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ChiIP-Seq Data Analysis:
Probing DNA-Protein Interactions
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What is Chromatin ImmunoPrecipitation (ChIP)?

A A

Sample fragmentation
Immunoprecnpltatlon

Non-histone ChIP ; 22 g f % Histone ChIP

DNA purification

(Crosslinking)

Park,P. Nature Reviews. 2009.

What is ChlP-seq?

End repair and l
adapter ligation
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PCR amplification
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Sequencing on NGS platforms

Kidder et. al. Nature Immunology. 2011
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Why do ChlP-seq?

* Define Protein-DNA interactions/Histone modifications across the
entire genome and different conditions.

* Define DNA binding sites for DNA-binding proteins.

* Reveal gene regulatory networks when combined with RNA-seq
and/or Methylation data.

Utilization of ChIP-seq

® ChiP-seq ® ChIP-chip ATAC-seq ® RNA-seq United States, 2004 - present
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Google Trends. 2019
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Adaptations to ChIP-seq

e ChlIP-Exo

* Adds two exonuclease steps to increase the resolution of ChIP
* X-ChlP-seq

* ChIP-seq with MNase not sonication.
* Highthroughput ChIP (HT-ChIP)

* ChlIP for up to 96 antibodies at once.
* Single cell ChIP (scChlIP)

¢ ChlP on each individual cell.

And others...

* AHT-ChIP-Seq
* BisChIP-Seq
* CAST-ChIP

* ChIP-BMS

* ChlIP-BS-seq
* ChIPmentation
* Drop-ChlP
Mint-ChIP
PAT—ChIP

* reChlP-seq
CUT & RUN
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Alternative methods to find open chromatin

Zz
'
Enrichment )_ <> <> > ﬁ
| | | } V
R R

| | | | |

Sequencing GREEACE
Meyer and Liu. Nature Reviews. 2014.
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ENCODE best practices

* “ChlIP-seq grade” antibodies

* Control samples created in parallel with matching ChIP samples
* At least 2 biological replicates

* Minimum useable reads/fragments

* Useable reads: uniquely mapped after removal of PCR duplicates
* For Transcription Factor or other narrow features: 10-15M

¢ For Histone or other broad features: > 30M

* No preference between single-end or paired-end sequencing

https://www.encodeproject.org/about/experiment-guidelines/
Landt et al 2012. Genome Res
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Why you need controls

A === ChlIP-seq signal
mmm Accessibility signal

w== Mappability signal

Signal

False positive
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Peak 1
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Ramachandran et al 2015. BMC Epigenetics & Chromatin

Biases controls can correct for

* Copy number variation

* Incorrect mapping of repetitive regions
* GC bias

* Non-uniform fragmentation
* Non-specific pull-down

5/10/19
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Types of controls

* Input:

* Crosslink, lyse, and fragment like ChIP but no IP step
* Mock (sometimes also referred to as 1gG):

* Processed like a ChIP sample, but IP without an antibody (just the beads)
* 1gG:

* ChIP with an antibody that has no target within the nucleus of the cells of
interest

Copy number biases
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Heterochromatin biases

Heterochromatin
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Chen et al 2012. Nature Methods

Biases vary by cell type and
are affected by gene expression
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Different controls behave differently
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Input is enriched at open chromatin
while 1gG is not
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Types of replicates

* Biological/Experimental
* To capture variability between different runs

* eg, repeating ChIP multiple times with the same antibody with cells from the
same line grown separately, starting with a different passage of cells, or
related samples with the same mutation of interest

* Technical

* Often refers to resequencing the same libraries to deal with sequencing
biases

* Can also include replication of any/all steps following fixation

12



5/10/19

Biological/Experimental replicates are needed to

differentiate between real peaks
and background noise
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Yang et al 2014. Comput Struct Biotechnol J

Dealing with replicates

Number of Samples

Information from
individual replicate

Pooling all replicates No limitation
Merge after peak calling Pairwise combinations
Select one best replicate No limitation

Maijority rule No limitation

Lost
Kept
Lost

Kept

Yang et al 2014. Comput Struct Biotechnol J
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ENCODE best practices

* “ChlIP-seq grade” antibodies
* Control samples created in parallel with matching ChIP samples
* At least 2 biological replicates

* Minimum useable reads/fragments

* Useable reads: uniquely mapped after removal of PCR duplicates
* For Transcription Factor or other narrow features: 10-15M
* For Histone or other broad features: > 30M

* No preference between single-end or paired-end sequencing

Landt et al 2012. Genome Res
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Technical Failure: Antibodies

* Low binding affinity

* Insufficient antibody

* Non-specific binding
* Monoclonal vs Polyclonal
* Protein is not a good ChIP candidate.

Technical Failure: Methodological

Purify DNA

* Not enough Input DNA
* Improper shearing/digestion

i i End repair and
* Improper size selection End repair and l
* lllumina has a limit on insert length size.
. . —_—
* Too high adaptor/ChIP fragment ratio = =
* Too many PCR cycles PCR amplification i
[—— I
[ e —— |
[ E—— |
= =
[ e —
[

Sequencing on NGS platforms

Kidder et. al. Nature Immunology. 2011
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Technical Failure: Low Sequencing Depth

* Did you saturate the amount information coming from your library?
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Jung et. al. Nucleic Acids Research. 2014

Technical Failure: Saturation
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Inherent Limitations:

Relative method without spike-ins —

Total Read Normalization

H3K79me2
Signal

=

Genes

Spike-in Normalization

H3K79me2
Signal

—=___

Genes

Difference not observed

Difference observed

Orlando et. al. Cell Reports. 2014.
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Inherent Limitations:

Relative method without spike-ins
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Nakato and Shirahige. Briefings in Bioinformatics. 2017

Inherent Limitations: Resolution
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Inherent Limitations: %
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Peak 1: YGL027C Peak 2: YCL0O17C Peak 5: YHL025W.

Negative control: YCR0O11C
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Markowitz et. al. PLoS Genetics. 2017.

Orthogonal Methods:

Integration with other sequencing methods ij

Induced
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RNA-seq i
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binding site
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ChlIP-seq identifies a binding site that changes transcription when deleted

Jones et. al. PLOS Pathogens. 2014
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