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RNA-Seq Applications
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Differential	Gene	Expression
◦ Looks	at	genes	that	are	at	least	at	the	detection	limit	of	microarrays
◦ Most	straightforward,	requires	less	read	depth	(10-30	M	reads)
◦ Can	be	more	cost-effective	than	microarrays

Differential	Transcript	Expression	(Isoform	switching)
◦ Still	confined	to	known	transcripts	/	isoforms
◦ Complexity	is	in	the	assignment	of	exons	to	particular	isoforms
◦ Many	algorithms	can	differ	in	results

Transcript	Discovery	/	Whole	Transcriptome Profiling
◦ Interest	is	in	looking	for	new	isoforms	or	unannotated genes	
◦ More	complex	in	terms	of	bioinformatics	analysis
◦ Can	find	false	positives,	depending	on	leniency	of	algorithm	

Others
◦ SNP/Somatic	Variant/Gene	Fusion	Detection



Method	– Preparation
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Paired-end	Sequencing
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https://www.illumina.com/library-prep-array-kit-selector.html

Which	method?



Which	RNA	type?

Library	Kits	available:
mRNA

Whole	Transcriptome

Targeted

miRNA

Low	Input

Ribosomal	Profiling
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Which	library	method?

TruSeq	RNA	v2
TruSeq Stranded	
mRNA TruSeq RNA	Access

Input	Amount
0.1	– 1ug	High	Quality	
Total	RNA NeoPrep:	25-100ng 10ng	High	Quality	Total	RNA

10-400ng	previously	
isolated	mRNA LT/HT:	0.1	– 1ug	Total	RNA 20ng	Degraded	Total	RNA

FFPE	Compatible No No Yes

Capture	Method
Oligo	dT beads	capture	
poly-A	tail

Oligo	dT beads	capture	
poly-A	tail

Capture	probes	targeting	
coding	RNA	sequence

Capture	Content Coding	Transcriptome Coding	Transcriptome Coding	Transcriptome
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Which	library	method?

TruSeq Stranded	Total	
RNA	Ribo-Zero	H/M/R

Clontech SMART-Seq v4	
Ultra	Low	Input	RNA	Kit	+	
Nextera XT

Input	Amount
0.1–1 µg	of	total	RNA
(mid	to	high-quality)

1–1,000	intact	cells	(or	as	little	as	10	
pg–10	ng	of	total	RNA

FFPE	Compatible Yes No

Capture	Method RT	+	Random	Primers
cDNA	Synthesis	Using	Template	
Switching	Technology

Capture	Content
Coding	and Non-coding
Transcriptome Coding	Transcriptome



Cost:
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HiSeq 2500 HiSeq 3000

Raw	reads per	lane 400	M 600	M	
Cost/sample*

mRNA-Seq: 20 M	PE	 18 samples/lane:

$126	+	$100	=	$226

27	samples/ lane:

$58 +	$100	=	$158 (75	bp)
$73 +	$100	=	$173	(150	bp)

Total	RNA-Seq:	60	M	PE 6	samples/lane:

$378	+ $126	=	$500

9	samples/lane:

$175 +	$126	=	$300	(75	bp)
$244	+	$126	=	$370	(150	bp)

*Cost	doesn’t	include	33%	CCR	subsidy



What	sequencing	depth	is	enough?
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Wang	et	al,	Nature	Biotechnology,	2014



Comparison	between	Microarray	and	
RNA-Seq
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Xu	et	al,	BMC	Bioinformatics,	2013



Comparison	between	Affymetrix,	RNA-
Seq and	qPCR
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Wang	et	al,	Nature	Biotechnology,	2014



RNA-Seq or	Microarray?
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Microarray

• Pathways
• Genes	or	known	transcripts
• Well-expressed

RNA-Seq

• Full	transcriptome analysis			
• Rare	transcripts
• Splice	variants
• Fusion	transcripts

Current	configuration	for	running	samples	on	
HiSeq 2500:	

Whole	Transcriptome	profiling:	Ribo-Zero	
~25-50M		PE	reads
(6-12	samples/lane)

mRNA	Profiling:
~10-20M	PE	reads
(18-36	samples/lane)



RNA-Seq Pipeline	Workflow:	
CCBR	Pipeliner
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STEP1:	INITIAL	QC

STEP2:	COUNTING	
&	DEG



Data	Types
Raw	Reads:	
◦ Fastq files:	usually	in	.gz format

Aligned	Reads:	
◦ SAM:	Sequence	Alignment/Map	format
◦ BAM:	binary	version	of	SAM
◦ BAI:	BAM	index	(for	fast	retrieval	of	BAM	reads)	

QC	Report:	MultiQC Report	
◦ FastQC
◦ RSeQC
◦ Samtools
◦ Picard

Gene	Counts	and	Differentially	Expressed	Genes	(DEG)	Reports

3/20/17 CCR	COLLABORATIVE	BIOINFORMATICS	RESOURCE 15



A	good	review:
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Generic	roadmap	for	expt design	&	analysis



Pre-Alignment	QC:
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Quality	control	for	the	raw	reads	involves	

1.	analysis	of	sequence	quality	

2.	GC	content

3.	presence	of	adaptors

4.	overrepresented k-mers

5.	duplicated	reads	in	order	to	detect	sequencing	errors,	PCR	
artifacts	or	contaminations



Pre-alignment	QC:	FastQC

3/20/17 CCR	COLLABORATIVE	BIOINFORMATICS	RESOURCE 19



Duplication	Rates
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High	duplication	rates

GC	Bias



Adapter	Content
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Alignment	methods
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Post-alignment	QC:

QC	Metrics:

1.	Alignment	percentage:	between	70	and	90 %	of	regular	RNA-seq
reads	to	map	onto	the	human	genome	(depending	on	the	read	mapper	
used)

2.	Uniformity	of	read	coverage	on	exons	and	the	mapped	strand

3.	Reproducibility	among	replicates	and	for	possible	batch	effects	(PCA)

4.	Contamination:	rRNA and	microbial	RNAs	should	not	be	present
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Post-alignment	QC:	RSeQC
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QC:	Poor	RNA	Quality
(RIN	>	7,	for	FFPE	or	degraded,	use	total	RNA-Seq)
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Degraded	RNA	showing	
3’	bias	in	coverage



QC:	Contamination
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Intronic Reads



Which	gene-counting	method?
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Teng,	et	al.	A	benchmark	for	RNA-seq quantification	pipelines
Genome	Biol.	2016;	17:	74.

“Using	two	independent	datasets,	we	assessed	seven	competing	pipelines.	
Performance	was	generally	poor,	with	two	methods	clearly	underperforming	
and	RSEM	slightly	outperforming	the	rest.”
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Gene	coverage	for	short	reads



Not	Normalized:
◦ Raw	Counts:	number	of	reads	that	align	to	a	particular	feature

Normalized:
◦ CPM	(or	log	CPM):	Counts	per	Million	Reads
◦ For	relative	gene	expression

Within-sample	Normalization:
◦ RPKM:	Reads	per	Kilobase exon	per	Million	Reads
◦ For	single-end	reads

◦ FPKM:	Fragments	per	Kilobase exon	per	Million	Reads
◦ For	paired-end	reads

◦ TPM:	Transcripts	per	base	normalized	by	all	transcripts	per	base	per	Million
◦ estimated	fraction	of	transcripts	made	up	by	a	given	isoform	or	gene
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Gene	Expression	Data
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Normalization	methods
1. Total	count	(TC):	Gene	counts	are	divided	by	the	total	number	of	mapped	reads	(or	library	

size)	associated	with	their	lane	and	multiplied	by	the	mean	total	count	across	all	the	
samples	of	the	dataset.

2. Upper	Quartile	(UQ):	Very	similar	in	principle	to	TC,	the	total	counts	are	replaced	by	the	
upper	quartile	of	counts	different	from	0	in	the	computation	of	the	normalization	factors.

3. Median	(Med):	Also	similar	to	TC,	the	total	counts	are	replaced	by	the	median	counts	
different	from	0	in	the	computation	of	the	normalization	factors.

4. DESeq:	This	normalization	method	is	included	in	the DESeq Bioconductor	package,	using	a	
"reference	sample"	by	taking,	for	each	gene,	the	geometric	mean	of	the	counts	in	all	
samples.

5. Trimmed	Mean	ofM-values	(TMM):	Trimmed	mean	of	M	values	(TMM)	between	each	pair	
of	samples.		This	normalization	method	is	implemented	in	the edgeR Bioconductor	
package.	

6. Quantile	(Q):	First	proposed	in	the	context	of	microarray	data,	this	normalization	method	
consists	in	matching	distributions	of	gene	counts	across	lanes.

7. Reads	Per	Kilobase per	Million	mapped	reads	(RPKM):	This	approach	was	initially	
introduced	to	facilitate	comparisons	between	genes	within	a	sample	and	combines	
between- and	within-sample	normalization.



1.	Raw	counts:	
◦ Gene	level:	subread,	HTSeq

2.	Normalized	counts	and	DEG:
◦ Gene	level:	EdgeR,	DESeq2,	Limma-voom,	RSEM
◦ Transcript	level:	RSEM,	Salmon,	Kallisto,	Sailfish
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Methods	for	Quantification	and	
Differential	Gene	Expression
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Expectation	Maximization



Splice	Variant	Quantification

Either	with	a	reference	or	de	novo,	the	complete	reconstruction	of	
transcriptomes	using	short-read	Illumina	technology	remains	a	
challenging	problem,	and	in	many	cases	de	novo	assembly	results	in	
tens	or	hundreds	of	contigs accounting	for	fragmented	transcripts.	

Emerging	long-read	technologies,	such	as	SMRT	from	Pacific	
Biosciences,	provide	reads	that	are	long	enough	to	sequence	complete	
transcripts	for	most	genes

Conesa et	al.,	Genome Biol.	2016
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Junction	Counts
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Types	of	variance
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Contributions�of�different�types�of�
variancevariance

104
Measurement Uncertainty In Different Types of Replicates

 

103

Biological Replicates
Technical Replicates
Poisson Only

2

10

at
e 

2

102

R
ep

lic
a

101

100 101 102 103 104
100

Replicate 1

 

Counting	error	< Technical	effects	(lane	effect	<
run	effect	< library	prep	effect)	<<	biological	effect	

Busby	et	al,	Bioinformatics	2013
Marioni et	al,	Genome	Res	2008



Experimental	Design:	avoiding	lane	effects
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- does	not	permit	partitioning	
of	batch	and	lane	effects	
from	the	estimate	of	within-
group	biological	variability	

Auer	and	Doerge,	Genetics	2010



What	happens	when	I	run	a	single	sample	per	
treatment	group?
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3	Biological	Replicates

Control

Treated

Control

Treated

Sorted	by	fold	change	
• could	be	a	highly	variable	gene	with	no	biological	
relevance	at	all
• no	idea	of	false	positive/false	negative	rate
• might	need	to	validate	larger	number	of	genes	on	
replicate	samples	(more	effort	downstream)
• inexpensive,	but	likely	to	be	more	costly	(time	and	
resources)	in	the	long	run

Sorted	by	p-value	
• lowest	p	values	signify	genes	that	are	stable	(low	
within	group	variance
• can	set	false	positive/false	negative	rate	cutoffs
• can	prioritize	genes	for	validation
• more	expensive	up	front	but	can	cut	down	cost	(time	
and	resources)	in	the	long	run	

No	Replicates



Consequences	of	running	biological	vs.	
technical	replicates
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3	Technical	Replicates
• Captures	variation	secondary	to	array	or	

sample	processing	conditions
• Small	variance	within	each	group
• Smaller	p	values	(more	significant	genes)
• Increased	false	positive	rates	(not	capturing						

true	biological	variation)
• Lower	validation/reproducibility	rate

3	Biological	Replicates

• Captures	variation	among	individuals,
animals,	culture	conditions

• Larger	variance	within	each	group
• Larger	p	values	(fewer	significant	genes)
• Decreased	false	positive	rates
• Higher	validation/reproducibility	rate	

Control

Treated

Control

Treated



Statistical	Tests
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2	types	of	error:

Type	1	error:	Calling	a	gene	change	statistically	significant	
when	it	is	not	(α),	false	positive

Type	2	error:	Calling	a	gene	not	significantly	changed	
when	it	is	(β),	false	negativeStatistical	tests	provide	p	values,	which	are	a	

measure	of	whether	they	are	significant	or	not



Samples	vs	Read	depth

3/20/17 CCR	COLLABORATIVE	BIOINFORMATICS	RESOURCE 41

If	on	a	tight	budget,	deciding	
between	number	of	replicates	vs	
sequencing	depth,	always	higher	
replicates	with	lower	sequencing	
depth	leads	to	higher	statistical	
power

◦ 3M	reads	x	10	replicates	=	30M	reads	
yields	52%	power

◦ 10M	reads	x	3	replicates	=	30M	reads	
yields	33%	power	



Best	Practices
1.	Factor	in	at	least	3	replicates	(absolute	minimum),	but	4	if	possible	(optimum	
minimum).	Biological	replicates	are	recommended	rather	than	technical	replicates.

2.	Always	process	your	RNA	extractions	at	the	same	time.	 Extractions	done	at	different	
times	lead	to	unwanted	batch	effects.

3.	There	are	2	major	considerations	for	RNA-Seq libraries:

If	you	are	interested	in	coding	mRNA,	you	can	select	to	use	the	mRNA	library	prep.	 The	
recommended	sequencing	depth	is	between	10-20M	paired-end	(PE)	reads.	 Your	RNA	has	
to	be	high	quality	(RIN	>	8).

If	you	are	interested	in	long	noncoding	RNA	as	well,	you	can	select	the	total	RNA	method,	
with	sequencing	depth	~25-60M	PE	reads.	 This	is	also	an	option	if	your	RNA	is	degraded.

4.	Ideally	to	avoid	lane	batch	effects,	all	samples	would	need	to	be	multiplexed	together	
and	run	on	the	same	lane.	 This	may	require	an	initial	MiSeq run	for	library	
balancing.	 Additional	lanes	can	be	run	if	more	sequencing	depth	is	needed.

5.	If	you	are	unable	to	process	all	your	RNA	samples	together	and	need	to	process	them	in	
batches,	make	sure	that	replicates	for	each	condition	are	in	each	batch	so	that	the	batch	
effects	can	be	measured	and	removed	bioinformatically.
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https://bioinformatics.cancer.gov/content/rna-seq



CCBR	Pipeliner
(QC	Report,	DEG	Analysis)
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Validation	Methods

3/20/17 CCR	COLLABORATIVE	BIOINFORMATICS	RESOURCE 44

• Quantitative	RT-PCR
• well-accepted	gold	standard
• housekeeping	gene	- use	microarray	data	instead	of	GAPDH,	Beta-actin

• NanoString
• Multiplex	assay,	for	several	genes	simultaneously
• design	based	on	microarray	probes	– increase	validation
• especially	well-suited	for	large	number	of	samples
• use	a	number	of	housekeeping	genes	rather	than	a	single	gene	

• FISH
• Fluorescence	in	situ	hybridization
• single	cell	level
• Localization	especially	for	heterogeneous	samples



Visualization:	PCA
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Visualization:	Hierarchical	Clustering
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Visualization:	Others
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QC:	Batch	Effects
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Litter	effect:	used	batch	removal



Visualization:	Effect	of	batch	removal
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Gene	Ontology	Enrichment	Analysis
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Are	the	differentially	expressed	genes	in	my	microarray	experiment	concentrated	in	pathways	or	
gene	ontology	categories	which	are	biologically	meaningful?

• Use	hypergeometric distribution	or	similar	test	to	look	for	interesting	patterns



Pathway	Analysis
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• Free	software	such	as	GSEA	(Gene	Set	Enrichment	Analysis)	and	DAVID	use	public	pathway	or	
gene	ontology	repositories	(e.g.	Kegg,	GO,	Reactome,	GEO	datasets,	etc.)
• Many	commercial	platforms	(Ingenuity	Pathway	Analysis,	GeneGo Metacore,	Pathway	Studio)	
use	curated	information	which	are	more	comprehensive	than	public	pathway	databases



Commercial	Bioinformatics	Tools	
available	@	CCR
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Software Vendor Application

Partek Statistical	analysis,	Cluster	Analysis,	Pathways

BioDiscovery Statistical	analysis,	Cluster	Analysis

iPathwayGuide Pathway	Analysis

Ingenuity	
Systems

Pathway	Analysis	(Web-based)

Thomson	
Reuters

Pathway	Analysis	(Web-based)

Elsevier Pathway	Analysis	(Web-based)

Genomatix Promoter	Analysis

52



Variant	Calling
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Gene	Fusion
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miRNA-Seq

3/20/17 CCR	COLLABORATIVE	BIOINFORMATICS	RESOURCE 55



bioinformatics.cancer.gov
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CCBR	support	includes:
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Consulting	on	experimental	design,	help	with	analysis	and	interpretation	
of	biological	data	produced	by	large-scale	genomics	technologies	
including	Next-generation	sequencing	(RNA-Seq,	Exome-Seq,	ChIP-Seq,	
Whole	genome	Sequencing),	and	microarrays

Support	for	the	development	of	methods	for	new	technologies	provided	
by	the	Office	of	Science	and	Technology	Resources	(OSTR)

Provide	training	classes	to	CCR	scientists	focusing	on	software	used	in	the	
analysis	of	their	own	data



CCBR	Members
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Office	of	Science	and	Technology	
Resources	(OSTR)

Maggie	Cam	(Head)

Center	for	Biomedical	
Informatics	and	Information	
Technology	(CBIIT)

Chunhua Yan
Ying	Hu

Richard	Finney

Frederick	National	Laboratory	of	
Cancer	Research	(Leidos)

Parthav Jailwala (Manager)
Fathi Elloumi
Justin	Lack
Bong-Hyun	Kim
George	Nelson
Alexei	Lobanov
Jack	Chen
Ashley	Walton
Vishal	Koparde

Soon	to	be	part	of	CDSL	(CCR	Cancer	Data	Science	Lab)
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D
A
T
A

D	A	T	A

Experimental	
Design

Discussion
Analysis
Writing

Typical	workflow



Take	Home	Message:

While	you	are	planning	your	RNA-Seq
experiment	(not	after),	please	come	talk	
to	us.

CCBR@mail.nih.gov
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