
An Overview

on Experimental Subtypes and Variations of ChIP-Seq

Alexei Lobanov, PhD, CCBR

The DNA + histone = chromatin

Chromatin's structure is currently poorly understood despite being subjected to intense investigation.

Nobel Prizes for chromatin research:

Year	Who	Award
1910	Albrecht Kossel (University of Heidelberg)	Nobel Prize in Physiology or Medicine for his discovery of the five nuclear bases: adenine, cytosine, guanine, thymine, and uracil.
1933	Thomas Hunt Morgan (California Institute of Technology)	Nobel Prize in Physiology or Medicine for his discoveries of the role played by the gene and chromosome in heredity, based on his studies of the white-eyed mutation in the fruit fly <i>Drosophila</i> . ^[29]
1962	Francis Crick, James Watson and Maurice Wilkins (MRC Laboratory of Molecular Biology, Harvard University and London University respectively)	Nobel Prize in Physiology or Medicine for their discoveries of the double helix structure of DNA and its significance for information transfer in living material.
1982	Aaron Klug (MRC Laboratory of Molecular Biology)	Nobel Prize in Chemistry "for his development of crystallographic electron microscopy and his structural elucidation of biologically important nucleic acid-protein complexes"
1993	Richard J. Roberts and Phillip A. Sharp	Nobel Prize in Physiology "for their independent discoveries of split genes," in which DNA sections called exons express proteins, and are interrupted by DNA sections called introns, which do not express proteins.
2006	Roger Kornberg (Stanford University)	Nobel Prize in Chemistry for his discovery of the mechanism by which DNA is transcribed into messenger RNA.

Regulatory DNA in humans:

•Transcription factor: Using the ChIP-Seq technique, the binding sites to DNA in certain transcription factor groups are determined, and the DHS profiles are compared. The results confirm a high correlation, which show that the coordinated union of certain factors is implicated in the remodeling and accessibility of chromatin.

•DNA methylation patterns: CpG methylation has been closely linked with transcriptional silencing. This methylation causes a rearrangement of the chromatin, condensing and inactivating it transcriptionally. Methylated CpG falling within DHSs impedes the association of transcription factor to DNA, inhibiting the accessibility of chromatin. Data argue that methylation patterning paralleling cell-selective chromatin accessibility results from passive deposition after the vacation of transcription factors from regulatory DNA. •Promoter chromatin signature: The H3K4me3 modification is related with transcriptional activity. This modification takes place in adjacent nucleosome to the transcription start site (TSS), relaxing the chromatin structure. This histone modification is used as a marker of promoters, using it to map these elements in the human genome.

•Promoter/enhancer connections: distal cis-regulatory elements, such as enhancers are in charge of modulating the activity of the promoters. In this way, the distal cis-regulatory elements are actively synchronized with their promoter in the cellular lines which is active the expression of the gene controlled. Using the DHS profiles, were looked for correlations between DHS to identify promoter/enhancer connections. Thus, it was able to create a map of candidate enhancers controlling specific genes.

Methods to investigate chromatin:

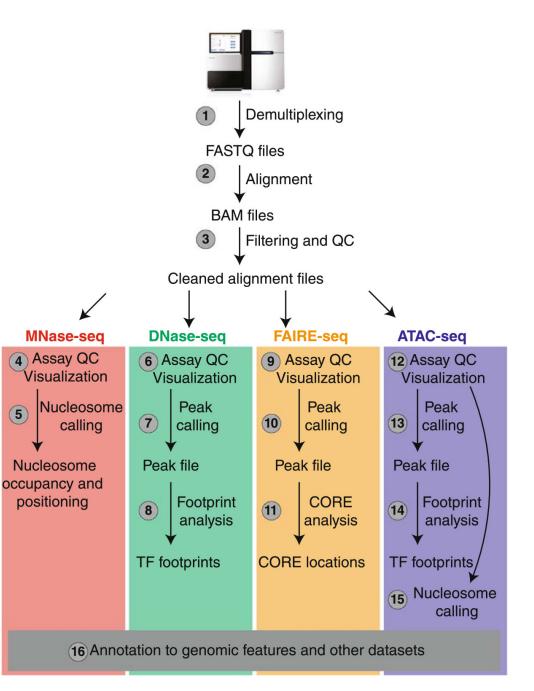
1.<u>ChIP-seq</u> (Chromatin immunoprecipitation sequencing), aimed against different histone modifications, can be used to identify chromatin states throughout the genome. Different modifications have been linked to various states of chromatin.

2.<u>DNase-seq</u> (DNase I hypersensitive sites Sequencing) uses the sensitivity of accessible regions in the genome to the DNase I enzyme to map open or accessible regions in the genome.

3.<u>FAIRE-seq</u> (Formaldehyde-Assisted Isolation of Regulatory Elements sequencing) uses the chemical properties of protein-bound DNA in a two-phase separation method to extract nucleosome depleted regions from the genome.

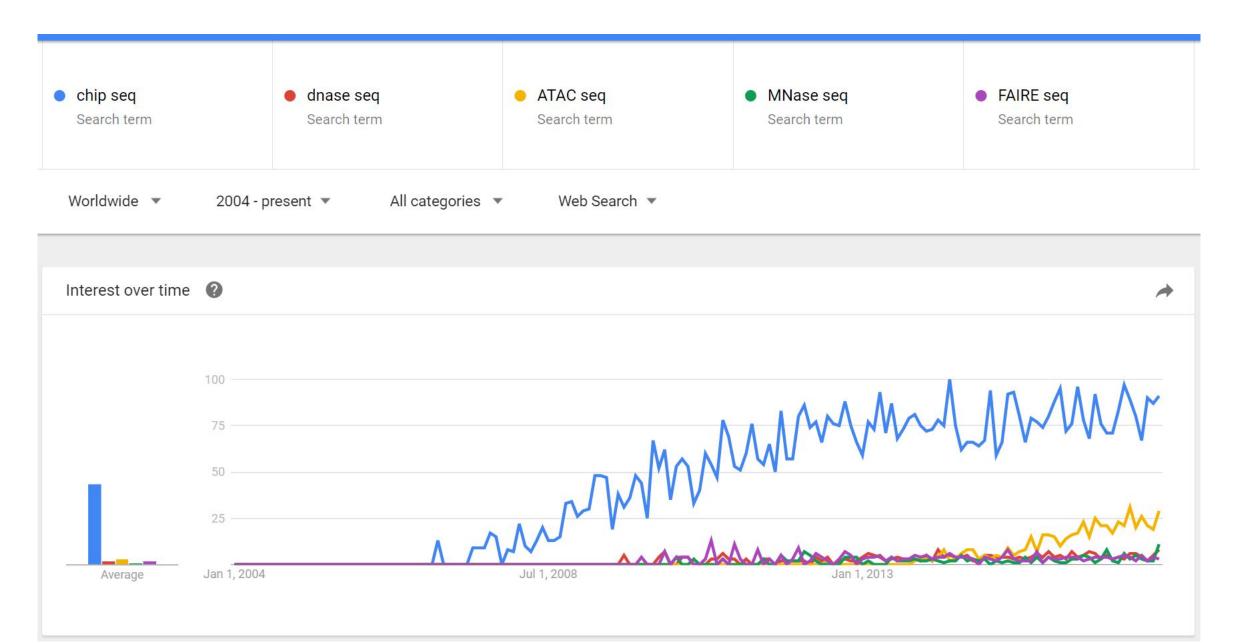
4.<u>ATAC-seq</u> (Assay for Transposable Accessible Chromatin sequencing) uses the Tn5 transposase to integrate (synthetic) transposons into accessible regions of the genome consequentially highlighting the localisation of nucleosomes and transcription factors across the genome.

5.<u>MNase-seq</u> (Micrococcal Nuclease sequencing) uses the micrococcal nuclease enzyme to identify nucleosome positioning throughout the genome.


6.<u>DNA footprinting</u> is a method aimed at identifying protein-bound DNA. It uses labeling and fragmentation coupled to gel electrophoresis to identify areas of the genome that have been bound by proteins.

7.<u>Chromosome conformation capture</u> determines the spatial organization of chromatin in the nucleus, by inferring genomic locations that physically interact.

8.<u>MACC profiling</u> (Micrococcal nuclease ACCessibility profiling) uses titration series of chromatin digests with micrococcal nuclease to identify chromatin accessibility as well as to map nucleosomes and non-histone DNA-binding proteins in both open and closed regions of the genome.


Outline:

- DNase-seq
- FAIRE-seq
- ATAC-seq
- MNase-seq

Tsompana and Buc, Epigenetics & Chromatin (2014)

The Popularity of Methods:

DNase-seq

DNase I hypersensitive sites **seq**uencing

Volume 132, Issue 2, 25 January 2008, Pages 311–322

Resource

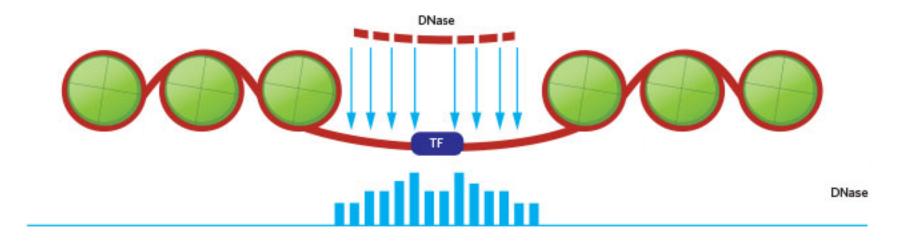
High-Resolution Mapping and Characterization of Open Chromatin across the Genome

Alan P. Boyle¹, Sean Davis³, Hennady P. Shulha², Paul Meltzer³, Elliott H. Margulies⁴, Zhiping Weng², Terrence S. Furey¹, ^A, ^M, Gregory E. Crawford¹, ^A, ^M

GOAL:

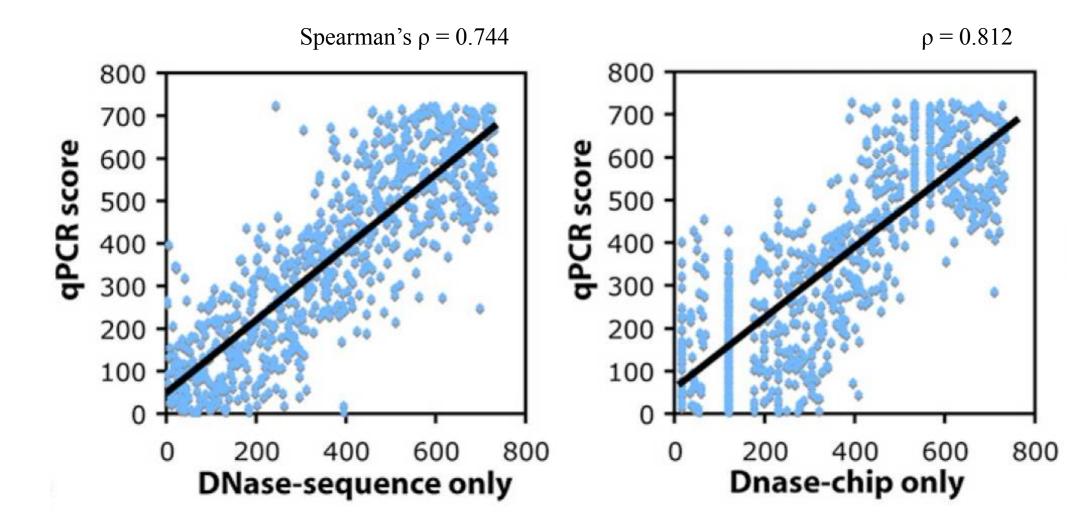
identify the location of regulatory regions,

based on the genome-wide sequencing of regions sensitive to cleavage by DNase I


(since the discovery of such regions 30 years ago, they have been used as markers of regulatory DNA regions)

DNase-seq Footprinting:

<u>Segmentation-based</u> methods (HINT, Boyle method and Neph method): use of sliding window to segment the genome into open/closed chromatin region.


<u>Site-centric methods (CENTIPEDE, Cuellar-Partida method)</u>: find footprints given the open chromatin profile around motif-predicted binding sites, i.e., regulatory regions predicted using DNA-protein sequence information (Position weight matrix).

DNase-seq

How it works: DNase-seq takes advantage of the fact that exposed regions of the genome are naturally more prone to degradation by DNases. The method employs the enzyme DNase I to cleave DNA at sites along the genome that are not wrapped around nucleosomes, which become displaced by the binding of transcription factors. These small fragments, which are thought to infer the presence of transcription factors, are then sequenced and mapped to the genome.

DNase-seq and DNase-chip results correlate with qPCR

Boyle AP et al, Cell, 2008

DNase-seq potential limitations

- Fresh samples only!
- The efficiency of DNase-seq in identifying TF binding sites is highly dependent on fragment size;
- Requires careful calibration of digestion conditions; finding the optimal digestion conditions for a given cell type and number could be challenging.
- Also requires greater sequencing depth (fragments longer than 147 bp saturate at much higher levels than shorter reads), and thus it may be challenging to analyze rare patient samples.

Problems and solutions:

- What if you don't have recommended amount (50 million) of cells?

There are reports of successful experiments with lower numbers. Experimental conditions need to be adjusted empirically, depending on cell type and quantity.


- What if cells were lysed insufficiently (or excessive)?

Different cell lines show different sensitivity. Test different concentrations on a smaller amount of cells (5 million) first.

- What if DNA wasn't cut properly?

The same as above: experimental conditions needs to be adjusted (enzyme concentration, cell amount, time)

Footprinting: considerations

Analysis of computational footprinting methods for DNase sequencing experiments

Eduardo G Gusmao, Manuel Allhoff, Martin Zenke & Ivan G Costa

Affiliations | Contributions | Corresponding author

Nature Methods 13, 303–309 (2016) | doi:10.1038/nmeth.3772 Received 31 July 2015 | Accepted 27 January 2016 | Published online 22 February 2016

DNase I's cutting bias may limit the method's usefulness for the identification of DNA footprints.

(Analysis of binding of 36 different transcription factors revealed that DNaseseq data were not useful for illuminating footprints for many of them).

"If you see a pattern in the naked DNA, then you know it's got nothing to do with transcription-factor binding" © Clifford Meyer.

More recent analysis of DNase-seq data (> 80 TFs) indicated that a few advanced digital footprinting methods were not affected by cleveage bias.

"Our message is:

Don't look for footprints in raw DNAse-seq data, rather use state of art computational footpriting tools as HINT, DNAse2TF or PIQ"

DNase-seq has historically been a valuable tool for identifying all different types of **regulatory elements**, including promoters, enhancers, silencers, insulators and locus control regions.

DNase-seq is better established than any of the other chromatin accessibility methods. It was applied to a wide range of cell types and species, including **plants**.

Its cutting **bias** is better understood.

DNase-seq could be used for analysis of protected regions of the genome (DNase **footprinting**)

However, it does not directly explain **biological functions** of these elements. Therefore, it has to be supplemented by other methods.

The question if DNase-seq can replace **ChIP-seq** (and to which degree) is a subject of further investigations.

FAIRE-seq

Formaldehyde-Assisted Isolation of Regulatory Elements sequencing

HOME ABOUT ARCHIVE SUBMIT SUBSCRIBE ADVERTISE AUTHOR INFO CONTACT HELP

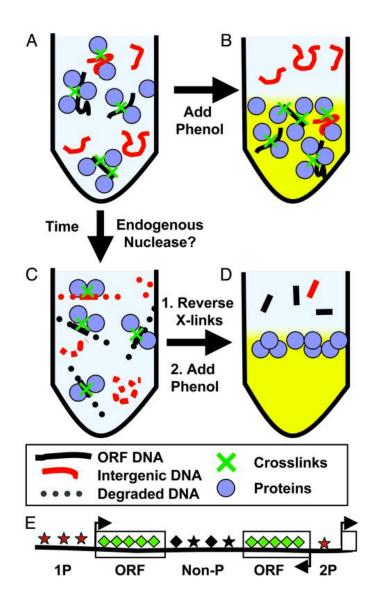
Institution: NIH LIBRARY Sign In via User Name/Password

FAIRE (<u>Formaldehyde-Assisted Isolation of</u> <u>Regulatory Elements</u>) isolates active regulatory elements from human chromatin

Paul G. Giresi¹, Jonghwan Kim², Ryan M. McDaniell², Vishwanath R. Iyer², and Jason D. Lieb^{1,3}

¹ Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA;

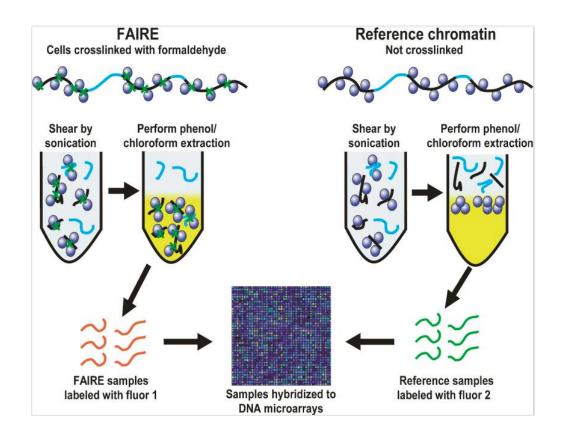
² Institute for Cellular and Molecular Biology and Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712-0159, USA


Table of Contents				
OPEN ACCESS ARTICLE				
This Article				
Published in Advance December 19, 2006, doi: 10.1101/gr.5533506				
<i>Genome Res.</i> 2007. 17: 877– 885				
Copyright © 2007, Cold Spring Harbor Laboratory Press				
- Abstract <i>Free</i>				
= » Full Text <i>Free</i>				
Full Text (PDF) Free				
All Versions of this Article:				
= gr.5533506v1				
= 17/6/877 <i>most recent</i>				

« Previous | Next Article »

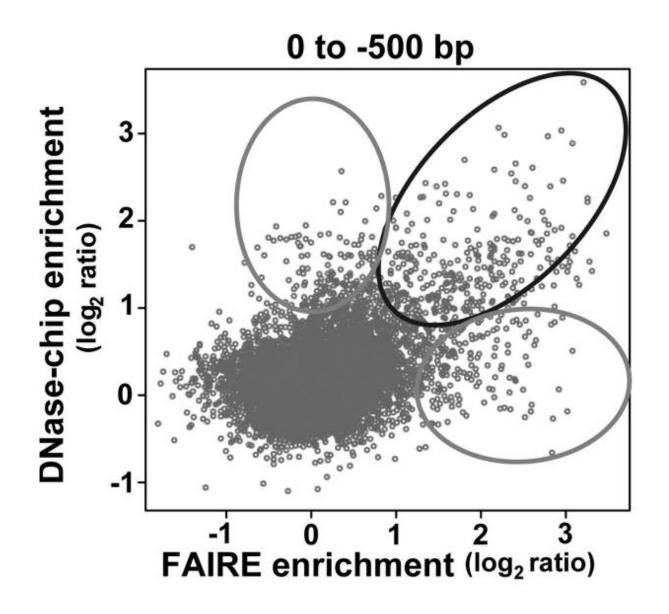
FAIRE

"We report here a genomewide approach for fractionating yeast chromatin into two functionally distinct parts, one containing RNA polymerase II transcribed sequences, and the other comprising noncoding sequences and genes transcribed by RNA polymerases I and III"


Nagy et al, PNAS USA (2003)

FAIRE-seq

GOAL:


determine the sequences of DNA regions in the genome associated with regulatory activity

In contrast to DNase-seq, the FAIRE-seq protocol doesn't require the permeabilization of cells or isolation of nuclei, and can analyze any cell types

In a study of seven diverse human cell types, DNase-seq and FAIRE-seq produced strong cross-validation, with each cell type having 1-2% of the human genome as open chromatin.

Cell-type specific differences identified by FAIRE

Advantages:

Antibody and enzyme independency. In contrast to ChIP, which is highly subject to antibody reliability and variability issues, FAIRE offers the consistency of a chemical-based isolation. Moreover, FAIRE does not require enzymes, such as DNase or MNase, which are commonly used in analogous methods for detecting nucleosome-free regions.

Enhancer detection. FAIRE may identify additional transcriptional enhancers and other distal regulatory elements in comparison to other methods such as DNase-seq.

Sequenced input control not required. A sequenced input control is generally not required for proper analysis of FAIRE-enriched regions. This reduces next-generation sequencing costs as well as the cost of reagents.

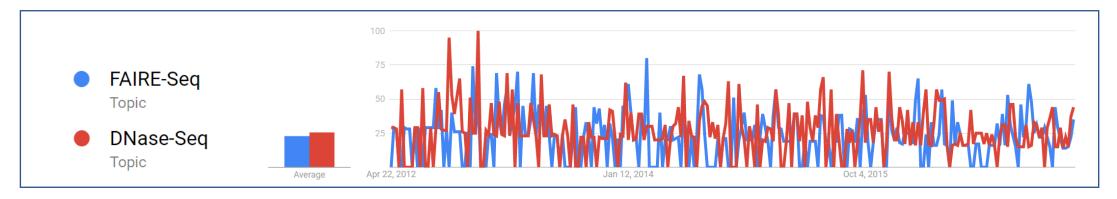
Applicability to tissue samples. As FAIRE does not require a single-cell suspension or nuclear isolation, it is easily adapted for use on tissue samples. The only additional step needed is pulverization of frozen tissue into a coarse powder before fixation.

Reproducibility. Avoiding the optimization and extra steps necessary for enzymatic processing or immunoprecipitations eliminates a major source of variation, and thus makes it a much more reliable and robust method. FAIRE is remarkably reproducible from experiment to experiment.

Limitations:

Promoter detection. Other methods, such as DNase-seq, may be better at identifying nucleosome-depleted promoters of highly expressed genes.

Analysis. Although FAIRE is relatively straightforward experimentally, an extensive amount of computational processing and analysis is required for comprehensive interpretation of genome-wide results. Quantification of FAIRE signal by qPCR or microarrays may be more straightforward.


Absence of transcription factor footprinting. Transcription factor motifs can be identified in regions of open chromatin identified by FAIRE. However, the higher resolution and increased signal-to-noise of DNase-seq permits detection of specific transcription factor footprints in very deeply sequenced data.

Low signal-to-noise ratio. The sites detected by FAIRE can, at times, be only marginally enriched above the background signal. This leads to a reduced confidence in the sites identified.

Fixation variation among tissues. Fixation efficiency can vary considerably for many reasons, including differences in cellularity, permeability, purity, fat content and surface area. This variability can lead to inconsistent results; optimization is thus recommended.

Remarks

1	Solutions Create account Log in					
ο Ω W a	Article Talk Edit View history Search Wikipedia					
WIKIPEDIA	DNase-Seq					
The Free Encyclopedia	From Wikipedia, the free encyclopedia					
Main page Contents Featured content Current events Random article	DNase-seq (DNase I hypersensitive sites sequencing) is a method in molecular biology used to identify the location of regulatory regions, based on the genome-wide sequencing of regions sensitive to cleavage by DNase I. ^{[1][2][3]} FAIRE-Seq is a successor of DNase-seq for the genome-wide identification of accessible DNA regions in the genome. Both the protocols for identifying open chromatin regions have biases depending on underlying nucleosome structure. For example, FAIRE-seq provides higher tag counts at non-promoter regions. ^[4] On the other hand, DNase-seq signal is higher at promoter regions, and DNase-seq has been shown to have better sensitivity than FAIRE-seq even at non-promoter regions. ^[4]					

The University of Chicago's Jason Lieb, who developed FAIRE-seq several years ago, has mostly switched over to the ATAC-seq because it gives a better signal.

ATAC-seq

Assay for Transposase-Accessible Chromatin *with high throughput* sequencing nature

methods

Techniques for life scientists and chemists

Home | Current issue | Comment | Research | Archive * | Authors & referees * | About the journal *

home > archive > issue > article > full text

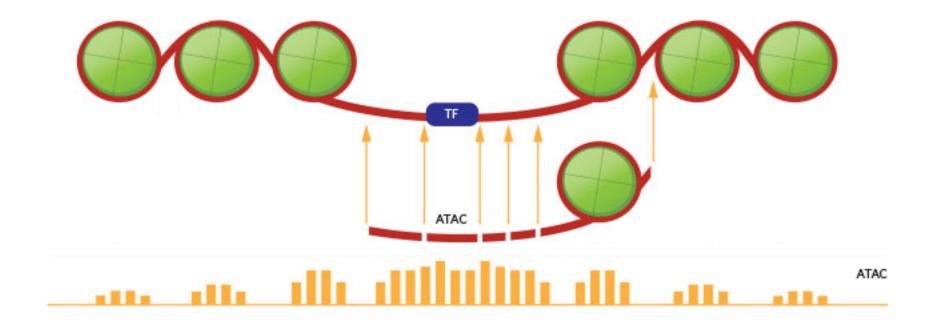
Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position

Jason D Buenrostro, Paul G Giresi, Lisa C Zaba, Howard Y Chang & William J Greenleaf

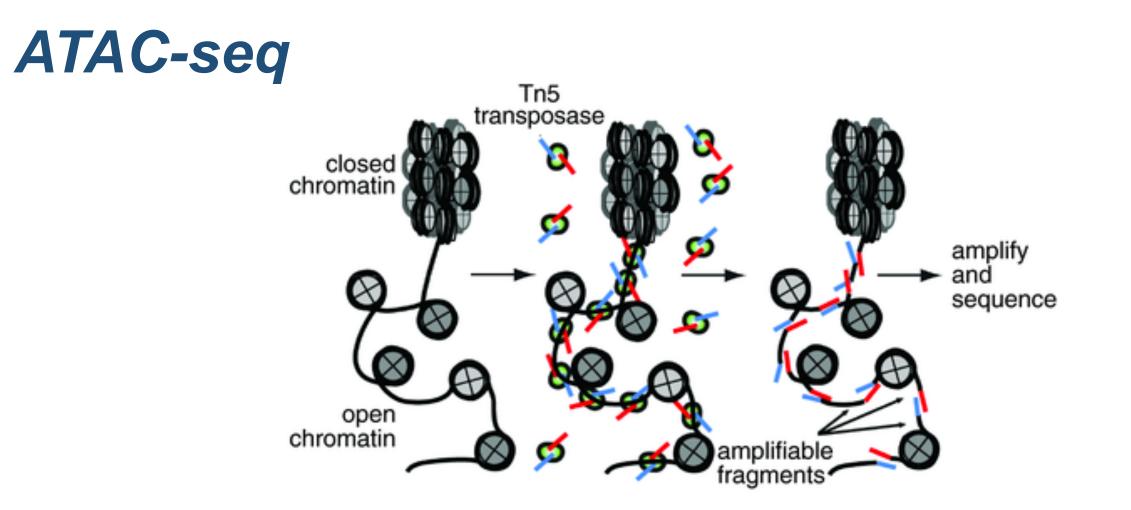
Affiliations | Contributions | Corresponding authors

Nature Methods 10, 1213–1218 (2013) | doi:10.1038/nmeth.2688 Received 20 June 2013 | Accepted 29 August 2013 | Published online 06 October 2013

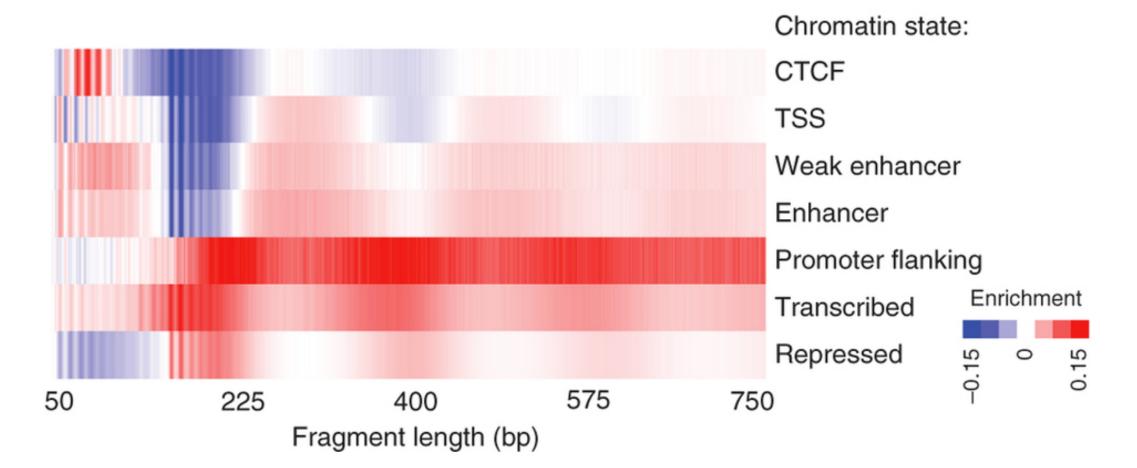
ATAC-seq


GOAL:

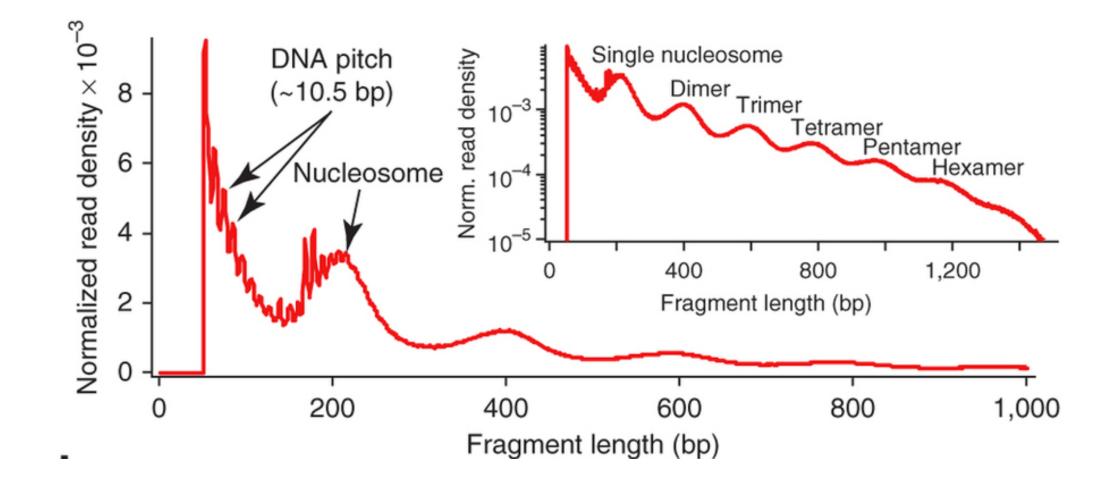
identify accessible DNA regions (equivalent to Dnase I hypersensitive sites)

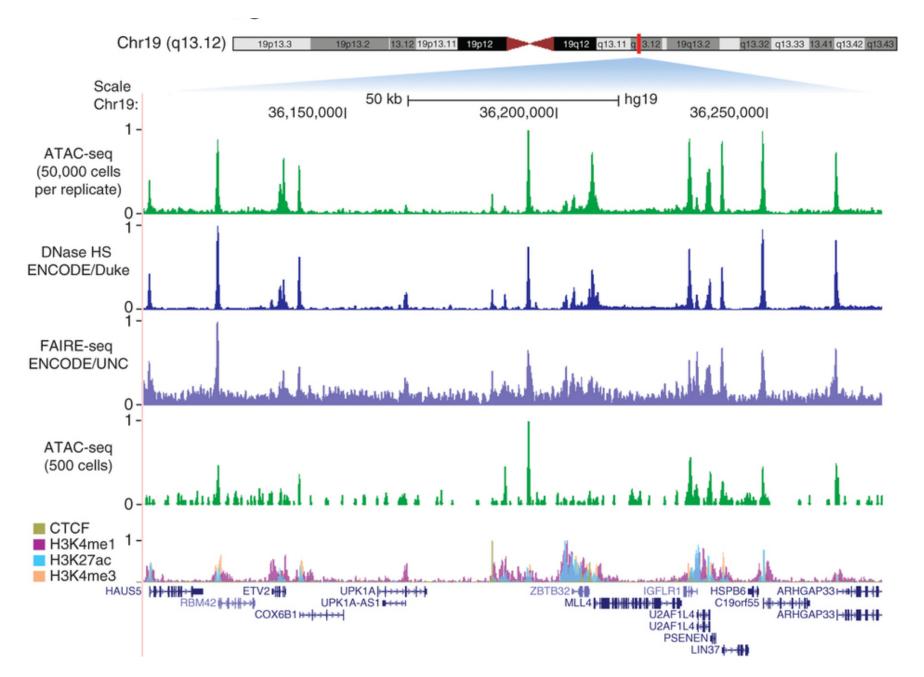

The key part of the ATAC-seq procedure is the action of the **transposase Tn5** on the genomic DNA of the sample (transposases are enzymes catalyzing the movement of transposons to other parts in the genome)

ATAC-seq employs a mutated hyperactive transposase (naturally occurring transposases have a low level of activity)

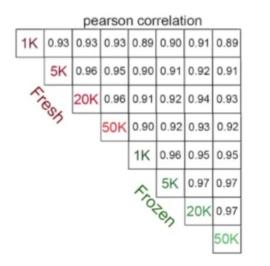


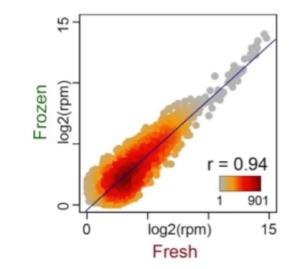
How it works: ATAC-seq inserts sequencing adapters directly into accessible DNA using the enzyme Tn5 transposase. The bits captured between the adapters are then amplified with qPCR and sequenced.




Each sequencing read points to a position on the genome where one transposition (or cutting) event took place during the experiment

Normalized read enrichments for seven classes of chromatin state


ATAC-seq



ATAC-seq works for frozen samples

Biobanked and Freshly Processed Samples Identify Similar Sets of Peaks

Dr Chris Scharer, Emory University

http://www.selectscience.net

Advantages

- Requires fewer cells:
 50,000 cells are sufficient
- The protocol is the easiest of any of the accessibility methods
- the signal-to-noise ratio is fantastic
- Speed:

less experimental calibration (the protocol requires 3 hours)

Starting material Preparation time FAIRE-seq Image: seq Image: seq DNase-seq Image: seq Image: seq ATAC-seq Image: seq Image: seq No. of cells 10²10³10⁴10⁵10⁶10⁷10⁸ Day 1 2 3 4

Disadvantages

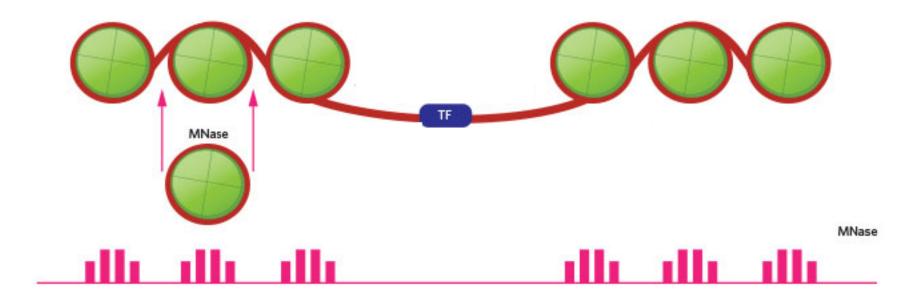
- Bias characteristics are not well understood
- Starting materials are slightly more expensive
- There's not much precedent for ATAC-seq footprinting yet

MNase-seq

Micrococcal Nuclease sequencing

Volume 144, Issue 2, 21 January 2011, Pages 175–186

Primer


High-Resolution Genome-wide Mapping of the Primary Structure of Chromatin

Zhenhai Zhang¹, B. Franklin Pugh^{1,} 📥 , 🔤

¹ Center for Comparative Genomics and Bioinformatics, Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA

Available online 20 January 2011

How it works: MNase works by chewing up exposed stretches of the genome; the DNA associated with nucleosomes is recovered and sequenced. That makes MNase-seq the inverse of ATAC-seq and DNase-seq, at least conceptually.

Advantages

- Can be used to study regulatory factors that bind to nucleosomes (in combination with ChIP-seq);
- MNase-seq has been used on the cells of **many species**, from yeast to humans.

Disadvantages

- MNase-seq requires 10–20 million cells;
- Most enzymes used in chromatin accessibility assays have sequence-specific biases; MNase likes to cut in AT-rich regions of the genome;
- For reasons that are not always clear, certain regions of the genome are more sensitive than others to MNase digestion;
- There's no publications for single cell applications yet.

MNase-seq

Sequencing	Cell type/Number	Traditional approach	Genomic target	Experimental considerations
Single End and Paired End	Any cell type 1 to 10 million cells	MNase digests unprotected DNA	Maps the total nucleosome population in a qualitative and quantitative manner	 Requires many cells. Laborious enzyme titrations. Probes total nucleosomal population, not active regulatory regions only. Degrades active regulatory regions, making their detection possible only <i>indirectly</i>. Requires 150 to 200 million reads for standard accessibility studies of the human genome.

MNase digestion has been applied to study chromatin structure in a low-throughput manner since the early 1970s;

MNase-seq probes chromatin accessibility *indirectly*, by unveiling the areas of the genome occupied by nucleosomes and other regulatory factors;

MNase digestion produces DNA fragments with ends that correspond to the ends of nucleosomes and, thus, produces maps with very high **resolution**;

DNase-seq and MNase-seq are not perfect opposites:

DNase-seq and ATAC-seq = <u>exposed</u> regions of DNA,

MNase-seq = regions protected by nucleosomes.

But because the methods provide **snapshots** of a dynamic process that is averaged across many thousands of cells, DNase- and ATAC-seq do not provide data that perfectly complement those of MNase-seq;

Although nucleosome size is 147 bp in higher eukaryotes, the real size of DNA fragments after MNase digestion can **vary** from ~120 bp to 170 bp;

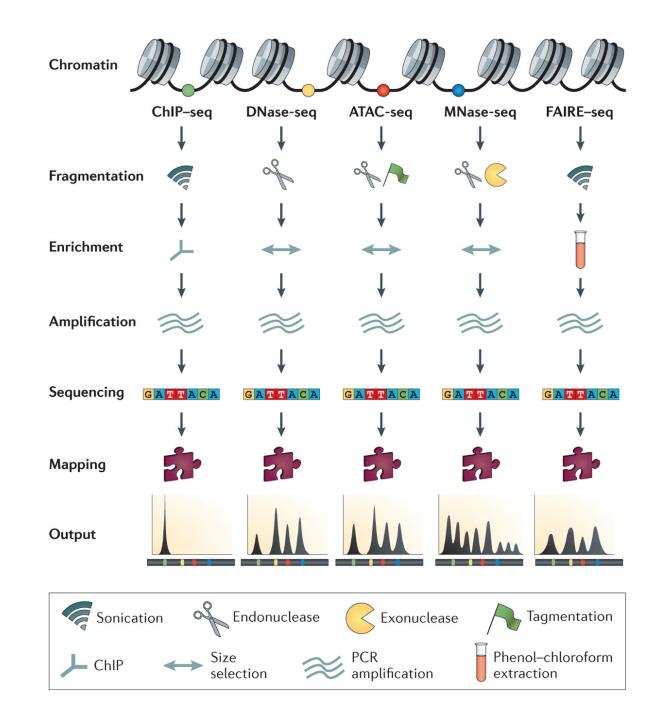
Chromatin accessibility high-throughput sequence data analysis

	Detection of enriched regions	Estimation of nucleosome organization and TF occupancy metrics	
	1. GeneTrack	1. Nucleosome positioning algorithms	
MNase-seq	2. Template filtering algorithm	2. Nucleosome occupancy algorithms	
	3. DANPOS	3. V-plots for TF occupancy	
	4. iNPS		
	1. F-Seq	1. Digital genomic footprinting algorithms	
DNase-seq	2. Hotspot, DNase2Hotspots	2. Nucleosome and TF occupancy algorithms	
	3. ZINBA	3. CENTIPEDE	
	4. MACS		
FAIRE-seq	1. MACS2	Not available	
•	2. ZINBA		
ATAC-seq	1. ZINBA	1. Digital genomic footprinting algorithms	
AIAC-SEY	2. MACS2	2. CENTIPEDE	
	3. Hotspot, DNase2Hotspots		

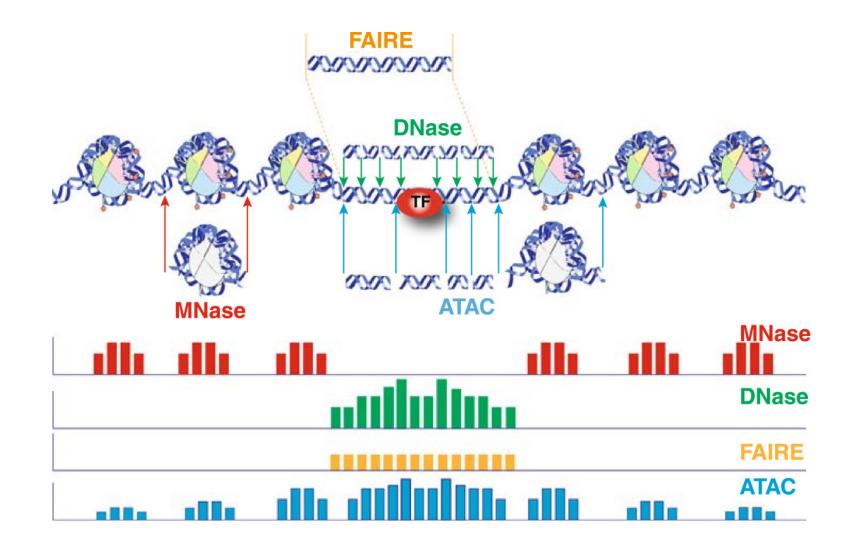
Maria Tsompana and Michael J Buck

Pipelines and software:

O Features Business Explore Price	This repository Search	Sign in or Sign up	
L kundajelab / atac_dnase_pipelines	• Watch 35	★ Star 36 ¥ Fork 22	
Code ① Issues 5 ① Pull requests ①	0 III Projects 0 🔸 Pulse 🔟 Graphs		
ATAC-seq and DNase-seq processing pipe	ENCODE Data Encyclopedia Materials & Methods Help	Search	٩
atac-seq dnase-seq bioinformatics-pipeline			
0 750 committe	PIPELINES / DNASE-SEQ		
759 commits 16 branc	DNase-seq pipeline		
Branch: master - New pull request	Status: active		
🌲 leepc12 fix bug (Map 'map' does not have key	Title: DNase-seq pipeline		
ataqc @ 55cc7f3 ATAQ(Assay: DNase-seq		
in etc blacki	Description: ENCODE DNase-seq pipeline Version 1 (Stamato	vannopoulos)	
examples added		PLOTS TABLES EXPERIMENTS HELP	
html refact	Award PI: John Stamatoyannopoulos, UW	Data from Transposition of native chromatin for fast and sensitive epigenomic profiling of op	en chromatin, DNA-binding proteins and nucleosome position, Buenrostro et al., 201
modules fix du	Pipeline schematic	Distance from reference fragment length distribution	
utils fix EN	-		
in utils fix EN		80 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mouse over dots to see experiment details. Double click or use the mouse wheel or trackpad scroll to zoom. Drag to pan.
	fastq concatenation, filtering, alignment peak calling	€ 60 1 0 1 0	Mouse over legend items to highlight samples. Click them to toggle sample visibility. You can change the data source of the y axis with the Y AXIS select box below.
	BWA, Picard	kiji do	
	Download Graph		
		to to to to to to to to the the the	
		Distance from reference fragment length distribution	
		Y AXIS: High-quality autosomal (%)	GSM1155958 GSM1155959
		GSM1155960 RESET ZOOM GSM1155963 GSM155966	GSM1155961 GSM1155962 GSM1155964 GSM1155965 GSM155967 GSM155968
		SHOW ALL GSM1155969	


DNase-seq data analysis bioinformatics software tools *BELATED* +Submit tool DNase-sed o of DNase I hypersensitive sites (DNase-werful technique for identifying cis-elements across the genome. Many entry analyzing DNase-seg data are using ned for (JTF-seg work, but may be te for DNase-seg data. INFORMATION HOMER / Hyperoeometric Optimiz... +++++ (4) ■0 discussions Favorited 1 time A suite of tools for Motif Discovery and next den sequencing analysis, HOMER contains many discut tools Dura dia Juni kan'i ani suk yang mpantantikan mananti HOMER PIO / Protein Interaction Quantita.... (U) I 0 discussions A computational method for modeling the magnitude and shape of denome-wide DNase1 S COLORE S PIQ 1 2 DFitter (0)
 O discussions
 A detection algorithm that identifies
 requiratory teatings in Chilly-seq
 DNase-seq and HAIRE-seq data DFilter C CERMIT (0) I O discussions Pipeline for analysis of deep sequencing data (ChIP-seq, DNasel CERMIT SSA / Submodular Selection of At.
 (0)
 O discussions
 Chooses a diverse panel of genomic
 assays that leverages methods
 from submodular Adtimization, SSA SSA MuSERA O TEPIC (0) = 0 discussions Predicts transcription factors, products transcription factors, prod ALTRE / ALTRE / ALTered Regulatory Elem. ALTRE An R package and associated R Shiny web app for differential analysis of redulatory elements ChiLin (0) ■ 0 discussions Automates quality controls and data analyses on ChiP*seq and DNase-seq data. ChiLin denerates ChiLin Desktop ONaseZIF An efficient tootprint detection, program. UNaseZIF searches for relatively protected recions within DNase2TF pyDNase pyDNase A library tor analyzing DNase-seq data. Wany people correctly analyzing DNase-seq data. Analyzing DNase-se SeqPlots SeqPlots Visualizes next-generation sequencie (NOS) signals and sequencie (NOS) signals and DeFCoM (Detecting Footprints Cc. A supervised learning based footprint prediction framework. DefCoM was designed to capture DeFCoM Romulus (0)
O discussions A computational method for, identifying individual transcription factor (TP) binding sites from Romulus PeaKDEck
 (U) = 0 discussions
 A peak-caling algorithm written in
 Perform the performance for use in the
 performance of the per PeaKDEck FootorintMixture (0) Bi 0 discussions A mixture modeling tranework to train multinomial based footprint models and assign footprint BinDNase

 (0) Bit 0 discussions
 A discriminative algorithm for predicting 11-DNA interaction sites using DNase-seq.data. BinDNase


 BinDNase CENTIPEDE (U) = 0 discussions Applies a hierarchical Bavesian thixture model to infer regions of the cenome that are bound by CENTIPEDE msCentipede
 msCentipede
 d) = 0 discussions
 An algorithm for accurately interring
 transcription flactor binding sites
 using chromatun accessibility data Mocap (0) E 0 discussions Мосар Integrates chromatin accessibility, moth scores, I/F footprints, CBC/CC content, evolutionary conservation HINT / Hmm-based ideNtification.
 ()) H 0 discussions
 A method based on hidden Markov models to integrate 0 hase 1 hybersensitivity and histore. HINT ONaseR () B discussions Enables the identification of protein binding rootprints in DNase I bypersensitive sites sequencing DNaseR LR-DNase / logistic regression DN. () El 0 discussions A logistic regression model. UN-DNase predicts binding sites for a specific transcription factor (LP) LR-DNase Algorithm By using OMICtools you acknowledge that you have read and accepted the terms of the end user license agreement.

ataqv

HPUT SEQUENCING > DN

"Take Home" message:

Maria Tsompana and Michael J Buck, Epigenetics & Chromatin (2014)

It is very simple...

Dr. Peter FitzGerald, Dr. Anand Merchant, Dr. Bong-Hyun Kim,

and CCBR Team

