Artificial Intelligence Interest Group

https://oir.nih.gov/sigs/artificial-intelligence-interest-group

https://list.nih.gov/cgi-bin/wa.exe?AO=ARTIFICIAL-INTELLIGENCE

(Weekly email with upcoming Al-related events)
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Al Club

* Seminars, workshops, and journal clubs
* Broad range of topics — Al approaches in biomedical sciences
* Forboth experts and non-experts

* Mondays, T1AM-12PM
* Building 10, NIH Library Training Room (and virtual)

* Always looking for volunteers!
e emailoneillrs@nih.gov

Current Schedule:

Sept 15 -Samar Samarjeet (NHLBI) - “Parallel ML Model Training, Part 1”

Sept 22 - Samar Samarjeet (NHLBI) - “Parallel ML Model Training, Part 2”

Sept 29 - Samar Samarjeet (NHLBI) - “Parallel ML Model Training, Part 3”

Oct 6 -Samar Samarjeet (NHLBI) - “Parallel ML Model Training, Part4”

Oct 20 - Emma Campagnolo (NCI) - “Al-Driven Spatial Transcriptomics Unlocks Biomarker Discovery from Histopathology”
Nov 3 - Di Huang (NLM/NCBI) - “Investigating the Impact of Silencers on Disease Using Deep Learning”

Nov 10 - Sepideh Mazrouee (OD) - “Replicability in Biomedicine: Challenges, Causes, and Corrections”

Nov 17 — Eric Moyer (NLM/NCBI) - “Simple Questions Your RAG System Can’t Answer”

Dec 1 - Alexandra Fang (NINDS) - TBD



NIH Artificial Intelligence Symposium

Broad range of topics — Al approaches in biomedical sciences
Poster session, talks from NIH scientists, external keynotes

Date: Friday, May 15™, 2026 (full day)
Location: B10, Masur Auditorium

Michael Chiang, MD - Director of NEI

https://www.nei.nih.gov/about/nei-leadership/michael-f-chiang



Al-driven Behavioral Phenomics in Drosophila:
A Pipeline for Rare Disease Insights

Ryan O’Neill
Bioinformatics Community Fair
September 9", 2025



Rare Disease
Ranges from 1 in ~2,000 to “N-of-1”

Collectively, all rare diseases affect many

Upto1in 10 people affected
25-30 million Americans affected
7,000 to 10,000 distinct conditions



Drosophila has been widely used to model rare diseases
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Clement Chow Lab

Drug repurposing screens

DPAGT1 Model

Disorder
NGLY1 deficiency
DPAGT1-CDG
FAM177A1-related disorder
MAN1B1-CDG

SYNGAP1-related disorder

Suppressor Drugs
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not reported

Reference
Hope etal. 2022 PLoS Genet. PMID: 35653343
Dalton et al. 2024 PLoS Genet. PMID: 39466823

unpublished (DROS25)

unpublished (DROS25)

unpublished



Rare Disease Phenotyping Pipeline

Genes of Interest
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Al-driven Behavioral Phenotyping

Behavioral
Recordings

Building arecording
platform

Al-assisted Analysis
and Embedding

Building an Al-based
analysis pipeline



High-throughput Recording Platform

6 Flies/camera x 25 cameras = 150 flies simultaneous recording

il

Built in collaboration with NIBIB — Ghadi Salem, Marcial Garmendia-Cedillos, Peter Donley




Movie to data pipeline — Keypoint Tracking

DeepLabCut
Keypoint tracking via deep learning

e 5000+ annotated frames
* 8 diverse-looking phenotypes

* ~6.5 pixels average error

Legs
Wingtips

600 x 600 px, 40 fps, ~30 min per movie




Movie to data pipeline — Data Correction and Feature Engineering

Position/angle correction

Body part tracking Raw Keypoints data l
30 Keypoints (x, y, likelihood)

Log Likelihood Ratios

Al-based analysis

1. Behavior Label
Prediction

829 features per frame
B

Wing-Wing  Centroid Wing-Cent.-Wing

62500 frames per movie
2. Genotype Embedding

Feature Engineering



1.

Hypothesis:

Mutations cause behavioral changes

Behavior Label Prediction:

Train a network to give a
behavior label to every
frame of a movie

Analyze the behavior tracks

e Standing
 Walking

* Jumping
 Scrambling

* Groom-Head

* Groom - Front Legs
* Groom-Side Leg
e Groom-Wings

* Groom-Abdomen
* Groom-Back Legs



Behavior Labeling Neural Network Architecture

Behavior
Label

Focus Frame




Accuracy
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Behavior Labeling Accuracy
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—_— Prediction
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Behavior Label Prediction Can Reveal Differences Between Genotypes
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Hypothesis:
Mutations cause behavioral changes

2. Genotype Embedding:

* Allow the Al to determine the distinguishing
features between genotypes

* Create a“map” linking behaviors to genotypes



Al-based Analysis — Genotype embedding

Train a neural network that maps behavior to genotype, allowing for suppressor screens
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Al-based Analysis — Genotype Embedding Neural Network Architecture

Prediction

Embedding

Actual inputs are 62,500 frames
(250 chunks of 250 frames each)




Al-based Analysis — Genotype Embedding network, initial results

Network trained on 6 mutants (plus controls) —embedded into 512-dimensional space
~4000 flies, ~3500 hours of video




Summary

Genes of Interest

Rusan Lab is developing a -
phenotyping core for Rare Disease s /

Phenotyping
\/

Screening

* Humanized Drosophila disease modeling

* Scalable platforms for direct recording

* Al-based analysis for suppressor screens
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