or more sequences.
- Enter NP_000574, NP_001125, NP_001124, one accession per line, in the subject sequence box.
- Click BLAST
- From the results click the Multiple Alignment link
- Generate the Phylogenetic Tree from the COBALT results.

Explanatory Notes:

The "Align 2 (or more) sequences" service is now combined with Basic BLAST. Checking the "Align two or more sequences" on the BLAST form will transform the BLAST form to allow direct comparison of two input sequences. This service produces only local alignments since this is BLAST. In cases such as the albumin family used here -- where there is a set of repeated domains, more than one alignment is found. This is easily seen in the dot matrix graphic of the alignments found between albumin and the vitamin D binding protein. The new Needleman-Wunsch alignment tool allows a global comparison of albumin and the vitamin D binding protein and produces the single best alignment that includes all residues.

Entering more than two sequences in the search boxes allows a search against a small custom database. In this case comparing the albumin sequence to the other three members of the family produces pairwise local alignments equivalent to a small database search. As before there are more than one local alignment reported for some sequences. The new COBALT extension to BLAST linked through "Other reports" produces a true global multiple alignment of the four proteins. The Download link at the top of the COBALT output allows export of the alignment for local editing. The Phylogenetic Tree link produces a more accurate distance tree of the albumin protein family than could be obtained from the BLAST alignments. COBALT is available as an extension on all protein BLAST results. A direct interface to COBALT is linked to the "Specialized BLAST" section of the BLAST homepage.

Independent practice: align two or more Sequences, Global alignment, and Multiple alignment

Perform Align 2 Sequences and a global alignment with Human spectrin alpha chain, brain isoform 3, NP_001182461 and *Drosophila* beta spectrin, NP_523388.

Perform a multiple alignment directly from a set of protein results.

- Retrieve 2353 from the HomoloGene database.
- Click on the Links menu and follow the link to Protein
- Click on Align sequences with COBALT in the Analyze these sequences portlet.
- Click the Align button in COBALT
- Remove (uncheck) any aberrant XP_ sequences and Re-align them.
- Generate the Phylogenetic Tree from the final alignment.

Primer BLAST

Designing primers specific to an exon of a gene

Query: Human BRCA1 exon 15 plus flanks (NG_005905.2 from 146746 to 147056). Organism limit: human Database: Reference Genome from selected organisms Avoid known SNPs: On and off

- Use the gene sensor to retrieve the RefSeq Gene the Entrez nucleotide system.
- Find exon 15 using the Highlight Sequence Features tool on the nucleotide record/
- Display exon 15
- Follow the link to **Pick Primers** from the **Analyze this sequence** portlet on the subsequence.
- Select **Use new graphic view** at the bottom of the form to see results in the graphical sequence viewer.
- Run the search with the default settings.

Notes

You can use the Gene Sensor to quickly find primers to amplify an exon from BRCA1

1. Search BRCA1 in the <u>NCBI Nucleotide system</u>.

😔 NCBI 🛛 Resources 🖂	How To 🖂		Sign in to NCB
Nucleotide	Nucleotide	BRCA1	Search
		Advanced	Help

2. Follow the Genomic link in the Gene Sensor box at the top of the Nucleotide results to retrieve the <u>RefSeqGene</u> record (<u>NG_005905</u>) for the BRCA1 gene.

3. Click the "Highlight Sequence Features" in the right-hand column of the sequence record to activate feature highlighting. You will see the coding sequence (CDS) feature of the gene highlighted.

4. Change the "Feature" pull-down list at the bottom left of the sequence display from "CDS" to "exon" and then navigate to exon 15.

	146641	tctcttaacc	taactttatt	ggtctttta	attcttaaca	gagaccagaa	ctttgtaatt						
	146701	caacattcat	cgttgtgtaa	attaaacttc	tcccattcct	ttcagaggga	accccttacc						
	146761	tggaatctgg	aatcagcctc	ttctctgatg	accctgaatc	tgatccttct	gaagacagag						
	146821	ccccagagtc	agctcgtgtt	ggcaacatac	catcttcaac	ctctgcattg	aaagttcccc						
	146881	aattgaaagt	tgcagaatct	gcccagagtc	cagctgctgc	tcatactact	gatactgctg						
	146941	ggtataatgc	aatggaagaa	agtgtgagca	gggagaagcc	agaattgaca	gcttcaacag						
	147001	aaagggtcaa	caaaagaatg	tccatggtgg	tgtctggcct	gaccccaga	an a table of a table						
	147061	gtgtatccat	atgtatctcc	ctaatgacta	agacttaaca	acattctgg	1467461470	56					
	147121	tgtaggtatt	gtcaattaat	aacctagagg	aagaaatcta	gaaaacaat	/gene="BRCA1						
	147181	gtaatttaat	ttcgattact	aatttctgaa	aatttagatc	tagataaag	/gene_synony	m="BRC	CAI; BRCC	1; BROVC	A1; IRIS;	PNCA4	;
	147241	attatttat	gtatatttac	ttgagaaaat	aattattaaa	tattagtgg	PPP1R53; PSC	P; RNF	753"				
	147301	tttgggtatg	atataggact	ttcgaattgg	aattttcctt	tctatctgt	/inference="	alignm	ent Spli	.gn:1.39.	8"		
	147361	ggtatagttt	tattccccag	aaggcatctt	tttctccccc	ttgtctcace	/number=15						
1	CDS	taccagcata	tttaactaaa	ttcagactgg	t.t.ccaaat.gt.	actoccagat							_
ſ	√ exon	Feature 🕢	7 15 of 23 🔽	NG 005	905 : 1 seame	nt	Details		Disalau	FAOTA	OsePasta	11-1-	X
1	gene		<u>.</u>] //	j			<u> </u>	Display:	FASTA	Genbank	нер	
	mRNA												
1	ncRNA												
1	STS												
-													

5. Follow the FASTA link to display the highlighted exon as a separate view. Then follow the link in the right-hand column of the sequence display to "<u>Pick Primers.</u>"

6. Edit the primer ranges in Primer BLAST so that the forward and reverse primers will bind upstream and downstream of the exon. For example, set the forward primer range from 146646 to 146746 and the reverse primer from 147056 to 147156. This will provide sufficient upstream and downstream sequence for Primer-BLAST to find acceptable binding sites.

DCR Tomplato	Reset page	Save search parameters	Retrieve re	ecent results	
Enter accession, gi, or	FASTA sequence (A	refseq record is preferred) 🕢	Clear	Range	
NG_005905.2				Forward primer From 146646 Reverse primer 147056	To 146746 147156
Or, upload FASTA file	Choose File	No file chosen	,		

7. We want these primers to amplify only the target region from the human genome sequence. Set the database for Primer-BLAST to perform a specificity check to "Genome (reference assembly from selected organisms)" and leave the Organism limit set to human.

Primer Pair Specificity Ch	ecking Parameters
I miller I all opcomonly on	ooking Faramotoro
Specificity check	Enable search for primer pairs specific to the intended PCR template
Search mode	Automatic 🗘 😣
Database	Genome (reference assembly from selected organisms) 🗘 😡
Organism	human (taxid:9606) Enter an organism name, taxonomy id or select from the suggestion list as you type.

8. Run the search with these settings by clicking the "Get Primers" button. An intermediate page appears that identifies a match to the chromosome 17 sequence (NC_000017.11). Check the box next to the accession to confirm that this is an allowed target and click the "Submit" button.

A Practical Guide to NCBI BLAST

Input PCR templa Ran	NG 005905.2 Homo sapiens breast cancer 1, es ge 146646 - 147156	arly onset	(BRCA1), RefSeq0	Gene (LRG_2	292) on chro	omosome 17
Your PCR template specific primers, ple allowed targets.	is highly similar to the following sequence(s) from th ease review the list below and select all sequences (v	e search within the	database. To inc given sequence	rease the c ranges) tha	hance of fin t are intend	nding ded or
Select: All None	Selected:1					
Accession	Title	Identity	Alignment length	Seq. start	Seq. stop	Gene
NC_000017.11	Homo sapiens chromosome 17, GRCh38 Primary Assembly	100%	511	43070828	43071338	BRCA1
Submit	Show results in a new window					

Specificity of p Other r	mplate Range rimers reports	NG 0059 146646 - Primer pa (Organism ⊳ <u>Search</u>	05.2 Homo 147156 irs are spec n limited to Summary	sapiens bre ific to input Homo sapie	ast cancer : template a ens)	1, early ons	set (BRCA1 targets we	l), RefSeqGi	ene (LRG_2 selected da	292) on ch atabase: N	romosome lucleotide c	17 ollection (r
Graphical vie	ew of prin	ner pairs										
D NG_005905	.2: 147K147	K (665bp) -	< < − <	> - ==		- + A <mark>T</mark> G			×	🕈 Tools 👻 🕴 🕯	Configure 🛱	æ ?•
550 146,600	Template	146,700	146,750	146,800	146,850	146,900	146,950	147 K	147,050	147,100	147,150	147,200
Genes												
		exon 1	5 >		÷	Ś	_	÷	-	^	ĺ.	
Primer pairs for N	G_005905.2											
		Primer 1	<u>z</u>									
		Primer 3	<u> </u>									
			·							1		
Primer	pair 1											
Primer	pair 1 Sequence	e (5'->3')		Templa	ate Leng	yth Start \$	Stop Tm	GC% Set	f	Self rity com	3' plementari	ty
Forward	pair 1 Sequenc	e (5'->3') CTCCCATT(CCTTTCAG	Templa strand A Plus	ate Leng 23	1467241	Stop Tm 146746 57.6	GC% Set	f nplementa	Self rity com 3.00	3' plementari	ty
Primer Forward primer Reverse primer	pair 1 Sequenc AAACTTC ACTCTTT	e (5'->3') CTCCCATT(TCCAGAAT	CCTTTCAG	Templa strand A Plus GTC Minus	ate Leng 23 25	Jth Start 5 146724 1 147116 1	Stop Tm 146746 57.6 147092 57.6	GC% Set cor 68 39.13 3.00 50 36.00 4.00	f nplementa D	Self rity com 3.00 1.00	3' plementari	ty
Forward primer Reverse primer Product length	pair 1 Sequenc AAACTTC ACTCTTT 393	e (5'->3') CTCCCATT(ICCAGAAT)	CCTTTCAG	Templa strand A Plus GTC Minus	ate Leng 23 25	th Start \$ 1467241 1471161	Stop Tm 14674657.6 14709257.8	GC% Sel con 68 39.13 3.00 50 36.00 4.00	f nplementa D	Self rity com 3.00 1.00	3' plementari	ty
Forward primer Reverse primer Product length Products	pair 1 Sequenc AAACTTC ACTCTTT 393 on intende	e (5'->3') DTCCCATT(TCCAGAAT) d target	CCTTTCAG	Templa strand A Plus GTC Minus	ate Leng 23 25	th Start S 146724 1 147116 1	Stop Tm 146746 57.6 147092 57.8	GC% Set con 68 39.13 3.00 50 36.00 4.00	f nplementa D	Self rity com 3.00 1.00	3' plementari	ty
Forward primer Reverse primer Product length Products >NG_0059	pair 1 Sequenc AAACTTC ACTCTTT 393 on intende 05.2 Homo	e (5'->3') CTCCCATT(CCCAGAAT) d target sapiens bre	CCTTTCAG GTTGTTAA(ast cancer 1	Templa strand A Plus GTC Minus , early onse	ate Leng 23 25 et (BRCA1),	th Start \$ 1467241 1471161 RefSeqGer	Stop Tm 146746 57.6 147092 57.5 ne (LRG_25	GC% Set con 68 39.13 3.00 50 36.00 4.00 92) on chron	f nplementa))	Self rity com 3.00 1.00	3' plementari	ty
Forward primer Reverse primer Product length Products >NG_0059 product	pair 1 Sequenc AAACTTC ACTCTTT 393 on intende 05.2 Homo length	e (5'->3') CTCCCATT(CCAGAAT) d target sapiens bre = 393	CCTTTCAG GTTGTTAA(ast cancer 1	Templa strand A Plus GTC Minus , early onse	ate Leng 23 25 et (BRCA1),	Jth Start 5 1467241 1471161 RefSeqGer	Stop Tm 14674657.6 14709257.5 ne (LRG_25	GC% Set con 58 39.13 3.00 50 36.00 4.00 92) on chron	f nplementa))	Self rity com 3.00 1.00	3' plementari	ty
Forward primer Reverse primer Product length Products >NG_0059 product Forward	pair 1 Sequenc AAACTTC ACTCTTT 393 on intende 05.2 Homo length primer	e (5'->3') CTCCCATT TCCAGAAT d target sapiens bre = 393 1	CCTTTCAG GTTGTTAA(ast cancer 1 AAACTTC'	Templa strand A Plus GTC Minus , early onse	ate Leng 23 25 et (BRCA1), CTTTCAGA	yth Start 5 1467241 1471161 RefSeqGer	Stop Tm 146746 57.6 147092 57.5 ne (LRG_25	GC% Set con 58 39.13 3.00 50 36.00 4.00 50 36.00 4.00	f nplementa D D	rity com 3.00 1.00	3' plementari	ty
Forward primer Reverse primer Product length Products >NG 0059 product Forward Template	pair 1 Sequence AAACTTC ACTCTTT 393 on intende 105.2 Homo length primer e	e (5'->3') CTCCCATT(CCAGAAT) d target sapiens bre = 393 1 146724	CCTTTCAG GTTGTTAA(ast cancer 1 AAACTTC'	Templa strand A Plus GTC Minus , early onse	ate Leng 23 25 et (BRCA1), CTTTCAGA	ith Start \$ 1467241 1471161 RefSeqGer 23 146746	Stop Tm 146746 57.6 147092 57.5 ne (LRG_25 5	GC% Set con 68 39.13 3.00 50 36.00 4.00 50 36.00 4.00	f nplementa 0 0	rity Com 3.00 1.00	3' plementari	ty
Forward primer Reverse primer Product length Products >NG_0059 product Forward Template Reverse	pair 1 Sequence AAACTTC ACTCTTT 393 on intende 05.2 Homo length primer e primer	e (5'->3') CTCCCATT CCCAGAAT CCCAGAAT CCCAGAAT Sapiens bre = 393 1 146724 1	CCTTTCAG GTTGTTAA ast cancer 1 AAACTTC' ACTCTTT	Templa strand A Plus GTC Minus , early onse TCCCATTCC	ate Leng 23 25 et (BRCA1), CTTTCAGA	th Start \$ 1467241 1471161 RefSeqGer 23 146746 TC 25	Stop Tm 146746 57.6 147092 57.5 ne (LRG_25 5	GC% Set con 58 39.13 3.00 50 36.00 4.00 50 36.00 4.00	f nplementa D D	rity com 3.00 1.00	3' plementari	ty

Independent practice: amplifying exon 2 of MLH1

Repeat the above procedure to find primers to amplify the second exon of MLH1.

Independent practice: mapping primers onto a genome and a gene using primer BLAST

Primers:

Forward 5'-AATGGATGATTTGATGCTGTCCC-3'

Reverse 5'-CGTGCAAGTCACAGACTTGGC-3'.

Database: Reference Genome for human, chimp. Other mammalian representative genomes

- Use Primer-BLAST to map the primer onto the human reference genome and identify the gene they amplify.
- How large is the amplified product?
- Are there any expected non-specific products?
- Use the graphical display of the amplified region to determine
 - If this a coding or a non-coding region
 - If there are any pathogenic variants in the amplified region
- Explore other reference and representative genomes to see if the primers will work in other species For instance, will they work in mouse? Chimp? Other primates?

Using MOLE-BLAST to cluster targeted sequences

Query: 16S sequences from wastewater metagenome **Database:** 16S reference sequences, nr

- Retrieve PopSet: 440337304 (www.ncbi.nlm.nih.gov/popset/440337304)
- Follow the link to nucleotide
- Copy the first 30 accessions to cluster in MOLE-BLAST
- Cluster with the 16S reference sequences, and nr

Notes

Follow the link to nucleotide from the PopSet record.

PopSet	PopSet	t 🗘									Search	
			Limits	Advanced	I							Help
Display Setting	Is: ☑ PopSet							Send to:				
									Artic	le reporting	this data se	et 🔺
Mixed org	anisms 16S r	ibosom	al RI	NA gene	e, parti	al seque	ence.		Micro divers	bial communi aity in an integ	ty structure a grati [PLoS Or	nd ie. 2014]
PopSet: 44033	7304											
GenBank FAS	TA								Relat	ed informat	tion	
									Free	n PMC		
<u>Go to:</u> 🕑									Nucle	otide		
Study Detail	S								PubN	led		
Microbial com	munity structure a	and divers	ity in a	an integrate	ed system	n of anaero	bic-aerobic	reactors and a	Тахог	nomy		
Desta A F As	sefa F Leta S Sto	meo F W	annery amalwa	a M Niahin	a M and	Annolinaire	ι. D					
(12-26-2014) PLo	S ONE 9:(12)E115576		amanna	a,ivi., rigarini	a,m. ana i	, appointano,	D .		Rece	nt activity		
PMID: 25541981	Citation Full text											
Go to: ♡									-			
Sequences i	in this data set											
KC110593.1	Uncultured bacteriu	m clone CW	/3_V2_4	4A 16S ribos	somal RNA	A gene, partia	al sequence					
KC110592.1 KC110591.1	Uncultured cyanoba	cterium clor	ne CW3 ne CW3	3_V2_3G 165	S ribosoma osomal RN	al RNA gene JA gene inari	, partial sequence	ence				
KC110590.1	Uncultured Nitrospir	ae bacteriu	m clone	CW3_7H 10	6S riboson	nal RNA gen	e, partial seq	uence				

Use the Display settings to get and accession list of the first 50 records and copy these to your clipboard.

Nucleotide	N	ucleotide				Search
		Advar	nced			Help
Nucleotide Species Bacteria (434) Customize Molecule types genomic DNA/RNA (437) Customize Source databases GenBank (437) Customize Sequence length Custom range Release date Custom range Revision date Custom range Cicear all Show additional filters	Nu Dis Re 1. 2.	Advar Advar Play Settings: Sum Format Summary GenBank (full) FASTA FASTA (text) ASN.1 ASN.1 Revision History Accession List GI List 806 bp linear DNA Accession: KC110592.1 GenBank FASTA Uncultured Provider Sequence 808 bp linear DNA Accession: KC110591.1 GenBank FASTA	Items per page, Sorted by De Items per page 5 10 20 9 50 100 200 9 50 100 200 9 50 100 200 9 50 100 200 9 50 100 200 100 200 100 200 101 102 200 103 200 103 200 104 200 105 105 105 200 105 200 105 200 105 200 105 200 105 200 100 200 100 200 200 200 200	ofault order Send Sort by Default order Accession Date Modifie Date Release Organism Na Taxonomy ID	a to: ♥ Filters: Ma r ad ed ame D Find relat Database: Tind iten Find iten Recent ac	Search Help Inage Filters I Tree erium (301) nobacterium (11) tridium sp. (9) proteobacterium (7) icutes bacterium (6) 03) Poly ed data Select ¢
Show additional filters	4.	Uncultured Nitrospir partial sequence 808 bp linear DNA Accession: KC110590.1 GenBank EASTA	ae bacterium clone CW3_7H Gi: 440337737 Graphics PopSet	16S ribosomal RNA gen	<u>e.</u>	

KC110593.1
KC110592.1
KC110591.1
KC110590.1
KC110589.1
KC110588.1
KC110587.1
KC110586.1
KC110585.1
KC110584.1
KC110583.1
KC110582.1
KC110581.1
KC110580.1
KC110579.1
KC110578.1
KC110577.1
KC110576.1
KC110575.1
KC110574.1
KC110573.1
KC110572.1
KC110571.1
KC110570.1
KC110569.1
KC110568.1
KC110567.1
KC110566.1
KC110565.1
KC110564.1
KC110563.1
KC110562.1
KC110561.1
KC110560.1
KC110559.1
KC110558.1
KC110557.1
KC110556.1
KC110555.1
KC110554.1
KC110553.1
KC110552.1
KC110551.1
KC110550.1
KC110549.1
KC110548.1
KC110547.1
KC110546.1
KC110545.1
KC110544.1

Link to MOLE-BLAST from the "Specialized BLAST" section of the BLAST homepage.

Specialized BLAST				
Choose a type of specialized search (or database name in parentheses.)				
	Make specific primers with Primer-BLAST			
	Cluster multiple sequences together with their database neighbors using MOLE-BLAST			
	Find conserved domains in your sequence (cds)			
	Find sequences with similar conserved domain architecture (cdart)			
	Search sequences that have gene expression profiles (GEO)			
	Search immunoglobulins and T cell receptor sequences (IgBLAST)			
	Screen sequence for vector contamination (vecscreen)			
	Align two (or more) sequences using BLAST (bl2seq)			
	Search protein or nucleotide targets in PubChem BioAssay			
	Search SRA by experiment			
	Constraint Based Protein Multiple Alignment Tool			
	Needleman-Wunsch Global Sequence Alignment Tool			
	Search RefSeqGene			
	Search trace archives			
	Search bacterial and fungal rRNA sequences with Targeted Loci BLAST			

Paste the query accessions in the form and set the database to 16S rRNA. It's helpful to click the "Show results in new window" box so you can adjust settings and resubmit your search.

MOLE-BLAST	Neighbor Search Tool	My NCBI 2
Home Recent Results	Help	Welcome cooperps. [Sign Out]
Nucleotide		
	MOLE-BLAST searches for closest neighbors 🥹	
Enter Query Sequences		Reset page
Enter nucleotide accessions,	gis, or FASTA sequences(up to 300 input sequences with up to 5000 bases each) ()	
KC110549.1 KC110548.1 KC110547.1 KC110546.1 KC110545.1 KC110544.1		
Or, upload FASTA file Job Title	Choose File No file chosen	
Choose Search Set		
Database	16S ribosomal RNA sequences (Bacteria and Archaea)	
Align	Show results in a new window	
Advanced parameters		

The MOLE-BLAST output provides a distribution of the bacterial classes in the metagenome. In some cases you can assign a likely genus. Notice that MOLE BLAST separates the clusters into different "loci" in this case this is based on the quality of the alignments. In certain cases this would separate different genes if present in the data.

Home Recent Results		Neighbor Search To	ol			
	This	tree is based on MUSCLE multip	ple alignment compute	d for Mole-BLAST		
Reset Tree > Download Tree See	alignment	P	hylogenetic Tree	View		
Moleblast RII	JSCADCX1413				Database rRNA_type	:
Tree method	Max Seq Difference	Sequence Label	Collapse Mode	Locus		
Fast Minimum Evolution 🗘 😡	0.75 🛟 😟	Sequence Title (if a 💠 🌚	Show All 💠 😡	Locus 1 🛊 😡		
				Mouse over an interr	al node for a subtree or alignment.	Hide legend
Cheldned bacterian clone Cheldned a clone Chel	393 5 H GS ribosomal RNA gene, ica strain UST040201-001 165 ribosomal RNA aryote clone (WJ20 Tel 165 ribosomal RNA aryote clone (WJ20 Tel 165 ribosomal strain CUG 43457 165 ribosoma ultimphila strain BN3 165 ribosoma aryote strain BN3 165 ribosoma ultimphila strain BN3 165 ribosoma ultimphila strain BN3 165 ribosoma ultimphila strain BN3 165 ribosoma aryote strain BN3 165 ribosoma ultimphila strain BN3 155 ribosoma Ultimphila strain BN3 155 ribosoma Ultimphila strain BN3 155 ribosoma Ultimphila strain DN3 155 ribosoma Ultimphila strain CN3 155 ribosoma Ultimphila strain CN3 155 ribosoma Ultimphila strain CN4 155 ribosoma Ultimphila strain CN4 155 ribosoma Ultimphila strain CN4 155 ribosoma Ultimphila strain Altimphila strain Alti- Strainbacterium astrainal strain Ultimphila strain Altimphila strain Alti- Strainbacterium astrainal strain Alti- Strainbacterium astrainal strain Discolationa analaphila strain Alti- Strainbacterium astrainal strain Discolationa analaphila strain Alti- Strainbacterium astrainal strain Altimbacte	partial sequence somal RNA gene, partial sequence mar RNA gene, partial sequence somal RNA gene, partial sequence boomal RNA gene, partial sequence boomal RNA gene, partial sequence la RNA gene, partial sequence response of the sequence response of the sequence response response of the sequence response of the sequence response re	sequence , partial sequence artial sequence artial sequence artial sequence artial sequence artial sequence martial sequence sequence enc, partial sequence uence , partial sequence , partial sequence ence partial sequence sequence ence partial sequence partial sequence partial sequence partial sequence artial sequence ence partial sequence artial sequence artial sequence artial sequence artial sequence artial sequence artial sequence artial sequence artial sequence partial sequence artial sequence artial sequence artial sequence artial sequence artial sequence artial sequence artial sequence artial sequence			Guery color from type material Blast names color map Dacteria Grig group bacteria Indin GG Gram+ a-proteobacteria g-proteobacteria d-proteobacteria d-proteobacteria g-proteobacteria d-proteobacteria g-proteobacteria d-proteobacteria

Choose Search Set				
Database	Nucleotide collection (nr/nt)			
Align	Show results in a new window			
Advanced parameters				
Database Search Param	neters			
Blast program	Megablast Blastn			
Max target sequences				
Exclude	Models (XM/XP) Uncultured/environmental sample sequences			
Limit to	Sequences from type material Sequences with a binomial name			
Entrez Query				
Query Clustering Param	eters			
Cluster queries	✓ Group query sequences by loci			
Percent identity	40 🔞			
Percent sequence coverage	75 😡			
Cluster merging threshold	50% 🗘 🍥			
Multiple Alignment Para	meters			
Number of database sequences	5 🛊 🎯			
Align	Show results in a new window			

Independent practice: MOLE-BLAST

You can try the above search again against nr. Set the exclude uncultured box for cleaner results.

Try MOLE-BLAST against fungal ITS reference sequences using a fungal leaf litter ITS PopSet: 298572961 (www.ncbi.nlm.nih.gov/popset/298572961).

Using SmartBLAST to identify unknown sequences.

Query: ORF from striped bass TSA record GBAA01198466

..... >lcl|Sequence 1 ORF:2178..6716 Frame -3 MQKSPVEDANFFSKYFFWWASPLLRKGFTKKLELSDVYKAPSFDLADNLSERLEREWDREVVSAKNQPRL MRALARCFIGPFAFFGVLLYLGEASKTVOPOLLGRIIGSFDPFHAPERSOGYFLALGLCLLFTARFLLLO PAIFGLHHLGMQIRIALFSLIYKKTLKLSSRVLDKISTGQLVSLMSAHLNKLDESLGLAHFVWITPLQCI LCVGLIWELIEVNGFCALAALTLLGIIQAWLSQKMGPHRVKRAGMINRRLALTSEIVENIHSVKAYGWED VMETIIKNIRQDEMTLTRKIGSLRYFYSASYFFSAILVIVSAIVPHALSKGIILRRIFTTASYCMVLRMT LTRQLPGSIQMWYDTLALVKKIEEFLMKEEYRVLEYNLTTTEVELVNVSASWDEGIGELFEKIKQENKAN GHLNGDAGLFFTNLYITPVLKNISLYLEKGKMLAVAGSTGSGKSSLLMMILGELVPSEGKIRHSGRISFS PQTSWIIPGTIRDNILFGLTYDEYRYTSVIKACQLEEDFALLPEKDKTHLMEGGVTLSGGQRARLGLARA VYKDADLYLLDAPFTHLDIVTEKEIFEKCVCKLMASKTRIVVTSKLEHLKRADKILLLHNGDCYFYGTFS ELQAKRPDFSSLLLGLEAYDNINAERRSSILTETLRRVSIDETAIFRGPDPIRQSFRQPPPPITVSGSQG HPGGDGYPEKRKQSLILSPLAAARKFSFIGNSQQTANTTQSMTIEEGVRELSERKFSVVPEDDQVEEVLP RGNMYHHGLOHLNGORROSVLAFITNSOGOERREOIOSSFRKKLSITPOCDLASELDIYARRLSKDSVYD ISEEVDEEDMEQCFADERENIFETTSWSTYLRYITTNRSLVYVLIFIVFVFIIEVAGSVIGIFLITDTIW RDSANPSSPNYIDEQHPNASSTPVHLAVIVTPTSAYYIIYIYVATSESVLALGFFRGLPLVHTLLTVSKR LHEQMLSAVIRAPMAVLNTMKTGRIMNRFTKDMATIDDMLPLVVFDLIQLTLIVTGAIFTVSIMRPYIFL AAIPLAVIFVVLRKYFLRTGQQLKLLEAEARSPIFSHLIISLKGLWTIRAFGRQTYFETLFHKALNTHTA TWFHYLATLRWFLFRCDMIFVLFFSAAAFIAVGTNODKPGEVGIIVALAMLILGTFOWAVITSITVDGLM RSVDRVFKFIDLPTEEPMPGKSGGKGGPDLVIDNPHAQDYWPNRGQMDVQGLTVKYTEAGRAVLNDISFS VDGGQSIGLLGRTGSGKSTLLSALLRLASTDGEISIDGVSWSSVSLHTWRKAFGVVPQRVFILTGTFRMN LDPHGRYSDEELWRVAEEVGLKSVIEQFPDKLDFQLEDGGNVLSNGHKQLLCLARSILSKARILLLDEPS AYLDPITLQVLRKTLKQSFSGCTVILSEHRVEPLLECQSFLMIEGSAIKSYDSIQKLLNETSHLKQAMSP ADRLHLFPTLHRLNSSKRAPOOTAKISSLPEEAEDEVHDTRL Database: Smart-BLAST database

Copy and paste the above sequence into the SmartBLAST form (http://blast.ncbi.nlm.nih.gov/smartblast/) and click the BLAST button.

Notes:

SmartBLAST quickly identifies the striped bass protein as a likely homolog of CFTR in zebrafish and human from the model organism (landmark) database. The matches from nr show close matches to a fish species (European seabass) in the same family (Moronidae) as the striped bass. The other matches from nr are from other perciform fish, which are more closely related to the striped bass than the zebrafish.

⊖ <u>Summary</u>		Please	e, let us know what you thin			
A concise summary of the three best matches in the sequence database together with the two best matches from well-studied reference species, showing phylogenetic relationships based on multiple sequence alignment and conserved protein domains.						
	Conserved domains for the query:	ABC_r P-loop	ABC_me P-loop			
human	cystic fibrosis transmembrane conductance $\operatorname{reg}{} \iota \ldots$					
- zebrafish	cystic fibrosis transmembrane conductance regulation					
Pred drum	CFTR					
large yellow croaker	Cystic fibrosis transmembrane conductance reg					
p.2	Your query: 1 ORF:21786716 Frame -3					
European seabass	cystic fibrosis transmembrane conductance regument					
		See full multiple alignn	nent Legend			

Another useful feature of SmartBLAST is that it often allows you to see homologs in more distantly related model organisms than you could see with the default settings in ordinary protein BLAST on the web. In this case you can easily identify homologs in *Drosophila melanogaster, Arabidopsis thaliana* and *Caenorhabditis elegans* by looking at the Additional BLAST hits section of the output. These matches from the SmartBLAST landmark database are not visible in a protein BLAST search against nr unless you set the number of target sequences to a very high number. This is because the large number of matching vertebrate proteins in nr overwhelms the output.

Independent practice: identifying a protein translation from the mango

Query: ORF from Mangifera indica (Mango) TSA record GBCV01016775

>lcl|Sequence 1 ORF:40..2235 Frame +1

MDDMÉTETAEVSLEPPKIQRLEESVVNRIAAGEVIQRPLSAVKELVENSLDANSTSINVVVKDGGLKLIQ VSDDGHGIRYEDLPILCERHTTSKLSKYEDLLSIKSMGFRGEALASMTYVGHVTVTTITKGQLHGYRVSY RDGVMEHEPKPCAAVKGTQIMVENLFYNMIARRKTLQNSSDDYTKIVDLLSRLAIHHINVGFSCRKHGAA RADVHSVTTSSRLDSIRTVYGVSVVRSLMNIEASDSDFSSSSFKMDGFISGSNYVAKKTTMVLFINDRLV ECSALKRAIEIVYTATLPKASKPFIYMSIVLPSEHVDVNVHPTKREVSLLNQEIIIEKIQSVVELKLRHS NEAISYQEQTVESSPSSSMGTSKDLQLNNLSPGPKSQKVPMHKMVRTDSSDPAGRLHAYLQTKPHNHLAE KSSLSAVRSSVRQRRNPSETADLTSIQELIDDIEGNCHSGLLEIVRHCTYIGMADDVFALLQHNTHLYLA NVVNLSKELMYQQVLRRFAHFNAIQLSEPAPLAELIVLALKEEDLDPESSENDDLKEKIAEMNTELLKQK GEMLEEYFCIKIDTHGNLSRLPVILDQYTPDMDRVPEFVLCLGNDVDWEEEKNCFQSIAAALGNFYALHL PLMPNPSGEGLVYYKKEKAFTNPEDGQPSKNTGDDVEMEVDIDHELFSEAEAAWAQREWSIQHVLFPAMR LFLKPPTSMATNGTFVQVATLEKLYKIFERC

Database: Smart-BLAST database

Goals: Find the closest match in the SmartBLAST database. Find homologs in Drosophila melanogaster, Saccharomyces cereviseae and Escherichia coli.