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Activating mutations of NOTCH1 (a well-known oncogene in T-cell
acute lymphoblastic leukemia) are present in ∼4–13% of chronic
lymphocytic leukemia (CLL) cases, where they are associated with
disease progression and chemorefractoriness. However, the specific
role of NOTCH1 in leukemogenesis remains to be established. Here,
we report that the active intracellular portion of NOTCH1 (ICN1)
is detectable in ∼50% of peripheral blood CLL cases lacking gene
mutations. We identify a “NOTCH1 gene-expression signature” in
CLL cells, and show that this signature is significantly enriched in
primary CLL cases expressing ICN1, independent of NOTCH1 muta-
tion. NOTCH1 target genes include key regulators of B-cell prolifera-
tion, survival, and signal transduction. In particular, we show that
NOTCH1 transactivates MYC via binding to B-cell–specific regulatory
elements, thus implicating this oncogene in CLL development. These
results significantly extend the role of NOTCH1 in CLL pathogenesis,
and have direct implications for specific therapeutic targeting.
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Chronic lymphocytic leukemia (CLL) is a common hematologic
tumor characterized by the clonal expansion of CD5+ B cells

(1, 2). Recent investigations have provided a comprehensive pic-
ture of the CLL genome, revealing its relatively low burden of
genetic lesions, with a small number of frequently mutated “driver”
genes. CLL mutated genes include the NOTCH1 oncogene, the
splicing regulator SF3B1, the tumor-suppressors TP53 and ATM,
and several B-cell receptor (BCR)/NF-κB regulators, such as
MYD88, BIRC3, and NFKBIE, among others (3–7).
NOTCH1, a well-known oncogene in T-cell acute lymphoblastic

leukemia (T-ALL) (8, 9), has emerged as the most commonly
mutated gene in CLL at diagnosis, accounting for ∼4–13% of
patients (3–7). NOTCH1 encodes a transmembrane receptor that,
upon binding to a ligand expressed on the surface of a “signal-
sending” cell, undergoes a series of conformational changes and
proteolytic cleavages, ultimately allowing the translocation of its
intracellular, cleaved, and active portion (hereinafter referred to as
“ICN1”) to the nucleus (10, 11). Once in the nucleus, ICN1 binds
to the DNA-binding protein RBPJ, the main effector of NOTCH-
signaling, and recruits a series of coactivator proteins to induce
transcriptional activation of target genes (10, 11). NOTCH1 target
genes mediate regulation of fundamental biological processes, such
as development, cell differentiation, cell-fate decision, prolifera-
tion, and apoptosis (10, 11).
In contrast to T-ALL, where the majority of mutations are

represented by constitutively activated ligand-independent al-
leles affecting the heterodimerization domain of the protein,
most NOTCH1 mutational events in CLL are represented
by PEST [proline (P), glutamic acid (E), serine (S), threonine
(T)-rich protein sequence] -truncations removing the phosphode-
gron sequence required for FBXW7-mediated ICN1 proteasomal
degradation; in a minority of cases, point mutations in the 3′UTR

of the NOTCH1 mRNA lead to aberrant splicing events that also
remove the PEST domain of the NOTCH1 protein (3–7). NOTCH1
mutations in CLL were shown to associate with poor prognosis,
including a specific subset of patients carrying trisomy 12, disease
progression, transformation to highly aggressive diffuse large B-cell
lymphomas, termed Richter syndrome, and immunochemotherapy
resistance (3, 4, 12–16).
Despite this potentially relevant role in the CLL clinical

course, the oncogenic role of NOTCH1 in this disease remains
poorly understood. Although few NOTCH1 targets have been
shown to be overexpressed in NOTCH1-mutated cases compared
with wild-type CLL (4, 17, 18), the full spectrum of genes con-
trolled by NOTCH1 and their contribution to the disease path-
ogenesis have not been identified. Moreover, recent reports
documented that CLL cells in the lymph node frequently express
ICN1, independent of NOTCH1 PEST-truncation (19, 20), es-
pecially within the proliferation centers, which represent the key
microanatomical sites of interaction of CLL cells with accessory
cells and proliferation (21). Accordingly, these findings have
been interpreted as the result of microenvironmental signals ac-
tivating the NOTCH1 cascade. Conversely, the status of NOTCH1
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activation in the peripheral blood (PB) compartment of CLL
patients is less clear (4, 7, 18, 22).
To address these questions, we have analyzed the functional

status of ICN1 in normal mature B cells and in a panel of PB
CLL cells including both NOTCH1-mutated and wild-type cases.
We report broader NOTCH1 activation, significantly extending
beyond the mutated cases and the transcriptional consequences
of this activation in leukemic B cells.

Results
NOTCH1 Is Activated in Naïve and Memory B Cells, the Putative Normal
Counterparts of CLL. To obtain a comparative baseline before in-
vestigating the activity of NOTCH1 in CLL, we first defined the
expression and activation pattern of NOTCH1 in normal mature
B-cell subsets. We performed gene-expression profiling as well as
ICN1 immunoblot analysis in naïve, germinal center (GC) and
memory B cells isolated from human tonsils (23). Although the
phenotype of the B cell expanding to generate overt CLL remains a
matter of debate, naïve and memory B cells are considered the most
likely putative normal counterparts of this disease (24–26). The
levels of NOTCH1 mRNA and of the cleaved and active intracel-
lular portion of NOTCH1 ICN1 were abundant in naïve and
memory B cells, whereas they were almost undetectable in GC B
cells (Fig. 1 A and B). Immunofluorescence staining of human
tonsillar biopsies confirmed these findings, revealing ICN1 nuclear
staining in the B-cell fraction populating the mantle zone of the
GCs, which is highly enriched in naïve B cells (Fig. 1C and Fig. S1).
Gene set enrichment analysis (GSEA) using the “Hallmark_

Notch_Signaling” signature from the Molecular Signature Data-
base (27) confirmed that ICN1 expression in naïve and memory
B cells is associated with NOTCH1 transcriptional activity (Fig.
1D). Taken together, these data indicate that NOTCH1 is physi-
ologically expressed and activated in the cells of origin of CLL.

PB CLL Cells Express ICN1 in both NOTCH1-Mutated and Wild-Type
Cases. We next investigated the incidence of NOTCH1 pathway
activation in CLL by analyzing peripheral blood CLL cells
(>70% purity in 90 of 93 cases analyzed by cytofluorimetry
analysis for CD5+/CD19+) (Materials and Methods) from a co-
hort of primary CLL cases (n = 124). Twenty-two percent of
these cases carried NOTCH1 PEST-truncating events (n = 27 of
124) (Dataset S1), representative of the prototypical p.P2515fs
mutation (n = 17 of 29, 58.6%), frameshift deletions (n = 3 of 29,
10.3%), and nonsense mutations (n = 5 of 29, 17.2%). In addi-
tion, four cases carried 3′UTR NOTCH1 mutations known to
lead to aberrant splicing events disrupting the PEST domain of
the ICN1 protein (7). The majority of NOTCH1-mutated CLL
cases carried unmutated IGHV genes (n = 23 of 24 with known
IGHV status, 95.8%), as previously reported (3, 4, 12).
Notably, ICN1 was detectable by immunoblot analysis in

50.5% (n = 49 of 97) of NOTCH1–wild-type cases (Fig. 2 A and
B and Fig. S2A). Among these, ICN1 expression occurred in
53.3% (n = 24 of 45) of IGHV mutated and 41.9% (n = 13 of 31)
of IGHV-unmutated cases, respectively (Dataset S1).
As expected, all NOTCH1 PEST-disrupted CLL cases expressed

a truncated active form of the protein (Fig. 2 A and B and Fig. S2A)
(4, 7). The levels of ICN1 expression were variable across the panel,
with NOTCH1-mutated cases often displaying higher levels of
ICN1 compared with wild-type samples (Fig. S2A). ICN1 levels in
NOTCH1–wild-type cases were responsive to NOTCH inhibition by
the γ-secretase inhibitor Compound-E (28) (Fig. S2B).
Immunofluorescence analysis showed that strong nuclear

ICN1 expression was detectable in virtually 100% of CLL cells in
both NOTCH1-mutated and wild-type ICN1+ CLL cases (Fig. 2C).
Moreover, ICN1 was not expressed in PB mononuclear cells
(PBMCs) from healthy, age-matched elderly individuals (Fig. S2C).
These observations exclude the possibility that ICN1 expression in
NOTCH1–wild-type cases was because of residual contamination by

normal cells. Altogether, these results suggest that the activation of
the NOTCH1 oncogene in CLL is more common than what is
currently known based on the frequency of NOTCH1 activating
mutations (Discussion).

Identification of the CLL NOTCH1-Direct Transcriptional Program. As
a tool to further interrogate the functional activity of NOTCH1 in
ICN1+ CLL cells and to shed light on the NOTCH1-controlled
biological functions in CLL, we next investigated the NOTCH1-
dependent CLL transcriptional program. We used a CLL cell line
(MO1043) (29), which carries a hemizygous NOTCH1 PEST-
truncation and expresses a truncated ICN1 that is responsive to
NOTCH inhibition by the γ-secretase inhibitor Compound-E (28).
Given the low intrinsic signaling activity of PEST-truncated alleles
alone (8) (Fig. S3A), we sought to investigate NOTCH1-dependent
programs using an inducible lentiviral system expressing either an
HA-tagged constitutively active form of NOTCH1 (ICN1-HA) or
control eGFP upon doxycycline addition (Fig. S3B) (30). Induction
of NOTCH1 signaling was demonstrated by HA immunoblot and
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Fig. 1. NOTCH1 is expressed and activated in naïve andmemory B cells, putative
normal counterparts of CLL. (A) Gene-expression profile analysis (HG-U133 Plus 2.0
Array) of NOTCH1, MYC, HES1, and BCL6 in normal mature naive, GC, and
memory B-cell subpopulations isolated from human tonsils (23). Each column
corresponds to an independent sample. ThemRNA expression pattern ofNOTCH1
in naïve and memory B cells is similar to that ofMYC, typically expressed only in a
small fraction of GC–B cells (69), and opposite to that of BCL6, a known GCmaster
regulator (81). Moreover, NOTCH1 expression levels are concordant with those of
HES1, a NOTCH1 target in multiple tissue types (11). (B) Immunoblot (IB) analysis
of ICN1, BCL6, MYC, and control β-actin in mature B-cell subpopulations isolated
from human tonsils. (C) Immunofluorescence (IF) staining of ICN1, the dark-zone
GC-marker AID (82), and the B-cell–specific surface antigen CD20 in a human tonsil
section. (D) Tracking of the HALLMARK_NOTCH_SIGNALING geneset from the
Molecular Signatures Database v5.1 (software.broadinstitute.org/gsea/msigdb/
index.jsp) in normal mature B-cell subpopulations by GSEA. Abbreviations: DZ,
dark zone; LZ, light zone; M, mantle zone.
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quantitative RT-PCR (qRT-PCR) for DTX1, a well-established
NOTCH1-direct target gene (11) (Fig. S3 C–E). This experimental
system was used to identify genetic elements bound and directly
regulated by NOTCH1 by integrating RNA-Seq and NOTCH1
ChIP-Seq data (Datasets S1–S3).
Unsupervised clustering of RNA-Seq data showed that the ex-

pression profiles of MO1043-ICN1-HA and -eGFP cells cluster
separately (Fig. 3A). Supervised analysis revealed that ICN1-HA
induction leads to up-regulation of over 700 transcripts [false-
discovery rate (FDR) < 0.001, median fold-change 1.7, range =
1.1–170.4], including known NOTCH1 targets, such as HES/HEY
family members, NRARP, DTX1, and NOTCH1 itself, as expected
(Fig. 3B), as well as genes involved in immune and signaling
pathways relevant for the development and activation of B cells
(Datasets S4 and S5).
ChIP-Seq analysis identified a total of 4,737 NOTCH1 binding

sites, mapping to promoters in ∼40% of the cases, and to in-
tragenic or distal regulatory regions of the genome in ∼60% of
the cases (Fig. 3 C and D). The integration of NOTCH1 ChIP-
Seq profiles with those of the H3K4me3, H3K4me, H3K27Ac,
and H3K27me3 histone modifications (Fig. S4) revealed that
∼94% of NOTCH1 proximal binding sites displayed chromatin
marks characteristic of active promoters, whereas ∼37% of the
distal ones were associated with putative active enhancers (Fig.
3E) (31–33). Analysis of H3K27Ac patterns across the genome
identified 917 superenhancers (34), many of which involved

genes defining key functions of B cells and displayed sequence
motif enrichment of transcription factors known to be master
regulators of B-cell identity (Fig. 3F, Fig. S5 A and B, and
Datasets S6 and S7) (35–38). NOTCH1-binding at super-
enhancer regions (n = 698 of 4,737 binding sites, 14.7%) was
prominently involved in the activation of genes implicated in
B-cell differentiation and activation and antiapoptotic functions
(Fig. 3 G and H and see below).- - -
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Fig. 3. Identification of NOTCH1 direct targets in CLL. (A) Hierarchical clustering
of RNA-Seq profiles of MO1043-ICN1-HA and -eGFP cells (Pearson correlation
with average linkage, minimum log2 expression 5 andminimum SD 1). (B) Scatter
plot of log2-transformed RNA-Seq FPKM values of differentially expressed genes
between MO1043-ICN1-HA and -eGFP control CLL cells (FDR < 0.001). (C and D)
Distribution of NOTCH1 binding sites (BS) in the genome of MO1043-ICN1-HA
CLL cells. (E) Functional classification of NOTCH1-BS mapping to proximal pro-
moters and distal regions of the genome based on their overlap with the
H3K4me3, H3K4me, H3K27Ac and H3K27me3 histone marks. (F) Rank order of
increasing H3K27Ac fold-enrichment at enhancer loci in in MO1043-ICN1-HA CLL
cells. (G) Overlap between NOTCH1-BS and superenhancers identified with the
ROSE algorithm (35, 36). (H) Representative examples of genes regulated by
NOTCH1 via binding to superenhancer regions. (I) Intersection between RNA-Seq
and ChIP-Seq data obtained in MO1043-ICN1-HA CLL cells. (J) Top three signifi-
cantly (P = 1.00E-15) enriched transcription factor motifs lying ±200 bp of
NOTCH1-BS. Abbreviations: NoExp, transcripts not expressed in MO1043-ICN1-
HA cells; NoMov, transcripts not moving upon ICN1-HA expression; SEs,
superenhancers; TF, transcription factor.
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The intersection between the genes differentially expressed
upon ICN1-HA induction as identified by RNA-Seq and the
NOTCH1 binding profiles obtained through ChIP-Seq revealed
a significant overlap between the two sets (P < 0.001), with ∼39%
of genes induced by ICN1-HA (FDR < 0.001) being bound by
NOTCH1 (Fig. 3I and Fig. S6). Notably, genes associated with
NOTCH1 binding sites in superenhancer regions were more often
up-regulated upon ICN1-HA induction compared with those asso-
ciated with NOTCH1 binding sites in other genomic regions (52%
vs. 29%, P < 0.001) (Fig. S5C). Motif enrichment analysis of se-
quences surrounding the NOTCH1 binding sites (±200 bp) and
associated with significant (FDR < 0.001) up-regulation of the

corresponding genes (n = 503) confirmed significant (P = 1.00E-15)
enrichment of the DNA motifs of RBPJ, the main effector of
NOTCH signaling (11), as well as of binding sequences of other
potential cooperating cofactors, including NF-κB, PU.1, ETS, and
STAT family members (Fig. 3J and Dataset S8).

The NOTCH1-Dependent CLL Signature Is Detectable in NOTCH1–Wild-
Type CLL Cases Expressing ICN1. To identify bona fide direct
NOTCH1 targets to be used as a tool to interrogate primary CLL
cells (NOTCH1 CLL signature), we selected genes bound by
NOTCH1 and the transcripts of which were up-regulated by
ICN1-HA with a FDR < 0.001. Two-hundred and ninety-one
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genes met these criteria, including NOTCH1 target genes, such
as HES1, DTX1, JAG1, and NOTCH1 itself, among others, as
well as NF-κB, antiapoptotic, and cytokine-chemokine genes
(Dataset S9).
To determine whether NOTCH1–wild-type ICN1+ CLL cases

display evidence of NOTCH1 signaling activation analogous to
NOTCH1-mutated cases, we explored the presence of the
NOTCH1 CLL signature identified above in RNA-Seq data from
49 PB CLL samples fully characterized in terms of NOTCH1
mutation and ICN1 protein expression. This panel included 10
NOTCH1-mutated cases expressing ICN1 (including three cases
carrying NOTCH1 3′UTR events), 13 NOTCH1–wild-type cases
expressing ICN1, and 26 cases devoid of both NOTCH1mutations
and ICN1 expression (Fig. S2A). GSEA analysis (27) revealed
significant enrichment of the NOTCH1 CLL signature both in
NOTCH1-mutated (P = 0.002) andNOTCH1–wild-type (P = 0.04)
cases expressing ICN1 compared with ICN1− cases (Fig. 4A).
Leading edge genes (n = 90) determining a significant (P = 0.03)
enrichment of the NOTCH1 CLL signature in ICN1+ cases were
overall expressed at similar levels in NOTCH1-mutated and wild-
type ICN1+ cases [average fragments per kilobase of transcript per
million mapped reads (FPKM) 54.3 and 51.3, respectively], with
few genes expressed at higher levels in the NOTCH1-mutated
ones (n = 9 of 90, P < 0.05) (Fig. 4B and Dataset S10).
Thus, ICN1 is also functionally active in ICN1+ CLL cases

devoid of NOTCH1 mutations, indicating that they are func-
tionally equivalent in terms of NOTCH1-dependent transcrip-
tional responses to NOTCH1-mutated ones (Discussion).

NOTCH1 Regulates Genes with Key Functions in B-Cell Physiology.
Functional annotation of the full set of genes bound (ChIP-Seq)
and dynamically connected (RNA-Seq) to NOTCH1 revealed that
NOTCH1 directly regulates general functions involved in cell pro-
liferation and survival (Datasets S11 and S12). The former included
CCND3, which encodes a cyclin necessary for G1/G2 transition (39)
via direct binding to the gene promoter, consistent with a previous
report in T-ALL (40). Among the latter, BCL2 and MCL1, two
antiapoptotic genes with a well-established role in the pathogenesis
of CLL, emerged as novel targets of NOTCH1, likely regulated
through long-range dynamic interactions (24, 41–43).
The NOTCH1 transcriptional program included also a cadre of

genes with specific functions in B-cell physiology (Fig. S7). Among
these are BCR signaling pathway genes, including upstream pathway
members (e.g., LYN, SYK, BLK, BLNK, CR2, and PIK3CD), as well
as downstream effectors, such as MAPK (e.g., MAP3K1, KRAS, and
RRAS) and NF-κB cascade members (e.g., IKBKB, NFKB1, and the
CBM signalosome complex member MALT1) (44). NOTCH1 also
appears to activate the NF-κB target NFKBIA, which encodes
the NF-κB repressor IκBα (44), and PTPN6, encoding SHP-1, an
important negative modulator of antigen-receptor signaling in lym-
phocytes (45), suggesting a role of NOTCH1 in a delayed negative-
feedback of activation of this cascade (46). CXCR4, which encodes a
chemokine receptor relevant for the chemotaxis of CLL cells toward
microenvironmental cells expressing the CXCL12 ligand (47),
emerged as a novel NOTCH1 target in CLL. This axis is funda-
mental for the exit of CLL cells from lymph nodes and, accordingly,
the expression of the CXCR4 receptor has been shown to associate
with a higher risk of lymphoid organ infiltration and poor disease
outcome (48). Finally, among several NOTCH-pathway related
genes, NOTCH1 induced the expression of JAG1, which encodes
for a ligand of NOTCH1 reported to be expressed on the surface
of CLL cells (22), suggesting a positive feed-forward loop in
signaling activation.

NOTCH1 Transactivates MYC in CLL. MYC is a central oncogene in
human malignancy, an established NOTCH1 target in T-ALL
and is involved in CLL progression (3, 13, 49–51). Thus, we in-
vestigated the relationship between NOTCH1 activation and

MYC gene expression in CLL. Consistent with previous reports (52),
we observed two putative superenhancers located ∼500 kb up-
stream of theMYC oncogene both in MO1043-ICN1-HA cells and
primary CLL cases (Fig. 5 A and B). These superenhancers were
also present in CD19+ and CD20+ B cells, small lymphocytic
lymphoma, and mantle cell lymphoma (52), but not in the majority
of ∼90 distinct tissue types (37), suggesting context specificity (Fig.
5C and Fig. S8A). NOTCH1 ChIP-Seq analysis of MO1043-ICN1-
HA cells revealed the presence of multiple NOTCH1 peaks and
RBPJK conserved motifs in this region. Specifically, one super-
enhancer within region 8q24 (chr8:128191039–128239723, hg19)
contained one NOTCH1 binding site and two RBPJK motifs,
whereas a second one (chr8:128299403–128321023, hg19), con-
tained four NOTCH1 binding sites and three RBPJK motifs (Fig.
5B). Local ChIP analysis of NOTCH1 and the H3K27Ac mark
in MO1043-ICN1-HA cells confirmed NOTCH1 binding at these
epigenetically active superenhancers (Fig. 5D).
Intriguingly, our meta-analysis of copy number (CN) data

obtained in two independent collections of CLL patients (7, 53)
revealed that this region is recurrently affected by duplications in
CLL (n = 15 of 452 and n = 15 of 353), including focal ones spe-
cifically encompassing this superenhancer cluster (Fig. 5A and Fig.
S8 B and C), suggesting that these genetic lesions may affect MYC
expression in CLL. Moreover, we observed that NOTCH1 muta-
tions and MYC locus duplications, including those focally affecting
only this superenhancer region, were largely mutually exclusive in
primary CLL patients (7) (Fig. S8D), similarly to CLL cells that
have undergone Richter syndrome transformation (3, 13).
To demonstrate a direct functional relationship betweenNOTCH1

and MYC in CLL, we first investigated whether NOTCH1 acti-
vation could promote MYC transcription in ICN1− or ICN1-low
primary CLL cells cocultured with stromal cells expressing the
NOTCH1 ligand Delta-1 (OP9-DL1) (54). CLL cells cocultured
with OP9-DL1 cells showed an increased level ofMYCRNA, which
was specifically dependent upon NOTCH1 expression because it
was abrogated in the presence of the NOTCH-inhibitor Compound
E (Fig. 5E and Fig. S9). Reciprocally, NOTCH1 inhibition by
Compound E inducedMYC down-regulation in ICN1-positive CLL
cases (Fig. 5E and Fig. S9). These results indicate that NOTCH1
controls MYC expression in ICN1+ CLL cells.

Discussion
CLL cells in the lymph node are known to display frequent
NOTCH1 activation independent of mutation, as documented by
their frequent immunohistochemical positivity for ICN1 in lymph
node sections of both NOTCH1-mutated and wild-type cases (19,
20). Conversely, few reports have shown activation of NOTCH1 in
PB CLL samples, and the results involved a relatively low number
of cases and a possibly low sensitivity of detection, leading to a
significant underestimation of the ICN1+ cases (4, 7, 18, 22). Our
finding that ∼50% of PB CLL cases lacking NOTCH1 mutations
express ICN1 strongly suggests that the activation of this pathway is
more common than what is predicted by the frequency of classic
NOTCH1 PEST-truncations. These findings have implications for
the mechanisms leading to NOTCH1 activation in normal and
transformed cells, for the understanding of the pathogenesis of
CLL, and the development of anti-NOTCH1 targeted therapies.

Mechanisms of NOTCH1 Activation in PB CLL Cells. The common de-
tection of ICN1 in the nucleus of CLL cells within lymph nodes in
both NOTCH1-mutated and wild-type cases has been interpreted as
an induction by microenvironmental interactions with cells expressing
NOTCH1 ligands (19, 20). Conversely, the frequent detection of
ICN1 in NOTCH1–wild-type PB CLL cells shown herein raises the
issue, shared also by NOTCH1-mutated cases carrying activation-
dependent alleles, of the mechanisms leading to signaling induction.
Although it is plausible that CLL cells may continuously recirculate
between the PB and secondary niches, such as the lymph
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nodes, thus being exposed to signals triggering NOTCH1 ac-
tivation, several observations seem to disfavor the possibility that
the ICN1 presence observed in these cells is because of residual
signaling form the nodal environment. It has been shown that per-
inodal CLL cells rapidly lose nuclear ICN1 expression once they
move beyond the lymph node capsule (19). The half-life of ICN1 is
short and variable, from less than an hour to a few hours in several
tested cell types (55), including primary CLL cells, but it is signifi-
cantly shorter than the long life of CLL cells in the PB, which has
been estimated to be of at least several days (56). These observa-
tions, together with the fact that ICN1 is expressed in virtually all
CLL cells in ICN1+ cases (Fig. 2C), are consistent with the contin-
uous induction of the NOTCH1 cascade in CLL cells in the blood
stream. However, future studies should compare ICN1 levels in the
peripheral blood and in the nodal CLL compartment of the same
individual to achieve a better understanding of the dynamics of

ICN1 expression in different anatomic compartments within the
same CLL patient.
It is conceivable that sustained NOTCH1 activation in the PB may

be mediated by cell-autonomous and ligand-dependent mechanisms.
Among the former, activation of alternative cryptic NOTCH1 pro-
moters has been reported in human and, more frequently, murine
T-ALL (57–59). However, this mechanism was preliminarily excluded
by the analysis of H3K27Ac ChIP-Seq data in a panel of nine CLL
cases, all of which displayed high levels of the H3K27Ac mark dec-
orating only the canonical 5′ transcriptional start site (TSS) of the
NOTCH1 gene (Fig. S10). Additional ligand-independent mecha-
nisms include activation by other signaling pathways, as reported for
the T-cell receptor pathway in T cells (60), or aberrant vesicle traf-
ficking of the NOTCH1 receptor (61). Ligand-dependent mecha-
nisms include binding to ligands expressed by endothelial cells in the
blood vessels or by the CLL cells themselves (18, 22).
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Role of NOTCH1 in B-Cell Development and CLL Pathogenesis. Our
results indicate that NOTCH1 displays a stage-specific expression
pattern in mature B cells, being expressed and activated in naïve and
memory B cells, which are considered the cells of origin of CLL (1).
The enrichment of our NOTCH1 CLL signature in these normal
subpopulations compared with GC B cells suggests that the bi-
ological programs orchestrated by NOTCH1 in CLL are similar to
those already active in the putative normal B-cell counterparts of the
disease. Thus, the finding of NOTCH1 activation in CLL cells re-
flects the constitutive, dysregulated expression of a physiologic signal
and its corresponding gene-expression program rather than an ec-
topic program associated with transformation. The set of NOTCH1-
direct transcriptional target genes suggests a broad program aimed at
promoting the survival and proliferation of mature B cells by sup-
porting BCR and cytokine signaling and their downstream effectors,
such as PI3K and NF-κB pathways. NOTCH1 direct targets specif-
ically relevant for the B-cell phenotype appear to be regulated via
direct activation of the corresponding promoters, as well as via long-
range interactions occurring at superenhancer sites, consistent with
the role of these large regulatory elements in orchestrating the ex-
pression of cell-type specific genes (37).

Role of NOTCH1-Induced MYC Expression. An important component
of the NOTCH1-controlled program in CLL cells is the trans-
activation of the MYC oncogene. Our data suggest that this trans-
activation is mediated by the binding of NOTCH1 to B-cell–specific
superenhancers located ∼500 kb upstream of the MYC locus. This
region interacts with the MYC promoter in small lymphocytic lym-
phoma and mantle cell lymphoma, and also leads to MYC tran-
scriptional activation in Epstein–Barr-transformed lymphoblastoid
cells as a result of Epstein–Barr virus nuclear antigen 2 binding (52,
62). The focal recurrent duplications of this locus observed in CLL (7,
53), analogous to what is observed in other malignancies in which CN
gains affect the tissue-specific enhancers involved in MYC expression
(50, 63, 64), suggest that the gain of context-specific superenhancers
represents a common mechanism for up-regulating MYC expression
in distinct tumor types. However, the detection of this superenhancer
cluster also in CLL cases devoid of ICN1 expression (Fig. 5A), and
the observation that MYC mRNA levels were not significantly dif-
ferent between ICN1+ and ICN1− CLL cases indicate that other
transcription factors are likely involved in the regulation of this locus
in B cells, as previously suggested for EBF and RELA in Epstein–
Barr-transformed lymphoblastoid cells (62).

Clinical Implications. The observation that the NOTCH1 CLL sig-
nature is enriched in ICN1+ CLL cases independent of NOTCH1
mutation significantly increases the fraction of CLL cases that may be
dependent on constitutive NOTCH1 activity. NOTCH1 mutations
are known to associate with adverse CLL clinical and biological
features, including an unmutated IGHV status (12), and predict a
poor outcome when found in CLL patients at diagnosis (12). Con-
versely, our results showed that ICN1 expression in cases devoid
of NOTCH1 mutations occurred at similar frequencies in IGHV-
mutated and IGHV-unmutated CLL cases. However, the relatively
small and heterogeneous cohort of patients analyzed in this study did
not provide us with the statistical power of establishing reliable cor-
relations between ICN1 expression and the clinical course of the
disease. Thus, dedicated prospective clinical studies are warranted to
assess the biological and prognostic associations of ICN1 expression
rather than NOTCH1 mutations in CLL alone, especially in the
context of anti-CD20–based therapies. This analysis may allow further
refinement of the recent mutation/cytogenetic hierarchical model of
classification of patients with CLL in distinct risk classes (65). Finally,
we propose that ICN1 expression may also represent a more reliable
biomarker of NOTCH1 activation in the testing of prognostic criteria
and therapeutics agents targeting NOTCH1 (28, 66).

Materials and Methods
Cell Lines and Isolation of Human B-Cell Subsets. MO1043 cells (29) were
cultured in Iscove’s Modified Dulbecco’s Medium (Life Technologies) sup-
plemented with 20% (vol/vol) FBS (Sigma-Aldrich), penicillin (100 U/mL), and
streptomycin (100 μg/mL). The identity of the cell line was verified by CN
analysis using the Genome-Wide Human SNP Array 6.0 (Affymetrix), as
previously reported (3). HEK 293T cells were cultured in Dulbecco’s Modified
Eagle Medium (Life Technologies) with 10% (vol/vol) FBS, 100 U/mL penicillin,
and 100 μg/mL streptomycin. OP9 and OP9-DL1 cells were grown in Minimum
Essential Medium Alpha Medium (Corning) supplemented with 20% (vol/vol)
FBS, 100 U/mL penicillin, 100 μg/mL streptomycin, and 2 mM glutamine
(Thermo Fisher Scientific) (54). Human GC B cells, naive B cells, and memory B
cells were isolated from reactive tonsils as described previously (23). Com-
pound E was obtained from Enzo Life Sciences and used at a final concen-
tration of 500 nM to 1 μM in DMSO vehicle.

Protein Extraction and Immunoblot Analysis. Whole-cell extracts were obtained
using Nonidet P-40 lysis buffer (150mMNaCl, 1.5% (vol/vol) Nonidet P-40, 50mM
Tris·HCl pH 8.0, 2 mM EDTA pH 8.0) supplemented with proteinase inhibitor
mixture (Sigma-Aldrich), according to a previously described protocol (67). Protein
lysates were resolved on 4–12% Tris-Glycine gels (Novex, Life Technologies).
Subcellular fractionation was performed as previously described (68). Samples
were incubated with primary antibodies overnight at 4 °C. The following pri-
mary antibodies were used: rabbit monoclonal anticleaved NOTCH1 (clone D3B8,
Cell Signaling Technology), mouse monoclonal anti-MYC (clone 9E10, Santa
Cruz), mouse monoclonal anti-BCL6 (clone GI191E/A8, Cell Marque), rabbit
monoclonal anti-HA (clone C29F4, Cell Signaling Technology), mouse monoclo-
nal anti–β-actin (clone AC-15, Sigma), rabbit polyclonal anti–β-tubulin (H-235,
Santa Cruz). Horseradish peroxidase-conjugated secondary antibodies and ECL
or West Dura reagent (Thermo Fisher Scientific) were used for signal detection.

Immunofluorescence Analysis. Immunofluorescence analysis of ICN1, AID, and
CD20was performedon formalin-fixedparaffin-embeddedmaterial fromhuman
tonsils and primary peripheral blood CLL cells according to standard procedures
using the following antibodies: rabbit monoclonal anticleaved NOTCH1 (clone
D3B8, Cell Signaling Technology), rat monoclonal anti-AID (clone mAID-2,
eBioscience), and mouse monoclonal anti-C20 (clone L26, Thermo Fisher) (69).

ChIP. MO1043-ICN1-HA cells (cells induced to express ICN1-HA with 1 μg/mL of
doxycycline for 36 h) were cross-linked with 1% formaldehyde for 10 min at
room temperature, quenched by the addition of glycine to a final concentration
of 0.125 M and frozen at −80 °C. Cross-linked chromatin was fragmented by
sonication with the Bioruptor sonicator (Diagenode) to achieve fragment sizes of
∼200–500 bp using the following sonication buffer: 10 mM Tris·HCl pH 8.0,
100 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 0.1% Na-Deoxycholate,
and 0.5% N-lauroylsarcosine. Sheared chromatin was incubated overnight with
10 μL of NOTCH1 antisera (70), 4 μg of antibodies to H3K27Ac (Active Motif,
cat#39133) or H3K4me3 (Abcam, cat#ab8580), or 2 μg of antibodies to H3K4me1
(Abcam, cat#ab8895) or H3K27me3 (Active Motif, cat#39157) (ENCODE Project:
genome.ucsc.edu/ENCODE/antibodies.html). Protein A magnetic beads were
added for 4 h at 4 °C, followed by sequential washes at increasing stringency and
reverse cross-linking. After RNase and proteinase K treatment, ChIP DNA was
purified using the MiniElute Reaction Clean Up Kit (Qiagen) and quantified by
Quant-iT PicoGreen dsDNA Reagent (Life Technologies). Validation via quanti-
tative PCR analysis (qChIP-PCR) was performed with the Power SYBR green PCR
Master Mix using the 7300 Real Time PCR system (Applied Biosystems). Oligo-
nucleotides used for qChIP-PCR are listed in Dataset S13.

ChIP-Seq Library Preparation and Illumina Sequencing. ChIP-Seq libraries were
constructed starting from 4 ng of ChIP or Input DNA as reported in Blecher-
Gonen et al. (71). Libraries were quantified using the KAPA SYBR FAST Univer-
sal qPCR Kit (KAPA Biosystems), normalized to 10 nM, pooled, and sequenced
with the Illumina HiSEq. 2000 instrument as single-end 100-bp reads.

ChIP-Seq Analysis. Sequencing data were acquired through the default Illu-
mina pipeline using Casava v1.8. Reads were aligned to the human genome
(UCSC hg19) using the Bowtie2 aligner v2.1.0 (72), allowing up to two mis-
matches to cope with human variation. Duplicate reads (i.e., reads of identical-
length mapping to exactly the same genomic locations) were removed with
SAM tools v0.1.19 using the rmdup option (73). Read counts were normalized
to the total number of reads aligned in a library (reads per million). Peak
detection was done using the ChIPseeqer v2.0 algorithm (74), enforcing a
minimum fold-change of 2 between ChIP and input reads, a minimum peak
width of 100 bp, and a minimum distance of 100 bp between peaks. The
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threshold for statistical significance of peaks was set at 10−5 for NOTCH1, and
10−15 for H3K4me1, H3K4me3, and H3K27Ac (Dataset S2). Peaks within 1 kb of
centromeric or telomeric regions were removed. H3K4me1 and H3K27Ac
peaks were stitched together into regions if located within ±2 kb and ±12.5 kb
of each other, respectively, unless they started within a 2-kb window around
the TSS. H3K27me3 peaks were called using the RSEG algorithm (75) with 100-bp
bin size; only peaks above 5 kb in size were considered.

Motif Enrichment Analysis. Regions within 200 bp of the center of each binding
site were searched for motifs from the TRANSFAC 2010 Database. Motifs were
represented as position weighted matrices. Using a moving window, motifs
were scored against a reference DNA sequence using a log odds ratio com-
paring the motif’s score to a hypothetical score where every base is equally
probable. Motifs scoring higher than a given threshold were considered as
potentially bound in a location. To determine enrichment in a set of peaks/
locations a hypergeometric model was used comparing motifs bound in the
peaks to a GC and length controlled set of random genomic sequences.

Definition of Functional Chromatin States of NOTCH1-Bound Genomic Loci.
Significant NOTCH1-bound regions occurring at proximal promoters (i.e.,
within −2/+1 kb from the TSS of an annotated gene) were classified as active
if overlapping with H3K4me3, but not H3K27me3, poised if occupied by both
H3K4me3 and H3K27me3, and silenced if decorated only by H3K27me3. Dis-
tally NOTCH1-bound genomic regions (intergenic or intragenic) were classified
as active enhancers if occupied by H3K4me and H3K27Ac, but not H3K4me3,
poised if occupied by H3K4me and H3K27me3, and silenced or primed if oc-
cupied only by H3K27me3 or H3K4me, respectively. For the identification
of superenhancers, we applied the ROSE algorithm (https://bitbucket.org/
young_computation/rose) to our H3K27Ac ChIP-Seq datasets (MO1043-ICN1-HA
and primary CLL cells). Occupancy of NOTCH1 at superenhancers was then de-
termined based on the overlap between NOTCH1 peaks and genomic regions
identified by ROSE. NOTCH1-bound superenhancers were assigned to the near-
est expressed and transcriptionally active gene (i.e., distance from superenhancer
center to TSS marked by H3K4me3) as the most likely candidate target gene (38).

Primary CLL Cases. Primary CLL cells from the PB of CLL patients (n = 124) were
obtained from the Feinstein Institute for Medical Research and the Division
of Hematology and the Department of Translational Medicine and the
Amedeo Avogadro University of Eastern Piedmont. Diagnosis of CLL was
based on International Workshop on Chronic Lymphocytic Leukemia-
National Cancer Institute Working Group criteria (76) and confirmed by a
flow cytometry score >3. The percentage of tumor cells of CLL cases was
estimated by cytofluorimetry analysis for CD5+/CD19+ PB cells of 93 of 124
CLL cases, and it was ≥70% in 90 cases and between 57% and 60% in 3 cases.
CLL cases included in the RNA-Seq panel are highlighted in Fig. S2A. ICN1+

NOTCH1–wild-type cases were selected for RNA-Seq analysis based on a ratio
of ICN1 expression > 0.1 compared with the levels observed in the
CUTLL1 cell line in the low-exposure immunoblot image. Quantitation of
signal intensity was obtained with the ImageJ software (https://imagej.nih.
gov/ij/) by subtracting the background signal measured above each band
from the signal measured in each band; areas of the same size (set on the
image of ICN1 in the CUTLL1 cell line) were used for all measurements.
Values were expressed as ratio relative to the CUTLL1 protein sample, set at
1, after normalization for the β-actin loading control. The study was ap-
proved by the Institutional Review Board of Columbia University, by the
Ethical Committee of the Azienda Ospedaliera Maggiore della Carità di
Novara, Amedeo Avogadro University of Eastern Piedmont, and by the
Northwell Health’s Institutional Review Board and was conducted according
to the principles of the World Medical Association Declaration of Helsinki.

DNA Extraction, IGHV Mutational Status, and Sanger Sequencing of NOTCH1.
Genomic DNA was extracted with the QIAamp DNA Mini Kit (Qiagen) and
verified for integrity by gel electrophoresis. IGHV mutational status was
performed as previously described (3, 13). The NOTCH1 gene portion
encoding the PEST domain and the 3′UTR of the NOTCH1 gene were
screened by Sanger targeted sequencing, as previously reported (3, 7).

Gene-Expression Profiling of Human Mature B-Cell Subsets. Raw expression values
of GeneChip Human Genome U133 Plus 2.0 (Affymetrix) data from normal

mature B-cell subsets were normalized using the Robust Multiarray Averaging
algorithm in GenePattern (https://www.broadinstitute.org/cancer/software/
genepattern/), and multiple probes corresponding to the same gene were
collapsed to a single probe based on the maximum t-statistic/maximum SD.

RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR. Total RNA
was extracted from primary CLL cases with the RNeasy Mini Kit (Qiagen) with
on-column DNase treatment. cDNA synthesis was performed using the Su-
perScript First-Strand Synthesis System (Life Technologies), according to the
manufacturer’s instructions. The ABsolute QPCR SYBR green mix (Thermo
Scientific) was used to amplify specific cDNA fragments with the oligonu-
cleotides listed in Dataset S13, in the 7300 Real-Time PCR system (Applied
Biosystems). Data were analyzed by the change-in-threshold (2−ΔΔCT)
method (77), using GAPDH as a housekeeping reference gene.

RNA-Sequencing of ICN1-HA and Control eGFP MO1043 Cells and Primary CLL
Cases. Four MO1043-ICN1-HA and 4 MO1043-eGFP replicates and 49 primary
CLL cases were subjected to RNA-Sequencing. Briefly, poly-A pull-down was
performed to enrichmRNAs from total RNA samples and librarieswere prepared
using the Illumina TruSeq RNA prep kit and sequenced using the Illumina
HiSeq.2000 instrument at the Columbia Genome Center. MO1043-ICN1-HA and
MO1043-eGFP samplesweremultiplexed toobtainanaverageof33,022,292 single-
end 100-bp reads per sample; primary CLL samples were multiplexed to obtain an
average of 61,266,691 paired-end 100-bp reads per sample (Dataset S3). Real-time
analysis (Illumina) was used for base calling and bcl2fastq (v1.8.4) for converting
BCL to fastq format, coupled with adaptor trimming. Reads were mapped to the
reference genome (Human: NCBI/build37.2) using Tophat (v2.0.4) with 4 mis-
matches (–read-mismatches = 4) and 10 maximum multiple hits (–max-multihits =
10) (78). The relative abundance of genes was assessed using cufflinks (v2.0.2) with
default settings (79). Hierarchical clustering of MO1043-ICN1-HA and -eGFP pro-
files was performed using the Pearson correlation average linkage, filtering for
genes with a minimum log2-transformed expression value of 5 and a minimum SD
of 1. Genes differentially expressed between MO1043-ICN1-HA and -eGFP profiles
were determined by an unpaired unequal variance two-tailed Student’s t test
using a FDR ≤ 0.001 (after Benjamini–Hochberg correction) (80). For visualization
of gene-expression intensity, expression data were converted to z-scores.

GSEA. Gene-expression profile data from mature B cells, MO1043-ICN1-HA
and MO1043-eGFP cells, and from primary CLL cases were analyzed for en-
richment in NOTCH1-related gene sets with GSEA-2.0 and 1,000 phenotype
permutations (27). Enrichments were considered significant with a P <
0.05 after correction for multiple hypothesis.

Functional Categories and Pathways Analyses of the NOTCH1-Regulated Genes.
Genes directly regulated by NOTCH1 in CLL were assigned to functional cat-
egories or annotated pathways using the publicly available bioinformatic tool
DAVID 2008 6.7 (Database for Annotation, Visualization and Integrated Dis-
covery, https://david-d.ncifcrf.gov) and the Molecular Signatures Database
from the Broad Institute (MSigDBv5.1, CP Geneset, https://www.broadinstitute.
org/gsea/msigdb/index.jsp). Only pathways relevant for B-cell biology, based on
current knowledge, were selected for further discussion.

Statistical Analyses. Statistical analysis was performed using the GraphPad
Prism 5 software (GraphPad Software). The specific test adopted for each
analysis is described in each figure legend.
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