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Disclosures

 CRADA: NVIDIA

* CRADA: Philips

* Royalties from NIH

* Patents in the field of Al

* Research samples of an MRI artificial intelligence (Al) algorithm
developed in NCl in collaboration with NVIDIA will be shown in this
talk
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Original Investigation

A Cascaded Deep Learning-Based
Artificial Intelligence Algorithm for
Automated Lesion Detection and
Classification on Biparametric
Prostate Magnetic Resonance
Imaging

Sherif Mehralivand, MD, Dong Yang, PhD, Stephanie A. Harmon, PhD, Daguang Xu, PD, Ziyue Xu, PhD,
Holger Roth, PhD, Samira Masoudi, PhD, Thomas H. Sanford, MD, Deepak Kesani, DO,

Nathan S. Lay, PhD, Maria J. Merino, MD, Bradford J. Wood, MD, Peter A. Pinto, MD,

Peter L. Choyke, MD, Baris Turkbey, MD

1390 patients (=350 outside NIH)

* train/test (89%/11%)
Lesions were contoured + assigned PI-RADS
category
3D U-Net: lesion detection and segmentation
Two 3D residual neural network: PI-RADS
categorization

PPV (CDR) = 63%

False positives/patient = 0.44 lesion/patient
* TP=82% were cancer
 FP=51% were benign

Lesion segmentation (DSC) = 0.36

PI-RADS classification accuracy=58%



Radiology:

maging Cancer
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Workflow

user-controlled

series selection ;
 DICOM images pushed from /
PACS under Application Entity
Titles specifically associated
to each inference pipeline

 Patient selection and pipeline
execution are controlled by
the PACS user (radiologist)
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Al Pipeline

MONAI Deploy Express

Data Ingestion Al Model Inference

Visualization
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Table 3 Phase 2—CDRs by lesion categorization

Summary ATl+/Rad+ AT+ Al-/Rad+
(n=28) Rad- (n=23) (n=21)

# Lesions 28 23 21

Biopsy result

Benign 5 12 14

3+3 11 7 3

3+4 9 2 4

4+3 1 1 0

4+4 1 0 4]

4+5 1 1 0

PCa CDR 82.1% (23/28) 47.8% (11/23) 33.3% (7/21)

csPCa CDR

42.9% (12/28)

17.4% (4/23)

19.0% (4/21)

NCI Prostate MRI Al model



Liver Lesion Segmentation Model in

Cirrhosis Patients
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Total # of Patients:
194

Total # of Lesions:
1794

Total # of Scans:
587

Number of Scans 117
Sensitivity 63.4 71.9 78.1
Specificity 91.7 91.7 91.7
PPV 96.7 95.3 92.6
Emma Stevenson, BS
NPV 39.3 57.9 75.9
NATIONAL CANCER INSTITUTE Accuracy 69.23 77.78 83.9



Al for Automated Gonad Volume Quantification
in Healthy Adolescents across Puberty

Aim: To develop open-source Al models to segment gonads at MRI
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Al for Automated Gonad Volume Quantification

in Healthy Adolescents across Puberty

Aim: To develop open-source Al models to segment gonads at MRI
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Train 14 123
Validation 3 15
Test 5 32

Ovary Cyst Ovary

TP 72 7 72
FN 0 0 0
FP 0 0 0
Sensitivity 100 100 100
PPV 100 100 100
Dice 0.75 0.85 0.85
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T2w MRI Ground Truth Testicular
(b)
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Steps for Al development

- DICOM to Model
NIFTI

Conversion
(1 day) (3 days) (1 day)

Finalizing
training Results

Data
Download b
(2 days)

N



Artificial Intelligence Resource (AIR)

Data/Projects:

o Clinical and preclinical

o Radiology (MRI, CT, x-ray,
PET/CT, ultrasonography),
digital pathology,
endoscopy, EHR

Diagnostic
Assistance

* Deployment (PACS-HALO-HPC/Biowulf)
* Future use in clinical-preclinical environment

* Training to fellows and researchers in NClI,
NIH
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Clinical or preclinical
scientific question

Deployment
(PACS-HALO-
HPC/Biowulf)

Curation

— Data —> ]
Annotation
Academic
publication Testing & Failure

Open-source

analysis

Data
Preprocessing

h

availability*

Keep the expert in
the loop

Future use in
clinical-preclinical
environment

Next stage Al
related projects

l

Al model
development

Translational Al Practice
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Nathan S. Lay PhD
Staff Scientist

Sushant Patkar PhD
Research Fellow

Affiliated AIR Members:

Rosina Lis, MD, AIR Pathologist

Harry Zhang, PhD, SH post-doc Fellow
Omer Esengur, MD, MIB post-doc Fellow
Rikhil Makwana, MRSP Fellow

Donald Wunsch, MRSP Fellow

Hunter Stecko, BS, MIB, MRSP Fellow
Benjamin Simon, NIH-OxCam PhD Student
Alesia Vazquez Quiroga, BS, BME
Timothy Rosean, PhD, Adjunct Scientist
Anita Ton, AIR Tissue Scanning Specialist
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G. Thomas Brown
MD PhD
Staff Clinician

Fahmida Haque PhD
Post-doc Fellow
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Thank you

Admin Support:

Beth Hardisty, AO
Karen Wong, MIB (purchase)
Betty Garcia, MIB (travel)

Stephanie A.
3 Harmon PhD
Stadtman
i/ Investigator

Emma Stevenson BS
Post-bac Fellow

Collaborators:

Brad Wood, CC

Peter Pinto, NCI

Sandeep Gurram, NCI
Christine Hsu, NIDDK,

Theo Heller, NIDDK,

Veronica Gomez-Lobo, NICHD
Peter Schmidt, NIMH

cancer.gov/espanol
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