
BTEP Lessons

Alexandra L Emmons Ph.D. & Joe Wu Ph.D.

BTEP/GAU/CCR/NCI/NIH - email ncibtep@mail.nih.gov

Bioinformatics Training and Education Program





4

4

5

5

5

6

6

7

7

7

8

8

8

9

9

10

10

11

11

11

Table of Contents

Welcome

• Welcome

• Events

Data Visualization with ggplot2

• Learning Objectives

• What is R?

• RStudio

• What is ggplot2?

• Why ggplot2?

• Getting started with ggplot2

• Getting help

• Resources for Learning

• Example Data

• Get the data

• Practice Data

• The ggplot2 template

• Using the template

• How did we create this plot?

• Geom functions

• Changing the Geom function

• Creating a line plot

• Creating a boxplot



12

12

13

14

15

16

17

17

18

18

19

20

20

20

21

22

23

24

25

26

28

31

32

33

• Mapping and aesthetics (aes())

• Map a Color to a Variable

• Changing the color of all points

• Defaults

• How can we modify colors?

• More on Colors

• Expanding our ggplot2 template

• Making our plot ready for publication

• Saving your plot

• Key Points

• Related packages to check out

Creating and modifying scatter plots: PCA and Volcano

• Objectives

• Load the libraries

• What is ggplot2?

• Example data

• Scatter plots

• Common scatter plots used in genomics (PCA and Volcano)

• What is PCA?

• Perform PCA

• Plot PCA

• Add custom axes labels

• Add a stat to our plot with stat_ellipse().

• Using ggfortify

• Plot Customization: Using themes



37

40

41

44

45

• Creating a publication ready volcano plot

• Changing axes scales

• Modifying legends

• Session Info

• References



BTEP

Welcome

These pages include associated documentation from 2024 BTEP training events that were not a

part of larger courses. 

Events

June 11, 2024: Data Visualization with ggplot2

December 19, 2024: Creating and modifying scatter plots: PCA and Volcano

4 Welcome

Bioinformatics Training and Education Program



R programming ggplot2 Data visualization

Data Visualization with ggplot2

Learning Objectives

Understand the ggplot2 syntax. 

Learn the grammar of graphics for plot construction. 

Create simple, pretty, and effective figures. 

What is R?

R is a computational language and environment for statistical computing and graphics. 

Advantages of R programming: 

open-source 

extensible (Packages on CRAN (> 19,000 packages), Github, Bioconductor) 

Wide community 

allows reproducibility (R scripts, Rmarkdown, Quarto). 

includes fantastic options for data viz (base R, ggplot2, lattice, plotly) 

RStudio

An  integrated  development  environment  (IDE)  for  R,  and  now  python.  RStudio  includes  a

console, editor, and tools for plotting, history, debugging, and work space management. 

1. 

2. 

3. 

• 

• 

• 

• 

• 

5 Data Visualization with ggplot2

Bioinformatics Training and Education Program



What is ggplot2?

An R graphics package from the tidyverse collection, which are popular packages for data

science  that  work  really  well  with  data  organized  in  data  frames  (or  tibbles (https://

tibble.tidyverse.org/)). 

Why ggplot2?

Widespread popularity. 

Used to create informative plots quickly. 

Used to create high resolution plots. 

• 

• 

• 

6 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://tibble.tidyverse.org/
https://tibble.tidyverse.org/
https://tibble.tidyverse.org/
https://tibble.tidyverse.org/


Used to customize many package specific plots. 

Over 100 related extensions (https://exts.ggplot2.tidyverse.org/gallery/)

Outside of base R plotting, one of the most popular packages used to generate graphics in R is

ggplot2, which is associated with a family of packages collectively known as the tidyverse.

GGplot2 allows the user to create informative plots quickly by using a 'grammar of graphics'

implementation, which is described as "a coherent system for describing and building graphs"

R4DS (https://r4ds.had.co.nz/data-

visualisation.html#:~:text=ggplot2%20implements%20the%20grammar%20of,applying%20it%20in%20many%20places).

We will see this in action shortly. The power of this package is that plots are built in layers and

few changes to the code result in very different outcomes. This makes it easy to reuse parts of

the code for very different figures. 

Being  a  part  of  the  tidyverse  collection,  ggplot2 works  best  with  data  organized  so  that

individual observations are in rows and variables are in columns. 

Getting started with ggplot2

To begin plotting, we need to load the ggplot2 package. R packages are loadable extensions

that contain code, data, documentation, and tests in a standardized shareable format that can

easily be installed by R users. 

R packages must be loaded from your R library every time you open and use R. If you haven't

yet  installed  the  ggplot2  package  on  your  local  machine,  you  will  need  to  do  that  using

install.packages("ggplot2"). 

Getting help

The R community is  extensive and getting help is  now easier  than ever with a simple web

search. If  you can't  figure out how to plot something, give a quick web search a try.  Great

resources include internet tutorials, R bookdowns, and stackoverflow. You should also use the

help features within RStudio to get help on specific functions or to find vignettes. Try entering

ggplot2 in the help search bar in the lower right panel under the Help tab. 

Resources for Learning

ggplot2 cheatsheet

The R Graph Gallery (https://www.r-graph-gallery.com/)

The R Graphics Cookbook (https://r-graphics.org/recipe-quick-bar)

• 

• 

#load the ggplot2 library; you could also load library(tidyverse)
library(ggplot2)

1. 

2. 

3. 

7 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://r4ds.had.co.nz/data-visualisation.html#:~:text=ggplot2%20implements%20the%20grammar%20of,applying%20it%20in%20many%20places
https://r4ds.had.co.nz/data-visualisation.html#:~:text=ggplot2%20implements%20the%20grammar%20of,applying%20it%20in%20many%20places
https://r4ds.had.co.nz/data-visualisation.html#:~:text=ggplot2%20implements%20the%20grammar%20of,applying%20it%20in%20many%20places
https://r4ds.had.co.nz/data-visualisation.html#:~:text=ggplot2%20implements%20the%20grammar%20of,applying%20it%20in%20many%20places
https://www.r-graph-gallery.com/
https://www.r-graph-gallery.com/
https://r-graphics.org/recipe-quick-bar
https://r-graphics.org/recipe-quick-bar


BTEP Courses (https://bioinformatics.ccr.cancer.gov/btep/class-documents/)

Example Data

The example data we will use for plotting are from a bulk RNA-Seq experiment described by

Himes  et  al.  (2014) (https://pubmed.ncbi.nlm.nih.gov/24926665/) and  available  in  the

Bioconductor  package  airway (https://bioconductor.org/packages/release/data/experiment/

html/airway.html). In this experiment, the authors were comparing transcriptomic differences in

primary human ASM cell lines treated with dexamthasone, a common therapy for asthma. Each

cell line included a treated and untreated negative control resulting in a total sample size of 8. 

These  derived  data  include  total  transcript  read  counts  summed by  sample  and  the  total

number of transcripts recovered by sample that had at least 100 reads. 

Get the data

You can grab this file here. 

Practice Data

There are a number of built-in data sets available for practicing with ggplot2. Check these out

here (https://ggplot2.tidyverse.org/reference/#data)! 

For example, mtcars is commonly used in ggplot2 documentation: 

4. 

#data import from excel
exdata<-readxl::read_xlsx("./data/RNASeq_totalcounts_vs_totaltrans.xlsx",

1,.name_repair = "universal", skip=3)
exdata

# A tibble: 8 × 4
  Sample.Name Treatment     Number.of.Transcripts Total.Counts
  <chr>       <chr>                         <dbl>        <dbl>
1 GSM1275863  Dexamethasone                 10768     18783120
2 GSM1275867  Dexamethasone                 10051     15144524
3 GSM1275871  Dexamethasone                 11658     30776089
4 GSM1275875  Dexamethasone                 10900     21135511
5 GSM1275862  None                          11177     20608402
6 GSM1275866  None                          11526     25311320
7 GSM1275870  None                          11425     24411867
8 GSM1275874  None                          11000     19094104

8 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/btep/class-documents/
https://bioinformatics.ccr.cancer.gov/btep/class-documents/
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://ggplot2.tidyverse.org/reference/#data
https://ggplot2.tidyverse.org/reference/#data


The ggplot2 template

The basic ggplot2 template: 

The only required components to begin plotting are the data we want to plot, geom function(s),

and mapping aesthetics. Notice the + symbol following the ggplot() function. This symbol will

precede each additional layer of code for the plot, and it is important that it is placed at the end

of the line. More on geom functions and mapping aesthetics to come. 

Using the template

To get familiar with the basic ggplot2 template, lets answer the following question: 

What is the relationship between total transcript sums per sample and the number of recovered

transcripts per sample? 

We can plot using: 

ggplot(data = DATA) +
GEOM_FUNCTION(mapping = aes(<MAPPINGS>))

#let's plot our data
ggplot(data=exdata) +

geom_point(aes(x=Number.of.Transcripts, y = Total.Counts))

9 Data Visualization with ggplot2

Bioinformatics Training and Education Program



How did we create this plot?

The first step in creating this plot was initializing the ggplot object using the function ggplot().

Remember, we can look further for help using ?ggplot(). The function ggplot() takes data,

mapping, and further arguments. However, none of this needs to actually be provided at the

initialization phase, which creates the coordinate system from which we build our plot.  But,

typically, you should at least call the data at this point. 

The data  we called was from the data  frame  exdata,  which we created above.  Next,  we

provided a geom function (geom_point()),  which created a scatter  plot.  This  scatter  plot

required mapping information,  which we provided for  the  x  and y  axes.  More  on this  in  a

moment. 

Geom functions

A geom is the geometrical object that a plot uses to represent data. People often

describe  plots  by  the  type  of  geom  that  the  plot  uses.  ---  R4DS (https://

r4ds.had.co.nz/data-visualisation.html#geometric-objects)

There are multiple geom functions (>40 in ggplot2) that change the basic plot type or the plot

representation. 

scatter plots (geom_point()), 

line plots (geom_line(),geom_path()), 

bar plots (geom_bar(), geom_col()), 

line modeled to fitted data (geom_smooth()), 

heat maps (geom_tile()), 

geographic maps (geom_polygon()), etc. 

• 

• 

• 

• 

• 

• 

10 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects


You can also see a number of options pop up when you type  geom into the script pane of

RStudio, or you can look up the ggplot2 documentation in the help tab.

Changing the Geom function

We can see how easy it is to change the way the data is plotted. Let's plot the same data using

geom_line().

Creating a line plot

Here we can see one of the advantages of ggplot2, which is that it is easy to change the overall

plot representation with small edits to the code. 

Creating a boxplot

Let's  plot  the  same  data  using  geom_boxplot().A  boxplot (https://www.data-to-viz.com/

caveat/boxplot.html) can be used to summarize the distribution of a numeric variable across

groups. 

ggplot(data=exdata) +
geom_line(aes(x=Number.of.Transcripts, y = Total.Counts))

ggplot(data=exdata) +
geom_boxplot(aes(x=Treatment, y = Total.Counts))

11 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://www.data-to-viz.com/caveat/boxplot.html
https://www.data-to-viz.com/caveat/boxplot.html
https://www.data-to-viz.com/caveat/boxplot.html
https://www.data-to-viz.com/caveat/boxplot.html


This time we also modified the x argument. 

Mapping and aesthetics (aes())

The geom functions require a mapping argument. The mapping argument includes the aes()

function,  which  "describes  how  variables  in  the  data  are  mapped  to  visual  properties

(aesthetics) of geoms" (ggplot2 R Documentation). If not included it will be inherited from the

ggplot() function. 

An  aesthetic  is  a  visual  property  of  the  objects  in  your  plot.---R4DS (https://

r4ds.had.co.nz/data-visualisation.html)

Mapping aesthetics include some of the following: 

the x and y data arguments 

shapes 

color 

fill 

size 

linetype 

alpha

This is not an all encompassing list of mapping aesthetics. 

Map a Color to a Variable

Now that we know what we mean by "aesthetics", let's map color to a variable within the data. 

Is there a relationship between treatment ("dex") and the number of transcripts or total counts?

1. 

2. 

3. 

4. 

5. 

6. 

7. 

12 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html


Notice how we changed the color of our points to represent the variable "Treatment". We did this

by setting color  equal  to 'Treatment'  within the  aes() function.  This mapped our aesthetic,

color, to a variable we were interested in exploring. 

From this, we can see that there is potentially a relationship between treatment and the number

of transcripts or total counts. ASM cells treated with dexamethasone in general have lower total

numbers of transcripts and lower total counts. 

Changing the color of all points

Aesthetics that  are not  mapped to our variables are placed outside of  the  aes() function.

These aesthetics are manually  assigned and do not  undergo the same scaling process as

those within aes(). For example, we can color all points on the plot purple. 

#adding the color argument to our mapping aesthetic
ggplot(exdata) +

geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,
color=Treatment))

#map the shape aesthetic to the variable "dex"
#use the color purple across all points (NOT mapped to a variable)
ggplot(exdata) +

geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,
shape=Treatment), color="purple")

13 Data Visualization with ggplot2

Bioinformatics Training and Education Program



Here, we also mapped 'Treatment' to an aesthetic other than color, shape. By default, ggplot2

will  only  map  six  shapes  at  a  time,  and  if  your  number  of  categories  goes  beyond  6,  the

remaining  groups  will  go  unmapped. This  is  by  design  because  it  is  hard  to  discriminate

between more than six shapes at any given moment. This is a clue from ggplot2 that you should

choose a different  aesthetic to map to your variable.  However,  if  you choose to ignore this

functionality,  you  can  manually  assign  more  than  six  shapes (https://r-graphics.org/recipe-

scatter-shapes). 

We could have just as easily mapped "Treatment" to alpha, which adds a gradient to the point

visibility by category, or we could map it  to size. There are multiple options, so feel free to

explore a little with your plots.

Defaults

There are many defaults when generating a plot with ggplot2, but almost everything you see

can be customized. 

14 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://r-graphics.org/recipe-scatter-shapes
https://r-graphics.org/recipe-scatter-shapes
https://r-graphics.org/recipe-scatter-shapes
https://r-graphics.org/recipe-scatter-shapes


Here we can see: 

Assigned colors

A legend 

axis titles

a plot background 

tick marks 

The assignment of color, shape, or alpha to our variable occurs automatically, with a unique

aesthetic level representing each category (i.e., 'Dexamethasone', 'none') within our variable.

Most of what we see on this plot is autogenerated with defaults and we can change these

defaults, for example, what colors are used, by adding additional layers to our code. 

How can we modify colors?

Colors are assigned to the fill and color aesthetics in aes(). We can change the default colors

by providing an additional  layer to our figure.  To change the color,  we use the scale_color

functions: 

scale_color_manual(), 

scale_color_brewer() (https://r-graph-gallery.com/38-rcolorbrewers-palettes.html), 

scale_color_grey(), etc. 

Example: 

• 

• 

• 

• 

• 

• 

• 

• 

scatter_plot <- ggplot(exdata) +
geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,

color=Treatment))
scatter_plot +

15 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://r-graph-gallery.com/38-rcolorbrewers-palettes.html
https://r-graph-gallery.com/38-rcolorbrewers-palettes.html
https://r-graph-gallery.com/38-rcolorbrewers-palettes.html


We can also modify the behavior by adding additional arguments. Here we changed the color

labels in the legend using the labels argument. 

There are scale functions for other aesthetics (e.g., shape, alpha, line) as well. 

More on Colors

There are a number of ways to specify the color argument including by name, number, and hex

code. Here (https://www.r-graph-gallery.com/ggplot2-color.html) is a great resource from the R

Graph Gallery (https://www.r-graph-gallery.com/index.html) for assigning colors in R. 

There are also a number of complementary packages in R that expand our color options. 

viridis (https://cran.r-project.org/web/packages/viridis/index.html) - provides colorblind

friendly palettes. 

randomcoloR (https://cran.r-project.org/web/packages/randomcoloR/index.html) -

generates large numbers of random colors. 

Paletteer (https://github.com/EmilHvitfeldt/paletteer) - contains a comprehensive set of

color palettes to load the palettes from multiple packages all at once.

scale_color_manual(values=c("red","black"),
labels=c('treated','untreated'))

• 

• 

• 

library(viridis)
ggplot(exdata) +

geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,
color=Treatment)) +

scale_color_viridis(discrete=TRUE, option="viridis")

16 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://www.r-graph-gallery.com/ggplot2-color.html
https://www.r-graph-gallery.com/ggplot2-color.html
https://www.r-graph-gallery.com/index.html
https://www.r-graph-gallery.com/index.html
https://www.r-graph-gallery.com/index.html
https://cran.r-project.org/web/packages/viridis/index.html
https://cran.r-project.org/web/packages/viridis/index.html
https://cran.r-project.org/web/packages/viridis/index.html
https://cran.r-project.org/web/packages/randomcoloR/index.html
https://cran.r-project.org/web/packages/randomcoloR/index.html
https://cran.r-project.org/web/packages/randomcoloR/index.html
https://github.com/EmilHvitfeldt/paletteer
https://github.com/EmilHvitfeldt/paletteer
https://github.com/EmilHvitfeldt/paletteer


Expanding our ggplot2 template

What do we need to make a plot: 

the data 

one or more geoms 

aesthetic mappings 

facets (i.e., subplots) 

use facet_grid(), facet_wrap()

optional parameters that customize our plot (e.g., themes, axis settings, legend settings). 

coordinate systems (https://ggplot2.tidyverse.org/reference/#coordinate-systems)

statistical transformations. 

The first three line items are required, while the others are controlled by defaults, necessitating

additional modification. 

Making our plot ready for publication

How do we ultimately get our figures to a publishable state? The bread and butter of pretty plots

really falls to the additional non-data layers of our ggplot2 code. These layers will include code

to  label  the  axes (https://ggplot2.tidyverse.org/reference/labs.html),  scale  the  axes (https://

ggplot2.tidyverse.org/reference/#scales),  and  customize  the  legends (https://

ggplot2.tidyverse.org/articles/faq-customising.html#legends) and  theme (https://

ggplot2.tidyverse.org/reference/theme.html). 

For example, 

1. 

2. 

3. 

4. 

◦ 

5. 

6. 

7. 

17 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://ggplot2.tidyverse.org/reference/#coordinate-systems
https://ggplot2.tidyverse.org/reference/#coordinate-systems
https://ggplot2.tidyverse.org/reference/labs.html
https://ggplot2.tidyverse.org/reference/labs.html
https://ggplot2.tidyverse.org/reference/#scales
https://ggplot2.tidyverse.org/reference/#scales
https://ggplot2.tidyverse.org/reference/#scales
https://ggplot2.tidyverse.org/reference/#scales
https://ggplot2.tidyverse.org/articles/faq-customising.html#legends
https://ggplot2.tidyverse.org/articles/faq-customising.html#legends
https://ggplot2.tidyverse.org/articles/faq-customising.html#legends
https://ggplot2.tidyverse.org/articles/faq-customising.html#legends
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html


Saving your plot

The easiest way to save our plot with ggplot2 is ggsave(). This function will save the last plot

that you displayed by default. Look at the function parameters using ?ggsave().

Key Points

ggplot2 is a popular package for data visualization. 

We learned how to create a plot, change plot types, and add layers for further

customization. 

ggplot(exdata) +
geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,

fill=Treatment),
shape=21,size=3) +

#can change labels of fill levels along with colors
scale_fill_manual(values=c("purple", "yellow"),

labels=c('treated','untreated'))+

labs(x="Recovered transcripts per sample",
y="Total sequences per sample", fill="Treatment")+

scale_y_continuous(trans="log10") + #log transform the y axis
theme_bw() #add a complete theme black / white

ggsave("Plot1.png",width=5.5,height=3.5,units="in",dpi=300)

• 

• 

18 Data Visualization with ggplot2

Bioinformatics Training and Education Program



The best way to learn ggplot2 is to use ggplot2. 

Use online resources (e.g., Google) to help you build your plot. 

Reuse your code and modify as needed. 

Check out other resources: 

Data Visualization with R (https://bioinformatics.ccr.cancer.gov/docs/data-

visualization-with-r/index.html)

Coursera lessons (https://bioinformatics.ccr.cancer.gov/btep/self-learning/)

Email us at ncibtep@nih.gov 

General bioinformatics help 

Training requests 

Related packages to check out

There are so many different extensions. Here are a few to check out: 

patchwork (https://github.com/thomasp85/patchwork#patchwork) - combine multiple

plots into a single figure 

ggfortify (https://github.com/sinhrks/ggfortify) - autoplot functions for quick and easy

plotting 

ggpubr (https://rpkgs.datanovia.com/ggpubr/) - integrate statistical results 

ggExtra (https://github.com/daattali/ggExtra) - add subplots along the plot margins 

Other  packages  like  EnhancedVolcano (https://bioconductor.org/packages/release/bioc/html/

EnhancedVolcano.html) can be modified using ggplot2 layers. 

• 

◦ 

◦ 

• 

◦ 

◦ 

• 

◦ 

◦ 

• 

• 

• 

• 

19 Data Visualization with ggplot2

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://bioinformatics.ccr.cancer.gov/btep/self-learning/
https://bioinformatics.ccr.cancer.gov/btep/self-learning/
https://github.com/thomasp85/patchwork#patchwork
https://github.com/thomasp85/patchwork#patchwork
https://github.com/sinhrks/ggfortify
https://github.com/sinhrks/ggfortify
https://rpkgs.datanovia.com/ggpubr/
https://rpkgs.datanovia.com/ggpubr/
https://github.com/daattali/ggExtra
https://github.com/daattali/ggExtra
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html


R programming ggplot2 PCA Volcano Data visualization

Creating and modifying scatter plots: PCA

and Volcano

Objectives

Learn how to make and modify scatter plots using ggplot2.

Learn how to visualize PCA results. 

Learn how to create a Volcano plot. 

Load the libraries

Other R packages used in this tutorial include patchwork,  ggfortify,  EnhancedVolcano,

and ggrepel.

What is ggplot2?

ggplot2 is  a  popular  R  graphics  package associated

with a family of packages known as the tidyverse. Tidyverse packages work effectively on data

stored in data frames (or tibbles), which store variables in columns and observations in rows. In

1. 

2. 

3. 

library(ggplot2)
library(dplyr)
library(DESeq2)

20 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



ggplot2, plots are built in layers, allowing one to incorporate multiple data sets and advanced

features, thus allowing the generation of fairly complex plots.

To build a plot, we need: 

data to plot 

one or more geoms - the visual representation of the plot. 

mapping aesthetics - describe how the variables are mapped to the geoms 

We can also include additional parameters: 

facets - subplots 

coordinate systems (default is Cartesian) 

plot layout and rendering options (customize legends, lines, text, and other features).

statistical transformations / summarizations 

The basic ggplot2 template: 

Example data

Here we will  use bulk RNA-Seq data available in the R package  airway,  which is from an

experiment  published  by  Himes  et  al.  (2014).  These  data,  which  are  available  in  R  as  a

RangedSummarizedExperiment object,  are  from  a  bulk  RNAseq  experiment.  In  the

experiment, the authors "characterized transcriptomic changes in four primary human ASM cell

lines  that  were  treated  with  dexamethasone,"  a  common  therapy  for  asthma.  The  airway

package includes RNAseq count data from 8 airway smooth muscle cell samples. Each cell line

includes a treated and untreated negative control.

We will use some normalized count data (rlog) and differential expression results processed

according  to  the  Bioconductor  workflow,  rnaseqGene (https://bioconductor.org/packages/

release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html).  The  normalized  data  is

stored within a DESeqTransform object, and differential expression results are provided in a

comma  separated  file.  The  data  used  in  this  tutorial  is  available  for  download  here.  See

sessionInfo() at the end of this tutorial for information related to package versions. 

• 

• 

• 

• 

• 

• 

• 

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(
     mapping = aes(<MAPPINGS>),
     stat = <STAT>
  ) +
  <FACET_FUNCTION> +
  <COORDINATE SYSTEM> +
  <THEME>

21 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html


Scatter plots

Scatterplots  are  useful  for  visualizing  treatment–response  comparisons,

associations between variables, or paired data (e.g., a disease biomarker in several

patients  before  and  after  treatment).  -  Holmes  and  Huber,  2021 (https://

web.stanford.edu/class/bios221/book/03-chap.html)

Because  scatter  plots  involve  mapping  each  data  point,  the  geom  function  used  is

geom_point(). 

Let's check out the basic scatter. We can look at the relationship of our normalized count data

from all genes between samples.

#load R object
air<- readRDS("./Data/normalized_air.rds")

#read differential expression results
dexp<- read.csv("./Data/deseq2_DEGs.csv",row.names=1)
dexp<- dexp %>% filter(!is.na(padj))

ggplot(data=assay(air))+ #DATA
  geom_point(aes(x=SRR1039508,y=SRR1039512)) + #what's on x and y axis
  coord_fixed(xlim=c(0,20),ylim=c(0,20))

22 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://web.stanford.edu/class/bios221/book/03-chap.html
https://web.stanford.edu/class/bios221/book/03-chap.html
https://web.stanford.edu/class/bios221/book/03-chap.html
https://web.stanford.edu/class/bios221/book/03-chap.html


Here, we include the data we want to plot (assay(air)), a geom function to represent the plot

(geom_point for a scatter plot), and mapping aesthetics assigning the x-axis to the genes from

one sample (SRR1039508) and the y-axis to the genes from another sample (SRR1039512). 

Common scatter plots used in genomics (PCA and

Volcano)

PCA is mostly used in genomics for dimensionality reduction and uncovering patterns in

highly dimensional data, including identifying technical and biological variation. 

Examples of applications in genomics: 

RNA-Seq

Batch correction. 

Identifying Co-expressed Genes. 

scRNA-Seq 

Note

The loaded gene counts include normalized data via a regularized-logarithm transformation (rlog). Read more on

this  here (https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8).  This  transformation

effectively stabilizes the variance across the mean and is recommended for smaller data sets. 

1. 

• 

• 

• 

• 

23 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8


Dimensionality reduction. 

Evolutionary Genomics 

Examining population structure. 

Examining relationships between species. 

Volcano plots are used to visualize statistical significance versus magnitude of change

(fold change) between treatments or conditions in large genomic data sets (e.g., RNA-

Seq, ChIP-Seq). Volcano plots are great for identifying genes or other features for further

exploration. 

What is PCA?

Principal  component  analysis  (PCA) is  an  exploratory  linear dimension  reduction  method

applied to highly dimensional (multivariate) data. It is an usupervised learning technique that

treats all  variables equally.  The goal  of  PCA is to reduce the dimensionality  of  the data by

transforming the data in a way that maximizes the variance explained. Read more here (https://

towardsdatascience.com/principal-component-analysis-pca-79d228eb9d24) and  here (https://

www.huber.embl.de/msmb/Chap-Multivariate.html). 

There is an assumption that variables are highly correlated. 

How does it work? 

Data standardization - variables should be on the same scale (e.g., z-score

transformation)

Calculate covariance- create a covariance matrix to understand the relationship between

variables

Calculate eigenvectors (direction of variation) and eigenvalues (amount of variance) from

the covariance matrix

Select the top k principal components

Transform the original data - obtain a representation of the data in the newly transformed

space

• 

• 

• 

• 

Visualizing PCA also includes other types of plots

What we think of as a PCA plot, is usually a scatter plot of PC1 vs PC2 (sometimes called a biplot). However, PCA is

multidimensional, and we may want to visualize other aspects (e.g., other PCs, degree of variance by PC (Scree

plots), scores vs loadings (biplot)). For this, check out factoextra (https://rpkgs.datanovia.com/factoextra/index.html)

or PCAtools (https://www.bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html). 

1. 

Note

There are many other scatter plots used in genomics. We are simply focusing on PCA and volcano in this tutorial. 

1. 

2. 

3. 

4. 

5. 

24 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://rpkgs.datanovia.com/factoextra/index.html
https://rpkgs.datanovia.com/factoextra/index.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html
https://towardsdatascience.com/principal-component-analysis-pca-79d228eb9d24
https://towardsdatascience.com/principal-component-analysis-pca-79d228eb9d24
https://towardsdatascience.com/principal-component-analysis-pca-79d228eb9d24
https://towardsdatascience.com/principal-component-analysis-pca-79d228eb9d24
https://www.huber.embl.de/msmb/Chap-Multivariate.html
https://www.huber.embl.de/msmb/Chap-Multivariate.html
https://www.huber.embl.de/msmb/Chap-Multivariate.html
https://www.huber.embl.de/msmb/Chap-Multivariate.html


Key points:

The PCs represent a linear combination of the original variables

PCs are uncorrelated 

The number of PCs is equivalent to the number of original variables in your data set. 

PC1 accounts for the most variance, and each subsequent PC will explain less and less

variance. 

For a more detailed explanation of PCA, see the following: 

https://benthamopen.com/contents/pdf/TOBIOIJ/TOBIOIJ-7-19.pdf (https://

benthamopen.com/contents/pdf/TOBIOIJ/TOBIOIJ-7-19.pdf)

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-

analysis-eigenvectors-eigenvalues (https://stats.stackexchange.com/questions/2691/

making-sense-of-principal-component-analysis-eigenvectors-eigenvalues)

https://www.billconnelly.net/?p=697 (https://www.billconnelly.net/?p=697)

https://builtin.com/data-science/step-step-explanation-principal-component-analysis

(https://builtin.com/data-science/step-step-explanation-principal-component-analysis)

Perform PCA

There are many packages and functions available in R programming for performing PCA. Some

of  the  most  popular  functions  are  stats::prcomp(),  stats::princomp(), 

FactoMineR::PCA(), and ade4::dudi.pca(). These functions largely differ in the method

used  for  PCA  and  the  default  arguments;  see  here (https://aedin.github.io/PCAworkshop/

articles/b_PCA.html#pca-in-r-1). We will focus on stats::prcomp() for this tutorial. If you are

using an alternative function, make sure you are aware of the function arguments (and defaults).

PCA is used frequently in -omics fields. Often than not, there will be package specific functions

for PCA and plotting PCA for different -omics analyses.

We can use  the  function  prcomp() to  run  PCA on  our  rlog  transformed count  data.  This

function requires numeric data. Notice by default, the function does not scale the data. If you

have not transformed your data and you are working with variables of different units, consider

scaling the data. 

• 

• 

• 

• 

• 

• 

• 

• 

Note

stats::princomp(),  which  uses  eigenvalue  decomposition  of  the  covariance  matrix,  is  faster  to  run  than

stats::prcomp(),  which  uses  singular  value  decomposition  (SVD)  on  the  original  data  matrix. (https://

stackoverflow.com/questions/14249156/principal-component-analysis-pca-in-r-which-function-to-use)

Why is scaling important?

Scaling and centering typically occur prior to PCA.  Scaling removes biases from variables with high variances.

Centering shifts the data to the origin by subtracting the mean of each feature. This is important for finding linear



25 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://benthamopen.com/contents/pdf/TOBIOIJ/TOBIOIJ-7-19.pdf
https://benthamopen.com/contents/pdf/TOBIOIJ/TOBIOIJ-7-19.pdf
https://benthamopen.com/contents/pdf/TOBIOIJ/TOBIOIJ-7-19.pdf
https://benthamopen.com/contents/pdf/TOBIOIJ/TOBIOIJ-7-19.pdf
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://www.billconnelly.net/?p=697
https://www.billconnelly.net/?p=697
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://aedin.github.io/PCAworkshop/articles/b_PCA.html#pca-in-r-1
https://aedin.github.io/PCAworkshop/articles/b_PCA.html#pca-in-r-1
https://aedin.github.io/PCAworkshop/articles/b_PCA.html#pca-in-r-1
https://aedin.github.io/PCAworkshop/articles/b_PCA.html#pca-in-r-1
https://stackoverflow.com/questions/14249156/principal-component-analysis-pca-in-r-which-function-to-use
https://stackoverflow.com/questions/14249156/principal-component-analysis-pca-in-r-which-function-to-use
https://stackoverflow.com/questions/14249156/principal-component-analysis-pca-in-r-which-function-to-use
https://stackoverflow.com/questions/14249156/principal-component-analysis-pca-in-r-which-function-to-use
https://stackoverflow.com/questions/14249156/principal-component-analysis-pca-in-r-which-function-to-use
https://stackoverflow.com/questions/14249156/principal-component-analysis-pca-in-r-which-function-to-use
https://stackoverflow.com/questions/14249156/principal-component-analysis-pca-in-r-which-function-to-use
https://stats.stackexchange.com/questions/385775/normalizing-vs-scaling-before-pca
https://stats.stackexchange.com/questions/385775/normalizing-vs-scaling-before-pca


Now we run prcomp(): 

The object  pca is a list of 5: the standard deviations of the principal components, a matrix of

variable loadings, the centering and scaling parameters used, and the data projected on the

principal components. 

Plot PCA

To plot the first two axes of variation along with species information, we will need to make a data

frame with this information. The axes are in pca$x. 

subspaces and removing the affect of the mean. (https://stats.stackexchange.com/questions/385775/normalizing-

vs-scaling-before-pca)

Large  variance  in  observed  variable  will  contribute  most  to  the  overall  variance  of  computed

principal component. If the observed values of variables have very different ranges, then the data

needs  to  be  normalized/scaled.  -  Aniket  Patil (https://medium.com/analytics-vidhya/principal-

component-analysis-pca-8a0fcba2e30c)

Setting a scaling parameter to TRUE will standardize the data (i.e., perform a z-score transformation) so that the

data has a mean of 0 and standard deviation of 1. 

#run PCA
pca<-prcomp(t(assay(air))) 

#get structure of df
str(pca)

List of 5
 $ sdev    : num [1:8] 23.28 17.78 14.84 12.08 7.12 ...
 $ rotation: num [1:16139, 1:8] -0.00677 0.00359 0.00056 -0.00108 0.01033 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:16139] "ENSG00000000003" "ENSG00000000419" "ENSG00000000457" "ENSG00000000460" ...
  .. ..$ : chr [1:8] "PC1" "PC2" "PC3" "PC4" ...
 $ center  : Named num [1:16139] 9.45 9.02 7.89 5.83 12.45 ...
  ..- attr(*, "names")= chr [1:16139] "ENSG00000000003" "ENSG00000000419" "ENSG00000000457" "ENSG00000000460" ...
 $ scale   : logi FALSE
 $ x       : num [1:8, 1:8] -25.8 14.1 -17.5 26.8 -22.4 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:8] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" ...
  .. ..$ : chr [1:8] "PC1" "PC2" "PC3" "PC4" ...
 - attr(*, "class")= chr "prcomp"

#Build a data frame
pcaData <- as.data.frame(pca$x[, 1:3]) # extract first three PCs

26 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://stats.stackexchange.com/questions/385775/normalizing-vs-scaling-before-pca
https://stats.stackexchange.com/questions/385775/normalizing-vs-scaling-before-pca
https://stats.stackexchange.com/questions/385775/normalizing-vs-scaling-before-pca
https://stats.stackexchange.com/questions/385775/normalizing-vs-scaling-before-pca
https://medium.com/analytics-vidhya/principal-component-analysis-pca-8a0fcba2e30c
https://medium.com/analytics-vidhya/principal-component-analysis-pca-8a0fcba2e30c
https://medium.com/analytics-vidhya/principal-component-analysis-pca-8a0fcba2e30c
https://medium.com/analytics-vidhya/principal-component-analysis-pca-8a0fcba2e30c


This  is  a  decent  plot  showing  us  how  our  RNA-Seq  samples  are  related  based  on  gene

expression. PC1 always explains the most variation followed by each successive PC. From this

plot, we see that our samples cluster by treatment along PC1, while PC2 is capturing variation in

the cell lines. 

# add the sample information
pcaData<- data.frame(colData(air)) |> select(cell, dex, Run) |> cbind(pcaData)

# modify column names
colnames(pcaData) <- c("Cell","Treatment","Sample","PC1","PC2","PC3") 

#Plot
ggplot(pcaData, aes(PC1, PC2, color = Treatment, shape = Cell)) +
  geom_point(size = 2) + # adding data points
  coord_fixed() # fixing coordinates

coord_fixed()

Tip 6, here (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586259/), discusses the importance of aspect ratio and

using coord_fixed() more in detail. 

27 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586259/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586259/


In the plot, the axes are missing the % explained variance. Let's add custom axes. We can do

this with the xlab() and ylab() functions or the functions labs(). But first we need to grab

some information from our PCA analysis. Let's use  summary(pca). This function provides a

summary of results for a variety of model fitting functions and methods. 

PC1 and PC2 combined account for 65% of variance in the data. We can add this information

directly to our plot using custom axes labels. 

Add custom axes labels

#Extract % Variance Explained
summary(pca)

Importance of components:
                           PC1     PC2     PC3     PC4     PC5     PC6    PC7
Standard deviation     23.2778 17.7783 14.8386 12.0827 7.11804 5.66206 4.9081
Proportion of Variance  0.4071  0.2375  0.1654  0.1097 0.03807 0.02409 0.0181
Cumulative Proportion   0.4071  0.6446  0.8101  0.9197 0.95781 0.98190 1.0000
                            PC8
Standard deviation     1.09e-13
Proportion of Variance 0.00e+00
Cumulative Proportion  1.00e+00

#Plot
ggplot(pcaData, aes(PC1, PC2, color = Treatment, shape = Cell)) +
  geom_point(size = 2) + 
  coord_fixed() +
  xlab("PC1: 41%")+ #x axis label text
  ylab("PC2: 24%") # y axis label text

28 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



Automating the "Proportion of Variance"

If you want to automate the "Proportion of Variance", you should call it directly in the code. For example, 



ggplot(pcaData, aes(PC1, PC2, color = Treatment, shape = Cell)) +
  geom_point(size = 2) + 
  coord_fixed() +
  labs(x=paste0("PC1: ",round(summary(pca)$importance[2,1]*100),"%"),
      y=paste0("PC2: ",round(summary(pca)$importance[2,2]*100),"%"))

29 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



Add PC3

To add multiple principal components, you can build multiple plots



a<-ggplot(pcaData, aes(PC1, PC2, color = Treatment, shape = Cell)) +
  geom_point(size = 2) + 
  coord_fixed() +
  labs(x=paste0("PC1: ",round(summary(pca)$importance[2,1]*100),"%"),
      y=paste0("PC2: ",round(summary(pca)$importance[2,2]*100),"%"))

b<-ggplot(pcaData, aes(PC3, PC2, color = Treatment, shape = Cell)) +
  geom_point(size = 2) + 
  coord_fixed() +
  labs(x=paste0("PC3: ",round(summary(pca)$importance[2,3]*100),"%"),
      y=paste0("PC2: ",round(summary(pca)$importance[2,2]*100),"%"))

c<-ggplot(pcaData, aes(PC1, PC3, color = Treatment, shape = Cell)) +
  geom_point(size = 2) + 
  coord_fixed() +
  labs(x=paste0("PC1: ",round(summary(pca)$importance[2,1]*100),"%"),
      y=paste0("PC3: ",round(summary(pca)$importance[2,3]*100),"%"))+
  theme(legend.position="none")

library(patchwork)

30 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



Add a stat to our plot with stat_ellipse().

In scatter plots, the raw data is the focus of the plot, but for many other plots, this is not the

case. You may wish to overlay a stat on your PCA. For example, ellipses are often added to

PCA  ordinations  to  emphasize  group  clustering  with  confidence  intervals.  By  default,

stat_ellipse() uses the bivariate t distribution, but this can be modified. Let's add ellipses

with 95% confidence intervals to our plot. 

A great  package  for  simplifying  this  is  PCAtools (https://www.bioconductor.org/packages/devel/bioc/vignettes/

PCAtools/inst/doc/PCAtools.html), using the function pairsplot(). This package has other functionality that also

may be of interest, and it plays nicely with ggplot2 functions for customization. 

Warning: package 'patchwork' was built under R version 4.4.1

a + b + c + plot_layout(nrow=2,guides = 'collect')

ggplot(pcaData, aes(PC1, PC2, color = Treatment, shape = Cell)) +
  geom_point(size = 2) + 
  coord_fixed() +
  labs(x=paste0("PC1: ",round(summary(pca)$importance[2,1]*100),"%"),
       y=paste0("PC2: ",round(summary(pca)$importance[2,2]*100),"%"))+
  stat_ellipse(geom="polygon",aes(group=Treatment), 

31 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://www.bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html
https://www.bioconductor.org/packages/devel/bioc/vignettes/PCAtools/inst/doc/PCAtools.html


Using ggfortify

ggfortify is an excellent package to consider for easily generating PCA plots.  ggfortify

provides  "unified plotting tools for statistics commonly used, such as GLM, time series, PCA

families, clustering and survival analysis. The package offers a single plotting interface for these

analysis  results  and  plots  in  a  unified  style  using  'ggplot2'." (https://cran.r-project.org/web/

packages/ggfortify/)

              level=0.95, alpha=0.2) #adding a stat

Warning: The following aesthetics were dropped during statistical transformation: shape.
ℹ This can happen when ggplot fails to infer the correct grouping structure in

  the data.
ℹ Did you forget to specify a `group` aesthetic or to convert a numerical

  variable into a factor?

library(ggfortify)
autoplot(pca, data = colData(air), colour = 'dex',shape='cell',size=2) +
  coord_fixed()

32 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://cran.r-project.org/web/packages/ggfortify/
https://cran.r-project.org/web/packages/ggfortify/
https://cran.r-project.org/web/packages/ggfortify/
https://cran.r-project.org/web/packages/ggfortify/
https://cran.r-project.org/web/packages/ggfortify/
https://cran.r-project.org/web/packages/ggfortify/


Since this is a ggplot2 object, this can easily be customized by adding ggplot2 customization

layers. 

If you are interesting in examining the PC loadings, these are difficult to plot using  ggplot2

alone. I recommend PCAtools or factoextra (https://rpkgs.datanovia.com/factoextra/). 

Plot Customization: Using themes

To create a publication quality plot, you will need to make several modifications to your basic

PCA biplot code. We have already seen how to modify the default coordinate system, how to

add additional statistics (e.g., ellipses with confidence intervals), and how to modify the axes

labels. There are many more features that can be customized to make this publishable or fit a

desired style.Changing non-data elements (related to axes, titles subtitles, gridlines, legends,

etc.) of our plot can be done with  theme(). GGplot2 has a definitive default style that falls

under  one  of  their  precooked  themes,  theme_gray().  theme_gray() is  one  of  eight

complete themes provided by ggplot2. 

Using DESeq2 function

DESeq2 has its own function for PCA analysis,  plotPCA().  If  you check out the source code for this function

(getMethod("plotPCA","DESeqTransform")), you will see that the data is filtered prior to prcomp() to only

include the 500 top most variable genes by default. 



33 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://rpkgs.datanovia.com/factoextra/
https://rpkgs.datanovia.com/factoextra/
https://rpkgs.datanovia.com/factoextra/


We can also specify and build a theme within our plot code or develop a custom theme to be

reused across multiple plots. The theme function is the bread and butter of plot customization.

Check out ?ggplot2::theme() for a list of available parameters. There are many. 

Let's see how this works by changing the fonts and text sizes and dropping minor grid lines:

ggplot(pcaData, aes(PC1, PC2, color = Treatment, shape = Cell)) +
  geom_point(size = 2) + 
  coord_fixed() +
  labs(x=paste0("PC1: ",round(summary(pca)$importance[2,1]*100),"%"),
       y=paste0("PC2: ",round(summary(pca)$importance[2,2]*100),"%"))+
  stat_ellipse(geom="polygon",aes(group=Treatment), level=0.95, alpha=0.2)+
theme_bw() + #start with a custom theme 
  theme(axis.text=element_text(size=12,family="Times New Roman"),

34 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



You may want to establish a custom theme for reuse with a number of plots. See this great

tutorial (https://rpubs.com/mclaire19/ggplot2-custom-themes) by Madeline Pickens for steps on

how to do that. 

        axis.title = element_text(size=12,family="Times New Roman"),
        legend.text = element_text(size=12,family="Times New Roman"),
        legend.title = element_text(size=12,family="Times New Roman"),
        panel.grid.minor = element_blank())

Warning: The following aesthetics were dropped during statistical transformation: shape.
ℹ This can happen when ggplot fails to infer the correct grouping structure in

  the data.
ℹ Did you forget to specify a `group` aesthetic or to convert a numerical

  variable into a factor?

A helpful color trick

When you have a lot of colors and you want to keep these colors consistent, you can use the following convenient

functions to set a name attribute for a vector of colors. 

Let's do this for our asthma treatments.



#defining colors

35 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://rpubs.com/mclaire19/ggplot2-custom-themes
https://rpubs.com/mclaire19/ggplot2-custom-themes


We can use this color palette for all plots including these two treatments to keep our figures consistent throughout a

presentation or publication. 

gcolors<-setNames(c("black","orange"),levels(pcaData$Treatment))  

#Now plot
ggplot(pcaData, aes(PC1, PC2, color = Treatment, shape = Cell)) +
  geom_point(size = 2) + 
scale_color_manual(values=gcolors)+ #Adding the color argument
  coord_fixed() +
  labs(x=paste0("PC1: ",round(summary(pca)$importance[2,1]*100),"%"),
      y=paste0("PC2: ",round(summary(pca)$importance[2,2]*100),"%"))+
  stat_ellipse(geom="polygon",aes(group=Treatment,fill=Treatment), 
              level=0.95, alpha=0.2)+
  scale_fill_manual(values=gcolors)+
theme_bw() + #start with a custom theme 
  theme(axis.text=element_text(size=12,family="Times New Roman"),
        axis.title = element_text(size=12,family="Times New Roman"),
        legend.text = element_text(size=12,family="Times New Roman"),
        legend.title = element_text(size=12,family="Times New Roman"),
        panel.grid.minor = element_blank())

Warning: The following aesthetics were dropped during statistical transformation: shape.
ℹ This can happen when ggplot fails to infer the correct grouping structure in

  the data.
ℹ Did you forget to specify a `group` aesthetic or to convert a numerical

  variable into a factor?

36 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



Creating a publication ready volcano plot

Now that we know how to create a PCA biplot, let's use what we have learned to also make a

volcano plot. 

A volcano plot is a type of scatterplot that shows statistical significance (P value)

versus magnitude of change (fold change). It enables quick visual identification of

genes with large fold changes that are also statistically significant. These may be

the  most  biologically  significant  genes.  ---  Maria  Doyle,  2021 (https://

training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-

viz-with-volcanoplot/tutorial.html)

First, we need to do a bit of data wrangling. The tidyverse packages work great for this task. 

Let's take a quick look at the wrangled data and our top genes for later labeling:

#Wrangle the data

#add gene names to differential expression results
gene_names<- data.frame(rowData(air)) |> select(gene_name) |> tibble::rownames_to_column("ID")

dexp<- dexp |> tibble::rownames_to_column("ID") |> 
      left_join(gene_names, by="ID")

# Call genes significantly differentially expressed if they have a 
#p-value less than 0.05 and a logFC greater than or equal to 2.
dexp_sigtrnsc <- dexp |> 
  mutate(Significant = padj < 0.05 & abs(log2FoldChange) >= 2) |>
  arrange(padj)

#extract top 6 genes to use for the labels
topgenes <- dexp_sigtrnsc$gene_name[c(1:6)]

head(dexp_sigtrnsc)  

               ID   baseMean log2FoldChange     lfcSE        pvalue
1 ENSG00000152583   997.9612       4.555676 0.1858858 7.129668e-136
2 ENSG00000165995   495.5675       3.276456 0.1326038 5.859407e-136
3 ENSG00000120129  3411.9661       2.935137 0.1227877 2.414560e-128
4 ENSG00000101347 12712.9456       3.754493 0.1579042 7.501584e-128
5 ENSG00000189221  2343.5733       3.337353 0.1432593 1.140346e-122
6 ENSG00000211445 12298.1966       3.711558 0.1693331 5.201708e-110
           padj gene_name Significant

37 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html


Significant differential expression was assigned based on an absolute log fold change greater

than or equal to 2 and an FDR corrected p-value less than 0.05. 

1 5.530127e-132   SPARCL1        TRUE
2 5.530127e-132    CACNB2        TRUE
3 1.248569e-124     DUSP1        TRUE
4 2.909302e-124    SAMHD1        TRUE
5 3.538038e-119      MAOA        TRUE
6 1.344901e-106      GPX3        TRUE

topgenes

[1] "SPARCL1" "CACNB2"  "DUSP1"   "SAMHD1"  "MAOA"    "GPX3"   

Enhanced Volcano

There is a dedicated package for creating volcano plots available on Bioconductor,  EnhancedVolcano (https://

bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html).  Plots  created  using  this  package  can  be

customized using ggplot2 functions and syntax. 

Using EnhancedVolcano: 

#The default cut-off for log2FC is >|2|
#the default cut-off for P value is 10e-6
library(EnhancedVolcano)

Loading required package: ggrepel

Warning: package 'ggrepel' was built under R version 4.4.1

EnhancedVolcano(dexp,
                title = "Enhanced Volcano with Airways",
                lab = dexp_sigtrnsc$gene_name,
                x = 'log2FoldChange',
                y = 'padj') 

38 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html


Let's start our plot with the <DATA>, <GEOM_FUNCTION>, and <MAPPING>. We do not need to

fix the coordinate system because we are working with two different values on the x and y and

we don't need any special coordinate system modifications. Let's plot logFC on the x axis and

the mutated column with our adjusted p-values on the y-axis and set the significant p-values off

from the non-significant by color. We can also go ahead and customize the color scale, since

we have learned how to do that. 

If you are interested in using this package, check out this tutorial (https://bioinformatics.ccr.cancer.gov/docs/btep-

coding-club/CC2023/complex_heatmap_enhanced_volcano/#background-on-volcano-plot). 

ggplot(data=dexp_sigtrnsc) +
  geom_point(aes(x = log2FoldChange, y = log10(padj), color = Significant,
                  alpha = Significant)) +
  scale_color_manual(values = c("black", "#e11f28")) 

Warning: Using alpha for a discrete variable is not advised.

39 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2023/complex_heatmap_enhanced_volcano/#background-on-volcano-plot
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2023/complex_heatmap_enhanced_volcano/#background-on-volcano-plot
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2023/complex_heatmap_enhanced_volcano/#background-on-volcano-plot
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2023/complex_heatmap_enhanced_volcano/#background-on-volcano-plot


This is not exactly what we want so let's keep working. 

Immediately,  you should notice that the figure is upside down compared to what we would

expect from a volcano plot. There are two possible ways to fix this. We could transform the

adjusted p-values by multiplying by -1 OR we could work with our axes scales. Aside from text

modifications, we haven't yet changed the scaling of the axes. Let's see how we can modify the

scale of the y-axis. 

Changing axes scales

To change the y axis scale, we will need a specific function. These functions generally start with

scale_y.... In our case we want to reverse our axis so that increasingly negative is going in

the positive direction rather than the negative direction. Luckily, there is a function to reverse our

axis; see ?scale_y_reverse().

ggplot(data=dexp_sigtrnsc) +
  geom_point(aes(x = log2FoldChange, y = log10(padj), color = Significant, 
                  alpha = Significant)) +
  scale_color_manual(values = c("black", "#e11f28")) +
  scale_y_reverse(limits=c(0,-150)) 

40 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



This looks pretty good, but we can tidy it up more by working with our legend guides and our

theme. 

Modifying legends

We can modify many aspects of the figure legend using the function guide(). Let's see how

that  works  and  go  ahead  and  customize  some  theme  arguments.  Notice  that  the  legend

position is specified in theme(). 

Warning: Using alpha for a discrete variable is not advised.

ggplot(data=dexp_sigtrnsc) +
  geom_point(aes(x = log2FoldChange, y = log10(padj), color = Significant, 
                  alpha = Significant)) +
  scale_color_manual(values = c("black", "#e11f28")) +
  scale_y_reverse(limits=c(0,-150))+
  guides(alpha= "none", 
         color= guide_legend(title="Significant DE")) +
       theme_bw() +
      theme(
        panel.border = element_blank(),
        axis.line = element_line(),

41 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



Lastly, let's layer another geom function to label our top six differentially abundant genes based

on  significance.  We  can  use  geom_text_repel() from  library(ggrepel),  which  is  a

variation on geom_text(). 

        panel.grid.major = element_line(size = 0.2),
        panel.grid.minor = element_line(size = 0.1),
        text = element_text(size = 12),
        legend.position = "bottom",
        axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
      )

Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
ℹ Please use the `linewidth` argument instead.

Warning: Using alpha for a discrete variable is not advised.

ggplot(data=dexp_sigtrnsc) +
  geom_point(aes(x = log2FoldChange, y = log10(padj), color = Significant, 
                  alpha = Significant)) +
  geom_text_repel(data=dexp_sigtrnsc %>% 

42 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



To save the file, use ggsave(). 

                    filter(gene_name %in% topgenes), 
                  aes(x = log2FoldChange, y = log10(padj),label=gene_name),
                  nudge_y=0.5,hjust=0.5,direction="both",
                  segment.color="gray")+
  scale_color_manual(values = c("black", "#e11f28")) +
  scale_y_reverse(limits=c(0,-150))+
  guides(alpha= "none", 
         color= guide_legend(title="Significant DE")) +
       theme_bw() +
      theme(
        panel.border = element_blank(),
        axis.line = element_line(),
        panel.grid.major = element_line(size = 0.2),
        panel.grid.minor = element_line(size = 0.1),
        text = element_text(size = 12),
        legend.position = "bottom",
        axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
      )

Warning: Using alpha for a discrete variable is not advised.

43 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



Session Info

sessionInfo()

R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.7.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] EnhancedVolcano_1.22.0      ggrepel_0.9.6              
 [3] ggfortify_0.4.17            patchwork_1.3.0            
 [5] DESeq2_1.44.0               SummarizedExperiment_1.34.0
 [7] Biobase_2.64.0              MatrixGenerics_1.16.0      
 [9] matrixStats_1.4.1           GenomicRanges_1.56.2       
[11] GenomeInfoDb_1.40.1         IRanges_2.38.1             
[13] S4Vectors_0.42.1            BiocGenerics_0.50.0        
[15] dplyr_1.1.4                 ggplot2_3.5.1              

loaded via a namespace (and not attached):
 [1] gtable_0.3.6            xfun_0.49               htmlwidgets_1.6.4      
 [4] lattice_0.22-6          vctrs_0.6.5             tools_4.4.0            
 [7] generics_0.1.3          parallel_4.4.0          tibble_3.2.1           
[10] pkgconfig_2.0.3         Matrix_1.7-1            lifecycle_1.0.4        
[13] GenomeInfoDbData_1.2.12 compiler_4.4.0          farver_2.1.2           
[16] stringr_1.5.1           munsell_0.5.1           codetools_0.2-20       
[19] htmltools_0.5.8.1       yaml_2.3.10             pillar_1.10.0          
[22] crayon_1.5.3            tidyr_1.3.1             MASS_7.3-61            
[25] BiocParallel_1.38.0     DelayedArray_0.30.1     abind_1.4-8            
[28] tidyselect_1.2.1        locfit_1.5-9.10         digest_0.6.37          
[31] stringi_1.8.4           purrr_1.0.2             labeling_0.4.3         

44 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program



References

Sources  for  content  included  R4DS (https://r4ds.had.co.nz/) and  Holmes  and  Huber,  2021

(https://web.stanford.edu/class/bios221/book/). 

[34] fastmap_1.2.0           grid_4.4.0              colorspace_2.1-1       
[37] cli_3.6.3               SparseArray_1.4.8       magrittr_2.0.3         
[40] S4Arrays_1.4.1          withr_3.0.2             scales_1.3.0           
[43] UCSC.utils_1.0.0        rmarkdown_2.29          XVector_0.44.0         
[46] httr_1.4.7              gridExtra_2.3           evaluate_1.0.1         
[49] knitr_1.49              rlang_1.1.4             Rcpp_1.0.13-1          
[52] glue_1.8.0              rstudioapi_0.17.1       jsonlite_1.8.9         
[55] R6_2.5.1                zlibbioc_1.50.0        

45 Creating and modifying scatter plots: PCA and Volcano

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://web.stanford.edu/class/bios221/book/
https://web.stanford.edu/class/bios221/book/
https://web.stanford.edu/class/bios221/book/
https://web.stanford.edu/class/bios221/book/

	BTEP Lessons
	Table of Contents
	Welcome
	Data Visualization with ggplot2
	Creating and modifying scatter plots: PCA and Volcano

	Welcome
	Events

	Data Visualization with ggplot2
	Learning Objectives
	What is R?
	RStudio
	What is ggplot2?
	Why ggplot2?
	Getting started with ggplot2
	Getting help
	Resources for Learning
	Example Data
	Get the data

	Practice Data
	The ggplot2 template
	Using the template
	How did we create this plot?

	Geom functions
	Changing the Geom function
	Creating a line plot
	Creating a boxplot

	Mapping and aesthetics (aes())
	Map a Color to a Variable
	Changing the color of all points
	Defaults
	How can we modify colors?
	More on Colors
	Expanding our ggplot2 template
	Making our plot ready for publication
	Saving your plot
	Key Points
	Related packages to check out

	Creating and modifying scatter plots: PCA and Volcano
	Objectives
	Load the libraries
	What is ggplot2?
	Example data
	Scatter plots
	Common scatter plots used in genomics (PCA and Volcano)
	What is PCA?
	Perform PCA
	Plot PCA
	Add custom axes labels
	Add a stat to our plot with stat_ellipse().
	Using ggfortify

	Plot Customization: Using themes
	Creating a publication ready volcano plot
	Changing axes scales
	Modifying legends

	Session Info
	References


