Intro and Best Practices: RNA-Seq

INTRODUCTION TO RNA-SEQ DATA ANALYSIS
BTEP SERIES 2017/
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RNA-Seq Applications

Differential Gene Expression
° Looks at genes that are at least at the detection limit of microarrays

o Most straightforward, requires less read depth (10-30 M reads)
° Can be more cost-effective than microarrays

Differential Transcript Expression (Isoform switching)
o Still confined to known transcripts / isoforms
o Complexity is in the assignment of exons to particular isoforms
° Many algorithms can differ in results

Transcript Discovery / Whole Transcriptome Profiling
° Interest is in looking for new isoforms or unannotated genes

° More complex in terms of bioinformatics analysis
> Can find false positives, depending on leniency of algorithm

Others
> SNP/Somatic Variant/Gene Fusion Detection

3/20/17 CCR COLLABORATIVE BIOINFORMATICS RESOURCE




Method — Preparation

a Data generation
@ mRNA or total RNA

= - - _ -
—_— - = = @ Reverse transcribe l ' 1 PCR amplification?
— ) into cDNA (® Select a range of sizes
—_— @E == = — SESSES S S
1 == ==
=== ]
S SRS S

- = - = l Strand-specific RNA-seq?
= - = =} (® Ligate sequence adaptors @5 ONA end 1
[ — equence C endas
= 9
Remove rvA? e s O -
Select mRNA? @ [ — -
- ....... - - ....... -
(3 Fragment RNA
= SESTESgS S =l pyeeemm
_— = = — [ a |-l

—_— = __

s /3

3/20/17 CCR COLLABORATIVE BIOINFORMATICS RESOURCE




Paired-end Sequencing
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Which method?

£ “e® PODDI

This tool will help you determine the best kit for your needs based on your project type, starting material, and the method or application.

*Please Note: NovaSeq Series recommendations coming soon to this selector tool.

Please select your project type :

Research Use Only (i)

Molecular Diagnostics i)

https://www.illumina.com/library-prep-array-kit-selector.html
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Which RNA type?

Library Kits available:

MRNA

Whole Transcriptome
Targeted
miRNA
Low Input

Ribosomal Profiling
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Which library method?

TruSeq Stranded
TruSeq RNA v2 MRNA TruSeq RNA Access

0.1 — 1ug High Quality
Input Amount Total RNA NeoPrep: 25-100ng 10ng High Quality Total RNA

10-400ng previously
isolated mRNA LT/HT: 0.1 — 1ug Total RNA 20ng Degraded Total RNA

FFPE Compatible No No Yes

Oligo dT beads capture Oligo dT beads capture Capture probes targeting
Capture Method poly-A tail poly-A tail coding RNA sequence

Capture Content Coding Transcriptome Coding Transcriptome Coding Transcriptome
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Which library method?

Clontech SMART-Seq v4
TruSeq Stranded Total Ultra Low Input RNA Kit +
RNA Ribo-Zero H/M/R Nextera XT

0.1-1 pg of total RNA 1-1,000 intact cells (or as little as 10
Input Amount (mid to high-quality) pg—10 ng of total RNA
FFPE Compatible Yes No

cDNA Synthesis Using Template

Capture Method RT + Random Primers Switching Technology
Coding and Non-coding
Capture Content Transcriptome Coding Transcriptome
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Cost:

Raw reads per lane 400 M
Cost/sample*
mRNA-Seq: 20 M PE 18 samples/lane:

$126 + S100 = $226

Total RNA-Seq: 60 M PE 6 samples/lane:

$378 + $126 = S500

600 M

27 samples/ lane:

$58 + $100 = $158 (75 bp)
$73 + $100 = $173 (150 bp)

9 samples/lane:

$175 + $126 = $300 (75 bp)
$244 + $126 = $370 (150 bp)

*Cost doesn’t include 33% CCR subsidy
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What sequencing depth is enough?
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Comparison between Microarray and
RNA-Seq
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Comparison between Affymetrix, RNA-
Seq and gPCR
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RNA-Seq or Microarray?

Microarray
Current configuration for running samples on
HiSeq 2500: * Pathways

e Genes or known transcripts
e Well-expressed

Whole Transcriptome profiling: Ribo-Zero
~25-50M PE reads

(6-12 samples/lane)

RNA-Seq

mRNA Profiling:
~10-20M PE reads

(18-36 samples/lane)

Full transcriptome analysis
Rare transcripts

Splice variants

Fusion transcripts
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RNA-Seq Pipeline Workflow:
CCBR Pipeliner

| Library details Trimming Alignment ‘I::?“:::’(;?;‘zng':‘: Graphlcal User |
| (PEISE, i options gtf, annotation) Interface |
e e e e )

MultiQC Report

(FastQC, STAR metrics, -
Picard MarkDuplicates, STAR (2-pass)
FastqScreen,

CollectRNASeqMetrics, Flagstat
metrics, RSEQC)

no indels, no soft-clipping

Genomic BAM Transcriptome BAM

—
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Salmon
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Gene counts
Junction counts
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[
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(PCA, MA plot, Volcano,
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level Differential
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Data Types

Raw Reads:
o Fastq files: usually in .gz format

Aligned Reads:
> SAM: Sequence Alignment/Map format

o BAM: binary version of SAM
o BAIl: BAM index (for fast retrieval of BAM reads)

QC Report: MultiQC Report
o FastQC

° RSeQC

° Samtools

° Picard

Gene Counts and Differentially Expressed Genes (DEG) Reports
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A good review:

Conesa et al. Genome Biology (2016) 17:13

DOI 10.1186/513059-016-0881-8 Genome BIOIOgy

REVIEW Open Access

A survey of best practices for RNA-seq data ® e
analysis

Ana Conesa'”’, Pedro Madrigal®*, Sonia Tarazona®”, David Gomez-Cabrero®’#°, Alejandra Cervera'®,

Andrew McPherson'", Michat Wojciech Szczeéniak'?, Daniel J. Gaffney?, Laura L. Elo'?, Xuegong Zhang'*'

and Ali Mortazavi'®'”"
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Generic roadmap for expt design & analysis

(a) Pre-analysis

Experimental design Quality control
A

A A

C N N N

Library Sequencing Replicate number emi Randomization @ Randomization @ Read e o
type length and sequencing depth  SPike-ins? library prep sequencing run  aw reads i) SlEhufiEbEal e e e

T = ; 3 bttt

Single Longer reads 3 replicates For quality control Avoids confounding Sequence quality,
vs better for isoform or power analysis and library-size experimental factors GC content, uniformity, biotypes, PCA,
paired-end analysis software normalization with technical factors K-mers, duplicates GC content low-counts batch effects

Sequencing design

(b) Core-analysis

Differential expression Interpretation
A A A
[ N C N N
Read Transcript Quantification Quantification . . . . Alternative . .
alignment discovery level measure ISR T (2 L G T2 splicing analysis RS T (BT
>

Transcriptome profiling

Mapping Compare to Transcript-level, Counts, Low-count filter, Parametric Splicing events, Overrepresented
or existing gene-level, RPKM/FPKM, bias removal, VS. isoform expression functions, GSEA,
assembly annotations exon-level TPM normalization non-parametric pathway analysis

(c) Advanced-analysis

Integration

Visualization Other RNA-seq
A A A
f ) f N )

Genome Sashimi plots, Small and other Gene fusion ~ Single-cell Chromatin TF binding Proteomics/
browser splice graphs, etc. non-coding RNAs discovery Lo ead analysis eQTL/SQTL (e.g. ATAC-seq) (e.g. ChiP-seq) metabolomics

s S S i S S b S S S—»

Fig. 1 A generic roadmap for RNA-seq computational analyses. The major analysis steps are listed above the lines for pre-analysis, core analysis
and advanced analysis. The key analysis issues for each step that are listed below the lines are discussed in the text. a Preprocessing includes
experimental design, sequencing design, and quality control steps. b Core analyses include transcriptome profiling, differential gene expression,
and functional profiling. ¢ Advanced analysis includes visualization, other RNA-seq technologies, and data integration. Abbreviations: ChlIP-seq
Chromatin immunoprecipitation sequencing, eQTL Expression quantitative loci, FPKM Fragments per kilobase of exon model per million mapped
reads, GSEA Gene set enrichment analysis, PCA Principal component analysis, RPKM Reads per kilobase of exon model per million reads, sQTL

Splicing quantitative trait loci, TF Transcription factor, TPM Transcripts per million
- J
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Pre-Alignment QC:

Quality control for the raw reads involves
1. analysis of sequence quality
2. GC content
3. presence of adaptors
4. overrepresented k-mers

5. duplicated reads in order to detect sequencing errors, PCR
artifacts or contaminations
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Pre-alignment QC: FastQC

Mean Quality Scores Export Plot
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Created with MultiQC
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Duplication Rates

Picard Deduplication Stats % Export Plot

ko_old_1.star_rg_added
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High duplication rates
ko_young_3.star_rg_added

wt_old_1.star_rg_added
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wt_old_3.star_rg_added
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#Reads

1 Read Pair Unique Bl Unpaired Read Unique Read Pair Not Optical Duplicates I Read Pair Optical Duplicates Bl Unpaired Read Duplicates [l Unmapped Reads
Created with Multioc

Per Sequence GC Content % Export Plot
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Count

4 10 20 30 40 50 60 70 80 90 100

%GC
Created with MultiaC.
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Adapter Content

Adapter Content

% of Sequences
w
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Position
Created with MultiQC
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Alignment methods

(a) Genome (b) Transcriptome (0 Reference-free
mapping mapping assembly
Reads Reads Reads
Gapped mapper mlt. denwlm oommmlmuy
A 4
Mapping to Mapping to Assembly into
genome transcriptomne transcripts
Cufflinks Ungapped mapper | Bowtle
RSEM, 4
with GFF without GFF S, Map reads back
= Hiseqg-count,
Transcript Transcript Transcript OTF-based
identification & discovery & identification & ¢M
counting counting counting Counting
Homology based laumo Homology based | Blast2GO
v

Functional annotation Functional annotation
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Post-alignment QC:

QC Metrics:

1. Alignment percentage: between 70 and 90 % of regular RNA-seq
reads to map onto the human genome (depending on the read mapper
used)

2. Uniformity of read coverage on exons and the mapped strand
3. Reproducibility among replicates and for possible batch effects (PCA)

4. Contamination: rRNA and microbial RNAs should not be present
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Post-alignment QC: RSeQC

RSeQC: Read Distribution &, Export Plot
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Created with MultiQC
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QC: Poor RNA Quality
(RIN > 7, for FFPE or degraded, use total RNA-Seq)

pppppppppp

Degraded RNA showing
3’ bias in coverage

eeeeeeeeeeeeeeeeee
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QC: Contamination

FastQ Screen Results Export Plot
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Created with MultiQC
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Intronic Reads
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Which gene-counting method?

“Using two independent datasets, we assessed seven competing pipelines.
Performance was generally poor, with two methods clearly underperforming
and RSEM slightly outperforming the rest.”

Teng, et al. A benchmark for RNA-seq quantification pipelines
Genome Biol. 2016; 17: 74.
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Gene coverage for short reads
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Gene Expression Data

Not Normalized:
o Raw Counts: number of reads that align to a particular feature

Normalized:
° CPM (or log CPM): Counts per Million Reads

> For relative gene expression

Within-sample Normalization:
o RPKM: Reads per Kilobase exon per Million Reads
° For single-end reads
o FPKM: Fragments per Kilobase exon per Million Reads
° For paired-end reads
o TPM: Transcripts per base normalized by all transcripts per base per Million
o estimated fraction of transcripts made up by a given isoform or gene
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Normalization methods

1. Total count (TC): Gene counts are divided by the total number of mapped reads (or library
size) associated with their lane and multiplied by the mean total count across all the
samples of the dataset.

2. Upper Quartile (UQ): Very similar in principle to TC, the total counts are replaced by the
upper quartile of counts different from 0 in the computation of the normalization factors.

3. Median (Med): Also similar to TC, the total counts are replaced by the median counts
different from 0 in the computation of the normalization factors.

4. DESeq: This normalization method is included in the DESeq Bioconductor package, using a
"reference sample" by taking, for each gene, the geometric mean of the counts in all
samples.

5. Trimmed Mean of M-values (TMM): Trimmed mean of M values (TMM) between each pair
of samples. This normalization method is implemented in the edgeR Bioconductor
package.

6. Quantile (Q): First proposed in the context of microarray data, this normalization method
consists in matching distributions of gene counts across lanes.

7. Reads Per Kilobase per Million mapped reads (RPKM): This approach was initially
introduced to facilitate comparisons between genes within a sample and combines
between- and within-sample normalization.
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Methods for Quantification and
Differential Gene Expression

1. Raw counts:
> Gene level: subread, HTSeq

2. Normalized counts and DEG:
> Gene level: EdgeR, DESeqg2, Limma-voom, RSEM

> Transcript level: RSEM, Salmon, Kallisto, Sailfish
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Expectation Maximization

033

033

3/20/17

aligned reads
with proportional

transcript .

abundances . ._ - d- ‘ assignment to
— b — — transcripts
E-step a ¢ e
> blug —————----- transcripts
QrEEN s - oo c s — aligned to
red em—eeeeeens s _— genome
033
genome
M-step
@
0% o--@
E-step _
M-step
o o°
® _ - -9
Estep . _
M-step

CCR COLLABORATIVE BIOINFORMATICS RESOURCE




Splice Variant Quantification

Either with a reference or de novo, the complete reconstruction of
transcriptomes using short-read lllumina technology remains a
challenging problem, and in many cases de novo assembly results in
tens or hundreds of contigs accounting for fragmented transcripts.

Emerging long-read technologies, such as SMRT from Pacific
Biosciences, provide reads that are long enough to sequence complete
transcripts for most genes

Conesa et al., Genome Biol. 2016
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Junction Counts

—e— All junction
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Types of variance

. Measurement Uncertainty In Different Types of Replicates
107 T T T T T L | T T T T T T T T Tt
Biological Replicates o°
— Technical Replicates o2 %o
I Poisson Only o0
3

Replicate 2
o

Counting error < Technical effects (lane effect <
run effect < library prep effect) << biological effect

10 10
Replicate 1 .. .
Busby et al, Bioinformatics 2013

Marioni et al, Genome Res 2008
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Experimental Design: avoiding lane effects

Balanced Blocked Design Confounded Design

* Treatment A A A B B B » Treatment A A A B B B

* Biological replicate « Biological replicate
- does not permit partitioning
+ RNA extraction + RNA exraction and of batch and lane effects
preparation for from the estimate of within-
sequencing ] ) . .
group biological variability
« Bar-code and pool

* Preparation for sequencing

Auer and Doerge, Genetics 2010

» Sequence each
sample in alane

« Sequence technical replicates

Lane 1 Lane 2 Lane 3 Lane 4 Lane5 Laneb Lane1 Lane2 Lane3 Laned4 Lane5 Laneb
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What happens when | run a single sample per
treatment group?

I 3 Biological Repllcates Sorted by p-value

e |owest p values signify genes that are stable (low

Control within group variance
* can set false positive/false negative rate cutoffs

e can prioritize genes for validation
Treated ‘ Q ‘ * more expensive up front but can cut down cost (time
and resources) in the long run
Sorted by fold change
e could be a highly variable gene with no biological
relevance at all
* no idea of false positive/false negative rate
¢ might need to validate larger number of genes on
replicate samples (more effort downstream)

e jnexpensive, but likely to be more costly (time and
resources) in the long run

I No Replicates |

Control ‘
Treated ‘
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Consequences of running biological vs.

technical replicates

Control ‘ Q ‘

—
Treated ‘ O ‘
Control ‘ ‘ Q |
Treated ‘ ‘ Q

Captures variation among individuals,
animals, culture conditions

Larger variance within each group

Larger p values (fewer significant genes)

Decreased false positive rates

Higher validation/reproducibility rate

Captures variation secondary to array or
sample processing conditions

Small variance within each group

Smaller p values (more significant genes)

Increased false positive rates (not capturing
true biological variation)

Lower validation/reproducibility rate
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Statistical Tests

low

\J

\J

-

Statistical tests provide p values, which are a
measure of whether they are significant or not

3/20/17

Truly differentially expressed?
Yes No

Statistically
significant?

Sensitivity | Specificity

2 types of error:

Type 1 error: Calling a gene change statistically significant
when it is not (a), false positive

Type 2 error: Calling a gene not significantly changed
when it is (B), false negative
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Samples vs Read depth

If on a tight budget, deciding
between number of replicates vs
sequencing depth, always higher
replicates with lower sequencing
depth leads to higher statistical
power

° 3M reads x 10 replicates = 30M reads
yields 52% power

° 10M reads x 3 replicates = 30M reads
yields 33% power

Table 1 Statistical power to detect differential expression varies
with effect size, sequencing depth and number of replicates

Replicates per group

3 5 10

Effect size (fold change)

1.25 17 % 25 % 44 %

15 43 % 64 % 91 %

2 87 % 98 % 100 %
Sequencing| depth (millions of reads)

3 19 % 29 % 52 %

10 33 % 51 % 80 %

15 38 % 57 % 85 %

Example of calculations for the probability of detecting differential expression
in a single test at a significance level of 5 %, for a two-group comparison using
a Negative Binomial model, as computed by the RNASeqPower package of
Hart et al. [190]. For a fixed within-group variance (package default value), the
statistical power increases with the difference between the two groups (effect
size), the sequencing depth, and the number of replicates per group. This
table shows the statistical power for a gene with 70 aligned reads, which was
the median coverage for a protein-coding gene for one whole-blood RNA-seq
sample with 30 million aligned reads from the GTEx Project [214]
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Best Practices

1. Factor in at least 3 replicates (absolute minimum), but 4 if possible (optimum
minimum). Biological replicates are recommended rather than technical replicates.

2. Always process your RNA extractions at the same time. Extractions done at different
times lead to unwanted batch effects.

3. There are 2 major considerations for RNA-Seq libraries:

If you are interested in coding mRNA, you can select to use the mRNA library prep. The
recommended sequencing depth is between 10-20M paired-end (PE) reads. Your RNA has
to be high quality (RIN > 8%.

If you are interested in Iong noncoding RNA as well, you can select the total RNA method,
with sequencing depth ~25-60M PE reads. This is also an option if your RNA is degraded.

4. |deally to avoid lane batch effects, all samples would need to be multiplexed together
and run on the same lane. This may require an initial MiSeq run for library
balancing. Additional lanes can be run if more sequencing depth is needed.

5. If you are unable to process all your RNA samples together and need to process them in

batches, make sure that replicates for each condition are in each batch so that the batch
effects can be measured and removed bioinformatically.

https://bioinformatics.cancer.gov/content/rna-seq
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CCBR Pipeliner
QC Report, DEG Analysis

—Froject Information

Project Id |project (Examples: CCBR-nnn,Labname ar shart project name)

Email address | (Mandatory field: must use @nih.gov email address)

Flow Cell ID |stats (Examples: FlowCelllD, Labname, date or short project name)
—Glohal Setting
Genome:  hgl9 — | Fipeline Family:  rnaseq — Set a pipeline |

Project Description x]RNAseq x]

Data Directory: | | Open Directory |
FastQ files Found: 0
Waorking Directury:| Initialize Directory
Dry Run | Run |
—Options

Pipeline initialgcrnasey  — |

Read Length is 100 — |

0, Reads are Unstranded — |

—Low Abundance Gene Threshold

Filter out genes < |5 read counts in < |2 samples

—Sample Information

Set Groups | Set Contrasts |
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Validation Methods

¢ Quantitative RT-PCR
e well-accepted gold standard
e housekeeping gene - use microarray data instead of GAPDH, Beta-actin

¢ NanoString
e Multiplex assay, for several genes simultaneously
e design based on microarray probes — increase validation
e especially well-suited for large number of samples
e use a number of housekeeping genes rather than a single gene

e FISH
e Fluorescence in situ hybridization

e single cell level
e Localization especially for heterogeneous samples
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Visualization: PCA
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Visualization: Hierarchical Clustering
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Visualization: Others
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QC: Batch Effects
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Litter effect: used batch removal
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Visualization: Effect of batch removal
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Gene Ontology Enrichment Analysis

Are the differentially expressed genes in my microarray experiment concentrated in pathways or
gene ontology categories which are biologically meaningful?

Use hypergeometric distribution or similar test to look for interesting patterns
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Pathway Analysis

* Free software such as GSEA (Gene Set Enrichment Analysis) and DAVID use public pathway or
gene ontology repositories (e.g. Kegg, GO, Reactome, GEO datasets, etc.)
e Many commercial platforms (Ingenuity Pathway Analysis, GeneGo Metacore, Pathway Studio)

use curated information which are more comprehensive than public pathway databases
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Commercial Bioinformatics Tools
available @ CCR

Software Vendor Application
GenomicsSuﬁ;@ Partek Statistical analysis, Cluster Analysis, Pathways

Nexus Expression

BioDiscovery

Statistical analysis, Cluster Analysis

Pathve Guide iPathwayGuide | Pathway Analysis
. Ingenuity Pathway Analysis (Web-based)
> IPA Systems
Thomson Pathway Analysis (Web-based)
METACORE Reuters
wi PATHWAY STUDIO Elsevier Pathway Analysis (Web-based)
genomatix Genomatix Promoter Analysis
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Variant Calling

DATA CLEANUP |:> VARIANT DISCOVERY E> EVALUATION
[ Raw RNAseq Reads] scece [ Analysis-Ready RNAseq Reads ] Analysis-Ready SNPs
> 1 ***| variants & Indels

Map to Reference

STAR 2-pass

Mark Duplicates
& Sort (Picard)

Variant Calling

HCin RNAseq mode

Non-GATK

Variant Z
Annotation

v

Raw
[Variants [ SNPs ] [ Indels ]]

! v

Split’N’Trim
+ReassignMappingQuality

[ Indel Realignment ) Variant Filtering (Variant Evaluation]
v RNAseq-specific settings look good?
[ Base Recalibration ]
‘ A
Analysis -Ready |........ [ Lnered [ SNPs ] [ Indels ]] ® ©
RNAseq Reads troubleshoot use in project
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Gene Fusion

3/20/17

Table 3: Performance of fusion-detection tools on the mixed dataset.

From: Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data

Tools
Bellerophontes
BreakFusion
Chimerascan
EricScript
FusionCatcher
FusionHunter
FusionMap
JAFFA
MapSplice
nFuse
SOAPfuse

TopHat-Fusion

Total
Fusions
detected

43

*

*

39
31
0
60
23
71
40

*

28

True fusions
detected

34

*

*

39
31
0
36
22
42
38

*

28

False fusions
detected

9

*

24

35

*

0

Sensitivity
(%6)
68
*

*

78
62
72
44
84
76

*

56

Positive
predictive
value (%)

79

*

*

100

100

60
95.6
54
95

*

100

Time used
(Minutes)

1012

*

*

677
932
1202
120
3845
3825
2306

*

2443

“Indicates the software errors occurred in the handling of intermediate files. No final result was produced.
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Memory
(GB)

10.38
*

*

4.67
1.76
5.86
12.50
89.4
5.48

12.57

2.55




MIRNA-Seq

mirseq_mirdeep2_mapper |

mirseq_fastqc_posttrim

(mirseq_expression_reportsj
mirseq_summarize ' ( (mirseq_gencode_classiﬁcation) mirseq_miRspring_bowtie [mirseq_van'ants) (mirseq_make_bams_bwa)
\ N '/’ '\‘ . / g
mirseq_differential_expression ' mirseq_main_document ' | mirseq_miRspring_bwaJ (mirseq_initj ' ) mirseq_fastqc_pretrim
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bioinformatics.cancer.gov
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Bioinformatics @ ‘G

Home Ask for Help Training & Education CCBR Publications

Bioinformatics Support at CCR

The CCR Collaborative Bioinformatics Resource (CCBR) is an organizational
umbrella which provides a mechanism for CCR researchers to obtain many different
types of bioinformatics assistance to further their research...

About CCBR

Who we are
How CCBR Works

Pipeliner: for analysis of Exome-
Seq, Genome-Seq and RNA-Seq
data

NGS Experimental Design: Best
Practices

View Edit Revisions

CCR Collaborative Bioinformatics Resource (CCBR)

The CCR Collaborative Bioinformatics Resource (CCBR) is a resource group which provides a mechanism for CCR
researchers to obtain many different types of bioinformatics assistance to further their research goals. The group has expertise in a broad
range of bioinformatics topics, and as such, its goal is to provide a simplified central access point for CCR researchers.

The CCBR group includes members of the CCR Office of Science and Technology Resources (OSTR), Frederick National Laboratory for Cancer
Research (FNLCR) and the Center for Biomedical Informatics and Information Technology (CBIIT). The CCBR may also direct projects to other
available CCR bioinformaticians as needs demand. Requests for any type of Bioinformatics support should be through the CCBR Project
Submission Form.
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CCBR support includes:

Consulting on experimental design, help with analysis and interpretation
of biological data produced by large-scale genomics technologies
including Next-generation sequencing (RNA-Seq, Exome-Seq, ChlIP-Seq,
Whole genome Sequencing), and microarrays

Support for the development of methods for new technologies provided
by the Office of Science and Technology Resources (OSTR)

Provide training classes to CCR scientists focusing on software used in the
analysis of their own data
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CCBR Members

Office of Science and Technology Frederick National Laboratory of
Resources (OSTR) Cancer Research (Leidos)

Parthav Jailwala (Manager)
Fathi Elloumi
Justin Lack

Maggie Cam (Head)

Center for Biomedical

Informatics and Information Bong-Hyun Kim

Technology (CBIIT) George Nelson
Alexei Lobanov

Chunhua Yan Jack Chen
Ying Hu Ashley Walton
Richard Finney Vishal Koparde

Soon to be part of CDSL (CCR Cancer Data Science Lab)
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Take Home Message:

While you are planning your RNA-Seq

experiment (not after), please come talk
to us.

CCBR@mail.nih.gov




