

#### NCI/CCR Bioinformatics Training & Education Program

Website: btep.ccr.cancer.gov Email: <u>ncibtep@nih.gov</u> Amy Stonelake Peter Fitzgerald Carl McIntosh

# Practical Bioinformatics: working at the Unix command line on Biowulf

June 5, 2019 Amy Stonelake, Ph.D. Bioinformatics Training & Education Program (BTEP)

# Today, we will...

- Log on to Unix system (NIH Biowulf)
- Work at the command line
- Transfer files back and forth from Biowulf
- Take a look at different file formats used in NGS
- Understand environment modules on Biowulf
- Run scientific software programs in interactive, batch and swarm modes
- Query scientific databases

# Downloads available on the BTEP website

- RNA-Seq data
- Hand-out
- Unix/Linux Command Reference (Fosswire.com)
- Slides (pdf)
- In class you will be given a student login and password
- password is Btep5Jun2019

## Practical Bioinformatics...on Biowulf

- Part 1 Working at the Unix command line
- Part 2 Moving files to Biowulf (and back again)
- Part 3 Scientific analyses and databases

#### Part 1

Working at the command line in Unix on Biowulf

# Who is "username"? (It's you!)

- Wherever you see "username" in these slides or in the hand-out, you will type in your username
- Your username was assigned to you when you set up your helix/biowulf account
- For this class, you will use a student account "student1, student2, etc"
- But when you get back to your lab, use your "username"

#### What is Unix?

- An operating system just like Windows or Mac
- Has been around for a long time (1969)
- "Linux" is a variety of Unix (ubuntu, red hat are Linux os)
- Well-suited to working with very large data files
- Bet you didn't know Apple computers use the Unix operating system!

#### DNA, a double helix...



#### Or a very large text file?

Image copyright NHGRI

#### DNA to RNA to protein

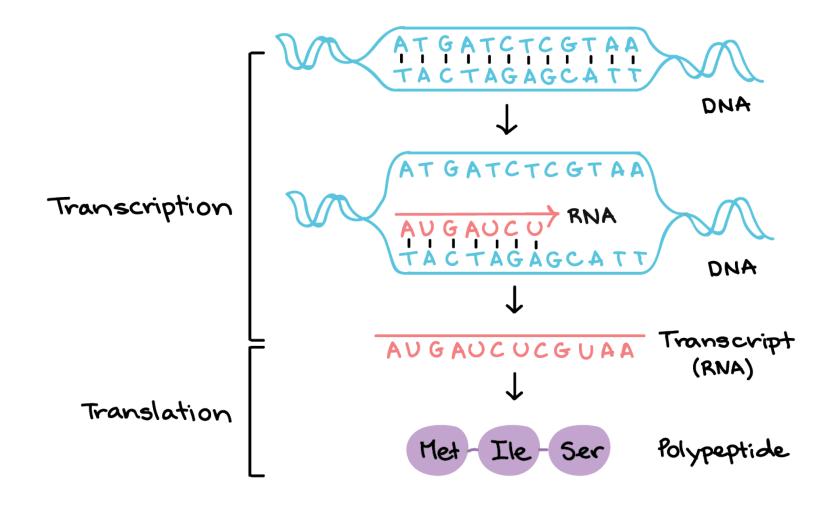



Image copyright Khan Academy

# Why Unix?

- Unix is well-suited to analysis of biological molecules, which can be represented as text files
- Many programs are available (and free, open-source) for biological analysis (BLAST, SAMtools, FASTQC)
- Tools (programs) can be linked together to form an analysis "pipeline"
- Programs can be centrally installed and maintained by sys admin
- Unix systems can handle "big data"
- Can run computationally intense programs (hours, days...)

# Let's get started... Introducing Biowulf

- The NIH high-performance compute cluster is known as "Biowulf"
- It is a 90,000+ processor Linux cluster
- Can perform large numbers of simultaneous jobs
- Jobs can be split among several nodes
- Scientific software (600+) and databases are already installed
- For more information see <a href="https://hpc.nih.gov">https://hpc.nih.gov</a>
- Can only be accessed on NIH campus or via VPN
- Do not put data with PII (personally identifiable information), patient data for example, on Biowulf

#### Logging in to Biowulf

- If you're on a Mac... you can "ssh" from the "Terminal" app
- If you're on a PC... you will need to download and install "PuTTY"

- You are connecting to biowulf via a "secure shell" or "ssh" connection
- Once logged into biowulf, everything you do is running on biowulf, not your local machine
- Your local machine is just a gateway to biowulf (a Unix system)

# Connecting to Biowulf with a Mac computer

- Find the "Terminal" app on your machine and open it
- You will see something like this

Last login: Thu Sep 6 16:10:04 on ttys000 NCI-02090676-ML:~ username \$

• At the dollar sign "\$" type the following: ssh username@biowulf.nih.gov

Where "username" is your username

# Connecting to Biowulf with a Windows PC

• Download and install PuTTY

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

#### Real PuTTY Configuration ? $\times$ Category: Session Basic options for your PuTTY session ···· Logging Specify the destination you want to connect to . ⊡ · Terminal Host Name (or IP address) Port - Keyboard biowulf.nih.gov 22 - Bell ---- Features Connection type: ○ Raw ○ Telnet ○ Rlogin ● SSH ○ Serial i ⊡ · Window Appearance Load, save or delete a stored session Behaviour Saved Sessions Translation Selection - Colours Default Settings Load Connection - Data Save ···· Proxy Delete - Telnet --- Rlogin . ⊡ SSH ···· Serial Close window on exit: ○ Always ○ Never Only on clean exit About Help Cancel Open

# Connecting to Biowulf by ssh

- Mac
- Open the Terminal window
- ssh username@biowulf.nih.gov

• PC

- Download and install PuTTY
- <u>https://www.chiark.greenend.org.uk</u> /~sgtatham/putty/latest.html
- Host name biowulf.nih.gov
- Connection type "SSH"

# Making the connection

- After making the "ssh" connection to biowulf, you will see a warning message about proper usage and then you will be prompted for your password
- Be aware the cursor does not move when typing in your password (so if you make a mistake just hit return/enter and start over, or hit the backspace key many times)

username@biowulf.nih.gov's password: type in your password here

# The command line

• Looks something like this

[username@biowulf ~] \$

- "username" is your username
- @biowulf means you are logged into biowulf
- "~" indicates your home directory
- When you see the dollar sign "\$", you know you are at the command line
- If you don't see the dollar sign, something is going on (running a program)

#### Your first Unix command...pwd

pwd means "print working directory" aka "Where am I?"

[username@biowulf ~]\$ pwd

What do you see? /home/username

You are in your "home" directory.

#### What do you see...Is

Is means "list the contents of the directory" aka "What's in this folder?"

[username@biowulf ~]\$ ls

What do you see?

(nothing)

#### Let's create a file

[username@biowulf ~]\$ touch file.txt

"touch" command creates a file

There is a space "" between the command, and the file name You can name your file anything, but it has to follow the rules… .txt file extension means this is a text file

File exists, but it is empty

#### Now let's check again with "Is"

[username@biowulf ~]\$ ls

What do you see? Should look something like this.

file.txt

# Let's create a folder (directory) for our file

- A "directory" in Unix is a "folder" on other operating systems
- Directories contain files, more directories, programs, etc.
- Make a directory with the "mkdir" command
- There is a space between the "mkdir" command and the directory name

[username@biowulf ~]\$ mkdir my\_dir

[username@biowulf ~]\$ ls file.txt my\_dir

#### Moving on...the "mv" command

- How would you put the file we created inside the directory we created?
- Use the "move" command, "mv"
- [username@biowulf ~]\$ mv file.txt my\_dir
- There is a space " " between the "mv" command and "file.txt"
- There is also a space between "file.txt" and "my\_dir"

# Where did our file go?

- [username@biowulf ~]\$ ls
- What do you see?

my\_dir

So where is the file?

# Looking inside a directory

- First, you have to "go to" the directory
- This is done with the "change directory", or "cd" command [username@biowulf ~]\$ cd my\_dir
- There is a space " " between the command "cd" and "my\_dir"
- Now let's look inside this directory, with "ls" command
- [username@biowulf ~]\$ ls

file.txt

#### Looking inside a file with "less"

- less to look inside a file
- quit (q) to get out of "less"
- [username@biowulf~]\$ less file.txt

What do you see?

(nothing)

# Let's put something in that file using the "nano" editor

• [username@biowulf~]\$ nano file.txt

| GNU nano 2.3.1 File: file.txt                                                                                                                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                          |  |
|                                                                                                                                                          |  |
|                                                                                                                                                          |  |
|                                                                                                                                                          |  |
|                                                                                                                                                          |  |
|                                                                                                                                                          |  |
|                                                                                                                                                          |  |
|                                                                                                                                                          |  |
|                                                                                                                                                          |  |
|                                                                                                                                                          |  |
| [ New File ]                                                                                                                                             |  |
| <pre>^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos ^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Text^T To Spell</pre> |  |

#### The "nano" editor

[username@biowulf~]\$ nano file.txt

"The quick brown fox jumped over the lazy yellow dog."

Control X to quit

Save the buffer? Y

File name to write? file.txt (hit return/enter)

#### Now, what's in the file?

[username@biowulf~]\$ less file.txt

What do you see now?

"The quick brown fox jumped over the lazy yellow dog."

# Useful Unix Commands so far

- Figured out where we were with "pwd"
- Listed content of directory with "ls"
- Created text file with "touch"
- Looked inside text file with "less"
- Used the "nano" editor to put content in file
- Put file in a directory with "mv" command (can also use "mv" command to rename files)

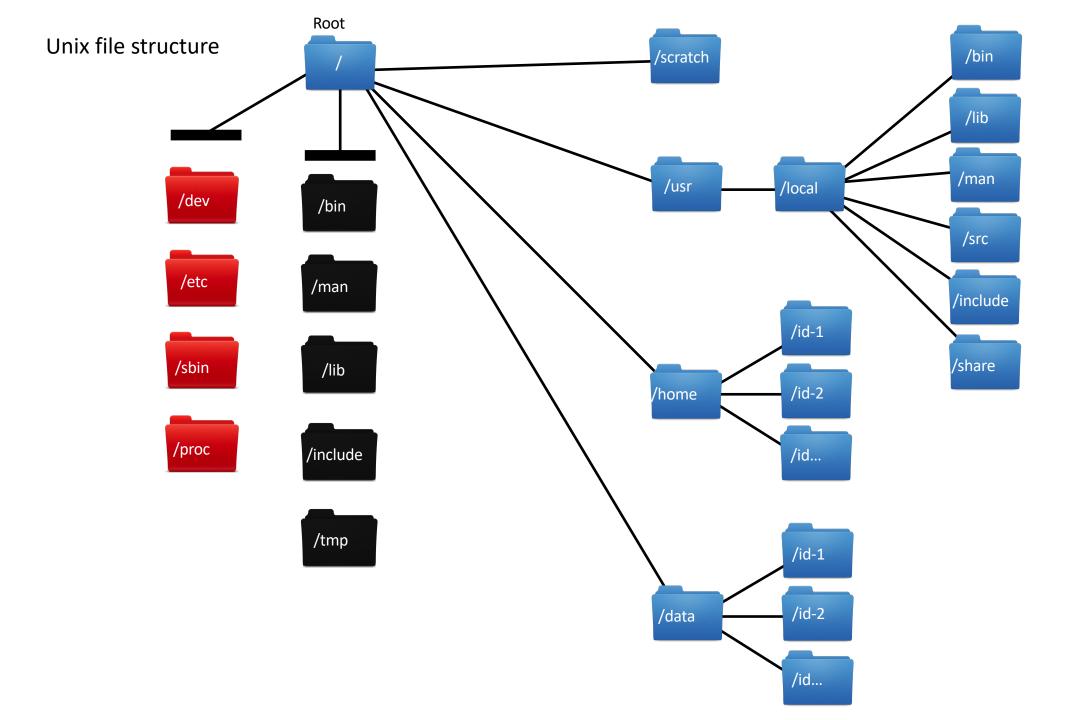
[username@biowulf~]\$ mv oldfilename.txt newfilename.txt

• Moved from one directory to another with "cd" (change directory)

# Coming up, more useful Unix skills

- Finding your path (pwd), changing your path (cd) and understanding your path
- Counting lines, words and characters with "wc"
- Using flags/options/switches
- Detailed listing of files with "Is -alt"
- A look at permissions "rwx- x rw-"
- Be careful removing files!
- How to name files
- Unix tricks (up arrow and tab complete)

# A bit about finding your path in Unix


- pwd (print working directory)
   [username@biowulf~]\$ pwd
   /home/username/my\_dir
   (this is known as the "path")
- cd (change directory, go home)
   [username@biowulf~]\$ cd
   [username@biowulf~]\$pwd
   /home/username
   (here is a different "path")

#### Absolute vs. relative file paths

Absolute path (can be used to get anywhere)

cd /users/stonelakeak/Desktop/files/unix.txt

Relative path (only to get to files within the directory you are in) If I am in /users/stonelakeak, I can just: cd Desktop Without typing the first forward slash (/)



# Counting lines, words and characters (char)

 Line count, word count, character count, "wc" [username@biowulf ~] \$ wc file.txt

1 10 53 file.txt

```
[username@biowulf ~] $ wc –l file.txt
1 file.txt
```

Line counting is very helpful when checking output, without opening the output file, which may be very large.

# Using flags/options/switches

- These are used to control programs
- Go on the command line with the program

blast –i input\_file –db nr –o output\_file

Flags – true or false (default), no additional info needed Options – tells the program how to act Switches – tells the program what to act on

## More useful commands

head – outputs the first few lines of a file

tail – outputs the last few lines of a file

cat "concatenate" – used to view files, concatenate files or redirect output

\$cat file1.txt file2.txt file3.txt >file4.txt

## Input, output and append

input "<"
output ">"
Append ">>"

At the command line:

head –n 40000 bigfile.fastq >smallfile.fastq

### Hidden files... ls -a

[stonelakeak@biowulf ~]\$ ls -a

### .. 3Ms\_project

.addressbook .bash\_history\_biowulf .bash\_history\_helix .bash\_logout .bash\_profile .bashrc bin

blast\_output
.cache
ccbr\_pipeliner
.config
downloadfastq.swarm
.\_.DS\_Store
.DS\_Store
.emacs
file.txt
.globus.cfg

```
.gnome2
.java
.kshrc
.lesshst
mail
.mozilla
.ncbi
.parallel
.pinerc
project.json
```

slurm-7359593.out
slurm-7438680.out
slurm-7442490.out
.ssh
swarm\_command\_sra
teaching
.vim
.viminfo
.Xauthority
.zshrc

### Listing the details... Is -I

[stonelakeak@biowulf ~]\$ ls -l total 228 drwxrwxrwx 2 stonelakeak GAU 24576 Aug 15 16:39 3Ms\_project drwxr-xr-x 2 stonelakeak stonelakeak 4096 Aug 9 12:14 bin drwx----- 4 stonelakeak stonelakeak 4096 Sep 18 15:23 blast output 4096 Aug 15 09:46 ccbr\_pipeliner drwxr-xr-x 2 stonelakeak stonelakeak -rw-r-r-- 1 stonelakeak stonelakeak 666 Aug 17 15:58 downloadfastq.swarm -rw-r--r-- 1 stonelakeak stonelakeak 53 Sep 13 11:24 file.txt drwx----- 2 stonelakeak stonelakeak 4096 Aug 15 09:48 mail -rw-r-r-- 1 stonelakeak stonelakeak 3831 Aug 17 13:28 project.json -rw-r--r-- 1 stonelakeak stonelakeak 51550 Aug 16 09:31 slurm-7359593.out -rw-r--r-- 1 stonelakeak stonelakeak 51824 Aug 17 12:31 slurm-7438680.out -rw-r--r-- 1 stonelakeak stonelakeak 51550 Aug 17 13:51 slurm-7442490.out -rw-r-r-- 1 stonelakeak stonelakeak 65 Aug 15 10:10 swarm\_command\_sra drwxr-xr-x 2 stonelakeak stonelakeak 4096 Sep 13 16:44 teaching

### ls -alt

NOAN SCONSTANGAN SUSSESSONS HAT TO ITICE INCLISSING CONTINUES CONTRACTOR OF THE [stonelakeak@biowulf stonelakeak]\$ ls -alt total 9542816 drwxr-xr-x 377 root 16384 Apr 12 16:41 ... root 2 stonelakeak stonelakeak 4096 Apr 11 10:00 array express data drwxr-xr-x 4096 Apr 8 14:26 . drwxrwx---+ 8 stonelakeak stonelakeak 2 stonelakeak stonelakeak 4096 Apr 2 16:02 Mackem\_pact\_multigc\_report\_data drwxr-xr-x 1 stonelakeak stonelakeak 699 Apr 2 16:02 slurm-23637880.out -rw-r--r--1 stonelakeak stonelakeak 1224167 Apr 2 16:02 Mackem\_pact\_multiqc\_report.html -rw-r--r---rw-r--r--1 stonelakeak stonelakeak 327 Apr 2 15:51 multigc.sh 1 stonelakeak stonelakeak 518 Apr 2 15:00 swarm 23633984 0.o -rw-r--r--1 stonelakeak stonelakeak 3373 Apr 2 15:00 swarm 23633984 0.e -rw-r--r--1 stonelakeak stonelakeak 87 Apr 2 14:56 slurm-23634014.out -rw-r--r---rw-r--r--1 stonelakeak stonelakeak 279 Apr 2 14:52 fastgc.sh 1 stonelakeak stonelakeak 240 Apr 2 14:46 fastgc.swarm -rw-r--r--2 stonelakeak stonelakeak 4096 Apr 2 14:44 Mackem\_pactme\_multigc\_report\_data drwxr-xr-x 1 stonelakeak stonelakeak 692 Apr 2 14:41 slurm-23633070.out -rw-r--r--1 stonelakeak stonelakeak 1127798 Apr 2 14:41 Mackem\_pactme\_multiqc\_report.html -rw-r--r--1 stonelakeak stonelakeak 425 Apr 2 14:26 swarm\_23631576\_0.o -rw-r--r--1 stonelakeak stonelakeak 1143 Apr 2 14:26 swarm\_23631576\_0.e -rw-r--r--

All files, including hidden files, listed with full details, by descending time order.

## A first look at permissions

drwxrwxrwx 2 stonelakeak GAU

24576 Aug 15 16:39 3Ms\_project

### d<mark>rwxr–x</mark>r–x

- d -> directory
- r -> read
- w -> write
- x -> execute

User/owner, group and other

User/owner is the creator of the files, usually you Group is a group of users having the same privileges Other is the general public

chmod -> Unix command to change permissions (chmod 777 gives everyone full permissions).

# A word of caution on "rm" (removing files)

rm (remove file) rmdir (remove directory) A directory must be empty before you can remove it.

```
cd
rmdir my_dir
cd my_dir
rm file.txt
ls
cd ..
rmdir my_dir
```

# Naming files and directories on Unix

• Don't use spaces in names

file1.txt is ok, but not file 1.txt

- Don't use these characters in file or dir names (/, <, >, |, :, &)
- File and directory names are case sensitive file.txt and FILE.txt are different
- But, files with same name can exist in different directories /home/file.txt and /data/file.txt are valid
- Use uppercase, lowercase, numbers, dot (.) and underscore (\_)

# Use underbars or CamelCase for file names

- Use underbars for multiple word file names like this
- Heres\_a\_multiple\_word\_file\_name.txt
- Or CamelCase
- HeresAMultipleWordFileName.txt
- But NOT with spaces!
- "Here's a multiple word file name.txt" (do not do this!)

# Unix tricks

- Hit the "up arrow" key on your keyboard to recall previous commands
- Tab complete type the first part of file or directory name and "tab" will complete the rest IF it is a "unique" file or directory name
- Wildcard (\*) in Unix can make your life easier (or harder)
- For example...

```
mv reallylongfilename.fastq.gz new_dir/fastq OR
```

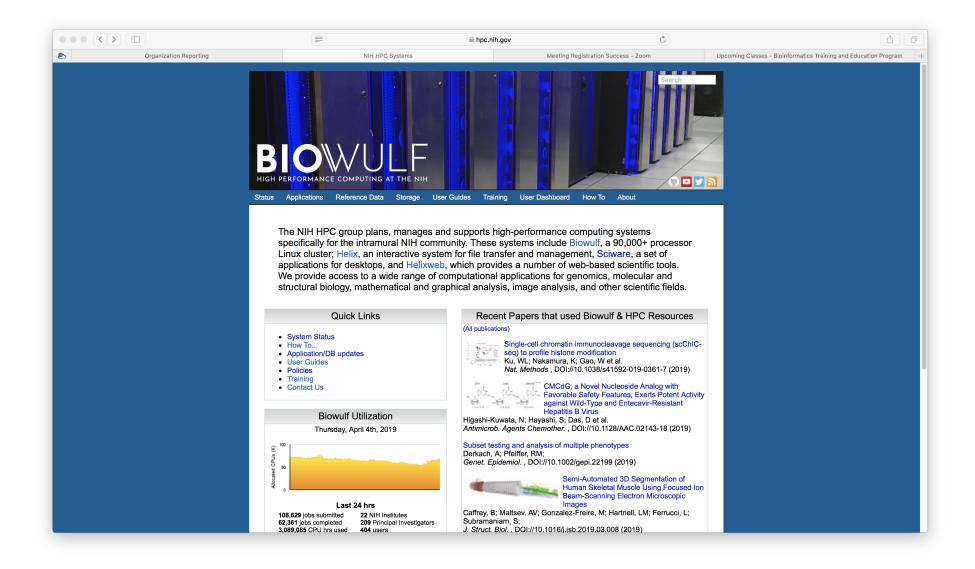
```
mv *.fastq.gz new_dir/fastq
(this will move any file with extension .fastq.gz)
```

# What is a "tarball" file in Unix?

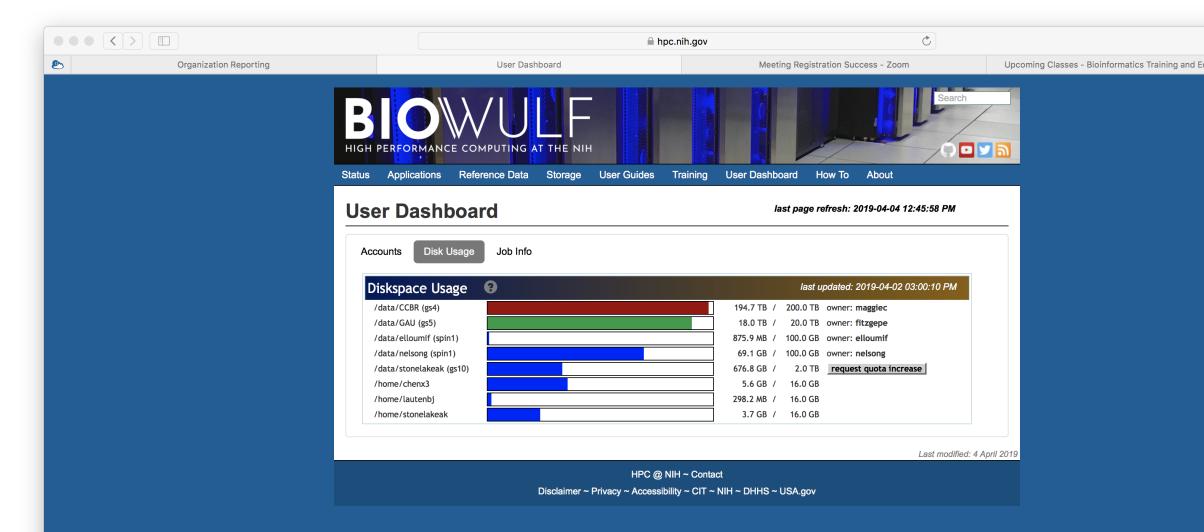
• Very large files that have been compressed

verybigfile.tar

- How to "untar" a file
- At the command line, type: tar –xvf verybigfile.tar
- Files may also be "zipped" using gzip/bzip, and need to be unzipped tar –xvzf verybigfile.tar.gz
- Or just be "zipped", like the fastq.gz files we downloaded gunzip verybigfile.gz


# Your Biowulf account

- You have both /home and /data directories on your account
- /home is limited size
- /data is where you will do most of your work
- /lscratch is available for temp files
- To do RNA seq work, request up to 1 TB in your /data directory
- Keep an eye on your disk space!
- Do not work on the Biowulf login node!


# Being a good citizen on Biowulf

- checkquota will show /home and /data
- OR
- See <a href="http://hpc.nih/gov">http://hpc.nih/gov</a> -> User Account -> Disk Usage

## User Dashboard on Biowulf



# Checking Disk Usage on Biowulf



### How many cores and how much memory should you allocate to run trimmomatic on Biowulf as a batch job?

### **Batch job**

#!/bin/bash

Most jobs should be run as batch jobs.

Create a batch input file (e.g. trimmomatic.sh). For example:

```
ml trimmomatic || exit 1
java -Djava.io.tmpdir=. -jar $TRIMMOJAR PE -phred33 -threads $SLURM_CPUS_PER_TASK \
    SRR292678_1.fastq.gz SRR292678_2.fastq.gz \
    output_forward_paired.fq.gz output_forward_unpaired.fq.gz \
    output_reverse_paired.fq.gz output_reverse_unpaired.fq.gz \
    ILLUMINACLIP:/usr/local/apps/trimmomatic/Trimmomatic-0.36/adapters/TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 \
    SLIDINGWINDOW:4:15 MINLEN:36
```

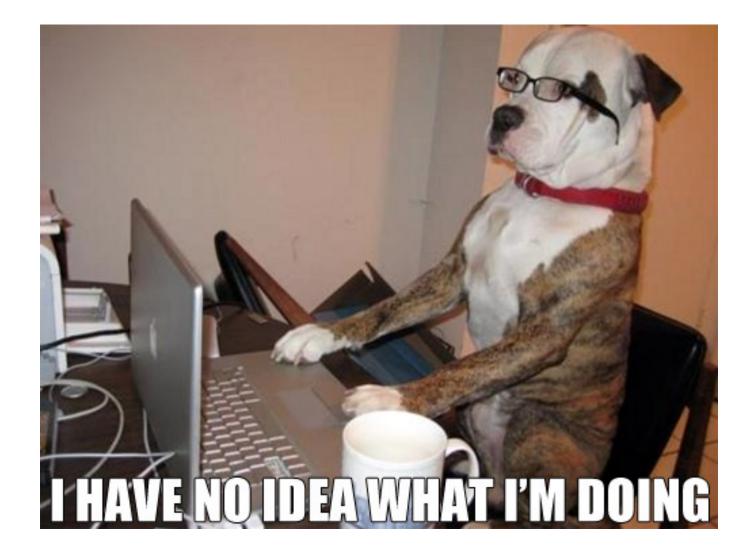
Submit this job using the Slurm sbatch command.

sbatch -c 2 --mem=6g trimmomatic.sh

### Biowulf has suggestions for running jobs with adequate resources.

# Additional resources

- Datacamp.com to learn unix/R/python
- Unix Tutorial for Beginners (https//www.cs.sfu.ca/~ggbaker/reference/unix/index.html)
- Software carpentry (<u>http://swcarpentry.github.io/shell-novice/</u>)
- hpc.nih.gov (Biowulf)
- Unix cheat sheet (Fosswire.com)
- man pages for any command


[username@biowulf] \$ man ls

### Unix/Linux Command Reference

# **FOSSwire**.com

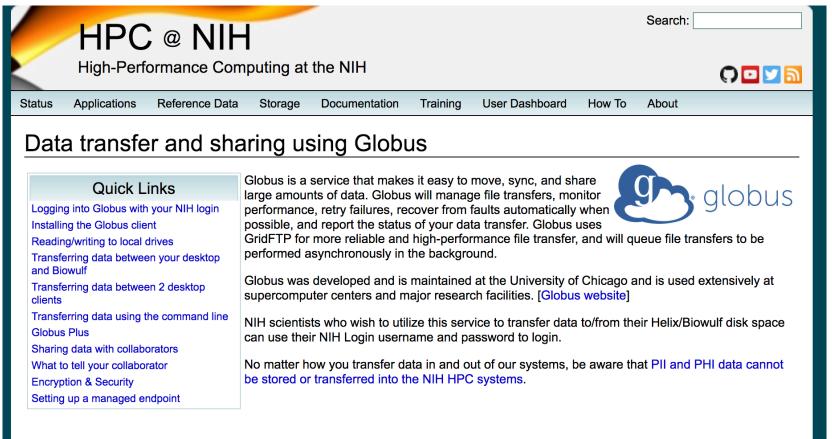
| File Commands                                                                   | System Info                                                     |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------|
| <b>ls</b> – directory listing                                                   | <b>date</b> – show the current date and time                    |
| <b>ls</b> -al – formatted listing with hidden files                             | cal – show this month's calendar                                |
| <b>cd</b> <i>dir</i> - change directory to <i>dir</i>                           | uptime - show current uptime                                    |
| <b>cd</b> – change to home                                                      | w – display who is online                                       |
| <b>pwd</b> – show current directory                                             | whoami – who you are logged in as                               |
| mkdir <i>dir</i> – create a directory <i>dir</i>                                | finger user - display information about user                    |
| rm file - delete file                                                           | <b>uname</b> -a – show kernel information                       |
| rm -r dir - delete directory dir                                                | cat /proc/cpuinfo - cpu information                             |
| rm -f file - force remove file                                                  | cat /proc/meminfo - memory information                          |
| <b>rm -rf</b> <i>dir</i> – force remove directory <i>dir</i> *                  | man <i>command</i> – show the manual for <i>command</i>         |
| <b>cp file1 file2</b> - copy file1 to file2                                     | df – show disk usage                                            |
| cp -r dir1 dir2 - copy dir1 to dir2; create dir2 if it                          | du – show directory space usage                                 |
| doesn't exist                                                                   | free – show memory and swap usage                               |
| mv file1 file2 - rename or move file1 to file2                                  | whereis app - show possible locations of app                    |
| if <i>file2</i> is an existing directory, moves <i>file1</i> into               | which <i>app</i> - show which <i>app</i> will be run by default |
| directory file2                                                                 |                                                                 |
| <b>ln -s</b> <i>file link</i> - create symbolic link <i>link</i> to <i>file</i> | Compression                                                     |
| touch file - create or update file                                              | tar cf file.tar files - create a tar named                      |
| <b>cat</b> > <b>file</b> – places standard input into file                      | file.tar containing files                                       |
| more file - output the contents of file                                         | tar xf file.tar - extract the files from file.tar               |
| head file - output the first 10 lines of file                                   | tar czf file.tar.gz files - create a tar with                   |
| tail file - output the last 10 lines of file                                    | Gzip compression                                                |
| <b>tail -f</b> <i>file</i> - output the contents of <i>file</i> as it           | tar xzf file.tar.gz - extract a tar using Gzip                  |
| grows, starting with the last 10 lines                                          | tar cjf file.tar.bz2 - create a tar with Bzip2                  |
| 5                                                                               | compression                                                     |
| Process Management                                                              | tar xjf file.tar.bz2 - extract a tar using Bzip2                |
| <b>ps</b> – display your currently active processes                             | gzip file - compresses file and renames it to                   |
| <b>top</b> – display all running processes                                      | file ar                                                         |

### End of Part 1 – take a short break, any ?s



# Part 2: Moving files to Biowulf (and back again)

We will look at several methods to transfer files.


- The Globus service allows easy file transfers (you need to request Globus access for your Biowulf account, info at globus.org) –best when moving large files
- Mounting a drive creates a graphical user interface (GUI) so you can drag and drop files
- Secure copy protocol (scp) or secure file transfer protocol (sftp), with WinSCP (PC) or FileZilla\* (Mac,PC)

## Log on to Biowulf

- To work at the command line, you need a "ssh" connection go ahead and establish one now using Terminal (Mac) or PuTTY (PC)
- To transfer files back and forth, you need "scp or sftp" connection, there are several ways to do that

# Moving files with Globus

- For transferring large files
- Need a Biowulf account to use Globus
- Setup your Globus endpoint (only need to do this one time)
- Open Globus Connect Personal (need to do this every time)



#### Helix/Biowulf Endpoints

The endpoint nihhelix#helix has been shut down as of 30 Apr 2017. All users must use the nihhpc#globus endpoint. Any endpoints that were previously shared from nihhelix#helix must be re-shared from nihhpc#globus.

The Globus endpoint for transferring data to or from your Helix/Biowulf /home, /data or /scratch areas is **nihhpc#globus**. This endpoint is implemented using eight "Data Transfer Nodes" which can operate in parallel to provide 80 Gb/s of aggregate bandwidth.

You do not need to be logged on to Helix or Biowulf to start or monitor a transfer.

Logging into Globus with your NIH login

# Instructions for using Globus on hpc.nih.gov

- Under "How To"
- Choose "Transfer Files"
- Select the link "Setting up a Globus account, transferring and sharing data"
- If you have trouble setting up Globus on your laptop, contact <u>staff@hpc.nih.gov</u>

|                                                                  |                            | Transfer Files   Activity   Endpoint | s Bookmarks Console                  | Go to globus.org                                            |
|------------------------------------------------------------------|----------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------------|
| Transfer Files                                                   |                            | RECENT ACT                           |                                      | Choose your personal endpoint<br>Choose a folder on biowulf |
| Endpoint AmyStonelakeBTEP                                        | ]☆ <                       | Endpoint NIH HPC Data                | Transfer 🔶 📩                         | Click the blue arrow                                        |
| Path /~/Desktop/                                                 | Go                         | Path /~/                             | Go                                   | You get an e-mail when it's don                             |
| select none 🖒 up one folder 🖒 refresh list                       | share 📃                    | select none 🖕 up one folder 🖒 re     | fresh list share 🗮                   |                                                             |
| 2018_JournalClub_TechdevCalendar.xlsx                            | 15.56 KB                   | 3Ms_project                          | Folder                               |                                                             |
| BTEP Spring 2019 Schedule.docx                                   | 13.78 KB                   | bin                                  | Folder                               |                                                             |
| BTEP mtg with OSTR.docx                                          | 16.67 KB                   | ccbr_pipeliner                       | Folder                               |                                                             |
| Group07 alias                                                    | 960 B                      | mail                                 | Folder                               |                                                             |
| Practical Bioinformatics Skills.docx                             | 15.37 KB                   | e teaching                           | Folder                               |                                                             |
| 睯 Screen Shot 2018-09-13 at 11.21.16 AM.png                      | 67.81 KB                   | 睯 downloadfastq.swarm                | 666 B                                |                                                             |
| 睯 Screen Shot 2018-09-13 at 11.22.42 AM.png                      | 52.58 KB                   | 睯 file.txt                           | 53 B                                 |                                                             |
| 睯 Screen Shot 2018-09-13 at 11.23.22 AM.png                      | 53.21 KB                   | 睯 project.json                       | 3.83 KB                              |                                                             |
| 睯 Screen Shot 2018-09-13 at 4.34.16 PM.png                       | 1.17 MB                    | 睯 slurm-7359593.out                  | 51.55 KB                             |                                                             |
| Sept OCT Training Sessions for me.docx                           | 13.64 KB                   | 睯 slurm-7438680.out                  | 51.82 KB                             |                                                             |
| StonelakeAk alias                                                | 984 B                      | 睯 slurm-7442490.out                  | 51.55 KB                             |                                                             |
| 睯 Win10 VM.iso                                                   | 12.78 GB                   | 睯 swarm_7294549_0.e                  | 35 B                                 |                                                             |
| 睯 Windows 10                                                     | 848 B                      | swarm_7294549_0.o                    | 186 B                                |                                                             |
| id_rsa                                                           | 1.70 KB                    | swarm_7294549_1.e                    | 107 B                                |                                                             |
| logins file.docx                                                 | 11.87 KB                   | swarm_7294549_1.o                    | 186 B                                |                                                             |
| mystery.fasta                                                    | 114.51 MB                  | swarm_7294549_10.e                   | 3.61 KB                              |                                                             |
| plan.docx                                                        | 12.2 KB                    | swarm_7294549_10.o                   | 187 B                                |                                                             |
| ~\$EP poster info old.docx                                       | 162 B                      | swarm_7294549_2.e                    | 3.62 KB                              |                                                             |
| *\$xgenomics_human_mouse.docx                                    | 162 B                      | swarm_7294549_2.o                    | 187 B                                |                                                             |
| -\$y Stonelake to dos July 26 2018.docx      Label This Transfer | 162 B                      | swarm_7294549_3.e                    | 3.60 KB                              |                                                             |
| This will be displayed in your transf                            | fer activity.              |                                      |                                      |                                                             |
| Transfer Settings sync - only transfer new o                     | or changed files 🕜         |                                      |                                      |                                                             |
| delete files on destination                                      | that do not exist on sourc | e 🕜                                  |                                      |                                                             |
| preserve source file modif                                       | fication times 🕜           |                                      |                                      |                                                             |
| ✓ verify file integrity after tra                                | insfer 🕜                   |                                      |                                      |                                                             |
| encrypt transfer 🕜                                               |                            |                                      | Get Globus Connect Personal          |                                                             |
|                                                                  |                            |                                      | Turn your computer into an endpoint. |                                                             |

## Mounting a drive

Mac – "Go" -> "Connect to server" smb://helixdrive.nih.gov/username

PC - "Computer", "Tools" then "Map Network Drive" tab

See instructions on hpc.nih.gov (Biowulf) – "How To – Transfer Files", "Transferring data to/from the NIH HPC systems"

# Secure Copy Protocol (scp)

- Windows PC download WinSCP GUI drag and drop files easy!
- Mac scp at the Mac command line
- FileZilla be sure to get a clean copy!
  - Mac OSX:
  - <u>http://packages.partek.com/bin/filezilla/fz-osx.app.tar.bz2</u>
  - Windows 32-bit:
  - <u>http://packages.partek.com/bin/filezilla/fz-win32.exe</u>
  - Windows 64-bit:
  - <u>http://packages.partek.com/bin/filezilla/fz-win64.exe</u>

# Summary of data transfer options on Biowulf

| Platform   | Application                | Pros                                                                                                                                                                                                                                           | Cons                                                                          |
|------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| All        | Globus                     | Best for very large files (> 256MB). Clients for all platforms, web-based.<br>Notifications sent on completion.                                                                                                                                | The client must first be installed on the desktop.                            |
| platforms  | Filezilla v3.0             | Better control over transfer during the process, fewer and simpler controls than WinSCP, fastest transfer rates by sFTP.                                                                                                                       | scp not an option.                                                            |
|            | WinSCP                     | Much faster transfer rates than PuTTY-pscp/psftp, but slightly faster than Filezilla for uploads using scp (rates were found to vary considerably by cipher used, in the order of Blowfish > AES >> 3DES), highly comprehensive configuration. | Cumbersome user<br>interface for changing<br>local and remote<br>directories. |
| Windows    | pscp/psftp                 | Direct command line control over process.                                                                                                                                                                                                      | Need to run through the command prompt, slowest transfer rates seen.          |
|            | Mapped<br>Network<br>Drive | Convenient.                                                                                                                                                                                                                                    | Fairly slow transfer<br>rates, especially very<br>large files.                |
|            | bbcp,scp,sftp              | Can be used for scripting & automatic file transfers, fastest transfer rates                                                                                                                                                                   | non-GUI interface.                                                            |
| Macs       | Fugu                       | Easy to configure and use.                                                                                                                                                                                                                     | Slower than command-<br>line.                                                 |
|            | Mapped<br>Network<br>Drive | Convenient drag-and-drop.                                                                                                                                                                                                                      | Fairly slow transfer<br>rates, especially for<br>large files.                 |
| Linux/Unix | scp,sftp                   | Same as for Macs.                                                                                                                                                                                                                              | Same as for Macs.                                                             |
|            | bbcp                       | Fastest transfer rate.                                                                                                                                                                                                                         |                                                                               |

Last modified: 7 September 2018

hpc.nih.gov

# Downloading files from BTEP website

• Go to the class website

btep.ccr.cancer.gov/classes/unix-Frederick

Download all files – fastq, pdf – put them in your Downloads directory Next...

We need to transfer the fastq.gz file to Biowulf so we can work with it

# Using WinSCP to transfer files

🌆 Login

| 🚅 New Site |          | Session<br>File protocol:             |                       |
|------------|----------|---------------------------------------|-----------------------|
|            |          | <u>H</u> ost name:<br>biowulf.nih.gov | Po <u>r</u> t number: |
|            |          | User name: Passwer<br>Save T          | ord:<br>Advanced 🖛    |
|            |          |                                       |                       |
|            |          |                                       |                       |
| Tools 🔻    | Manage 🔻 | 🔁 Login 🔻 🔿                           | Close Help            |

\_

×

## OR...Using FileZilla to transfer files

#### 

| LUCAI                                                  | site: /Users/stonela                                      | keak/                                                                                   |                                                                                                                                                      | <u> </u> | Remote site:                                  |
|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------|
| ,                                                      | I stonelakeak                                             |                                                                                         |                                                                                                                                                      |          |                                               |
| ►                                                      | Volumes                                                   |                                                                                         |                                                                                                                                                      |          |                                               |
|                                                        | 📁 bin                                                     |                                                                                         |                                                                                                                                                      |          |                                               |
|                                                        | 📁 cores                                                   |                                                                                         |                                                                                                                                                      |          |                                               |
|                                                        | 📁 dev                                                     |                                                                                         |                                                                                                                                                      |          |                                               |
| ►                                                      | 📁 etc                                                     |                                                                                         |                                                                                                                                                      |          |                                               |
|                                                        | 📁 home                                                    |                                                                                         |                                                                                                                                                      |          |                                               |
| ►                                                      | 🧊 net                                                     |                                                                                         |                                                                                                                                                      |          |                                               |
| ►                                                      | 🧊 opt                                                     |                                                                                         |                                                                                                                                                      |          |                                               |
| ►                                                      | 🣁 private                                                 |                                                                                         |                                                                                                                                                      |          |                                               |
|                                                        | 🧊 sbin                                                    |                                                                                         |                                                                                                                                                      |          |                                               |
| Filenam                                                | e 🔨 🔰 F                                                   | ilesize Filetype                                                                        | Last modified                                                                                                                                        | 10       | line a transformation to a second to          |
| 1                                                      |                                                           | nesize i netype                                                                         | Last modified                                                                                                                                        |          | Filename A Filesize Filetype Last modified Pe |
| <br>Inst                                               | tallAnywh                                                 | Directory                                                                               | 08/10/2018 09:5                                                                                                                                      |          | Filename A Filesize Filetype Last modified Pe |
| <br>Inst.                                              | tallAnywh                                                 |                                                                                         | 08/10/2018 09:5                                                                                                                                      |          |                                               |
| .Tra                                                   | tallAnywh                                                 | Directory                                                                               |                                                                                                                                                      |          | Filename A Filesize Filetype Last modified Pa |
| .Tra                                                   | tallAnywh<br>sh<br>sh_sessions                            | Directory<br>Directory                                                                  | 08/10/2018 09:5<br>09/14/2018 10:2<br>09/18/2018 14:4                                                                                                |          |                                               |
| Tra:                                                   | tallAnywh<br>sh<br>sh_sessions<br>she                     | Directory<br>Directory<br>Directory                                                     | 08/10/2018 09:5<br>09/14/2018 10:2                                                                                                                   |          |                                               |
| .Tras<br>.bas<br>.cac<br>.ciso                         | tallAnywh<br>sh<br>sh_sessions<br>che<br>co               | Directory<br>Directory<br>Directory<br>Directory<br>Directory                           | 08/10/2018 09:5<br>09/14/2018 10:2<br>09/18/2018 14:4<br>08/06/2018 11:2<br>09/14/2018 11:4                                                          |          |                                               |
| .Tras<br>.bas<br>.cac<br>.ciso<br>.con                 | tallAnywh<br>sh<br>sh_sessions<br>she<br>co<br>fig        | Directory<br>Directory<br>Directory<br>Directory<br>Directory<br>Directory              | 08/10/2018 09:5<br>09/14/2018 10:2<br>09/18/2018 14:4<br>08/06/2018 11:2<br>09/14/2018 11:4<br>09/18/2018 14:4                                       |          |                                               |
| .Tras<br>.bas<br>.cac<br>.ciso                         | tallAnywh<br>sh<br>sh_sessions<br>she<br>co<br>ofig<br>os | Directory<br>Directory<br>Directory<br>Directory<br>Directory<br>Directory<br>Directory | 08/10/2018 09:5<br>09/14/2018 10:2<br>09/18/2018 14:4<br>08/06/2018 11:2<br>09/14/2018 11:4<br>09/18/2018 14:4<br>07/23/2018 10:5                    |          |                                               |
| .Tras<br>.bas<br>.cac<br>.ciso<br>.con<br>.cup<br>.ese | tallAnywh<br>sh<br>sh_sessions<br>she<br>co<br>ffig<br>ps | Directory<br>Directory<br>Directory<br>Directory<br>Directory<br>Directory<br>Directory | 08/10/2018 09:5<br>09/14/2018 10:2<br>09/18/2018 14:4<br>08/06/2018 11:2<br>09/14/2018 11:4<br>09/18/2018 14:4<br>07/23/2018 10:5<br>07/26/2018 10:4 |          |                                               |
| .Tra:<br>.bas<br>.cac<br>.ciso<br>.con<br>.cup<br>.ese | tallAnywh<br>sh<br>sh_sessions<br>she<br>co<br>ofig<br>os | Directory<br>Directory<br>Directory<br>Directory<br>Directory<br>Directory<br>Directory | 08/10/2018 09:5<br>09/14/2018 10:2<br>09/18/2018 14:4<br>08/06/2018 11:2<br>09/14/2018 11:4<br>09/18/2018 14:4<br>07/23/2018 10:5                    |          |                                               |

### OR...Another way to transfer files... uploading files to Biowulf on a Mac computer using the command line

Open Terminal (Mac) and use cd to go to the location of the downloaded file

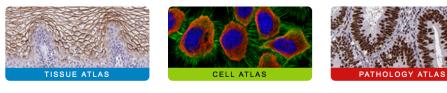
cd /Users/username/Downloads

Then type this (on the command line of your machine)

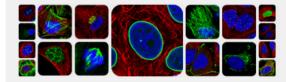
scp filename.fastq.gz username@biowulf.nih.gov:/data/username Where "filename.fastq.gz" is the name of the file Username is your username Mistakes you will make when uploading files from your Mac to Biowulf

- You will forget to type the command in a terminal window <u>on your</u> <u>machine</u>
- You will type "username" instead of your username
- You will type "filename" instead of the name of the file
- You will not type the path correctly to the file.
- You will have a typo in the name of the file

# After you do it correctly, be sure to celebrate!




## Where did these files come from? The Human Protein Atlas (proteinatlas.org)




■MENU HELP NEWS

| SEARCH                   |        |          |
|--------------------------|--------|----------|
| e.g. RBM3, insulin, CD36 | Search | Fields » |



Research Article A subcellular map of the human proteome



read the published full story of the subcellular proteome analysis

•••••

PRESS ROOM

Atlas up

Proteome analysis based on 26009 antibodies targeting 17000 unique proteins.

Version: **18.1** Atlas updated: 2018-11-15 release history

f y Contact@proteinatlas.org

PUBLICATIONS

DOWNLOADABLE DATA

INTRODUCTION

Recent news

Fri, 8 Mar 2019 Thymus and T cells of the Adaptive Immune System

Mon, 4 Feb 2019 The Fertilizing Fallopian Tube Thu, 6 Dec 2018

Integration of transcriptomics and antibody-based proteomics for exploration of proteins

all news articles

#### Click on DOWNLOADABLE DATA

## THE HUMAN PROTEIN ATLAS

| THE HUMAN PROTEOME  | NEWS          | THE PROJECT           | TECHNICAL DATA                 |
|---------------------|---------------|-----------------------|--------------------------------|
| THE TISSUE ATLAS    | NEWS ARTICLES | INTRODUCTION          | ANTIBODY VALIDATION            |
| THE CELL ATLAS      | EVENTS        | ORGANIZATION          | <b>ASSAYS &amp; ANNOTATION</b> |
| THE PATHOLOGY ATLAS | PRESS ROOM    | PUBLICATIONS          | DISCLAIMER                     |
| PROTEIN CLASSES     |               | PUBLICATION DATA      | DOWNLOADABLE DATA              |
| PROTEIN EVIDENCE    | LEARN         | ANTIBODY SUBMISSION   | HELP & FAQ                     |
|                     | DICTIONARY    | ANTIBODY AVAILABILITY | LICENCE & CITATION             |
|                     | METHODS       | LINKS                 | PRIVACY STATEMENT              |
|                     | CELL LINES    | CONTACT               | RELEASE HISTORY                |

#### News Thymus and T cells of the Adaptive Immune System

Thymus is a gland, and one of the primary lymphoid organs where T cell maturation is taking place. T cells are the major component of the adaptive immune system..... Read more **Recent news** 

**E**MENU

HELP

NEWS

Fri, 8 Mar 2019 Thymus and T cells of the Adaptive Immune System

Mon, 4 Feb 2019 The Fertilizing Fallopian Tubes

Thu, 6 Dec 2018 Integration of transcriptomics antibody-based proteomics for exploration of proteins

read the latest article published Fri, 8 Mar 2019 n skeletal muscleorpusci

#### RNA gene data

#### RNA sequencing data for human tissue

| and Education Progr |   | oinformatics AS<br>PNEWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         | Search | Fields |
|---------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|--------|
|                     |   | DOWNLOADABLE DATA<br>oo.yo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |        |        |
|                     | 4 | RNA gene data<br>RNA levels in 64 cell lines and 37 tissues based on RNA-seq. The tab-separated file<br>includes Ensembl gene identifier ("Gene"), analysed sample ("Sample") and transcripts<br>per million ("Value" and "Unit"). The data is based on The Human Protein Atlas version<br>18.1 and Ensembl version 88.38.<br>RNA sequencing data for human tissue<br>RNA sequencing data for human cell lines                                                                                                                                                                                                                                                                                                                                                                | ma_tissue.tsv.zip<br>TSV-file, 3.7 MB<br>ma_celline.tsv.zip<br>TSV-file, 6.2 MB                         |        |        |
|                     | 5 | RNA isoform data<br>RNA levels in 64 cell lines and 37 tissues based on RNA-seq. The tab-separated file<br>includes Ensembl gene identifier ("Gene"), Ensembl transcript identifier ("Transcript"),<br>analysed sample ("Sample") and transcript per million ("TPM"). The data is based on<br>The Human Protein Atlas version 18.1 and Ensembl version 88.38.                                                                                                                                                                                                                                                                                                                                                                                                                 | transcript_ma_tissue.tsv.zip<br>TSV-file, 73.7 MB<br>transcript_ma_celline.tsv.zip<br>TSV-file, 51.9 MB |        |        |
|                     | 6 | Data from the Human Protein Atlas in tab-separated format<br>This file contains a subset of the data in the Human Protein Atlas version 18.1<br>corresponding to the data seen in the search result. This data can also be downloaded<br>for a resulting gene set when using the search function (via the TSV link on the result<br>page).                                                                                                                                                                                                                                                                                                                                                                                                                                    | proteinatlas.tsv.zip<br>TSV-file (gzip compressed), 1.5 MB                                              |        |        |
|                     | 7 | Data from the Human Protein Atlas in XML format<br>The XML file contains most of the data in the Human Protein Atlas version 18.1,<br>including protein expression data (in normal and tumor tissues and in cell lines),<br>antigen sequences, Western blot data for antibodies, protein array data for antibodies,<br>RNA-seq data, external references such as UniProt identifiers, and more. The data is<br>based on Ensembl version 88.38. The file structure is presented in the XSD-schema.<br>This data can also be downloaded for a resulting gene set when using the search<br>function (via the xml link on the result page).<br>The XML file presented here is compressed with gzip due to its size. It can be<br>uncompressed with an archive program like 7-zip. | proteinatlas.xml.gz<br>XML-file (gzip compressed), 261.8 M                                              | B      |        |



#### E-MTAB-2836 - RNA-seq of coding RNA from tissue samples of 122 human individuals representing 32 different tissues

| Status           | Submitted on 4 May 2014, released on 14 January 2015, last updated on 23 November 2018                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Organism         | Homo sapiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Samples (122)    | Click for detailed sample information and links to data                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Protocols (7)    | Click for detailed protocol information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Description      | RNA-seq was performed of tissue samples from 122 human individuals representing 32 different tissues in order to study the human tissue transcriptome. This submission contains 27 new samples and the data from E-MTAB-1733.                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Experiment types | RNA-seq of coding RNA, organism part comparison design                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Contact          | Björn M Hallström <bjorn.hallstrom@gmail.com></bjorn.hallstrom@gmail.com>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Citations        | Proteomics. Tissue-based map of the human proteome. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Siver<br>Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hob<br>Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Perss<br>Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F. <i>Science</i> 347(6220) (2015), <u>PMID:5613900</u> |  |  |  |  |  |  |

#### Click for detailed sample information and links to data

# Can click and download data to desktop....but wait, there's a better way!



E-MTAB-2836 - RNA-seq of coding RNA from tissue samples of 122 human individuals representing 32 different tissues

| Display full sar | mple-data table |               |                         |                | Export table in Tab                    | delimit | ed format |
|------------------|-----------------|---------------|-------------------------|----------------|----------------------------------------|---------|-----------|
| Page 1 2 3 4     | 5 6 16          |               | Showing 1 -             | 25 of 400 rows | Page size 25 50                        | 100 2   | 50 500    |
|                  |                 | Sample Attrib | outes                   | Variables      | Assay                                  | Links   | to Data   |
| Source Name ٨    | organism part   | organism      | sex developmental stage | organism part  | Assay Name                             | ENA     | FASTQ     |
| adrenal_4a       | adrenal gland   | Homo sapiens  | adult                   | adrenal gland  | 1_130213_AH07R5ADXX_P282_102B_index25  | S       | <u>+</u>  |
| adrenal_4a       | adrenal gland   | Homo sapiens  | adult                   | adrenal gland  | 1_130213_AH07R5ADXX_P282_102B_index25  | S       | <b>±</b>  |
| adrenal_4a       | adrenal gland   | Homo sapiens  | adult                   | adrenal gland  | 2_130213_AH07R5ADXX_P282_102B_index25  | 6       | <u>.</u>  |
| adrenal_4a       | adrenal gland   | Homo sapiens  | adult                   | adrenal gland  | 2_130213_AH07R5ADXX_P282_102B_index25  | 6       | <u>+</u>  |
| adrenal_4c       | adrenal gland   | Homo sapiens  | adult                   | adrenal gland  | 1_130213_AH07R5ADXX_P282_104B_index1   | 6       | <u>+</u>  |
| adrenal_4c       | adrenal gland   | Homo sapiens  | adult                   | adrenal gland  | 1_130213_AH07R5ADX <u></u> 104B_index1 | 6       | <u>+</u>  |
| adrenal_4c       | adrenal gland   | Homo sapiens  | adult                   | adrenal gland  | 2_130213_AH07R5ADX                     | 6       | <u>+</u>  |
| adrenal_4c       | adrenal gland   | Homo sapiens  | adult                   | adrenal gland  | 2_130213_AH07R5ADXX_P282_104B_index1   | 6       | <u>.</u>  |

## Let's explore this data... click on Display full-sample data table



## E-MTAB-2836 - RNA-seq of coding RNA from tissue samples of 122 human individuals representing 32 different tissues

| Display summar | <u>y</u>                                                    | Export tal                                         | ble in Tab-delimited format |
|----------------|-------------------------------------------------------------|----------------------------------------------------|-----------------------------|
| Page 1 2 3 4 5 | 6 16 Showing 1 - 1                                          | 25 of 400 rows Page siz                            | ze 25 50 100 250 500        |
| Source Name    | N] Comment[FASTQ_URI]                                       | Comment[MD5] Comm                                  | ent[SPOT_LENGTH] Cor        |
| adrenal_4a     | ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR315/ERR315335/ERR3153 | 35_1.fastq.gz 129127427adf13499dd774c6db307d78 102 | 209                         |
| adrenal_4a     | ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR315/ERR315335/ERR3153 | 35_2.fastq.gz b6ea9b491ca0a9164146f4f9d96b6483 102 | 209                         |
| adrenal_4a     | ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR315/ERR315452/ERR3154 | 52_1.fastq.gz f3375fcef92155ced216c8aea16dc0df 102 | 209                         |
| adrenal_4a     | ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR315/ERR315452/ERR3154 | 52_2.fastq.gz d8f0f1061349329b2f4de0564b773975 102 | 209                         |

#### Scroll across to see the details for these files, they are paired RNA-seq data

## See the ftp address ->ftp://ftp.sra.ei.ac.uk/



#### E-MTAB-2836 - RNA-seq of coding RNA from tissue samples of 122 human individuals representing 32 different tissues

| Display summa | ary          |                                                                    | Export table in Tab-delimited forma          |
|---------------|--------------|--------------------------------------------------------------------|----------------------------------------------|
| Page 1 2 3 4  | 5 616        | Showing 1 - 25 of 400 rows                                         | Page size 25 50 100 250 500                  |
| Source Name 🔺 | Comment[ENA_ | RUN] Comment[FASTQ_URI]                                            | Comment[MD5] Comment[                        |
| adrenal_4a    | z ERR315335  | ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR315/ERR315335/ERR315335_1.fa | lstq.gz 129127427adf13499dd774c6db307d78 102 |
| adrenal_4a    | z ERR315335  | ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR315/ERR315335/ERR315335_2.fa | astq.gz b6ea9b491ca0a9164146f4f9d96b6483 102 |
| adrenal_4a    | z ERR315452  | ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR315/ERR315452/ERR315452_1.fa | stq.gz f3375fcef92155ced216c8aea16dc0df 102  |
| adrenal_4a    | z ERR315452  | ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR315/ERR315452/ERR315452_2.fa | astq.gz d8f0f1061349329b2f4de0564b773975 102 |

#### How to download files from Human Protein Atlas

- Follow the directions on the handout
- Use the "wget" command from Biowulf

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/dir/file.fastq.gz

#### End of Part 2 – time for a break



#### Part 3

Scientific analyses and databases on Biowulf

Now that you've uploaded your data, you'll need an "ssh" connection to work at the command line

- Use Terminal (Mac) or PuTTY (PC) to log into Biowulf
- Look at the data you've just uploaded using unix commands learned earlier (ls, cd, less)

### Analyses of fastq sequencing files

- NGS sequence results are returned to you in FASTQ format
- FastQC/MultiQC quality check of FASTQ files
- Trimmomatic remove adapters at ends
- Bowtie2 align to genome
- IGV Integrated Genome Viewer

#### A word about sequence formats

- FASTA commonly used text format for downstream analysis such as sequence similarity searches
- FASTQ output format from NGS technologies with quality scores
- SAM tab-delimited text format with alignment data
- BAM compressed, binary version of SAM

#### Sequence formats - FASTA

**FASTA** – has a header line that begins with ">" and a data line containing the sequence

>this\_is\_a\_fasta\_header\_it\_can\_say\_anything\_here ATCTAGGACCTGAAGACGGGACCTTTTTACGACTAC

> sequence 1 can have spaces in the header line
ATCTATGAGATAGACTATATACTAGACGATAGACGATGACGATAGAACATCTATGA

>can\_also\_be\_a\_protein\_sequence
MPYWTGAMYAVPWTERHGPNCTAAVPMYGATRE

#### Sequence formats - FASTQ

**FASTQ** – contains both sequence data and quality score data

@whatever\_the\_name\_of\_the\_sequence\_is
GATTTGGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCA
+ whatever\_the\_name\_of\_the\_sequence\_is
!''\*((((\*\*\*+))%%%++)(%%%%).1\*\*\*-+\*''))\*\*55CCF>>>>>CCCCCCC65

#### FASTQ scores and ASCII codes

| ASC | II_BASE=3 | 3 Illumina | , Io | n Torrent | , PacBio | and S | anger   |       |    |         |       |
|-----|-----------|------------|------|-----------|----------|-------|---------|-------|----|---------|-------|
| Q   | P_error   | ASCII      | Q    | P_error   | ASCII    | Q     | P_error | ASCII | Q  | P_error | ASCII |
| 0   | 1.00000   | 33 !       | 11   | 0.07943   | 44 ,     | 22    | 0.00631 | 55 7  | 33 | 0.00050 | 66 B  |
| 1   | 0.79433   | 34 "       | 12   | 0.06310   | 45 -     | 23    | 0.00501 | 56 8  | 34 | 0.00040 | 67 C  |
| 2   | 0.63096   | 35 #       | 13   | 0.05012   | 46 .     | 24    | 0.00398 | 57 9  | 35 | 0.00032 | 68 D  |
| 3   | 0.50119   | 36 \$      | 14   | 0.03981   | 47 /     | 25    | 0.00316 | 58 :  | 36 | 0.00025 | 69 E  |
| 4   | 0.39811   | 37 %       | 15   | 0.03162   | 48 0     | 26    | 0.00251 | 59 ;  | 37 | 0.00020 | 70 F  |
| 5   | 0.31623   | 38 &       | 16   | 0.02512   | 49 1     | 27    | 0.00200 | 60 <  | 38 | 0.00016 | 71 G  |
| 6   | 0.25119   | 39 '       | 17   | 0.01995   | 50 2     | 28    | 0.00158 | 61 =  | 39 | 0.00013 | 72 H  |
| 7   | 0.19953   | 40 (       | 18   | 0.01585   | 51 3     | 29    | 0.00126 | 62 >  | 40 | 0.00010 | 73 I  |
| 8   | 0.15849   | 41)        | 19   | 0.01259   | 52 4     | 30    | 0.00100 | 63 ?  | 41 | 0.00008 | 74 J  |
| 9   | 0.12589   | 42 *       | 20   | 0.01000   | 53 5     | 31    | 0.00079 | 64 @  | 42 | 0.00006 | 75 K  |
| 10  | 0.10000   | 43 +       | 21   | 0.00794   | 54 6     | 32    | 0.00063 | 65 A  |    |         |       |
|     |           |            |      |           |          |       |         |       |    |         |       |

#### ASCII BASE=64 Old Illumina

| Q  | Perror  | ASCII | Q  | P_error | ASCII | Q  | P_error | ASCII | Q  | P_error | ASCII |
|----|---------|-------|----|---------|-------|----|---------|-------|----|---------|-------|
| 0  | 1.00000 | 64 @  | 11 | 0.07943 | 75 K  | 22 | 0.00631 | 86 V  | 33 | 0.00050 | 97 a  |
| 1  | 0.79433 | 65 A  | 12 | 0.06310 | 76 L  | 23 | 0.00501 | 87 W  | 34 | 0.00040 | 98 b  |
| 2  | 0.63096 | 66 B  | 13 | 0.05012 | 77 M  | 24 | 0.00398 | 88 X  | 35 | 0.00032 | 99 c  |
| 3  | 0.50119 | 67 C  | 14 | 0.03981 | 78 N  | 25 | 0.00316 | 89 Y  | 36 | 0.00025 | 100 d |
| 4  | 0.39811 | 68 D  | 15 | 0.03162 | 79 0  | 26 | 0.00251 | 90 Z  | 37 | 0.00020 | 101 e |
| 5  | 0.31623 | 69 E  | 16 | 0.02512 | 80 P  | 27 | 0.00200 | 91 [  | 38 | 0.00016 | 102 f |
| 6  | 0.25119 | 70 F  | 17 | 0.01995 | 81 Q  | 28 | 0.00158 | 92 \  | 39 | 0.00013 | 103 g |
| 7  | 0.19953 | 71 G  | 18 | 0.01585 | 82 R  | 29 | 0.00126 | 93 ]  | 40 | 0.00010 | 104 h |
| 8  | 0.15849 | 72 H  | 19 | 0.01259 | 83 S  | 30 | 0.00100 | 94 ^  | 41 | 0.00008 | 105 i |
| 9  | 0.12589 | 73 I  | 20 | 0.01000 | 84 T  | 31 | 0.00079 | 95    | 42 | 0.00006 | 106 j |
| 10 | 0.10000 | 74 J  | 21 | 0.00794 | 85 U  | 32 | 0.00063 | 96 -  |    |         |       |

#### SAM files are tab-delimited text files

| Col | Field | Туре   | Brief Description                     |
|-----|-------|--------|---------------------------------------|
| 1   | QNAME | String | Query template NAME                   |
| 2   | FLAG  | Int    | bitwise FLAG                          |
| 3   | RNAME | String | References sequence NAME              |
| 4   | POS   | Int    | 1- based leftmost mapping POSition    |
| 5   | MAPQ  | Int    | MAPping Quality                       |
| 6   | CIGAR | String | CIGAR String                          |
| 7   | RNEXT | String | Ref. name of the mate/next read       |
| 8   | PNEXT | Int    | Position of the mate/next read        |
| 9   | TLEN  | Int    | observed Template LENgth              |
| 10  | SEQ   | String | segment SEQuence                      |
| 11  | QUAL  | String | ASCII of Phred-scaled base QUALity+33 |

### Don't open BAM files at the command line

- Binary files like BAM are machine-readable, not human-readable, there is no reason to open them
- But what if you wanted to know how big they were, when they were generated? What commands would you use?
- ls -alt

#### We are going to run programs on Biowulf

- Each program is known as a "module" and there are over 600 of them on Biowulf
- To use a module, you must load the module
- You need to load modules every time you log into Biowulf

#### What modules are available to us?

- module avail to see list of available modules on Biowulf
- module spider "filename" to find files using part of name
- module load adds location of program to your path
- ECHO \$PATH to see that module has loaded
- module list to see what modules you have loaded
- module unload or module purge not really necessary, modules will unload automatically when you logout from Biowulf
- Always need to reload modules when you log back in

#### module avail

- ------ /usr/local/lmod/modulefiles ------
- 3DSlicer/4.8.1
- ACFS/20180316
- AMOS/3.1.0
- ANNOgesic/0.7.18
- ANTs/2.2.0
- ATLAS/3.10.2
- Accurity/20180724
- AdmixTools/4.1
- Autodock/4.2.6
- AutodockVina/1.1.2
- Azimuth/2.0
- BEAST/1.8.4-2.1.2
- BEAST/1.10.0
- BEAST/2.4.7 (D)
- BOLT-LMM/v2.3
- BOLT-LMM/v2.3.2 (D)
- BRASS/6.1.2
- Beagle/4.1\_08Jun17
- Bsoft/2.0.2
- CCP4/7.0.050
- CCP4/7.0.051

## module spider blast

| b | last:                                                                                                               |
|---|---------------------------------------------------------------------------------------------------------------------|
|   | Versions:                                                                                                           |
|   | blast/2.2.26                                                                                                        |
|   | blast/2.2.30+                                                                                                       |
|   | blast/2.5.0+                                                                                                        |
|   | blast/2.7.1+                                                                                                        |
|   | blast/2.8.0+alpha                                                                                                   |
|   | Other possible modules matches:                                                                                     |
|   | igblast rmblast samblaster                                                                                          |
|   |                                                                                                                     |
| т | o find other possible module matches execute:                                                                       |
|   | \$ module -r spider '.*blast.*'                                                                                     |
|   |                                                                                                                     |
|   | or detailed information about a specific "blast" module (including how to load the modules) use the module's full i |
| F | or example:                                                                                                         |

\$ module spider blast/2.8.0+alpha

• \_\_\_\_\_

#### Running jobs on Biowulf...correctly

- Interactive use the "sinteractive" command to allocate resources for an interactive job
- 2. Batch need to create a batch input file and submit job using the sbatch command (Slurm job scheduler, resource manager)
- 3. Swarm- create a swarmfile (myfile.swarm) and submit using the "swarm" command

#### Do not work on Biowulf login mode!

- If you run computationally intensive jobs on the Biowulf login node, you may lose your account
- There are instructions for running interactive jobs, creating batch files, and swarming on the Biowulf web page
- We will do one of each (sinteractive, batch, swarm) so you can get some practice

#### To unzip compressed files

At the command line, type:

\$<mark>sinteractive</mark>

(wait)

\$gunzip filename1.fastq.gz

When that has finished,

\$gunzip filename2.fastq.gz

### This is the Biowulf help page for fastqc

#### **Interactive job**

Allocate an interactive session and run the program. Sample session:

Interactive jobs should be used for debugging, graphics, or applications that cannot be run as batch jobs.

```
[user@biowulf]$ sinteractive
salloc.exe: Pending job allocation 46116226
salloc.exe: job 46116226 queued and waiting for resources
salloc.exe: job 46116226 has been allocated resources
salloc.exe: Granted job allocation 46116226
salloc.exe: Waiting for resource configuration
salloc.exe: Nodes cn3144 are ready for job
[user@cn3144 ~]$ module load fastqc
[user@cn3144 ~]$ fastqc -o output_dir [-f fastq|bam|sam] -c contaminant_file seqfile1 .. seqfileN
[user@cn3144 ~]$ exit
salloc.exe: Relinquishing job allocation 46116226
[user@biowulf ~]$
```

At the command line, type "sinteractive", then module load, then run your program.

#### Quality check with FASTQC - sinteractive

Use the "module load" command [username@biowulf dir\_name] \$ sinteractive [username@biowulf dir\_name] \$ module load fastqc [+] Loading fastqc 0.11.6 [username@biowulf dir\_name] \$ fastqc filename1.fastq [username@biowulf dir\_name] \$ fastqc filename2.fastq

Generates html report – but you can't view an html report on a unix machine! What do we do? Transfer the file **from** Biowulf **to** your local machine (laptop). Use FileZilla, WinSCP (PC) or scp command line (Mac)

### Checking on job status

#### \$ sjobs

```
[stonelakeak@biowulf jobs]$ sjobs
         JobId
                JobName Part St Reason Runtime Walltime Nodes
User
                                                      CPUs
       Dependency Nodelist
Memory
 stonelakeak 27646978 star.sh norm PD --- 0:00 2:00:00
                                                    1
                                                        12
35GB/node
                        ______
cpus running = 0
cpus queued = 12
jobs running = 0
jobs queued = 1
[stonelakeak@biowulf jobs]$
```

# If you want to run fastqc as a batch, you can create a batch file

#### **Batch job**

Most jobs should be run as batch jobs.

Create a batch input file (e.g. fastqc.sh). For example:

#!/bin/bash
set -e
module load fastqc
fastqc -o output\_dir [-f fastq|bam|sam] -c contaminant\_file seqfile1 .. seqfileN

Submit this job using the Slurm sbatch command.

sbatch --mem=10g fastqc.sh

Use the nano editor to create the file on Biowulf, then use the sbatch command to run it.

#### Use the nano editor, create file fastq.sh

#!/bin/bash

set –e

module load fastq

fastqc –o /data/username/output –f fastq filename1.fastq filename2.fastq

(Submit fastqc.sh using this command)

sbatch -mem=10g fastqc.sh

#### To run fastqc as a swarm on Biowulf

#### **Swarm of Jobs**

Create a swarmfile (e.g. fastqc.swarm). For example:

A swarm of jobs is an easy way to submit a set of independent commands requiring identical resources.

```
cd dir1;fastqc -o output_dir [-f fastq|bam|sam] -c contaminant_file seqfile1 .. seqfileN
cd dir2;fastqc -o output_dir [-f fastq|bam|sam] -c contaminant_file seqfile1 .. seqfileN
cd dir3;fastqc -o output_dir [-f fastq|bam|sam] -c contaminant_file seqfile1 .. seqfileN
cd dir4;fastqc -o output_dir [-f fastq|bam|sam] -c contaminant_file seqfile1 .. seqfileN
cd dir5;fastqc -o output_dir [-f fastq|bam|sam] -c contaminant_file seqfile1 .. seqfileN
```

Submit this job using the swarm command.

swarm -f fastqc.swarm -g 10 --module fastqc

where

-g # Number of Gigabytes of memory required for each process (1 line in the swarm command file)

--module fastqc Loads the fastqc module for each subjob in the swarm

## Fastqc generates an html file, but we can't view html on an "ssh" connection

- Globus (easiest once you've got it set up, meant for big files but you can transfer any size files)
- Drag and drop interfaces (WinSCP, FileZilla\*) PC or Mac
- Use scp at the Mac command line
- Go ahead now and use any method to move html file from Biowulf to your local machine

# Using the command line to download your file from Biowulf to Mac

For example... Type this on your local Mac, not Biowulf!

scp username@biowulf.nih.gov:/data/username/dirname/filename.html .

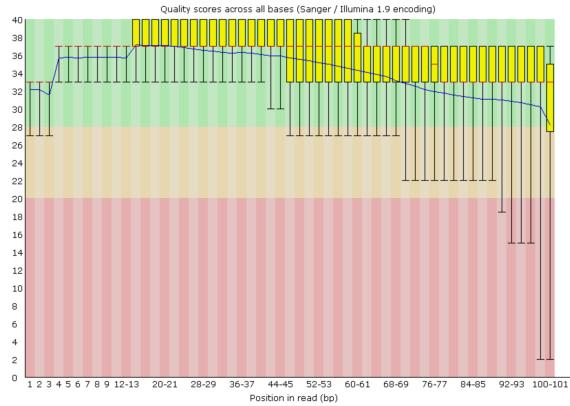
where username is your username, dirname is the path to your file filename is the name of the file and there is a dot "." at the end of the command Mistakes you will make when transferring files from Biowulf to your Mac laptop/desktop

- You will forget to type the command in a terminal window <u>on your</u> <u>machine</u>
- You will forget to type the dot "." at the end of the command (the dot means put the file "here")
- You will not type the path correctly to the file.
- You will have a typo in the name of the file

### After you do it correctly, be sure to celebrate!

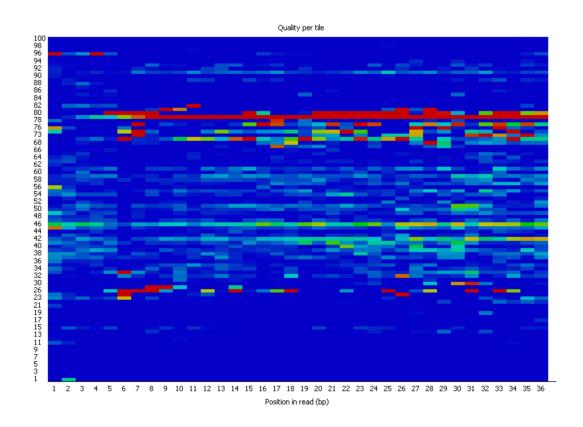


## Let's look at the FastQC html report


- Basic statistics
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence length distribution
- Duplicate sequences
- Overrepresented sequences
- Adapter content
- Kmer content
- Per tile sequence quality

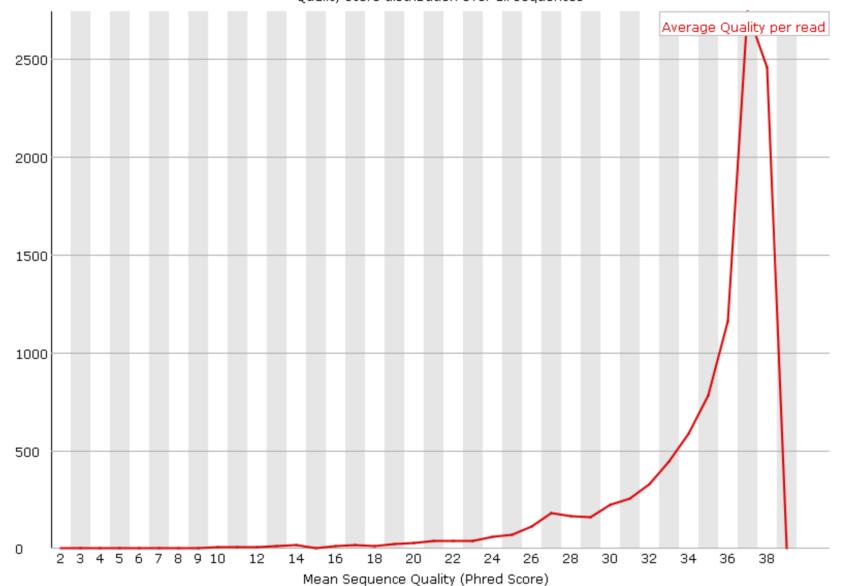
#### Basic Statistics

| Measure                           | Value                   |
|-----------------------------------|-------------------------|
| Filename                          | lung_4a_R1.fastq.gz     |
| File type                         | Conventional base calls |
| Encoding                          | Sanger / Illumina 1.9   |
| Total Sequences                   | 8782257                 |
| Sequences flagged as poor quality | 0                       |
| Sequence length                   | 101                     |
| <del>ዩ</del> GC                   | 50                      |


bioinformatics.babraham.ac.uk

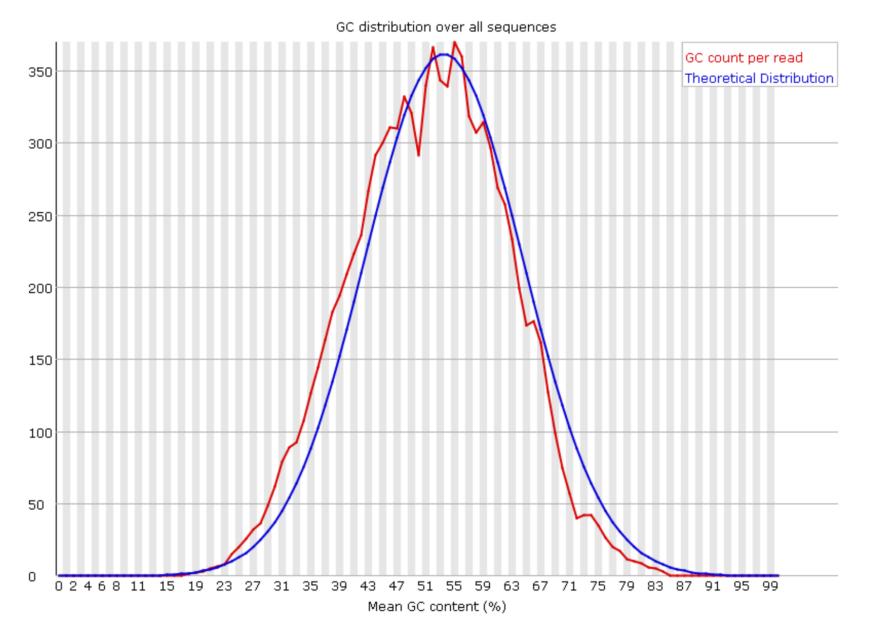
## FastQC per base sequence quality




- Box whisker plot for each position
- Y-axis shows quality scores
- The higher the base the better the call
- Green good quality, orange reasonable, red – poor quality
- Quality typically degrades at the end of the read
- Red line is median
- Yellow box is inter-quartile range (25% 75%)
- Upper and lower whiskers represent 10% and 90% points
- Blue line is the mean

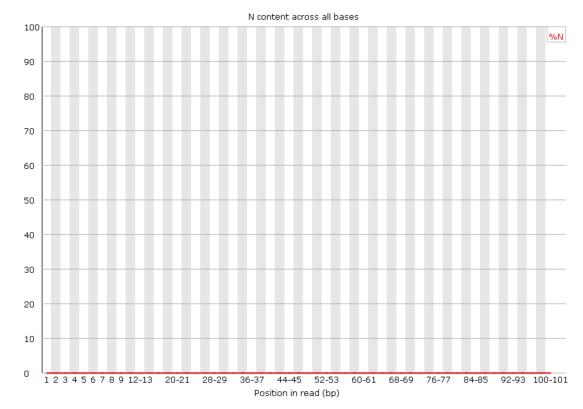
# Per tile sequence quality




- This graph only appears if you're using an Illumina library with original sequence identifiers
- Shows the deviation from average quality for each tile
- A good plot should be blue all over
- Warnings or errors indicate issues with the flowcell



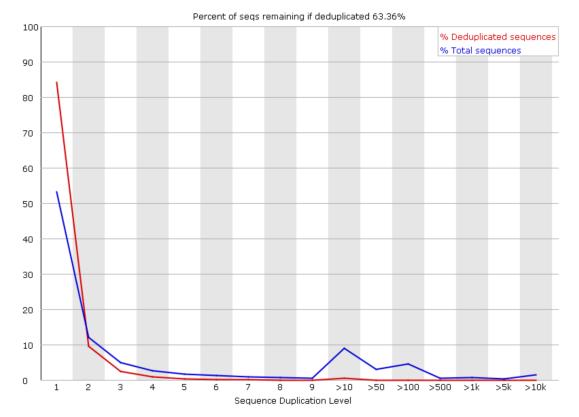



Quality score distribution over all sequences





### Per base N content


### Per base N content

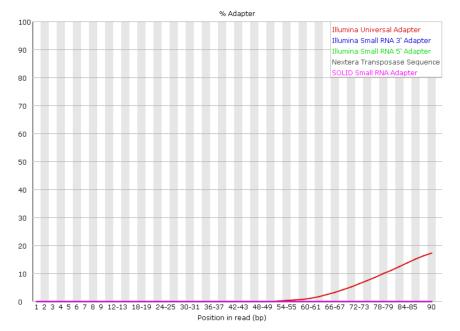


- If the sequencer it unable to identify the base, it will use "N"
- See the percentage of "N" base calls at each read position

# Sequence duplication levels

### Sequence Duplication Levels




- A diverse library will have a low number of duplicate sequences
- High level of duplication can indicate an enrichment bias (PCR)
- Only sequences first 100,000 sequences in each file
- Blue line show duplication levels for full sequence set
- Red line indicates proportions of deduplicated sequences
- Most sequences should be in far left of plot in both red and blue
- Low complexity contaminants will produce spikes in the plot

## Overrepresented/adapter sequences

#### Overrepresented sequences

| Sequence                                           | Count  | Percentage         | Possible Source                          |
|----------------------------------------------------|--------|--------------------|------------------------------------------|
| GATCGGAAGAGCACGCCTCTGAACTCCAGTCACGCCAATATCTCGTATGC | 149221 | 1.6991190305635555 | TruSeq Adapter, Index 6 (100% over 50bp) |

### **O**Adapter Content



- Indicates overrepresented sequences
- Should these sequences be trimmed before continuing analysis?

How could you summarize FastQC results from multiple files?

- unzip .zip files
- less summary.txt
- mkdir summary
- cat \*/summary.txt > /data/username/summary/fastqc\_summaries.txt

### less fastqc\_summaries.txt

PASS **Basic Statistics** short\_lung\_4a\_R1.fastq PASS Per base sequence quality short\_lung\_4a\_R1.fastq PASS Per tile sequence quality short\_lung\_4a\_R1.fastq PASS Per sequence quality scores short\_lung\_4a\_R1.fastq FAIL Per base sequence content short\_lung\_4a\_R1.fastg PASS Per sequence GC content short\_lung\_4a\_R1.fastq PASS Per base N content short\_lung\_4a\_R1.fastq PASS Sequence Length Distribution short\_lung\_4a\_R1.fastq PASS Sequence Duplication Levels short lung 4a R1.fastg FAIL Overrepresented sequences short\_lung\_4a\_R1.fastq FAIL Adapter Content short\_lung\_4a\_R1.fastq short\_lung\_4a\_R2.fastq PASS Basic Statistics PASS Per base sequence quality short\_lung\_4a\_R2.fastq PASS Per tile sequence quality short\_lung\_4a\_R2.fastq PASS Per sequence quality scores short\_lung\_4a\_R2.fastg FAIL Per base sequence content short\_lung\_4a\_R2.fastq PASS Per sequence GC content short\_lung\_4a\_R2.fastq PASS Per base N content short\_lung\_4a\_R2.fastg PASS Sequence Length Distribution short\_lung\_4a\_R2.fastq PASS Sequence Duplication Levels short\_lung\_4a\_R2.fastq short\_lung\_4a\_R2.fastg PASS Overrepresented sequences FAIL Adapter Content short\_lung\_4a\_R2.fastg

# A program to trim adapters -> Trimmomatic

- Bolger et al., Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (2014)
- For Illumina paired-end and single ended data

The current trimming steps are:

- ILLUMINACLIP: Cut adapter and other illumina-specific sequences from the read.
- SLIDINGWINDOW: Perform a sliding window trimming, cutting once the average quality within the window falls below a threshold.
- LEADING: Cut bases off the start of a read, if below a threshold quality
- TRAILING: Cut bases off the end of a read, if below a threshold quality
- CROP: Cut the read to a specified length
- HEADCROP: Cut the specified number of bases from the start of the read
- MINLEN: Drop the read if it is below a specified length
- TOPHRED33: Convert quality scores to Phred-33
- TOPHRED64: Convert quality scores to Phred-64

# Running Trimmomatic as a batch job

### **Batch job**

Most jobs should be run as batch jobs.

Create a batch input file (e.g. trimmomatic.sh). For example:

```
#!/bin/bash
ml trimmomatic || exit 1
java -Djava.io.tmpdir=. -jar $TRIMMOJAR PE -phred33 -threads $SLURM_CPUS_PER_TASK \
    SRR292678_1.fastq.gz SRR292678_2.fastq.gz \
    output_forward_paired.fq.gz output_forward_unpaired.fq.gz \
    output_reverse_paired.fq.gz output_reverse_unpaired.fq.gz \
    ILLUMINACLIP:/usr/local/apps/trimmomatic/Trimmomatic-0.36/adapters/TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 \
    SLIDINGWINDOW:4:15 MINLEN:36
```

Submit this job using the Slurm sbatch command.

sbatch -c 2 --mem=6g trimmomatic.sh

## We are not going to run Trimmomatic today

- We are going to align fastq files directly to the (human) genome
- using the aligner "bowtie2" (creates .bam files)
- "samtools" to create bam files index
- Bring the .bam and .bam.bai files to local machine
- View .bam file with IGV (Integrative Genomics Viewer)

# Running Bowtie2 as a batch job

- Go to /scratch/btepclass
- Find the file "bowtie2.sh" and use the "cp" command to bring it into your student directory

\$cp bowtie2.sh /data/username

# Running bowtie2 as a batch job

### **Batch job**

Most jobs should be run as batch jobs.

Create a batch input file (e.g. bowtie2.sh), which uses the input file 'bowtie2.in'. For example:

```
#!/bin/bash
module load bowtie/2 || exit 1
module load samtools || exit 1
export BOWTIE2_INDEXES=/fdb/igenomes/Mus_musculus/UCSC/mm9/Sequence/Bowtie2Index/
bowtie2 --phred64 -x genome --threads=$(( SLURM_CPUS_PER_TASK - 4 )) \
          --no-unal --end-to-end --sensitive \
          -U $BOWTIE_TEST_DATA/ENCFF001KPB.fastq.gz \
          samtools view -q30 -u - \
          samtools sort -0 BAM -@3 -T /lscratch/$SLURM_JOB_ID/ENCFF001KPB -m 2g -0 ENCFF001KPB.bam
```

Submit this job using the Slurm sbatch command.

sbatch --cpus-per-task=10 --mem=14g --gres=lscratch:10 bowtie2.sh

### Here is the command line to run bowtie2

\$ sbatch --cpus-per-task=10 --mem=14g --gres=lscratch:10 bowtie2.sh

# To create index file (bai) from bam, use samtools

\$module load samtools
\$samtools index filename.bam

"\$" designates the command line, do not type the "\$"

### Bring both .bam and .bam.bai files to local

Use globus, WinSCP, FileZilla, or scp at the Mac command line

Open IGV (Integrative Genomics Viewer) File -> load file.bam



۱G۱

## You did it!

### To summarize:

- Basic unix commands (ls, pwd, cd, less, nano, mkdir, rm, rmdir)
- Unix directory structure (files and folders)
- Logging in to Biowulf by SSH
- Moving files from laptop to Biowulf and back (globus, scp, mount drive)
- Running command-line programs on Biowulf (fastqc, bowtie2) in interactive, batch and swarm modes

Anyone wishing to contribute to the calcular should contact bill stan.

| NIH Bioinformatics Calendar (Managed by BTEP) Monday, May 6, 2019 |                      |                                                                                                                                                                                                    |                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                     |                                   |  |  |  |  |  |
|-------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
| Opt                                                               | ions Year Month Work | Month Week Work Wee                                                                                                                                                                                | k Day Upcoming Matrix                                                                                                                | (C) 05.06.2019 ← Pr                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                     | Print Upcoming Search Help Log In |  |  |  |  |  |
| <ul> <li>April 2019 - July 2019</li> </ul>                        |                      |                                                                                                                                                                                                    |                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                     |                                   |  |  |  |  |  |
| wk                                                                | Sunday               | Monday                                                                                                                                                                                             | Tuesday                                                                                                                              | Wednesday                                                                                                                                                                  | Thursday                                                                                                                                                                                                   | Friday                                                                                                              | Saturday                          |  |  |  |  |  |
| 19                                                                |                      | 10:00AM All of Us<br>Research Program<br>Symposium: From Data<br>to Discoveries: Creating<br>a Research Program for<br>All of Us<br>1:00PM NIH Library:<br>Introduction to R Data<br>Types Webinar | 10:00AM CBIIT: Omics<br>Data Analysis in Partek<br>11:00AM NIH HPC:<br>Neurogenetics on<br>Biowulf: From GWAS to<br>Machine Learning | 9:00AM Woman-Led<br>Biodata Science<br>Hackathon<br>9:00AM NIH HPC:<br>Introduction to Linux<br>1:00PM NIH Library:<br>Hands-on RNA-Seq<br>Data Analysis in Partek<br>Flow | 9:00AM Woman-Led<br>Biodata Science<br>Hackathon<br>12:00PM BUF: Object-<br>Oriented Programming                                                                                                           | ChIP-Seq Data<br>Analysis: Probing DNA-<br>Protein Interactions<br>9:00AM Woman-Led<br>Biodata Science<br>Hackathon |                                   |  |  |  |  |  |
| 20                                                                | 12                   | 13                                                                                                                                                                                                 | 9:00AM···· NIH HPC:<br>Bash Shell Scripting for<br>Helix and Biowulf                                                                 | 15<br>9:00AM NLM<br>Reproducibility in<br>Bioinformatics<br>Workshop<br>9:00AM NIH HPC: Bash<br>Shell Scripting for Helix<br>and Biowulf                                   | 16<br>9:00AM NLM<br>Reproducibility in<br>Bioinformatics<br>Workshop<br>10:00AM CBIIT:<br>MacVector 17.0 Training<br>Workshop<br>1:00PM NIH Library:<br>DNASTAR Lasergene<br>Demo and Training<br>Workshop | 9:00AM NLM<br>Reproducibility in<br>Bioinformatics<br>Workshop<br>11:00AM CBIIT:                                    | 18                                |  |  |  |  |  |
| 21                                                                |                      | Core: Reproducible<br>workflows with<br>Snakemake<br>9:00AM Cancer Data                                                                                                                            | Graphical Excellence                                                                                                                 | 22<br>10:00AM NIH Library:<br>Writing Custom<br>Functions in R                                                                                                             | 23<br>8:45AM NIA: Single-Cell<br>Analysis in Aging and<br>Disease                                                                                                                                          |                                                                                                                     | 25                                |  |  |  |  |  |
| RSS                                                               |                      |                                                                                                                                                                                                    |                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                                            |                                                                                                                     | powered by LuxSof                 |  |  |  |  |  |



NCI CCR Bioinformatics Training and Education Program

Website: <a href="https://www.bepsites.com">btps:/www.bepsites.com</a>.com</a>.com</a>.gov


OSTR: ostr.ccr.cancer.gov/bioinformatics

Email: <u>ncibtep@nih.gov</u>

Amy Stonelake

Peter Fitzgerald

Carl McIntosh

