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Germline vs Somatic Variation

• Germline Variant Analysis

• Heritable genetic variation

• Large cohort analysis -> GWAS/Burden testing (quantitative)

• Small cohort analysis -> Candidate gene identification (qualitative)

• Pedigree analysis -> variant/disease co-segregation

• Somatic Variant Analysis

• Non-heritable genetic variation arising in non-germ cells

• Tumor/Normal or tumor-only analysis

• Somatic mosaicism (e.g., Neurofibromatosis)

• Very different expectations in terms of allele frequency 
distribution



Germline vs Somatic Variant Calling

• Potentially very different allele frequency expectations

Germline - ~0.5 read proportions Somatic - ~0.3 read proportions



Germline vs Somatic Variant Calling

• Potentially very different allele frequency expectations
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Germline vs Somatic Variant Calling
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Within-sample germline allele frequency variance is 
driven by sample quality and sequencing quality

• Amount of sample input
• Sequencing depth
• Read/base quality

Somatic allele frequency variance is driven by MANY 
more factors: 

• Sample quality and sequencing quality
• Subclonality/heterogeneity
• Copy number variation
• Tumor purity



Depth Effects - Germline  17 

Suppl. Fig S2. Impact of sequencing depth on variant calling. 
Depicted is the number of true positive SNVs detected in NA12878 replicates with different 
mean genome-wide coverages. Only SNV calls in both ECR and GiaB high confidence regions 
were considered (total number of true positives = 2,618,794). Genome-wide coverages of 7X 
and 30X are indicated by the vertical grey dash lines. For a genome sequenced at mean 30X, 
around 99% of the SNVs are detected. However, for a genome sequenced at mean 7X coverage, 
less than half of the true positive SNVs are detected. 
 
 

 
 
 
 
 
  

the 2.7% of the GiaB high-confidence region that is not reliably
sequenced are presented in SI Appendix. Overall, these analyses
indicate that the current technology and sequencing conditions
generate highly accurate sequence data and SNV calls over a
large proportion of the genome.
The full extent of sequence generated for a single genome is

greater than what is defined by the boundaries of GiaB. It should
be noted that the various genome-sequencing initiatives use
different reporting of what is sequenced (“accessible genome”),
what is sequenced confidently, and whether these estimates are
reported for an individual genome or for the collective analysis
of multiple genomes. Our work specifically presents the genome
calls for a single individual benchmarked against the complete
sequence [total chromosomal length of autosomes and chro-
mosome (Chr)X, 3,031 Mb] and against the community standard
(GiaB; on autosomes + ChrX, 2,215 Mb) (SI Appendix, Table
S2). For a single individual, we map the sequence on 90–95%
of the genome—and 84% of a single genome is reported at
high confidence (see below). In contrast, several published
sequencing projects (2–5) describe genome coverage com-
puted from the combination of all genomes—not for an in-
dividual genome. Using similar metrics as those in the current
work for one 7× mean coverage 1000 Genomes Project sample
(HG02541), we find that the loss of coverage genome-wide
translates into severe loss of coverage of genes and variants
(SI Appendix, Fig. S2). For example, the American College of
Medical Genetics and Genomics recommends that laborato-
ries performing clinical sequencing seek and report mutations
of 56 genes (10). At 7× mean coverage, none of the exonic
bases for those genes in HG02541 would be covered at 30×,
30% would be covered at 10×, and 84% would be covered at 5×.
Therefore, low-coverage genomes are not suitable for clinical use
because they can only generate confidence sequence for a frac-
tion of the genome.
We also undertook the analysis of structural and copy-number

variation using the set of 200 NA12878 replicas (SI Appendix). For
short indels, the average precision and recall rates were 97.80%
and 86.32%, respectively, but with unsatisfactory reproducibility
(SI Appendix, Table S3). For structural variation larger than 50 bp
and for copy-number variation, precision estimates were below
77%, recall was below 36%, and less than 53% of the calls could
be highly reproduced (SI Appendix, Table S1). Overall, these re-
sults indicate that the identification of structural and copy-number

variation using this short-read technology is unsatisfactory for
clinical use if not supported by orthogonal technologies.

The Metrics of 10,000 Genomes. The confidence regions established
from sequencing of NA12878 and for 100 unrelated genomes
served to guide the analysis of 10,545 human genomes. These
samples cover various human populations, admixture, and an-
cestries (SI Appendix, Fig. S1). We first defined an extended
confidence region (ECR) that includes the high-confidence GiaB
regions and the highly reproducible regions extending beyond
the boundaries of GiaB (SI Appendix, Fig. S3). The ECR en-
compasses 84% of the human genome, and includes 91.5% of
the human exome sequence (GENCODE; 96 Mb), which is
consistent with recent reports on coverage of the human exome
in whole-genome analyses (11). We also examined the relevance
for clinical variant calls: 28,831 of 30,288 (95.2%) unique ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/) and HGMD (www.hgmd.
cf.ac.uk/ac/index.php) pathogenic variant positions are found in
the ECR. We have now confirmed that 373 Mb (86%) of the
additional 435 Mb of confident sequence in the ECR is also de-
fined as high-confidence in the recently released GiaB v3.2.
For 10,545 genomes, the ECR included over 150 million SNVs

at 146 million unique chromosomal positions. The mean SNV
density in the ECR is 56.59 per 1 kb of sequence. However, there
are differences across chromosomes: Chr1 is the least variable
(55.12 SNVs per kb) and Chr16 the most variable (61.26 SNVs
per kb) of the autosomal chromosomes. SNV density on ChrX is
35.60 SNVs per kb, but this estimate only considers female ge-
nomes (n = 6,320). A lower mutation rate of variation on the X
chromosome than on autosomes is thought to reflect purifying
selection of deleterious recessive mutations on hemizygous
chromosomes (12). Diversity is further reduced by the effective
population size of the X chromosome, because males only carry
one copy (13). The SNV density on ChrY is 12.70 SNVs per kb,
also consistent with previous research (14); however, only male
genomes (n = 4,225) are considered here, and only 15% of the
single Y chromosome is included in the ECR (SI Appendix, Fig.
S4). The definition of ECR allowed for more high-confidence calls
than those identified in GiaB (SI Appendix, Table S4). This is il-
lustrated by the confident identification of 3,390 ClinVar and
HGMD pathogenic variant sites identified in the 10,545 genomes:
2,628 (77.5%) were called in the GiaB region, whereas 3,191
(94.1%) could be called in the ECR (SI Appendix, Table S4).

A B

Fig. 1. Effective genome coverage and sequence reproducibility. (A) Analysis of the relationship of mean coveragewith effective genome coverage uses 100 NA12878
replicates with coverage <30×, 200 replicates with mean coverage 30× to 40×, and 25 replicates with coverage >40×. Vertical gray lines highlight mean target coverage
of 7× and 30×. Each sequencing replicate is plotted at 10× (blue) and 30× (orange) effective minimal genome coverage. (B) Analysis of reproducibility uses NA12878
genomes at 30× to 40× mean coverage (two clustering chemistries, v1 and v2, each n= 100 replicas) to assess the consistency of base calling at each position in the
whole genome. The analysis of reproducibility is then extended to 100 unrelated genomes (25 genomes permain ancestry group, African, European, and Asian, and for
25 admixed individuals). The color bars represent degree of consistency (blue, 100%; light blue, ≥90%; orange, ≥10 to <90%; red, <10%; black, failed).

11902 | www.pnas.org/cgi/doi/10.1073/pnas.1613365113 Telenti et al.

Telenti et al., 2016 PNAS

• ~30X target for genome data (below)
• ~50X target for exome, due to increased depth variance
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• ~30X target for genome data (below)
• ~50X target for exome, due to increased depth variance

average, 35 million reads per sample mapped to this region by
WGS, corresponding to a mean coverage of 39× (Table S1). We
first focused on the analysis of single-nucleotide variants (SNVs).
The mean (range) number of SNVs detected was 84,192
(82,940–87,304) by WES and 84,968 (83,340–88,059) by WGS.
The mean number of SNVs per sample called by both methods
was 81,192 (∼96% of all variants) (Fig. S1A). For 99.2% of these
SNVs, WES and WGS yielded the same genotype, and 62.4% of
these concordant SNVs were identified as heterozygous (Fig.
S1B). These results are similar to those obtained in previous WES
studies (1, 5, 22). Most of the remaining SNVs (329 of 415) with
discordant genotypes for these two techniques were identified as
homozygous variants by WES and as heterozygous variants by
WGS (Fig. S1B).
We then investigated, in WES and WGS data, the distribution

of the two main parameters assessing SNV quality generated by
the GATK variant-calling process (18): coverage depth (CD),
corresponding to the number of aligned reads covering a single
position; and genotype quality (GQ), which ranges from 0 to 100
(higher values reflect more accurate genotype calls). We also
assessed the minor-read ratio (MRR), which was defined as the
ratio of reads for the less covered allele (reference or variant al-
lele) over the total number of reads covering the position at which
the variant was called. Overall, we noted reproducible differences
in the distribution of these three parameters between WES and
WGS. The distribution of CD was skewed to the right in the WES
data, with a median at 50× but a mode at 18×, indicating low levels
of coverage for a substantial proportion of variants (Fig. 1A). By
contrast, the distribution of CD was normal-like for the WGS
data, with the mode and median coinciding at 38× (Fig. 1A). We
found that 4.3% of the WES variants had a CD of <8×, versus
only 0.4% of the WGS variants. The vast majority of variants called
by WES or WGS had a GQ close to 100. However, the proportion
of variants called by WES with a GQ of <20 (3.1%) was, on av-
erage, twice that for WGS (1.3%) (Fig. 1B). MRR followed a
similar overall distribution for WES and WGS heterozygous var-
iants, but peaks corresponding to values of MRR of 1/7, 1/6, 1/5,
and 1/4 were detected only for the WES variants (Fig. 1C). These
peaks probably corresponded mostly to variants called at a posi-
tion covered by only 7, 6, 5, and 4 reads, respectively. The overall

distributions of these parameters indicated that the variants
detected by WGS were of higher and more uniform quality than
those detected by WES.
Next, we looked specifically at the distribution of these pa-

rameters for the variants with genotypes discordant between WES
and WGS, denoted as discordant variants. The distribution of CD
for WES variants showed that most discordant variants had low
coverage, at about 2×, with a CD distribution very different from
that of concordant variants (Fig. S2A). Moreover, most discor-
dant variants had a GQ of <20 and an MRR of <0.2 for WES
(Fig. S2B). By contrast, the distributions of CD, GQ, and MRR
were very similar between WGS variants discordant with WES
results and WGS variants concordant with WES results (Fig. S2).
All these results indicate that the discordance between the ge-
notypes obtained by WES and WGS was largely due to the low
quality of WES calls for the discordant variants. We therefore
conducted subsequent analyses by filtering out low-quality vari-
ants. We retained SNVs with a CD of ≥8× and a GQ of ≥20, as
previously suggested (24), and with an MRR of ≥0.2. Overall,
93.8% of WES variants and 97.8% of WGS variants satisfied the
filtering criterion (Fig. S3A). We recommend the use of these
filters for projects requiring high-quality variants for analyses of
WES data. More than half (57.7%) of the WES variants filtered
out were present in the flanking 50-bp regions whereas fewer
(37.6%) of the WGS variants filtered out were present in these
regions. In addition, 141 filtered WES variants and 70 filtered WGS
variants per sample concerned the 2 bp adjacent to the exons,
which are key positions for splicing. After filtering, the two plat-
forms called an average of 76,195 total SNVs per sample, and the
mean proportion of variants for which the same genotype was
obtained with both techniques was 99.92% (range, 99.91–99.93%).
We then studied the high-quality (HQ) variants satisfying the

filtering criterion but called by only one platform. On average,
2,734 variants (range, 2,344–2,915) were called by WES but not
by WGS (Fig. S3A), and 6,841 variants (5,623–7,231) were called

Table 1. Specific regions of the genome covered by WES using
the 71-Mb ± 50 bp kit

Exon status

Exons from
protein-coding

genes

lincRNA miRNA snoRNAAll CCDS

Fully included 180,830 147,131 554 1,171 252
Partially included 129,946 34,892 855 94 93
Fully excluded 64,921 5,762 25,389 1,782 1,111

Total 375,697 187,785 26,798 3,047 1,456

Four types of genomic units were analyzed: exons from protein-coding
genes, microRNA (miRNA) exons, small nucleolar RNA (snoRNA) exons, and
large intergenic noncoding RNA (lincRNA) exons as defined in Ensembl Bio-
mart (19). We determined the number of these units using the R Biomart
package (20) on the GRCh37/hg19 reference. We first considered exons from
protein-coding genes (denoted as “All”) obtained from Ensembl. The intronic
essential splice sites (i.e., the two intronic bp at the intron/exon junction) were
not included in our analysis of exons. Then we focused on protein-coding
exons with a known CDNA coding start and CDNA coding end that were pre-
sent in CCDS transcripts (21). For the counts, we excluded one of the duplicated
units of the same type, or units entirely included in other units of the same
type (only the longest unit would be counted in this case). We then deter-
mined the number of the remaining units that were fully or partly covered
when considering the genomic regions defined by the Agilent Sure Select
Human All Exon kit 71 Mb (v4 + UTR) with the 50-bp flanking regions.

Fig. 1. Distribution of the three main quality parameters for the variations
detected by WES or WGS. (A) Coverage depth (CD), (B) genotype quality
(GQ) score, and (C) minor-read ratio (MRR). For each of the three parame-
ters, we show the average over the six WES (red) and the six WGS (turquoise)
samples in SNVs (Left), insertions (Center), and deletions (Right).

5474 | www.pnas.org/cgi/doi/10.1073/pnas.1418631112 Belkadi et al.



Depth Effects - Somatic  
 

Expected VAF
0 30 402010 50

S
N

V
 S

en
si

tiv
ity

0.2

0.4

0.6

0.8

1

0

Expected VAF
0 30 402010 50

In
d

el
 S

en
si

tiv
ity

0.2

0.4

0.6

0.8

1

0

Expected VAF
0 30 402010 50

S
N

V
 S

en
si

tiv
ity

0.2

0.4

0.6

0.8

1

0

Expected VAF
0 30 402010 50

In
d

el
 S

en
si

tiv
ity

0.2

0.4

0.6

0.8

1

0

T 80/N 60
T 80/N 40
T 80/N 30

T 100/N 40
T 80/N 40
T 60/N 40

T 100/N 40
T 80/N 40
T 60/N 40
T 40/N 40

T 80/N 60
T 80/N 40
T 80/N 30

T 80/N 20

T 40/N 40

T 80/N 20

A. Tumor 80×/Normal Depth Variable

B. Tumor Depth Variable/Normal 40×

 
 
 
 
 

• “Spike-in” simulation analysis 
of impact of tumor purity and 
sequencing depth
• Simulated somatic variants 

into real germline whole 
exome sequencing on the 
NA12878 sample
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• Conservative recommendations:
• >50X target for germline exome
• >100X target for somatic exome
• Tumor purity ≥50% (ideally ≥60% 

for copy number calling)



Exome vs Whole Genome Sequencing



Exome vs Whole Genome Sequencing

• Exome Sequencing
• Covers ~5% of genome (depending on capture kit)

• Allows for high depth targeting

• Most reasonable option for somatic variant analysis

• Poor copy number/structural variant calling

• Genome Sequencing
• Confidently call >85% of reference genome (hg38)

• Confidently call copy number/structural variant calling due to reduced depth 
variance

• Significantly more accurate variant (SNP/INDEL) calling relative to exome

• Price for WGS comparable to exome for germline-only projects



Exome vs Whole Genome Sequencing

• Depth variance MUCH higher for 
exome
• ~2-fold more variants with GQ < 20 

for exome
• Read ratio for heterozygous 

variants significantly skewed for 
exome
• Especially pronounced for INDELs

average, 35 million reads per sample mapped to this region by
WGS, corresponding to a mean coverage of 39× (Table S1). We
first focused on the analysis of single-nucleotide variants (SNVs).
The mean (range) number of SNVs detected was 84,192
(82,940–87,304) by WES and 84,968 (83,340–88,059) by WGS.
The mean number of SNVs per sample called by both methods
was 81,192 (∼96% of all variants) (Fig. S1A). For 99.2% of these
SNVs, WES and WGS yielded the same genotype, and 62.4% of
these concordant SNVs were identified as heterozygous (Fig.
S1B). These results are similar to those obtained in previous WES
studies (1, 5, 22). Most of the remaining SNVs (329 of 415) with
discordant genotypes for these two techniques were identified as
homozygous variants by WES and as heterozygous variants by
WGS (Fig. S1B).
We then investigated, in WES and WGS data, the distribution

of the two main parameters assessing SNV quality generated by
the GATK variant-calling process (18): coverage depth (CD),
corresponding to the number of aligned reads covering a single
position; and genotype quality (GQ), which ranges from 0 to 100
(higher values reflect more accurate genotype calls). We also
assessed the minor-read ratio (MRR), which was defined as the
ratio of reads for the less covered allele (reference or variant al-
lele) over the total number of reads covering the position at which
the variant was called. Overall, we noted reproducible differences
in the distribution of these three parameters between WES and
WGS. The distribution of CD was skewed to the right in the WES
data, with a median at 50× but a mode at 18×, indicating low levels
of coverage for a substantial proportion of variants (Fig. 1A). By
contrast, the distribution of CD was normal-like for the WGS
data, with the mode and median coinciding at 38× (Fig. 1A). We
found that 4.3% of the WES variants had a CD of <8×, versus
only 0.4% of the WGS variants. The vast majority of variants called
by WES or WGS had a GQ close to 100. However, the proportion
of variants called by WES with a GQ of <20 (3.1%) was, on av-
erage, twice that for WGS (1.3%) (Fig. 1B). MRR followed a
similar overall distribution for WES and WGS heterozygous var-
iants, but peaks corresponding to values of MRR of 1/7, 1/6, 1/5,
and 1/4 were detected only for the WES variants (Fig. 1C). These
peaks probably corresponded mostly to variants called at a posi-
tion covered by only 7, 6, 5, and 4 reads, respectively. The overall

distributions of these parameters indicated that the variants
detected by WGS were of higher and more uniform quality than
those detected by WES.
Next, we looked specifically at the distribution of these pa-

rameters for the variants with genotypes discordant between WES
and WGS, denoted as discordant variants. The distribution of CD
for WES variants showed that most discordant variants had low
coverage, at about 2×, with a CD distribution very different from
that of concordant variants (Fig. S2A). Moreover, most discor-
dant variants had a GQ of <20 and an MRR of <0.2 for WES
(Fig. S2B). By contrast, the distributions of CD, GQ, and MRR
were very similar between WGS variants discordant with WES
results and WGS variants concordant with WES results (Fig. S2).
All these results indicate that the discordance between the ge-
notypes obtained by WES and WGS was largely due to the low
quality of WES calls for the discordant variants. We therefore
conducted subsequent analyses by filtering out low-quality vari-
ants. We retained SNVs with a CD of ≥8× and a GQ of ≥20, as
previously suggested (24), and with an MRR of ≥0.2. Overall,
93.8% of WES variants and 97.8% of WGS variants satisfied the
filtering criterion (Fig. S3A). We recommend the use of these
filters for projects requiring high-quality variants for analyses of
WES data. More than half (57.7%) of the WES variants filtered
out were present in the flanking 50-bp regions whereas fewer
(37.6%) of the WGS variants filtered out were present in these
regions. In addition, 141 filtered WES variants and 70 filtered WGS
variants per sample concerned the 2 bp adjacent to the exons,
which are key positions for splicing. After filtering, the two plat-
forms called an average of 76,195 total SNVs per sample, and the
mean proportion of variants for which the same genotype was
obtained with both techniques was 99.92% (range, 99.91–99.93%).
We then studied the high-quality (HQ) variants satisfying the

filtering criterion but called by only one platform. On average,
2,734 variants (range, 2,344–2,915) were called by WES but not
by WGS (Fig. S3A), and 6,841 variants (5,623–7,231) were called

Table 1. Specific regions of the genome covered by WES using
the 71-Mb ± 50 bp kit

Exon status

Exons from
protein-coding

genes

lincRNA miRNA snoRNAAll CCDS

Fully included 180,830 147,131 554 1,171 252
Partially included 129,946 34,892 855 94 93
Fully excluded 64,921 5,762 25,389 1,782 1,111

Total 375,697 187,785 26,798 3,047 1,456

Four types of genomic units were analyzed: exons from protein-coding
genes, microRNA (miRNA) exons, small nucleolar RNA (snoRNA) exons, and
large intergenic noncoding RNA (lincRNA) exons as defined in Ensembl Bio-
mart (19). We determined the number of these units using the R Biomart
package (20) on the GRCh37/hg19 reference. We first considered exons from
protein-coding genes (denoted as “All”) obtained from Ensembl. The intronic
essential splice sites (i.e., the two intronic bp at the intron/exon junction) were
not included in our analysis of exons. Then we focused on protein-coding
exons with a known CDNA coding start and CDNA coding end that were pre-
sent in CCDS transcripts (21). For the counts, we excluded one of the duplicated
units of the same type, or units entirely included in other units of the same
type (only the longest unit would be counted in this case). We then deter-
mined the number of the remaining units that were fully or partly covered
when considering the genomic regions defined by the Agilent Sure Select
Human All Exon kit 71 Mb (v4 + UTR) with the 50-bp flanking regions.

Fig. 1. Distribution of the three main quality parameters for the variations
detected by WES or WGS. (A) Coverage depth (CD), (B) genotype quality
(GQ) score, and (C) minor-read ratio (MRR). For each of the three parame-
ters, we show the average over the six WES (red) and the six WGS (turquoise)
samples in SNVs (Left), insertions (Center), and deletions (Right).

5474 | www.pnas.org/cgi/doi/10.1073/pnas.1418631112 Belkadi et al.

Belkadi et al., 2015 PNAS



Exome Capture Considerations

• Significant capture and enrichment 
biases for different kits
• Illustrates issue with combining 

samples from multiple kits
• For germline-only analysis, WGS 

strongly preferred
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Figure 4. Differences in sensitivity to GC content among all platform-vendor combinations (average of all six DNA samples). (A and B) Scatter plot
showing GC content and achieved read depth of RefSeq exons (coding and UTR) for the three updated exome enrichment platforms performed by the
same vendor (V1, A) and different vendors (V2–V4, B), exemplified for sample 7344 (plots of all six samples are shown in Supplementary Figures S15
and S16). (C) Mean read depth of RefSeq exons per GC content shown as means of all samples. (D) Mean 20× coverage of RefSeq exons per GC content
shown as means of all samples.

Meienberg et al., 2015 Nucleic Acids Research



Exome vs Whole Genome Sequencing
• Sure, there’s bias in WES introduced due to capture, but does it 

significantly affect variant calling?
• Genome in a bottle (GIAB) truth sample (NA12878)
• 50X WES and 30 WGS available from exact same sample
• Processed both WES and WGS through identical pipelines
• Compared both variant sets to GIAB truth set
• Used only exonic sites targeted in WES capture for performance assessment



Exome vs Whole Genome Sequencing

Exome (50X WES) Genome (30X WGS)



Exome vs Whole Genome Sequencing
3X higher False Positive rate, and 
>40X higher False Negative rate for 
exome!!!

Exome (50X WES) Genome (30X WGS)

False Negative 
Rate

False Positive 
Rate

50X Whole 
Exome 0.067934853 0.011361564
30X Genome 
(Exome Sites) 0.001589577 0.003830619



Somatic Variant Calling – Considerations and 
Best Practices



Paired Tumor/Normal vs Tumor-only Somatic 
Variant Calling



Paired Tumor/Normal vs Tumor-only Somatic 
Variant Calling

For tumor/normal calling, strong prior on 
variant evidence in germline sample



Paired Tumor/Normal vs Tumor-only Somatic 
Variant Calling

For tumor-only calling, germline 
contamination removed via a panel of normal 
(PON)

X



Panel of Normals (PON)

• Collection of individuals assumed to be “normal”
• Used to augment population frequency databases (e.g., ExAC, 

GnomAD)
• Population databases are highly filtered and curated
• Many segregating germline variants are missing from population databases 

because they occur in challenging portions of the genome to call genotypes
• Also useful for removing systematic sequencing and mapping 

artifacts… 



Panel of Normals (PON)
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• This is a tumor/normal cohort of 
adrenocortical carcinoma (ACC)

• Most common driver gene for ACC is 
known to be beta-catenin (CTNNB1)

• Somatic variant analysis for our cohort 
suggests RFPL4AL1 is the most frequently 
mutated gene

• WE’RE GONNA BE FAMOUS! PUBLISH IN 
NEJM! WOOHOO!



Panel of Normals (PON)
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• This is a tumor/normal cohort of 
adrenocortical carcinoma (ACC)

• Most common driver gene for ACC is 
CTNNB1

• Somatic variant analysis for our cohort 
suggests RFPL4AL1 is the most frequently 
mutated gene



Panel of Normals (PON)
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Panel of Normals (PON)

• Collection of individuals assumed to be “normal”
• Used to augment population frequency databases (e.g., GnomAD)
• Population databases are highly filtered and curated
• Many segregating germline variants are missing from population databases 

because they occur in challenging portions of the genome to call genotypes
• Even with matched germline, these artifacts will be prevalent, and 

because they are systematic, they can be widespread



Panel of Normals (PON)

• Collection of individuals assumed to be “normal”
• Used to augment population frequency databases (e.g., GnomAD)
• Population databases are highly filtered and curated
• Many segregating germline variants are missing from population databases 

because they occur in challenging portions of the genome to call genotypes
• Even with matched germline, these artifacts will be prevalent, and 

because they are systematic, they can be widespread
• PON that was processed in (approximately) the same way as the 

case samples can remove many of these artifacts



PON Development at CCBR/NCBR

• 211 unaffected spouses from diversity of NCBR/CCBR germline 
projects
• 445 additional germlines from “normals” in various publicly available 

databases
• All WES samples
• Processed with variety of WES capture kits (Agilent, Illumina, etc.)
• Sequenced on multiple Illumina platforms

• Processed each sample individually in PON mode in MuTect2
• Retained only variants present in >=2 samples



PON Development

• Annotated the entire raw PON with gene information using VEP
• Removed any variant in the gene region of a gene in the COSMIC v84 

database
• Removed any variant in a confirmed gene from ClinVar that was 

annotated as Pathogenic, Potentially Pathogenic, Drug Response, and 
Risk Factor
• Removed any specific variant identified in ClinVar as “Associated”
• Pooled all remaining variants into a single PON



PON Performance
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Paired Tumor/Normal vs Tumor-only Somatic 
Variant Calling

Even with a PON, false positive 
rate will be significantly higher 
for tumor-only relative to 
tumor/normal calling



Paired Tumor/Normal vs Tumor-only Somatic 
Variant Calling

Even with a PON, false positive 
rate will be significantly higher 
for tumor-only relative to 
tumor/normal calling

Tumor-only

Tumor/Normal

TCGA AML



Tumor Heterogeneity/Subclonality



Tumor Heterogeneity/Subclonality

• For identification of subclones, certain conditions required:
• High tumor purity****
• High depth/coverage (sky’s the limit!)
• Paired tumor-normal
• WGS essentially required for adequate sensitivity and accuracy
• WES alone inadequate for copy number segmentation, high VAF variability, 

too few mutational events per subclone



Tumor Heterogeneity/Subclonality

• For identification of subclones, certain conditions required:
• High tumor purity****
• High depth/coverage (sky’s the limit!)
• Paired tumor-normal
• WGS essentially required for adequate sensitivity and accuracy
• WES alone inadequate for copy number segmentation, high VAF variability, 

too few mutational events per subclone

150X WES 80X WGS



FFPE vs Fresh/Frozen Tissue – 50X target depth
Fresh/Frozen FFPE



Somatic Variant Calling – Best Practices

• STRONGLY favor paired tumor/normal design
• For non-human samples (e.g., mouse models) without paired 

somatic/germline
• >=2 control/”germline” samples

• >=100X/50X mean depth for tumor/normal samples
• Significantly higher target depth for FFPE samples
• Tumor purity >50% (ideally, >60%) for variant calling
• MUST visually verify any somatic variant of “significance”
• Subclone analysis requires WGS, high purity, and high depth



Germline Variant Calling – Considerations and 
Best Practices



GWAS/Burden Testing Design

“With an odds ratio (OR) = 1.4, the sample sizes required to achieve 
80% power are 6,400, 54,000, and 540,000 for a MAF = 0.1, 0.01, and 

0.001, respectively, if one assumes 5% disease prevalence and a 
significance level of 5 x 10-8. Because the number of rare variants is 
much larger than the number of common variants, more stringent 

significance levels might be required, further reducing power.”

REVIEW

Rare-Variant Association Analysis:
Study Designs and Statistical Tests

Seunggeung Lee,1 Gonçalo R. Abecasis,1 Michael Boehnke,1 and Xihong Lin2,*

Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits

remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway

to identify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association

studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review

cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including

burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed

are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability

due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research

directions.

Introduction
In the last 8 years, genome-wide association studies
(GWASs) have been extensively used to dissect the genetic
architecture of complex diseases and quantitative traits.1

These studies systematically evaluate common genetic var-
iants, typically with a minor allele frequency (MAF) > 5%.
To date, more than 2,000 disease-associated common var-
iants have been identified through GWASs.2 These dis-
ease-associated variants have provided many new clues
about disease biology, for example, a role for autophagy
in Crohn disease,3 for the complement pathway in age-
related macular degeneration,4 and for the CNS in predis-
position to obesity.5

Despite these discoveries, much of the genetic contribu-
tion to complex traits remains unexplained, even in dis-
eases for which large GWAS meta-analyses have been
undertaken. For example, a GWAS and follow-up analysis
of type 2 diabetes (T2D [MIM 125853]) in >150,000 indi-
viduals identified >70 loci at genome-wide significance
but that explain only ~11% of T2D heritability.6 Likewise,
a GWAS and follow-up analysis in >210,000 individuals
identified ~70 loci associated with Crohn disease, but these
explain only 23% of heritability.7 In general, GWAS loci
have modest effects on disease risk or quantitative trait
variation, and the long process of translating this knowl-
edge into functional understanding or clinical practice is
just beginning.
Several explanations have been proposed for the so-

called problem of ‘‘missing heritability.’’8,9 Because GWASs
focus on the identification of common variants, it is plau-
sible that analyses of low-frequency (0.5% % MAF < 5%)
and rare (MAF < 0.5%) variants could explain additional
disease risk or trait variability. Rare variants are known to
play an important role in human diseases. Many Mende-
lian disorders and rare forms of common diseases are

caused by highly penetrant rare variants.10 Evolutionary
theory predicts that deleterious alleles are likely to be rare
as a result of purifying selection,10,11 and indeed, loss-of-
function variants, which prevent the generation of func-
tional proteins, are especially rare.12,13 There is also recent
empirical evidence that low-frequency and rare variants
are associated with complex diseases.14–16 Until recently,
commercial genotyping arrays have largely ignored this
portion of the allele frequency spectrum—because of a
combination of the lack of systematic catalogs of rare vari-
ation to support array design, the fact that genome-wide
surveys of rare variation require many more assays than
current arrays can support, and a sensible initial choice
to focus on common variants.
Over the past several years, rapid advances in DNA

sequencing technologies17 have transformed human and
medical genetics. Sequencing enables more complete
assessments of low-frequency and rare genetic variants
and investigation of their role in complex traits. Next-
generation sequencing (NGS) technologies are high-
throughput parallel-sequencing approaches that now
generate billions of short sequence reads for modest cost.
These short reads are aligned to a reference genome so
that researchers can identify and genotype sites where
sequenced individuals vary. In recent years, the price of
sequencing has fallen dramatically, enabling exome and
whole-genome sequencing (WGS) studies of complex dis-
eases. For example, the NHLBI Exome Sequencing Project
(ESP) has sequenced the exomes of 6,500 individuals to
study genetic contributions to several different traits, the
T2D-GENES project has sequenced exomes for >10,000
T2D-affected and control individuals across five different
ancestry groups, and the UK10K Project has sequenced
the exomes of 6,000 individuals ascertained for various
diseases and traits and the genomes of 4,000 healthy

1Department of Biostatistics, University of Michigan, Ann Arbor, MI 48105, USA; 2Department of Biostatistics, Harvard School of Public Health, Boston,
MA 02115, USA
*Correspondence: xlin@hsph.harvard.edu
http://dx.doi.org/10.1016/j.ajhg.2014.06.009. !2014 by The American Society of Human Genetics. All rights reserved.

The American Journal of Human Genetics 95, 5–23, July 3, 2014 5
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GWAS/Burden Testing Design

• Biggest challenge is having data that is homogenous
• Cases and controls MUST have genotype data that is generated 

identically



Familial Sequencing Design

• Power is the primary limiting factor
• When budgets are limited, decisions have to be made about who to 

sequence
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F5* F6* F7* F8
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Familial Sequencing Design

• 3 cases, no controls
• 3,176 candidates

• 3 cases, 1 spousal control (ethnicity matched) - 1542 candidates
• +1 spouse controls - 1121 candidates
• +1 case - 525 candidates

• 3 cases, 1 related control - 854 candidates
• +1 related control - 307 candidates
• +1 case – 284 candidates F9 F10* F1* F13F11* F14F12*

F4F3 F2* F16* F15

F5* F6* F7* F8

F2-2F49

F191F190

F183* F185F184 F187

F186
F197*

S25

F201



Familial Sequencing Design

• 3 cases, no controls
• 3,176 candidates

• 3 cases, 1 spousal control (ethnicity matched) - 1542 candidates
• +1 spouse controls - 1121 candidates
• +1 case - 525 candidates

• 3 cases, 1 related control - 854 candidates
• +1 related control - 307 candidates
• +1 case – 284 candidates F9 F10* F1* F13F11* F14F12*

F4F3 F2* F16* F15

F5* F6* F7* F8

F2-2F49

F191F190

F183* F185F184 F187

F186
F197*

S25

F201

ALWAYS PERFORM ETHNICITY-AWARE FILTERING!!!!



• 3 cases, no controls
• 3,176 candidates with global 

allele frequency threshold of 
≤0.01

• 2,923 candidates with EUR-only!

Familial Sequencing 
Design

0

0.2

0.4

0.6

0.8

1
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Family 1 Admixture
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F9 F10* F1* F13F11* F14F12*

F4F3 F2* F16* F15

F5* F6* F7* F8

F2-2F49

F191F190

F183* F185F184 F187
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F197*

S25

F201

F205



Germline Variant Calling – Best Practices

• Whole genome strongly preferred
• >=30X mean target depth
• Far superior to exome for structural variants, copy number 

analysis, and SNP/INDEL detection

• Germline exome
• >=50X mean depth

• For familial/trio analyses, we strongly encourage early 
consultation
• Selection of samples for sequencing can be CRUCIAL to 

maximizing power



Other Considerations and Best Practices for 
Variant Analysis



Always Visualize Significant Variants

True Positive False Positive

• ABSOLUTELY CRUCIAL!!

• ALVIEW (https://github.com/NCIP/alview)
• Internally-developed tool for BAM/SAM visualization (Richard Finney)

https://github.com/NCIP/alview


Variant Analysis in Cell Lines

• Can never assume 
your cell lines are 
homogenous!
• This cell line had a 

subclone with an 
ARID1B loss
• Another subclone had 

lost the Y 
chromosome

Replicates of a 
single-cell 
established line

Replicates of the 
parental cell line



Variant Analysis in Animal Models
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Hypervariable chunks 
in varying combinations
of samples

• Mice have retained significant levels of 
heterozygosity

• Vary considerably in regional gene 
expression



Multiomic Integration

• Gene and protein expression data can be used to prioritize variants 
and genes
• Especially critical in underpowered, small cohort analyses

• Germline or somatic variants that do not have expression 
consequences at the gene and/or pathway level can be reduced in 
priority
• Powerful method for prioritizing non-coding mutations in WGS



FOXA2/FOXA3 Transcription Factor Network

• Candidate SNP may function to disrupt CTCF silencing, allowing 
FOXA2 activation

CTCF
FOXA2

X

Gtext Thyroid eQTLs



Other Considerations and Best Practices for 
Variant Analysis
• Visualization and validation is a necessity
• STRONGLY recommend WGS for any cell line or model organism to be 

used in quantitative analysis
• Considerable variation exists among cell line replicates in gene and protein 

expression, and a major contributor to this is genetic heterogeneity
• Model organisms can retain considerable levels of heterozygosity, even after 

long-term maintenance in colony
• Back-crossing is a necessity
• Drift causes cell lines and model organisms to randomly accumulate genetic 

differences from progenitors



0.03

19
65
21
.va
r

NO
D_ShiLtJ

BALB_cJ.va

SEA_GnJ.va

195581.var

C58_J.vari

196
785

.var

193686.var

A_J.
varia

n
C5
7L
_J
.v
ar

129S5SvEvBLP_J.varia

CAST_EiJ.v

129P2_OlaH

193690.var

196
528
.va
r

196084.var

DB
A_
1J
.v
ar

129S1_SvIm

BTBR_T+_It
PW
K_
Ph
J.
va

I_LnJ.vari

NZ
B_B

1NJ
.v

C5
7B
R_
cd
J.

M
OL
F_
Ei
J.
v

NZ
W
_L
ac
J.
v

W
SB
_E
iJ.
va

19
65
24
.va
r

AKR_J.vari

DB
A_
2J
.v
ar

NZO
_HlL

tJ.

195580.var

19
67
33
.va
r

196789.var

193247.var

CBA_J.vari

C57BL_10J.

LE
W
ES
_E
iJ
.

1967
87.va

r

C3H_H
eH.va

195577.var

RF_J.varia

195578.var

BU
B_
Bn
J.v
a

ZA
LE
ND
E_
Ei

C5
7B
L_
6N
J.

196788
.var

C3H_HeJ.va

FVB_NJ.var

ST_bJ.vari

KK_HiJ.var

SPRET_EiJ.

0.03

NZB_B1NJ.v

WSB_EiJ.va

MOLF_EiJ.v

SPRET_EiJ.

CAST_EiJ.v

19
65
21
.v
ar

C5
7B
L_
10
J.

C57
L_J

.var

BU
B_
Bn
J.v
a

LP_J.varia

1967
88.v

ar

129S5SvEvB

DB
A_
2J
.v
ar

19
67
33
.v
ar

C3H_HeJ.va

SEA_GnJ.va

195577.var

196
787

.var

BALB_cJ.va

C5
7B
L_6
NJ
.

PWK_PhJ.va

195581.var

C57
BR
_cd

J.

NZO_HlLtJ.

NO
D_
Sh
iLt
J

19
65
28
.va
r

DBA_1J.var

193247.var

ST
_b
J.
va
ri

19678
9.var

19
55
80
.v
ar

19
65
24
.va
r

BTBR_T+_It

I_LnJ.v
ari

19
36
90
.v
ar

ZALENDE_Ei

C58_
J.var

i

AKR_J.vari

195578.var

19
36
86
.v
ar

19
60
84
.v
ar

C3H_HeH.va

LEWES_EiJ.

RF_J.varia

129S1_SvIm

NZW_LacJ.v

A_J.varianCBA_J.vari

196
785

.va
r

129P2_OlaH

KK_HiJ.var

FV
B_
NJ
.va
r

0.04

19
65
21
.v
ar

129P2_OlaH

129S5SvEvB

19
65
24
.v
ar

19
67
85
.va
r

196
789

.var

LP_J.varia

DB
A_
2J
.v
ar

PW
K_
Ph
J.v
a

19
67
87
.va
r

ZA
LE
ND
E_
Ei

A_J.v
arian

193247.var

LE
W
ES
_E
iJ.

193690.var

C57L_J.var

195577.var

19
65
28
.v
ar

195580.var

FVB_NJ.var

DB
A_
1J
.v
ar

RF_J.varia

BALB_cJ.va

195578.var

AKR_J.vari

BTBR_T+_It

SEA_GnJ.va

BU
B_
Bn
J.v
a

ST_bJ.vari

CAST_E
iJ.v

NZB
_B1

NJ.
v

C57BL_10J.

C58_
J.var

i

19
67
33
.v
ar

C3H_HeJ.va

193686.var

NO
D_ShiLtJ

KK_HiJ.var

SPRET_EiJ.

NZ
W_
La
cJ.
v

129S1_SvIm

196
788

.va
r

W
SB
_E
iJ.v
a

C57BR_cdJ.

CBA_J.vari

195581.var

I_LnJ.vari

C3H_H
eH.va

M
O
LF
_E
iJ.
v

NZO
_HlL

tJ.

C57BL_6NJ.

196084.var

Hypervariable
regions excluded

0.04

ZA
LE
ND
E_
Ei

19
67
33
.va
r

ST_bJ.vari

193690.var

129P2_OlaH

NOD_ShiLtJ

NZO
_HlL

tJ.

C57BL_10J.

196
785

.va
r

129S1_SvIm

195580.var

195578.var

I_
Ln
J.
va
ri

C57L_J.var

FV
B_
NJ
.va
r

A_
J.
va
ria
n

SPRET_
EiJ.

129S5SvEvB

BALB_cJ.va

BU
B_
Bn
J.v
a

C57BR_cdJ.

C57BL_6NJ.

CBA_J.vari

LE
W
ES
_E
iJ.

19
65
21
.v
ar

196084.var

193686.var

19
65
28
.va
r

PW
K_PhJ.va

CAST
_EiJ.v

C3
H_

He
H.
va

DBA_1J.var

C5
8_
J.
va
ri

WS
B_
EiJ
.va

BT
BR

_T
+_
It

195581.var

1967
89.v

ar

C3
H_
He
J.
va

KK
_H
iJ.
va
r

RF_J.varia

LP_J.variaAKR_J.vari
SEA_GnJ.va

196524.var

195577.var

M
O
LF_EiJ.v

193247.var

DBA_2J.var

NZW
_LacJ.v

196
787

.var

NZB
_B1

NJ.
v

19678
8.var

Hypervariable regions 
only

Chr8 hypervariable
regions only

All germline 
variants

0.04

SPR
ET_

EiJ.

196
521

.var

CBA_J.vari
C3H_HeJ.va

NZO_HlLtJ.

196528.var

129S5SvEvB

129P2_OlaH

NO
D_ShiLtJ

NZB_B1NJ.v

C3H_HeH.va

ST
_b
J.
va
ri

MO
LF
_E
iJ.v

A_J.varian

LP_J.varia

RF_J.varia

BU
B_
Bn
J.v
a

ZALEN
DE_Ei

DB
A_
2J.
var

19652
4.var

196788.var

C5
7B
L_
10
J.

AKR_J.vari

LEW
ES_

EiJ.

195578.var

196084.var
196785.var

C5
8_
J.
va
ri

193690.var

BALB_cJ.va

FVB_NJ.var

PW
K_
Ph
J.v
a

DB
A_
1J
.va
rSEA
_Gn

J.va

196789.var

KK
_H
iJ.
va
r

193247.var

NZ
W
_L
ac
J.v

C5
7L
_J
.va
r

CA
ST
_E
iJ.v

WSB
_EiJ.v

a

195581.var

C5
7B
R_
cd
J.

1967
33.v

ar

129S1_SvIm

193686.var

C57BL_6NJ.195580.var

BTBR_T+_It

I_
Ln
J.v
ar
i

19
67
87
.v
ar

195577.var

Chr11 hypervariable
regions only

0.04

19678
8.var

196
785

.va
r

196
787

.var

NOD_ShiLtJ

19
67
33
.va
r

C57L_J.var

C3H_HeH.va

193686.var

1965
24.v

ar

19
60
84
.va
r

195
581

.va
r

LP_J.varia

NZ
W
_L
ac
J.v

196789.var

195
580

.var

C57BR_cdJ.

SEA_GnJ.va

CA
ST
_E
iJ.
v

19
65
21
.v
ar

KK_HiJ.var

129P2_OlaH

BALB_cJ.va

C58_J.vari

C3H_HeJ.va

AKR_J.vari 19
65
28
.va
r

NZB_B1NJ.v

BU
B_
Bn
J.v
a

PW
K_PhJ.va

129S5SvEvB

I_LnJ.variRF
_J
.va
ria

129S1_SvIm

19
36
90
.v
ar

1955
77.v

ar
C57BL_

10J.

A_J.varian

C57BL_6NJ.

NZO_HlLtJ.

CBA_J.vari

ST_bJ.vari

BTBR_T+_ItFVB_NJ.var
LE
W
ES
_E
iJ.

MOLF_EiJ.v

SP
RE
T_
EiJ
.

19
55
78
.va
r

W
SB
_E
iJ.
va

DBA_2J.var

ZALENDE_Ei

19
32
47
.v
ar

DB
A_
1J
.v
arChr6 hypervariable

regions only



CCBR Pipeliner



Variant Calling at CCBR

• Multiple Variant Calling CCBR Pipelines
• Whole genome (germline and somatic)
• Whole exome/targeted sequencing 

(germline and somatic)
• Variants from RNAseq

• All variant calling pipelines available 
through CCBR_Pipeliner app
• https://github.com/CCBR/Pipeliner
• Just need Biowulf account and xquartz

installed on our local machine
• module load ccbrpipeliner (enter)
• ccbrpipe.sh (enter)

https://github.com/CCBR/Pipeliner
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RNAseq Variant Calling
http://gatkforums.broadinstitute.org/gat
k/discussion/3892/the-gatk-best-
practices-for-variant-calling-on-rnaseq-
in-full-detail
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Alignment/Read QC

http://gatkforums.broadinstitute.org/gatk/discussion/3892/the-gatk-best-practices-for-variant-calling-on-rnaseq-in-full-detail


Pipeline Details…

Read Mapping

BAM Processing/QC

Variant Calling

Variant Annotation

• All variant calling follows the 
same basic approach

Read Processing/QC



Pipeline Details…

Read Mapping

BAM Processing/QC

Variant Calling

Variant Annotation

Read Processing/QC



Pipeline Details…

Read Mapping

BAM Processing/QC

Variant Calling

Variant Annotation

Read Processing/QC



Pipeline Details…
Read Processing/QC

Read Mapping

BAM Processing/QC

Variant Calling

Variant Annotation

Local realignment

• Indel realignment



Pipeline Details…
Read Processing/QC

Read Mapping

BAM Processing/QC

Variant Calling

Variant Annotation

• Multiple sources of quality score bias



Pipeline Details…
Read Processing/QC

Read Mapping

BAM Processing/QC

Variant Calling

Variant Annotation

• Alignment QC



Read Processing/QC

Read Mapping

BAM Processing/QC

Variant Calling

Variant Annotation

• Additional QC
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Variant Calling at CCBR
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Variant Calling at CCBR

Read Mapping

BAM Processing/QC

Variant Calling

Variant Annotation

Read Processing/QC

Joint*discovery*empowers*discovery*at*difficult*sites*

•  If*we*analyze*Sample*#1*or*
Sample*#N*alone*we*are*not*
confident*that*the*variant*is*
real*

•  If*we*see*both*samples*then*
we*are*more*confident*that*
there*is*real*varia)on*at*this*
site*in*the*cohort*

Germline
• Joint genotype with 

GATK HaplotypeCaller
• SNPs/short INDELs

• We have 
benchmarked and 
optimized a series of 
hard filters for 
removing errors
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Variant Calling at CCBR

Read Mapping

BAM Processing/QC

Variant Calling

Variant Annotation

Read Processing/QC

Somatic
• MuTect, MuTect2 (with hard 

filters), Strelka



WES/WGS Pipelines with Multiple Entrypoints

• Can be run starting from fastq reads, BAMs, or gVCFs

• Setup within raw data directory
• Raw reads all in main directory
• ‘bams’ directory containing all BAM files from any source (e.g., Dragen)
• ‘gvcfs’ directory containing all gVCFs from any source (e.g., Dragen)

• Initialize as usual
• During initialization, Pipeliner automatically symlinks BAMs and gVCFs if there 

is a ‘bams’ and/or ‘gvcfs’ directory

• Run as usual, but skip initialQC and start from the variant calling 
pipeline that is appropriate



How do our Pipelines perform?



FDA Consistency/Truth Challenges

• Sought to establish best 
practices for germline variant 
calling



FDA Consistency/Truth Challenges

• GIAB genome (NA12878) provides known real data truth set
• Second genome (NA24385) provides unknown truth set
• Eliminates “overtraining” problem

• Challenge(s):
1. Pipeline determinism
2. Precision/recall on a known truth (training set available)
3. Precision/recall on unknown truth



FDA Consistency/Truth Challenges

• Performance of most recent pipeline version
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FDA Consistency/Truth Challenges

• Performance of most recent pipeline version
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Pipeline performance vs Sentieon and Dragen - Recall vs 
Precision (with Keyur Talsania, CCR Sequencing Facility)
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FDA Hidden Treasure Challenge

• NA12878MOD generated by in silico modification of NA12878
• 50 Spike-in variants >=0.2 frequency
• INDELs <= 40bp
• Evaluate ability to detect in silico variants
• FP/FN balance for SNPs and INDELs
• Ability to accurately call allele frequencies



FDA Hidden Treasure Challenge

• 86 entries
• Ran the full somatic pipeline with both strict and  relaxed filtering 

criteria



FDA Hidden Treasure Challenge

• 86 entries
• Ran the full somatic pipeline with both strict and  relaxed filtering 

criteria
• Successfully recovered all 50 spike-in variants
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Performance - F-score



A Pipeliner Demo…



Questions?



GATK - Variant Quality Score Recalibration (VQSR)
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