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Course Overview

Welcome to the Data Visualization with R Series

A series of lessons designed to introduce learners to the R package

ggplot2

This course will include a series of lessons for scientists with beginner level experience in R.

The primary purpose of this course is to introduce learners to data visualization in R with a

primary focus on ggplot2 and related packages. 

Course objectives

Learn how to generate basic plot types in ggplot2 

Understand how basic plot types can be customized to generate more complex plots 

What this course is not!

This course will not: 

Make anyone an R expert 

Make anyone a ggplot2 expert 

Course Expectations

This course will include a series of six, 1-1.25 hour lessons over a period of three weeks. Each

lesson will be followed by a 45 minute help session in which students can ask questions and /

or get individual help with their data. 

Lesson 1: Introduction to plot types

This lesson will answer that burning question: Why R for data visualization? In addition, we will

introduce the various plot types that will be generated throughout the course and will showcase

related plots that you will be able to create in the future using the foundational skills gained over

the next 3 weeks. This will not be a hands-on lesson so no coding yet. The hands-on portion of

1. 

2. 

1. 

2. 

Note

While this course may be useful to learners with intermediate R experience who would like to learn more regarding

ggplot2, the pace of the course will be set assuming a beginner level of understanding. 
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this series will  start  with lesson 2. In the help session afterwards we will  help those having

trouble with DNAnexus accounts.

Lesson 2: Getting Started with ggplot2

Lesson 2 will focus on the basics of ggplot2, including the grammar of graphics philosophy and

its application. This lesson will provide a hands on introduction to the ggplot2 syntax, geom

functions, mapping and aesthetics, and plot layering. 

Lesson 3: Scatter plots and Non-data elements of ggplot2

customization

Lesson 3 will continue the discussion on the grammar of graphics, with a focus on ggplot2 plot

customization including axes labels, coordinate systems, axes scales, and themes. This hands

on lesson will showcase these features of plot building through the generation of increasingly

complex scatter plots using data included with a base R installation as well as RNASeq data. 

Lesson 4: Visualizing summary statistics with ggplot2

It is common to obtain summary statistics for a dataset to understand parameters like mean,

standard deviation, and distribution. In this lesson, we will learn to generate plots that will help

with visualization of summary statistics including bar plot with error bars, histogram, as well as

the box and whiskers plot.

Lesson 5: Visualizing clusters with heatmaps

Lesson 5 will introduce the heatmap and dendrogram as tools for visualizing clusters in data.

This lesson will primarily use the R package pheatmap. 

Lesson 6: Combining multiple plots to create a figure panel

Scientific journals almost always have limits on the number of figures that can be included in a

publication. Don't fret, in lesson 6, we will focus on generating sub plots and multi plot figure

panels using ggplot2 associated packages. 

Required Course Materials

To participate  in  this  class  you  will  need your  government-issued computer  and a  reliable

internet connection. You do not need to download or install any software to participate in the

class. 
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Introduction to ggplot2

Objectives

Learn how to import spreadsheet data.

Learn the ggplot2 syntax.

Build a ggplot2 general template.

By the end of the course, students should be able to create simple, pretty, and effective figures.

Going beyond Excel

Excel is a great program for visualizing and manipulating small data sets. However, it isn't great

for working with "big data", and resulting plots are generally not publishable. Learning R and

associated plotting packages is a great way to generate publishable figures in a reproducible

fashion. Using R will not only keep you from accidentally editing your data, but it will also allow

you to generate scripts that can be viewed later or reused to generate the same plot using

different data. This will keep you from having to rely on your memory when wondering what data

was used or how a plot was generated. 

Let's read in and look at some excel data.

1. 

2. 

3. 

#If the package readxl is not installed,
#you will need to install the package and load the library
#install.packages("readxl")
#library(readxl)

#data import from excel
data<-readxl::read_xlsx(
  "./data/RNASeq_totalcounts_vs_totaltrans.xlsx",1)

#View data
data

## # A tibble: 8 × 4
##   `Sample Name` Treatment     `Number of Transcripts` `Total Counts`
##   <chr>         <chr>                           <dbl>          <dbl>
## 1 GSM1275863    Dexamethasone                   10768       18783120
## 2 GSM1275867    Dexamethasone                   10051       15144524
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These data include total transcript read counts summed by sample and the total number of

transcripts recovered by sample that had at least 100 reads. These data derive from a bulk

RNAseq  experiment  described  by  Himes  et  al.  (2014) (https://pubmed.ncbi.nlm.nih.gov/

24926665/).  In  the  experiment,  the  authors  "characterized  transcriptomic  changes  in  four

primary human ASM cell lines that were treated with dexamethasone," a common therapy for

asthma. Each cell  line included a treated and untreated negative control resulting in a total

sample size of 8. 

Notice those column names. 

Spaces cause problems for data wrangling in R, but we can change our load parameters to

repair our column names.

Readxl’s  default  is  .name_repair  =  "unique",  which ensures  each column has a

unique name. If that is already true of the column names, readxl won’t touch them.

The  value  .name_repair  =  "universal"  goes  further  and  makes  column  names

syntactic, i.e. makes sure they don’t contain any forbidden characters or reserved

words.  This  makes  life  easier  if  you  use  packages  like  ggplot2  and  dplyr

downstream, because the column names will  “just  work”  everywhere and won’t

## 3 GSM1275871    Dexamethasone                   11658       30776089
## 4 GSM1275875    Dexamethasone                   10900       21135511
## 5 GSM1275862    None                            11177       20608402
## 6 GSM1275866    None                            11526       25311320
## 7 GSM1275870    None                            11425       24411867
## 8 GSM1275874    None                            11000       19094104

#Notice those column names
colnames(data)

## [1] "Sample Name"           "Treatment"             "Number of Transcripts"
## [4] "Total Counts"

#data import from excel
data<-readxl::read_xlsx("./data/RNASeq_totalcounts_vs_totaltrans.xlsx",
                        1,.name_repair = "universal")

## New names:
## • `Sample Name` -> `Sample.Name`
## • `Number of Transcripts` -> `Number.of.Transcripts`
## • `Total Counts` -> `Total.Counts`
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require  protection  via  backtick  quotes  ---  readxl.tidyverse.org (https://

readxl.tidyverse.org/articles/column-names.html). 

We could plot this data in excel. If we did, we would get something like this:

This isn't too bad, but it took an unnecessary amount of time, and there weren't a lot of options

for customization. 

RECOMMENDATION

You should save metadata or other tabular data as either comma separated files (.csv) or tab-delimited files (.txt,

.tsv). Using these file extensions will make it easier to use the data with bioinformatic programs. There are multiple

functions available to read in delimited data in R. We will see a few of these over the next few weeks. 
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Example of .csv structure:

Why ggplot2?

Outside of base R plotting, one of the most popular packages used to generate graphics in R is

ggplot2, which is associated with a family of packages collectively known as the tidyverse.

GGplot2 allows the user to create informative plots quickly by using a 'grammar of graphics'

implementation, which is described as "a coherent system for describing and building graphs"

(R4DS). We will see this in action shortly. The power of this package is that plots are built in

layers and few changes to the code result in very different outcomes. This makes it easy to

reuse parts of the code for very different figures. GGplot2 is incredibly versatile and can create

most  types  of  plots,  especially  when  you  consider  the  numerous  packages (https://

exts.ggplot2.tidyverse.org/gallery/) that further extend its capabilities. 

Being  a  part  of  the  tidyverse  collection,  ggplot2 works  best  with  data  organized so  that

individual  observations  are  in  rows  and  variables  are  in  columns  ("tidy  data (https://

r4ds.had.co.nz/tidy-data.html)"). 

Getting started with ggplot2

To begin plotting, we need to load our ggplot2 library. Package libraries must be loaded every

time you  open and use  R.  If  you  haven't  yet  installed  the  ggplot2  package on  your  local

machine, you will need to do that using install.packages("ggplot2"). 
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Getting help

The R community is extensive and getting help is now easier than ever with a simple web

search. If  you can't  figure out how to plot something, give a quick web search a try. Great

resources include internet tutorials, R bookdowns, and stackoverflow. You should also use the

help features within RStudio to get help on specific functions or to find vignettes. Try entering

ggplot2 in the help search bar in the lower right panel under the Help tab. 

The ggplot2 template

The following represents the basic ggplot2 template. 

The main components include the data we want to plot, geom function(s), and mapping

aesthetics. Notice the + symbol following the ggplot() function. This symbol will precede

each additional layer of code for the plot, and it is important that it is placed at the end of the

line. More on geom functions and mapping aesthetics to come. 

Let's see this template in practice. 

What is the relationship between total transcript sums per sample and the number of recovered

transcripts per sample?

#load the ggplot2 library
library(ggplot2)

Note

You  may  also  find  Microsoft's  Bing  GPT-4  chatbot (https://www.bing.com/new?

toWww=1&redig=7AA1192E6A3E4A04938B4E1AB3C98A19) useful  for  creating  code  examples  that  can  be

modified to fit your data. Currently, Bing is the only GPT-4 browser that is authorized for use by NCI. 

Though it was created for ChatGPT, you may find this resource from Datacamp (https://www.datacamp.com/cheat-

sheet/chatgpt-cheat-sheet-data-science) useful for prompting appropriate responses. 

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

#let's plot our data
ggplot(data=data) + 
  geom_point(aes(x=Number.of.Transcripts, y = Total.Counts)) 
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We can easily see that there is a relationship between the number of transcripts per sample and

the  total  transcripts  recovered  per  sample.  ggplot2 default  parameters  are  great  for

exploratory data analysis. But, with only a few tweaks, we can make some beautiful, publishable

figures. 

Let's take a closer look at the above code

The first step in creating this plot was initializing the ggplot object using the function ggplot().

Remember, we can look further for help using ?ggplot(). The function ggplot() takes data,

mapping, and further arguments. However, none of this needs to actually be provided at the

initialization phase, which creates the coordinate system from which we build our plot.  But,

typically, you should at least call the data at this point. 

The data we called was from the data frame data, which we created above. Next, we provided

a geom function  (geom_point()),  which created a  scatter  plot.  This  scatter  plot  required

mapping information, which we provided for the x and y axes. More on this in a moment. 

Let's break down the individual components of the code.

#What does running ggplot() do?
ggplot(data=data)
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#What about just running a geom function?
geom_point(data=data,aes(x=Number.of.Transcripts, y = Total.Counts)) 

## mapping: x = ~Number.of.Transcripts, y = ~Total.Counts 
## geom_point: na.rm = FALSE
## stat_identity: na.rm = FALSE
## position_identity

#what about this
ggplot() +
geom_point(data=data,aes(x=Number.of.Transcripts, y = Total.Counts))
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Geom functions

A geom is the geometrical object that a plot uses to represent data. People often

describe  plots  by  the  type  of  geom  that  the  plot  uses.  ---  R4DS (https://

r4ds.had.co.nz/data-visualisation.html#geometric-objects) 

There are multiple geom functions that change the basic plot type or the plot representation. We

can create scatter plots (geom_point()), line plots (geom_line(),geom_path()), bar plots

(geom_bar(),  geom_col()),  line  modeled  to  fitted  data  (geom_smooth()),  heat  maps

(geom_tile()), geographic maps (geom_polygon()), etc. 

ggplot2 provides over 40 geoms, and extension packages provide even more (see

https://exts.ggplot2.tidyverse.org/gallery/ (https://exts.ggplot2.tidyverse.org/

gallery/) for  a sampling).  The best way to get a comprehensive overview is the

ggplot2 cheatsheet, which you can find at http://rstudio.com/resources/cheatsheets

(http://rstudio.com/resources/cheatsheets).  ---  R4DS (https://r4ds.had.co.nz/data-

visualisation.html) 

You can also see a number of options pop up when you type geom into the console, or you can

look up the ggplot2 documentation in the help tab.

We can see how easy it is to change the way the data is plotted. Let's plot the same data using

geom_line().
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Mapping and aesthetics (aes())

The geom functions require a mapping argument. The mapping argument includes the aes()

function,  which "describes  how  variables  in  the  data  are  mapped  to  visual  properties

(aesthetics) of geoms" (ggplot2 R Documentation). If not included it will be inherited from the

ggplot() function. 

An  aesthetic  is  a  visual  property  of  the  objects  in  your  plot.---R4DS (https://

r4ds.had.co.nz/data-visualisation.html) 

Mapping aesthetics include some of the following:

1. the x and y data arguments

2. shapes

3. color

4. fill

5. size

6. linetype

7. alpha

ggplot(data=data) + 
  geom_line(aes(x=Number.of.Transcripts, y = Total.Counts)) 
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This is not an all encompassing list. 

Let's return to our plot above. Is there a relationship between treatment ("dex") and the number

of transcripts or total counts?

There is potentially a relationship. ASM cells treated with dexamethasone in general have lower

total numbers of transcripts and lower total counts. 

Notice how we changed the color of our points to represent a variable, in this case. To do this,

we set color equal to 'Treatment' within the aes() function. This mapped our aesthetic, color, to

a variable we were interested in exploring. Aesthetics that are not mapped to our variables are

placed outside of  the aes() function.  These aesthetics are manually  assigned and do not

undergo the same scaling process as those within aes(). 

For example

#adding the color argument to our mapping aesthetic
ggplot(data=data) +
  geom_point(aes(x=Number.of.Transcripts, y = Total.Counts, 
                 color=Treatment))

#map the shape aesthetic to the variable "dex"
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We can also see from this that 'Treatment' could be mapped to other aesthetics. In the above

example, we see it mapped to shape rather than color. By default, ggplot2 will only map six

shapes at a time, and if your number of categories goes beyond 6, the remaining groups will go

unmapped. This is by design because it is hard to discriminate between more than six shapes

at any given moment. This is a clue from ggplot2 that you should choose a different aesthetic to

map to your variable.  However,  if  you choose to ignore this functionality,  you can manually

assign more than six shapes (https://r-graphics.org/recipe-scatter-shapes).

We could have just as easily mapped it to alpha, which adds a gradient to the point visibility by

category, or we could map it to size. There are multiple options, so feel free to explore a little

with your plots.

#use the color purple across all points (NOT mapped to a variable)
ggplot(data=data) + 
  geom_point(aes(x=Number.of.Transcripts, y = Total.Counts, 
                 shape=Treatment), color="purple") 

Other things to note

The assignment of color, shape, or alpha to our variable was automatic, with a unique aesthetic level representing

each category (i.e., 'Dexamethasone', 'none') within our variable. You will  also notice that ggplot2 automatically

created a legend to explain the levels of the aesthetic mapped. We can change aesthetic parameters - what colors

are used, for example - by adding additional layers to the plot. 
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R objects can also store figures

As we have discussed, R objects are used to store things created in R to memory. This includes

plots. 

We can add additional layers directly to our object. We will see how this works by defining some

colors for our 'dex' variable. 

Colors

ggplot2 will automatically assign colors to the categories in our data. Colors are assigned to

the  fill  and  color  aesthetics  in  aes().  We can  change the  default  colors  by  providing  an

additional  layer  to  our  figure.  To  change  the  color,  we  use  the  scale_color  functions:

scale_color_manual(),  scale_color_brewer(),  scale_color_grey(),  etc.  We can

also change the name of the color labels in the legend using the labels argument of these

functions

scatter_plot<-ggplot(data=data) + 
  geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,
                 color=Treatment)) 

scatter_plot
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scatter_plot +
  scale_color_manual(values=c("red","black"),
                     labels=c('treated','untreated'))

scatter_plot +
  scale_color_grey()
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scatter_plot +
  scale_color_brewer(palette = "Paired")
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Similarly,  if  we  want  to  change  the  fill,  we  would  use  the  scale_fill options.  To  apply

scale_fill to  shape,  we will  have  to  alter  the  shapes,  as  only  some shapes  take  a  fill

argument. 

Image  from  https://ggplot2.tidyverse.org/articles/ggplot2-specs.html (https://

ggplot2.tidyverse.org/articles/ggplot2-specs.html): 
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ggplot(data=data) + 
  geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,fill=Treatment),
             shape=21,size=2) + #increase size and change points
  scale_fill_manual(values=c("purple", "yellow"))
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There are a number of ways to specify the color argument including by name, number, and hex

code. Here (https://www.r-graph-gallery.com/ggplot2-color.html) is a great resource from the R

Graph Gallery (https://www.r-graph-gallery.com/index.html) for assigning colors in R. 

There are also a number of complementary packages in R that expand our color options. One

of  my favorites is  viridis,  which provides colorblind friendly palettes.  randomcoloR is  a

great package if you need a large number of unique colors.

library(viridis) #Remember to load installed packages before use

## Loading required package: viridisLite

scatter_plot + scale_color_viridis(discrete=TRUE, option="viridis")
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Paletteer contains a comprehensive set of color palettes, if you want to load the palettes

from  multiple  packages  all  at  once.  See  the  Github  page (https://github.com/EmilHvitfeldt/

paletteer) for details. 

Facets

A way to add variables to a plot beyond mapping them to an aesthetic is to use facets or

subplots. There are two primary functions to add facets, facet_wrap() and facet_grid().

If faceting by a single variable, use facet_wrap(). If multiple variables, use facet_grid().

The first argument of either function is a formula, with variables separated by a ~ (See below).

Variables must be discrete (not continuous).

#plot 
ggplot(data=data) + 
  geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,fill=Sample.Name),
             shape=21,size=2) + #increase size and change points
  scale_fill_viridis(discrete=TRUE, option="viridis") +
  facet_wrap(~Treatment)
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Note the help options with ?facet_wrap(). How would we make our plot facets vertical rather

than horizontal?

ggplot(data=data) + 
  geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,fill=Sample.Name),
             shape=21,size=2) + #increase size and change points
  scale_fill_viridis(discrete=TRUE, option="viridis") +
  facet_wrap(~Treatment, ncol=1)
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Be  sure  to  take  a  look  at  facet_grid().  Facet_grid  would  allow  us  to  map  even  more

variables in our data

ggplot(data=data) + 
  geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,fill=Sample.Name),
             shape=21,size=2) + #increase size and change points
  scale_fill_viridis(discrete=TRUE, option="viridis") +
  facet_grid(Sample.Name~Treatment)
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This is a silly example, but hopefully it gets across the point. 

A better example of facet_grid() using data("Titanic").

This data set provides information on the fate of passengers on the fatal maiden

voyage  of  the  ocean  liner  ‘Titanic’,  summarized  according  to  economic  status

(class), sex, age and survival. --- R Documentation ?Titanic

data("Titanic")
Titanic <- as.data.frame(Titanic)
head(Titanic)

##   Class    Sex   Age Survived Freq
## 1   1st   Male Child       No    0
## 2   2nd   Male Child       No    0
## 3   3rd   Male Child       No   35
## 4  Crew   Male Child       No    0
## 5   1st Female Child       No    0
## 6   2nd Female Child       No    0
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Building upon our template

This is the grammar of graphics. Adding layers to create unique figures. 

Note that there are a lot of invisible (default) layers that often go into each ggplot2, and there

are  ways  to  customize  these  layers.  See  this  chapter (https://r4ds.had.co.nz/data-

visualisation.html#the-layered-grammar-of-graphics) from  R  for  Data  Science  for  more

information on the grammar of graphics.

ggplot() + geom_col(data = Titanic, aes(x = Class, y = Freq, fill = Survived), positio
    facet_grid(Sex ~ Age)

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(
     mapping = aes(<MAPPINGS>),
  ) +
  <FACET_FUNCTION>
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Using multiple geoms per plot

Because we build  plots  using layers  in  ggplot2.  We can add multiple  geoms to  a  plot  to

represent the data in unique ways.

 #We can combine geoms; here we combine a scatter plot with a
#with a linear model regression line using geom_smooth
ggplot(data=data) + 
  geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,
                 color=Treatment)) +
  geom_smooth(method='lm', aes(x=Number.of.Transcripts, 
                               y = Total.Counts, color= Treatment)) 

## `geom_smooth()` using formula = 'y ~ x'
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Labels, legends, scales, and themes

How do we ultimately get our figures to a publishable state? The bread and butter of pretty plots

really falls to the additional non-data layers of our ggplot2 code. These layers will include code

to  label  the  axes,  scale  the  axes,  and  customize  the  legends  and  theme (https://

ggplot2.tidyverse.org/reference/theme.html).  We  will  be  working  with  these  additional  plot

features in the weeks to come, so stay tuned.

Here's a teaser.

#to make our code more effective, we can put shared aesthetics in the 
#ggplot function
ggplot(data=data, aes(x=Number.of.Transcripts, 
                               y = Total.Counts, color= Treatment)) + 
  geom_point() +
  geom_smooth(method='lm')

## `geom_smooth()` using formula = 'y ~ x'

ggplot(data=data) + 
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Saving plots (ggsave())

Finally, we have a quality plot ready to publish. The next step is to save our plot to a file. The

easiest way to do this with ggplot2 is ggsave(). This function will save the last plot that you

displayed by default. Look at the function parameters using ?ggsave().

  geom_point(aes(x=Number.of.Transcripts, y = Total.Counts,
                 fill=Treatment),
             shape=21,size=2) + 
  scale_fill_manual(values=c("purple", "yellow"), 
                    labels=c('treated','untreated'))+ 
  #can change labels of fill levels along with colors
  xlab("Recovered transcripts per sample") + #add x label
  ylab("Total sequences per sample") +#add y label
  guides(fill = guide_legend(title="Treatment")) + #label the legend
  scale_y_continuous(trans="log10") + #log transform the y axis
  theme_bw()

ggsave("Plot1.png",width=5.5,height=3.5,units="in",dpi=300)
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Check out this article (https://www.tidyverse.org/blog/2020/08/taking-control-of-plot-scaling/) for

recommendations on effectively scaling plots. 

Resource list

ggplot2 cheatsheet 

The R Graph Gallery (https://www.r-graph-gallery.com/) 

The R Graphics Cookbook (https://r-graphics.org/recipe-quick-bar) 

Ggplot2 extensions (https://exts.ggplot2.tidyverse.org/gallery/) 
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Scatter plots and plot customization

Objectives

Learn to customize your ggplot with labels, axes, text annotations, and themes.

Learn  how  to  make  and  modify  scatter  plots  to  make  fairly  different  overall  plot

representations.

Load a different data set using new load functions

The primary purpose of this lesson is to learn how to customize our ggplot2 plots. We will do

this by focusing on different types of scatter plots.

The Data

In this lesson we will use two different sets of data. First, we will use data available with your

base  R  installation,  the  iris  data  set,  which  is  stored  in  object  iris.  These  data  include

measurements  from  the  petals  and  sepals  of  different  Iris  species  including  Iris  setosa, 

versicolor, and virginica. See ?iris for more information about these data. 

The Irises: image from https://www.datacamp.com/community/tutorials/machine-learning-in-r 

Second, we will use some more complicated bioinformatics data related to the RNAseq project

introduced in Lesson 2. 

First, let's load our libraries using the library function, library():

1. 

2. 

3. 

library(ggrepel) #Needed for label repel 
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Now, let's load the RNA data that we will use toward the end of this lesson. We will use the

function read.delim() to load tab delimited RNASeq data and the function readLines() to

load the list of top genes.

The grammar of graphics

We are returning to the core grammar of graphics concept introduced in Lesson 2. Remember,

to create a plot all you you need are data, geom_function(s), and mapping arguments. 

Here is the basic template we left off with: 

## Loading required package: ggplot2

library(ggplot2)
library(dplyr) 

## 
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
## 
##     filter, lag

## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

dexp_sigtrnsc<-read.delim("../data/sig_dexp_results.txt", 
                 as.is=TRUE)
topgenes<-readLines("../data/topgenes.txt")

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(
     mapping = aes(<MAPPINGS>),
  ) +
  <FACET_FUNCTION>
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However, there are additional components, highlighted in bold, that can be added to our core

components to enable us to generate even more diverse plot types. 

Our grammar of graphics: 

one or more datasets,

one or more geometric objects that serve as the visual representations of the

data, – for instance, points, lines, rectangles, contours, 

descriptions of how the variables in the data are mapped to visual properties

(aesthetics) of the geometric objects, and an associated scale (e. g., linear,

logarithmic, rank), 

a  facet  specification,  i.e.  the  use  of  multiple  similar  subplots  to  look  at

subsets of the same data,

one or more coordinate systems,

optional parameters that affect the layout and rendering, such text size, font

and alignment, legend positions. 

statistical summarization rules, [See LESSON 4]

---(Holmes  and  Huber,  2021 (https://web.stanford.edu/class/bios221/book/03-

chap.html)) 

We will extend our basic template throughout this lesson as we make a variety of scatter plots

and in lesson 4. 

Scatter plots

Scatterplots  are  useful  for  visualizing  treatment–response  comparisons,

associations between variables, or paired data (e.g., a disease biomarker in several

patients  before  and  after  treatment).Holmes  and  Huber,  2021 (https://

web.stanford.edu/class/bios221/book/03-chap.html) 

Because  scatter  plots  involve  mapping  each  data  point,  the  geom  function  used  is

geom_point(). We saw a fairly basic implementation of this in Lesson 2. 

Basic Scatter

Let's  take  another  look  at  a  simple  scatter  plot  using  the  iris  data.  We  can  look  at  the

relationship between petal length and petal width (i.e., variable association) for the various Iris

species. 

• 

• 

• 

• 

• 

• 

• 

ggplot(data = iris) + #include our data
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This code should look fairly familiar, with the exception of a new function, coord_fixed(). This

is a modification of the ggplot2 coordinate system. 

Coordinate Systems

Coordinate systems are probably the most complicated part of ggplot2. The default

coordinate system is the Cartesian coordinate system where the x and y positions

act  independently  to  determine  the  location  of  each  point.  ---  R4DS (https://

r4ds.had.co.nz/data-visualisation.html#coordinate-systems) 

coord_fixed() with the default argument ratio=1 ensures that the units are represented

equally in physical space on the plot. Because the x and y measurements were both taken in

centimeters, it is good practice to make sure that the "same mapping of data space to physical

space is used." --- Holmes and Huber, 2021 (https://web.stanford.edu/class/bios221/book/03-

chap.html) 

  geom_point(aes(x = Petal.Length, y = Petal.Width, 
                 color = Species, shape = Species)) + 
  #geom and mappings
  coord_fixed(xlim = c(0,7), 
              ylim=c(0,3),expand=FALSE) # NEW CORE COMPONENT 
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You will not need to worry about the coordinate system of your plot in most cases, but it is likely

you will need to mess with the coordinate system at some point in the future. Another commonly

used coordinate function is coord_flip(), which allows you to flip the representation of the

plot,  for  example,  by  switching  bars  in  a  bar  plot  from  vertical  to  horizontal.  See  ?

coord_flip() for more information. 

Our new template: 

Perform and plot PCA data using iris.

Many complex plots (e.g., PCA ordinations) are in their basic form a scatter plot. Here we are

going to apply PCA to the iris data and generate a plot using ggplot2. 

What is PCA?

Principal component analysis (PCA) is a linear dimension reduction method applied to highly

dimensional data. The goal of PCA is to reduce the dimensionality of the data by transforming

the  data  in  a  way  that  maximizes  the  variance  explained.  Read  more  here (https://

towardsdatascience.com/principal-component-analysis-pca-79d228eb9d24) and here (https://

www.huber.embl.de/msmb/Chap-Multivariate.html). 

Key points: 

New variables are defined by a linear combination of original variables 

Each subsequent new variable contains less information

Applications:  dimensionality  reduction,  clustering,  outlier  identification ---

Shawhin Talebi, 2021 (https://towardsdatascience.com/principal-component-

analysis-pca-79d228eb9d24) 

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(
     mapping = aes(<MAPPINGS>),
  ) +
  <FACET_FUNCTION> +
  <COORDINATE SYSTEM>

• 

• 

• 

Note

PCAs are used frequently in -omics fields. However, often than not, there will be package specific functions for PCA

and plotting PCA for different -omics analyses. Because of this, we will show the main features here using a simpler

data set, iris. 
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Perform PCA

We can use the function prcomp() to run PCA on the first four columns of the iris data. The

function takes numeric data.

colnames(iris)[1:4]

## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"

pca <- prcomp(iris[,1:4], scale = TRUE)
pca

## Standard deviations (1, .., p=4):
## [1] 1.7083611 0.9560494 0.3830886 0.1439265
## 
## Rotation (n x k) = (4 x 4):
##                     PC1         PC2        PC3        PC4
## Sepal.Length  0.5210659 -0.37741762  0.7195664  0.2612863
## Sepal.Width  -0.2693474 -0.92329566 -0.2443818 -0.1235096
## Petal.Length  0.5804131 -0.02449161 -0.1421264 -0.8014492
## Petal.Width   0.5648565 -0.06694199 -0.6342727  0.5235971

#get structure of df
str(pca)
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The object pca is a list of 5: the standard deviations of the principal components, a matrix of

variable loadings, the scaling used, and the data projected on the principal components. 

Plot PCA

To plot the first two axes of variation along with species information, we will need to make a data

frame with this information. The axes are in pca$x. 

## List of 5
##  $ sdev    : num [1:4] 1.708 0.956 0.383 0.144
##  $ rotation: num [1:4, 1:4] 0.521 -0.269 0.58 0.565 -0.377 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
##   .. ..$ : chr [1:4] "PC1" "PC2" "PC3" "PC4"
##  $ center  : Named num [1:4] 5.84 3.06 3.76 1.2
##   ..- attr(*, "names")= chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Peta
##  $ scale   : Named num [1:4] 0.828 0.436 1.765 0.762
##   ..- attr(*, "names")= chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Peta
##  $ x       : num [1:150, 1:4] -2.26 -2.07 -2.36 -2.29 -2.38 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : NULL
##   .. ..$ : chr [1:4] "PC1" "PC2" "PC3" "PC4"
##  - attr(*, "class")= chr "prcomp"

#Build a data frame
pcaData <- as.data.frame(pca$x[, 1:2]) # extract first two PCs
pcaData <- cbind(pcaData, iris$Species) # add species to df
colnames(pcaData) <- c("PC1", "PC2", "Species") # change column names

#Plot
ggplot(pcaData) +
  aes(PC1, PC2, color = Species, shape = Species) + # define plot area
  geom_point(size = 2) + # adding data points
  coord_fixed() # fixing coordinates
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This is a decent plot showing us how the species relate based on characteristics of their sepals

and petals. From this plot, we see that Iris virginica and Iris versicolor are more similar than Iris

setosa. 

But, the axes are missing the % explained variance. Let's add custom axes. We can do this with

the xlab() and ylab() functions or the functions labs(). But first we need to grab some

information from our PCA analysis. Let's use summary(pca). This function provides a summary

of results for a variety of model fitting functions and methods. 

Info

Tip 6, here (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586259/), discusses the importance of aspect ratio and

using coord_fixed() more in detail. 

#Extract % Variance Explained
summary(pca)

## Importance of components:
##                           PC1    PC2     PC3     PC4
## Standard deviation     1.7084 0.9560 0.38309 0.14393
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PC1 and PC2 combined account for 96% of variance in the data. We can add this information

directly to our plot using custom axes labels. 

Add custom axes labels

## Proportion of Variance 0.7296 0.2285 0.03669 0.00518
## Cumulative Proportion  0.7296 0.9581 0.99482 1.00000

#Plot
ggplot(pcaData) +
  aes(PC1, PC2, color = Species, shape = Species) + 
  geom_point(size = 2) + 
  coord_fixed() +
  xlab("PC1: 73%")+ #x axis label text
  ylab("PC2: 23%") # y axis label text

Automating % Variance in axis labels

If you want to automate the "Proportion of Variance", you should call it directly in the code. For example, 



ggplot(pcaData) +
  aes(PC1, PC2, color = Species, shape = Species) + 
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Add a stat to our plot with stat_ellipse().

In scatter plots, the raw data is the focus of the plot, but for many other plots, this is not the

case. We will discuss statistical transformation more in lesson 4 and how they apply. However,

you may wish to overlay a stat on your PCA. For example, ellipses are often added to PCA

ordinations  to  emphasize  group  clustering  with  confidence  intervals.  By  default,

stat_ellipse() uses the bivariate t distribution, but this can be modified. Let's add ellipses

with 95% confidence intervals to our plot. 

 

  geom_point(size = 2) + 
  coord_fixed() +
  labs(x=paste0("PC1: ",summary(pca)$importance[2,1]*100,"%"),
       y=paste0("PC2: ",summary(pca)$importance[2,2]*100,"%"))

ggplot(pcaData) +
  aes(PC1, PC2, color = Species, shape = Species) + 
  geom_point(size = 2) +
  coord_fixed() +
  xlab("PC1: 73%")+
  ylab("PC2: 23%") +
  stat_ellipse(geom="polygon", level=0.95, alpha=0.2) #adding a stat
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Plot customization

Themes

The plot above is looking pretty good, but there are many more features that can be customized

to make this publishable or fit a desired style. Changing non-data elements (related to axes,

titles subtitles, gridlines, legends, etc.) of our plot can be done with theme(). GGplot2 has a

definitive  default  style  that  falls  under  one  of  their  precooked  themes,  theme_gray(). 

theme_gray() is one of eight complete themes provided by ggplot2. 
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We can also specify and build a theme within our plot code or develop a custom theme to be

reused across multiple plots. The theme function is the bread and butter of plot customization.

Check out ?ggplot2::theme() for a list of available parameters. There are many. 

Let's see how this works by changing the fonts and text sizes and dropping minor grid lines:

ggplot(pcaData) +
  aes(PC1, PC2, color = Species, shape = Species) + # define plot area
  geom_point(size = 2) + # adding data points
  coord_fixed() +
  xlab("PC1: 73%")+
  ylab("PC2: 23%") +
  stat_ellipse(geom="polygon", level=0.95, alpha=0.2) +
  theme_bw() + #start with a custom theme 
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You may want to establish a custom theme for reuse with a number of plots. See this great

tutorial (https://rpubs.com/mclaire19/ggplot2-custom-themes) by Madeline Pickens for steps on

how to do that. 

A helpful color trick

When you have a lot of colors and you want to keep these colors consistent, you can use the

following convenient functions to set a name attribute for a vector of colors. 

Let's do this for our iris species.

  theme(axis.text=element_text(size=12,family="Times New Roman"),
        axis.title = element_text(size=12,family="Times New Roman"),
        legend.text = element_text(size=12,family="Times New Roman"),
        legend.title = element_text(size=12,family="Times New Roman"),
        panel.grid.minor = element_blank())

#defining colors
iriscolors<-setNames(c("blue","black","orange"),levels(iris$Species))  

#Now plot
ggplot(pcaData) +
  aes(PC1, PC2, color = Species, shape = Species) + 
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We can use this color palette for all plots of these three species to keep our figures consistent

throughout a presentation or publication. 

  geom_point(size = 2) + 
  scale_color_manual(values=iriscolors)+ #Adding the color argument
  coord_fixed() +
  xlab("PC1: 73%")+
  ylab("PC2: 23%") +
  stat_ellipse(geom="polygon", level=0.95, alpha=0.2,aes(fill=Species)) +
  scale_fill_manual(values=iriscolors)+ #Fill ellipses
  theme_bw() +
  theme(axis.text=element_text(size=12,family="Times New Roman"),
        axis.title = element_text(size=12,family="Times New Roman"),
        legend.text = element_text(size=12,family="Times New Roman"),
        legend.title = element_text(size=12,family="Times New Roman"),
        panel.grid.minor = element_blank())

Using ggfortify to make a PCA

ggfortify is an excellent package to consider for easily generating PCA plots. ggfortify provides "unified

plotting tools for statistics commonly used, such as GLM, time series, PCA families, clustering and survival analysis.

The package offers a single plotting interface for these analysis results and plots in a unified style using 'ggplot2'."

(https://cran.r-project.org/web/packages/ggfortify/) 
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Putting it all together

Let's update our ggplot2 grammar of graphics template: 

Creating a publication ready volcano plot

We now know enough to put our new skills to use to make a volcano plot from RNASeq data. 

Since this is a ggplot2 object, this can easily be customized by adding ggplot2 customization layers. 

library(ggfortify)
autoplot(pca, data = iris, colour = 'Species',size=2) 

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(
     mapping = aes(<MAPPINGS>),
     stat = <STAT>
  ) +
  <FACET_FUNCTION> +
  <COORDINATE SYSTEM> +
  <THEME>
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A volcano plot is a type of scatterplot that shows statistical significance (P value)

versus magnitude of change (fold change). It enables quick visual identification of

genes with large fold changes that are also statistically significant. These may be

the  most  biologically  significant  genes.  ---  Maria  Doyle,  2021 (https://

training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-

viz-with-volcanoplot/tutorial.html) 

Let's take a quick look at the data we loaded at the beginning of the lesson:

Introducing EnhancedVolcano

There is a dedicated package for creating volcano plots available on Bioconductor, EnhancedVolcano (https://

bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html).  Plots  created  using  this  package  can  be

customized using ggplot2 functions and syntax. 

Using EnhancedVolcano: 



#The default cut-off for log2FC is >|2|
#the default cut-off for P value is 10e-6
library(EnhancedVolcano)
EnhancedVolcano(dexp_sigtrnsc,
                title = "Enhanced Volcano with Airways",
                lab = dexp_sigtrnsc$transcript,
                x = 'logFC',
                y = 'FDR') 
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Significant differential expression was assigned based on an absolute log fold change greater

than or equal to 2 and an FDR corrected p-value less than 0.05. 

Let's start our plot with the <DATA>, <GEOM_FUNCTION>, and <MAPPING>. We do not need

to fix the coordinate system because we are working with two different values on the x and y

and we don't need any special coordinate system modifications. Let's plot logFC on the x axis

and the mutated column with our false discovery rate corrected p-values on the y-axis and set

the significant p-values off from the non-significant by size and color. We can also go ahead

and customize the size and color scales, since we have learned how to do that. 

head(dexp_sigtrnsc)  

##           feature albut transcript ref_genome .abundant     logFC   logCPM
## 1 ENSG00000109906 untrt     ZBTB16       hg38      TRUE  7.146970 4.149689
## 2 ENSG00000165995 untrt     CACNB2       hg38      TRUE  3.280645 4.508931
## 3 ENSG00000106976 untrt       DNM1       hg38      TRUE -1.764478 5.381597
## 4 ENSG00000120129 untrt      DUSP1       hg38      TRUE  2.938116 7.313059
## 5 ENSG00000146250 untrt     PRSS35       hg38      TRUE -2.761556 3.908222
## 6 ENSG00000152583 untrt    SPARCL1       hg38      TRUE  4.555765 5.534393
##           F       PValue          FDR Significant
## 1 1429.3427 5.107615e-11 4.067194e-07        TRUE
## 2 1575.2829 3.342498e-11 4.067194e-07        TRUE
## 3  645.7452 1.616082e-09 2.573772e-06       FALSE
## 4  694.4165 1.179551e-09 2.573772e-06        TRUE
## 5  806.5147 6.162483e-10 2.573772e-06        TRUE
## 6  721.3794 9.999692e-10 2.573772e-06        TRUE

topgenes

## [1] "ZBTB16"  "CACNB2"  "DNM1"    "DUSP1"   "PRSS35"  "SPARCL1"

ggplot(data=dexp_sigtrnsc) +
  geom_point(aes(x = logFC, y = log10(FDR), color = Significant,
                 size = Significant, 
                  alpha = Significant)) +
  scale_color_manual(values = c("black", "#e11f28")) +
  scale_size_discrete(range = c(1, 2))

## Warning: Using size for a discrete variable is not advised.
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This is not exactly what we want so let's keep working. 

Immediately,  you should notice that the figure is upside down compared to what we would

expect from a volcano plot. there are two possible ways to fix this. We could transform the FDR

corrected values by multiplying by -1 OR we could work with our axes scales. Aside from text

modifications, we haven't yet changed the scaling of the axes. Let's see how we can modify the

scale of the y-axis. 

Changing axes scales

To change the y axis scale, we will need a specific function. These functions generally start with

scale_y.... In our case we want to reverse our axis so that increasingly negative is going in

the positive direction rather than the negative direction. Luckily, there is a function to reverse our

axis; see ?scale_y_reverse().

## Warning: Using alpha for a discrete variable is not advised.

ggplot(data=dexp_sigtrnsc) +
  geom_point(aes(x = logFC, y = log10(FDR), color = Significant,
                 size = Significant, 
                  alpha = Significant)) +
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This looks pretty good, but we can tidy it up more by working with our legend guides and our

theme. 

Modifying legends

We can modify many aspects of the figure legend using the function guide(). Let's see how

that  works  and  go  ahead  and  customize  some  theme  arguments.  Notice  that  the  legend

position is specified in theme(). 

  scale_color_manual(values = c("black", "#e11f28")) +
  scale_size_discrete(range = c(1, 2)) +
  scale_y_reverse(limits=c(0,-7)) #we can also set the limits

## Warning: Using size for a discrete variable is not advised.

## Warning: Using alpha for a discrete variable is not advised.

ggplot(data=dexp_sigtrnsc) +
  geom_point(aes(x = logFC, y = log10(FDR), color = Significant,
                 size = Significant, 
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                  alpha = Significant)) +
  scale_color_manual(values = c("black", "#e11f28")) +
  scale_size_discrete(range = c(1, 2)) +
  scale_y_reverse(limits=c(0,-7)) + #we can also set the limits
  guides(size = "none", alpha= "none", 
         color= guide_legend(title="Significant DE")) +
       theme_bw() +
      theme(
        panel.border = element_blank(),
        axis.line = element_line(),
        panel.grid.major = element_line(size = 0.2),
        panel.grid.minor = element_line(size = 0.1),
        text = element_text(size = 12),
        legend.position = "bottom",
        axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
      )

## Warning: Using size for a discrete variable is not advised.

## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.

## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

## Warning: Using alpha for a discrete variable is not advised.
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Lastly, let's layer another geom function to label our top six differentially abundant genes based

on  significance.  We  can  use  geom_text_repel() from library(ggrepel),  which  is  a

variation on geom_text(). 

plot_de<-ggplot(data=dexp_sigtrnsc) +
  geom_point(aes(x = logFC, y = log10(FDR), color = Significant,
                 size = Significant, 
                  alpha = Significant)) +
  geom_text_repel(data=dexp_sigtrnsc %>% 
                    filter(transcript %in% topgenes), 
                  aes(x = logFC, y = log10(FDR),label=transcript),
                  nudge_y=0.5,hjust=0.5,direction="y",
                  segment.color="gray")+
  scale_color_manual(values = c("black", "#e11f28")) +
  scale_size_discrete(range = c(1, 2)) +
  scale_y_reverse(limits=c(0,-7)) + #we can also set the limits
  guides(size = "none", alpha= "none", 
         color= guide_legend(title="Significant DE")) +
       theme_bw() +
      theme(
        panel.border = element_blank(),
        axis.line = element_line(),
        panel.grid.major = element_line(size = 0.2),
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Save to an .rds file

We want to use this in a multi-panel figure in a later lesson, so let's go ahead and save it to a file

that will hold a single R object (.rds). 

        panel.grid.minor = element_line(size = 0.1),
        text = element_text(size = 12),
        legend.position = "bottom",
        axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
      )

## Warning: Using size for a discrete variable is not advised.

plot_de

## Warning: Using alpha for a discrete variable is not advised.

saveRDS(plot_de, "volcanoplot.rds")
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Stat Transformations: Bar plots, box plots,

and histograms

Objectives 

Review the grammar of graphics template

Learn about the statistical transformations inherent to geoms 

Review data types

Create bar plots, box & whisker plots, and histograms.

Our grammar of graphics template

This is where we left off at the end of lesson 3. 

Our grammar of graphics template

one or more datasets,

one or more geometric objects that serve as the visual representations of the

data, – for instance, points, lines, rectangles, contours, 

descriptions of how the variables in the data are mapped to visual properties

(aesthetics) of the geometric objects, and an associated scale (e. g., linear,

logarithmic, rank), 

a  facet  specification,  i.e.  the  use  of  multiple  similar  subplots  to  look  at

subsets of the same data,

one or more coordinate systems,

optional parameters that affect the layout and rendering, such text size, font

and alignment, legend positions. 

statistical summarization rules 

---(Holmes  and  Huber,  2021 (https://web.stanford.edu/class/bios221/book/Chap-

Graphics.html)) 

1. 

2. 

3. 

4. 

• 

• 

• 

• 

• 

• 

• 

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(
     mapping = aes(<MAPPINGS>),
     stat = <STAT>
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While we added stat_ellipse() to our PCAs, scatter plots do not have a built in statistical

transformation. Today, we will talk more about statistical transformations and how these impact

our plot representations. For a list of available statistical transformations in ggplot2 see https://

ggplot2-book.org/layers.html?q=stat#stat (https://ggplot2-book.org/layers.html?q=stat#stat). 

Libraries

In this lesson, we will continue to use the ggplot2 package for plotting. To use ggplot2, we first

need to load it into our R work environment using the library command.

The Data

In this lesson we will  use data obtained from a study that  examined the effect  that  dietary

supplements at various doses have on guinea pig tooth length. This data set is built into R, so if

you want to take a look for yourself you can type data("ToothGrowth") either in the console

or in a script. But in this exercise, we will import the data to our R work environment because it

is more likely that we will import our own data for analysis.

Here, we are going to import two data sets using read.delim. The file data1.txt contains raw

data from the tooth growth study. The file data2.txt is summary level data with mean tooth length

and standard deviation pre-computed. We will assign data1.txt to object a1 and data2.txt to

object a2. Within read.delim we use sep='\t' to indicate that the columns in the data are

tab separated. After importing, we use the head command to look at the first 6 rows of each

data set.

  ) +
  <FACET_FUNCTION> +
  <COORDINATE SYSTEM> +
  <THEME>

library(ggplot2)

a1 <- read.delim("./data/data1.txt", sep='\t')

a2 <- read.delim("./data/data2.txt", sep='\t')

head(a1)

##    len supp dose
## 1  4.2   VC  0.5
## 2 11.5   VC  0.5
## 3  7.3   VC  0.5
## 4  5.8   VC  0.5
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The tooth growth data set measured tooth length for two supplement types (OJ - orange juice,

VC - vitamin c) at three different doses (0.5, 1, and 2). Each supplement and dose combination

has 10 measurements so we have a total of 60 measurements in this data set. In a1, we have

the raw data. On the other hand, in a2, we pre-computed the mean tooth length and standard

deviation for the 10 measurements taken at each supplement and dose combination.

The column headings (colnames(a1),colnames(a2))  in  the raw data (a1)  and summary

level data (a2) are as follows: 

len (tooth length - in raw data) 

supp (supplement type) 

dose

treat (treatment, which is a concatenation of supp and dose - in summary level data only)

mean_len (mean tooth length - in summary level data only) 

sd (standard deviation - in summary level data only)

Variable Types

Before diving into the construction of bar plot, box & whisker plot, and histogram, we should do

a quick review of the types of variables that we commonly work with in data analysis. 

Categorical variables are qualitative, for instance

patient gender (male or female)

disease status (case or control) 

Discrete variables are quantifiable and can take on a finite number of of values, for

instance

number of male or female patients

number of controls or disease cases

medication dose

Continuous variables can take on an infinite number of values

## 5  6.4   VC  0.5
## 6 10.0   VC  0.5

head(a2)

##   supp dose treat mean_len       sd
## 1   OJ  0.5 OJ0.5    13.23 4.459709
## 2   OJ  1.0   OJ1    22.70 3.910953
## 3   OJ  2.0   OJ2    26.06 2.655058
## 4   VC  0.5 VC0.5     7.98 2.746634
## 5   VC  1.0   VC1    16.77 2.515309
## 6   VC  2.0   VC2    26.14 4.797731

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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age

height

weight

Independent variable is a variable whose variation does not depend on another

Dependent variable is a variable whose variation depends on another 

Factors are independent variables in which an experimental outcome is dependent on. 

Levels are variations in the factors.

The stat argument

Until  this  point  we  have  been  plotting  raw  data  with  geom_point(),  but  now we  will  be

introducing geoms that transform and plot new values from your data. 

Many graphs, like scatterplots, plot the raw values of your dataset. Other graphs,

like bar charts, calculate new values to plot: 

bar charts, histograms, and frequency polygons bin your data and then plot

bin counts, the number of points that fall in each bin. 

smoothers fit a model to your data and then plot predictions from the model. 

boxplots compute a robust summary of the distribution and then display a

specially formatted box.---R4DS

Let's explore the tooth growth data using plots. The tooth growth data has two independent

variables,  supplement  and  dose  (variables  supp  and  dose,  respectively)  for  which  the

dependent variable tooth length (len) is measured. We would like to use the scatter plot to learn

about tooth growth as a function of both dose and supplement (supp). Remember from Lesson

3 that a scatter plot can be generated using geom_point. 

Within the aesthetic mapping in geom_point, we assign dose to the x axis, len (tooth length)

to y, and the second independent variable supp (supplement) by assigning it to color. This

will give us a scatter plot where dose is plotted along the x axis and len plotted along the y axis.

The color code indicating which supplement (supp) each of the points or measurements came

from is provided in the legend. In short,  the color argument allows us to visualize how the

dependent variable changes as a function of two independent variables.

Within  geom_point,  position=position_dodge is  included  to  separate  the  points  by

supplement (supp), otherwise the points for the two supplements will overlap each other. The

parameter width in position_dodge allows us to specify how far apart we want the points

for the different supplement groups to be.

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Bar Plot

A barplot is used to display the relationship between a numeric and a categorical

variable. --- R Graph Gallery (https://r-graph-gallery.com/barplot.html)

The tooth growth data can also be visualized via bar plot using geom_bar. However, if we try to

plot tooth length (len) across each dose using the code below, we will get an error. We get this

error because geom_bar uses stat_count by default where it counts the number of cases at

each x position. Thus, by default, geom_point does not require y axis.

ggplot(data=a1)+

  geom_point(mapping=aes(x=dose,y=len,color=supp),

             position=position_dodge(width=0.25))

ggplot(data=a1)+

  geom_bar(mapping=aes(x=dose,y=len))

## Error in `f()`:
## ! stat_count() can only have an x or y aesthetic.

66 Stat Transformations: Bar plots, box plots, and histograms

Bioinformatics Training and Education Program

https://r-graph-gallery.com/barplot.html
https://r-graph-gallery.com/barplot.html


We received an error referencing stat_count().

stat = count

Let's take a look at a bar plot constructed using the default stat="count" transformation.

Below,  we  plot  the  number  of  tooth  length  measurements  taken  at  each  dose.  Setting

color="black" allows  us  to  include  a  black  outline  to  the  bars  for  better  readability.  In

accordance with the description of this data, we see from the plot that 20 measurements were

taken at each dose.

Given the above plot, how many of the 20 measurements taken at each dose came from the OJ

or VC group. To find out, we can set fill=supp. Like color in the scatter plot, fill, allows

us to include a second independent  variable in our  graph.  The plot  below tells  us that  10

measurements were taken from the OJ group and 10 were taken from the VC group at each

dose.

ggplot(data=a1)+

  geom_bar(mapping=aes(x=dose), color="black")
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By default, geom_bar stacks bars from different groups. If we do not like the arrangement, we

can use position_dodge to arrange the bars from the OJ and VC groups side-by-side.

ggplot(data=a1)+

  geom_bar(mapping=aes(x=dose, fill=supp), color="black")

ggplot(data=a1)+

  geom_bar(mapping=aes(x=dose,fill=supp), color="black",

           position=position_dodge())
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stat_count() is  a  great  way  to  compare  differences  in  sample  sizes  between  treatment

categories  or  other  variables  and  can  be  a  great  way  to  explore  and  represent  metadata

associated with -omics data. 

stat = identity

Above, we learned about the number of tooth length measurements taken at each dose and

supplement combination using the default  stat="count" transformation of geom_bar.  But

what if we want to specify a y axis and plot exactly the values of our dependent variable in the y

axis? This can be done in geom_bar by setting stat="identity".

Below, we are plotting the mean tooth length (mean_len) across each of the treatment groups

(treat)  using  the  summary  level  data,  a2.  Using  stat="identity",  the  exact  y  value  or

mean_len is plotted.

ggplot(data=a2)+

  geom_bar(mapping=aes(x=treat,y=mean_len),stat="identity")
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What if we wanted to look at the raw values across the treatment groups using a bar plot? We

still use geom_bar but the aesthetic mapping will be similar to the scatter plot except we are

filling the bars to provide color coding for the supplements using fill. Again, because we

want ggplot2 to plot exact value in the y axis, we specify stat="identity" inside geom_bar.

To avoid stacking the values, we can use position_dodge2 in geom_bar to visualize each of

the 10 measurements taken at each supplement and dose combination arranged side-by-side. 

ggplot(data=a1)+

  geom_bar(mapping=aes(x=dose,y=len,fill=supp),stat="identity",

           position=position_dodge2(),color="black")
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Note that because R interprets dose as numeric continuous variable (class(a2$dose)) ggplot2

gives us an extra dose of 1.5. But, the study did not measure tooth length at a dose of 1.5 for

either of the supplements. Thus, we would like to remove this dose.

Using factors

As it turns out, dose is really an experimental factor, so if we specify factor(dose) it will be

interpreted as categorical or discrete. Before fixing the x axis in the above plot, let's diverge

briefly and speak about factors in R.

Using the factor function we see that there are three levels for dose (0.5, 1, and 2)

class(a1$dose)

## [1] "numeric"

factor(a1$dose)
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To remove the dose of 1.5, we can set the x axis to factor(dose).

We can reorder factors using the function factor. For instance if we want to plot the doses

backwards from highest to lowest on the x axis (i.e., 2, 1, 0.5) we can set the x axis in aesthetic

mapping  of  geom_bar to  factor(dose,levels=c(2,1,0.5)),  where  in  the  levels

parameter, we are reassigning the order of the levels.

##  [1] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1   1   1   1   1   1   1   1   1  
## [20] 1   2   2   2   2   2   2   2   2   2   2   0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
## [39] 0.5 0.5 1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2  
## [58] 2   2   2  
## Levels: 0.5 1 2

ggplot(data=a1)+

  geom_bar(mapping=aes(x=factor(dose),y=len,fill=supp),stat="identity"

           ,position=position_dodge2(),color="black")
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Adding error bars

Often, we will use bar plots to illustrate mean plus minus standard deviation in our data so we

should learn  how to  incorporate  error  bars  in  our  plots.  We will  learn  to  do this  using the

summary level data (a2) where the mean and standard deviation have been pre-computed and

then with the raw data (a1) to take advantage of more statistical transformations.

First, we use the summary level data (a2) to plot the mean tooth length (mean_len) across the

treatment groups, remembering to set stat="identity" because we are providing a y axis

and position=position_dodge to arrange the bars side-by-side.

ggplot(data=a1)+

  geom_bar(mapping=aes(x=factor(dose,

           levels=c(2,1,0.5)),y=len,fill=supp),stat="identity",

           position=position_dodge2(),color="black")

ggplot(data=a2, mapping=aes(x=factor(dose),y=mean_len,fill=supp))+

geom_bar(stat="identity", position=position_dodge())
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Next, we add geom_errorbar to incorporate error bars that illustrate plus/minus 1 standard

deviation from the mean. To set the upper and lower bounds of the error bar, we simply set

ymax=mean_len+sd and  ymin=mean_len-sd within  the  aesthetic  mapping  of

geom_errorbar. Setting position=position_dodge in geom_errorbar again allows us

to separate the error  bars from each of  the supplement  groups.  Within the position_dodge

argument  we set  width=0.9 to  help  center  the  error  bars  with  their  respective  bars.  The

width parameter within geom_errorbar allows us to adjust the error bar width (set to 0.1

here).

ggplot(data=a2, mapping=aes(x=factor(dose),y=mean_len,fill=supp))+

geom_bar(stat="identity", position=position_dodge())+

geom_errorbar(aes(ymax=mean_len+sd,ymin=mean_len-sd),

              position=position_dodge(width=0.9), width=0.1)        
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Histogram

Understanding data distribution can help us decide appropriate downstream steps in analysis

such as which statistical  test  to use. A histogram is a good way to visualize distribution.  It

divides the data into bins or increments and informs the number of occurrences in each of the

bins. Thus, the default statistical transformation for geom_histogram is stat_bin, which bins

the data into a user specified integer (default is 30) and then counts the occurrences in each

bin. In geom_histogram we have the ability to control both the number of bins through the

bins argument  or  binwidth  through  the  binwidth argument.  Important  to  note  is  that

stat_bin only works with continuous variables.

Below we constructed a basic histogram using the len column in a1 (the raw data for the Tooth

Growth  study).  Note  that  within  geom_histogram we  do  not  need  to  explicitly  state

stat="bin" because it  is default.  The histogram below is not very aesthetically pleasing -

there are gaps and difficult to see the separation of the bins.

ggplot(data=a1, mapping=aes(x=len))+

geom_histogram()
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First,  we will  use the color argument in geom_histogram to assign a border color to help

distinguish the bins. Then we use the fill argument in geom_histogram to change the bars

associated with the bins to a color other than gray. Below we have a histogram of tooth length

with a default bin of 30.

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(data=a1, mapping=aes(x=len))+

geom_histogram(color="black", fill="cornflowerblue")

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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Let's alter the number of bins

ggplot(data=a1, mapping=aes(x=len))+

geom_histogram(color="black", fill="cornflowerblue", bins=7)
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From the above, we see that altering the number of bins alters the binwidth (ie. the range in

which occurrence are counted). Thus, altering the bins can influence the distribution that we

see. The histograms above seem to be left skewed and a lot of the tooth length values fall

between 22.5 and 27.5 when 7 bins were used.

Box plot

Box and whisker  plots  also show data distribution.  Unlike a histogram, we can readily  see

summary statistics such as median, 25th and 75th percentile, and maximum and minimum.

The default statistical tranformation of a box plot in ggplot2 is stat_boxplot which calculates

components of the boxplot. To construct a box plot in ggplot2, we use the geom_boxplot

argument. Note that within geom_boxplot we do not need to explicitly state stat="boxplot"

because  it  is  default.  Below,  we  have  a  default  boxplot  depicting  tooth  length  across  the

treatment groups. Potential outliers are presented as points. 

ggplot(data=a1, mapping=aes(x=factor(dose), y=len, color=supp))+

geom_boxplot()
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Rather than showing the outliers,  we could instead add on geom_point  to overlay the data

points.  Here,  in  geom_boxplot we set  outlier.shape=NA to  remove the outliers for  the

purpose of avoiding duplicating a data point. Within geom_point we set the position of the

points  to  position_jitterdodge to  avoid overlapping of  points  whose values are close

together (set by jitter.width) and overlapping of points from measurements derived from

different supplements (dodge.width). 

ggplot(data=a1, mapping=aes(x=factor(dose), y=len, color=supp))+

geom_boxplot(outlier.shape=NA)+

geom_point(position=position_jitterdodge(jitter.width=0.3,

                                         dodge.width=0.8))

79 Stat Transformations: Bar plots, box plots, and histograms

Bioinformatics Training and Education Program



The box plot above shows several things

Tooth length appears to be longer for the OJ treated group at doses of 0.5 and 1

Tooth length appears to be equal for both the OJ and VC groups at a dose of 2

At a dose of 0.5 and 1, the median (line inside the box) for the OJ group is larger than the

VC group

At a dose of 0.5 and 1, the interquartile range (IQR) which is defined by the lower (25th

percentile) and upper (75th percentile) bounds of the box along the vertical axis is larger

for the OJ group as compared to VC - so there is more variability in the OJ group

measurements.

At a dose of 2, the median for both the OJ and VC group are roughly equal

At a dose of 2, the IQR for the VC group is larger than that for the OJ group

• 

• 

• 

• 

• 

• 
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Visualizing clusters with heatmaps

Objectives 

Introduce the heatmap and dendrogram as tools for visualizing clusters in data. 

Learn to construct cluster heatmap using the package pheatmap. 

Learn how to save a non-ggplot2 plot. 

Introduce ggplotify to convert non-ggplots to ggplots. 

Introduce heatmaply for constructing interactive heatmaps.

What is a heatmap?

A  heatmap  is  a  graphical  representation  of  data  where  the  individual  values

contained in  a  matrix  are  represented  as  colors.  ---  R  Graph Gallery (https://r-

graph-gallery.com/heatmap.html) 

Heatmaps are appropriate when we have lots of data because color is easier to interpret and

distinguish  than  raw  values.  ---  Dundas  BI (https://www.dundas.com/resources/blogs/best-

practices/when-and-why-to-use-heat-maps)

Heatmap can be used to visualize the following

gene expression across samples (Figure 1)

correlation (Figure 2)

disease cases (Figure 3)

hot/cold zones

topography

What is a dendrogram?

A dendrogram (or tree diagram) is a network structure and can be used to visualize

hierarchy  or  clustering  in  data.  ---  R  Graph  Gallery (https://r-graph-gallery.com/

dendrogram.html)

Applications of dendrograms

Dendrograms  are  used  in  phylogenetics  to  help  visualize  relatedness  of  or  dissimilarities

between species. 

1. 

2. 

3. 

4. 

5. 

• 

• 

• 

• 

• 
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In RNA sequencing, dendrogram can be combined with heatmap to show clustering of samples

by gene expression or clustering of genes that are similarly expressed (Figure 1).

Figure 1: Heatmap and dendrogram showing clustering of samples with similar gene expression

and  clustering  of  genes  with  similar  expression  patterns.

Further  heatmap  and  dendrogram  can  be  used  as  a  diagnostic  tool  in  high  throughput

sequencing experiments.  As an example,  we can look at  the heatmap and dendrogram in

Figure 2. In Figure 2, the heatmap shows correlation of RNA sequencing samples with the idea

that  biological  replicates  should  be  more  highly  correlated  compared  to  samples  between

treatment  groups.  The dendrogram clusters  similar  samples together.  Figure 2  tells  us  that

heatmaps can also be used to visualize correlation. 
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Figure  2:  Heatmap  and  dendrogram  showing  sample  correlation  in  an  RNA  sequecing

experiment.  This  heatmap  and  dendrogram  is  generated  using  DeepTools (https://

deeptools.readthedocs.io/en/develop/content/tools/plotCorrelation.html). 
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Figure  3:  Maryland  cancer  cases  -  source:  https://statecancerprofiles.cancer.gov

Methods available to produce a heatmap in R

ggplot2

We would use geom_tile to construct the heatmap

A disadvantage to this approach is that we have to generate the dendrogram separately,

then merge and align the dendrogram with the heatmap.

heatmap built into R

It appears that this by default does not generate a legend showing the correlation

between values and color.

It also appears that assigning distance calculation and clustering methods are not

intuitive for the users.

heatmap.2 from the gplots package

It appears assigning distance calculation and clustering methods are not intuitive for the

users.

Click here to learn about heatmap.2 (https://cran.r-project.org/web/packages/gplots/

index.html)

• 

• 

• 

• 

• 

• 
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ComplexHeatmap

There is no scaling option so the user will have to scale the data separately using scale.

(see https://support.bioconductor.org/p/68340/ and https://github.com/jokergoo/

ComplexHeatmap/issues/313 for a discussion on scaling in ComplexHeatmap).

Click here to learn about ComplextHeatmap (https://www.bioconductor.org/packages/

release/bioc/html/ComplexHeatmap.html).

pheatmap

This is a versatile package that draws clustered heatmaps. 

This package has built-in scaling function, provides ways to incorporate legends, and

many features that allows for customization and construction of a publication quality

figure. 

Click here to learn about pheatmap (https://cran.r-project.org/web/packages/pheatmap/

pheatmap.pdf)

heatmaply

This package generates interactive heatmaps that allows the user to mouse over a tile to

see information such as sample id, gene, and expression value. 

Click here to learn about heatmaply (https://cran.r-project.org/web/packages/heatmaply/

vignettes/heatmaply.html)

While most of the tools listed above can be used to produce publication quality heatmaps, we

find that pheatmap is perhaps the most comprehensive. Therefore, in this class, we will show

how to construct heatmaps using pheatmap. Because heatmaps can be filled with a lot of data,

we will also demonstrate the use of heatmaply to construct interactive heatmaps that you could

use to explore your data more efficiently.

Load the libraries

Import data

The  data  that  we  will  be  working  with  comes  from  the  airway  study  that  profiled  the

transcriptome of several airway smooth muscle cell lines under either control or dexamethasone

treatment  Himes  et  al  2014 (http://www.ncbi.nlm.nih.gov/pubmed/24926665) .  The  dataset  is

available  from Bioconductor  (https://bioconductor.org/packages/release/data/experiment/html/

airway.html). 

• 

• 

• 

• 

• 

• 

• 

library(pheatmap) ## for heatmap generation
library(tidyverse) ## for data wrangling
library(ggplotify) ## to convert pheatmap to ggplot2
library(heatmaply) ## for constructing interactive heatmap
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Specifically, our dataset represents the normalized (log2 counts per million or log2 CPM) of

count values from the top 20 differential expressed genes. This data is saved as the comma

separated file RNAseq_mat_top20.csv and thus we will be using the read.csv command to

import.

As a refresher, inside the read.csv command we have the following arguments

"./data/RNAseq_mat_top20.csv" is the file path

header=TRUE indicates that we have column headings

we set the first column of our dataset, which contains gene names as the row names in

the imported data using row.names=1, where 1 indicates the column number that we

want to import as row names

we set check.names=FALSE so that R leaves the column headings alone

The data is assigned to R object mat.

We will now use head to look at the first 6 rows of mat. The column headings represent sample

names and the row names are the genes.

• 

• 

• 

• 

mat<-read.csv("./data/RNAseq_mat_top20.csv",header=TRUE,row.names=1,
              check.names=FALSE)

head(mat)

##              508      509       512      513        516        517        520
## WNT2    4.694554 1.332858  5.983720 2.898648  2.1105784 -0.1655252  4.2828513
## DNM1    6.180735 4.441965  5.660024 3.981513  5.8002923  3.9603755  6.2853003
## ZBTB16 -1.863523 5.257967 -1.777152 4.902223 -2.9319722  4.2830866 -0.5150407
## DUSP1   4.936551 8.019074  5.607568 8.302196  5.0283417  7.7229898  5.1432459
## HIF3A   1.013991 3.374457  1.575250 4.154740  0.4928878  2.8335879  2.2501244
## MT2A    6.248514 8.276988  5.782855 8.070846  5.7583897  8.2015855  5.9163628
##             521
## WNT2   1.237000
## DNM1   4.488955
## ZBTB16 5.779173
## DUSP1  8.396709
## HIF3A  4.790581
## MT2A   7.933492
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Heatmap of the top 20 genes from differential

expression analysis

Below we generate a basic heatmap using the pheatmap package. We use the pheatmap

command and include the data that we want to construct a heatmap of as the argument. In the

heatmap below, we have the sample IDs plotted along the bottom horizontal axis, while the

genes names are presented long the right vertical axis. Each tile in the heatmap corresponds to

the  expression  of a  gene  for  the  corresponding  sample  and  as  mentioned  earlier,  the

expression level is indicated by the color scale. Note that later on in this lesson, we can add an

additional  legend that  color  codes  the  treatment  group that  each  sample  belongs  to.  The

dendrogram that spans the columns indicates how samples are clustered together, while that

which spans the rows tells us how the genes are clustered together. 

pheatmap(mat)
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Distance, clustering, and scaling

When generating a heatmap and dendrogram to show clustering three parameters to consider

are

method for calculating distance between objects (ie. experimental samples)

method for clustering

scaling of data prior to inputting into heatmap generating algorithm

Distance calculation

The idea behind cluster analysis is to calculate some sort of distance between objects in order

to identify the ones that are closer together. When two objects have a small distance, we can

conclude they are closer and should cluster together. On the other hand, two objects that are

further apart will have a larger distance. There are various approaches to calculating distance in

cluster analysis so considerations should be taken for choosing the appropriate one. To learn

more about distance calculation methods as well as advantages and disadvantages of each

see Shirkhorshidi et al, PLOS ONE, 2015 (https://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0144059). In pheatmap, we can specify the clustering distance using either the

clustering_distance_rows argument  or  clustering_distance_cols depending  on

whether we would like to cluster by row or column variables.

Cluster generation

After the distance matrix has been calculated, it is time to perform the actual clustering and

again, various approaches can be used to generate clusters. The following resources are good

for learning about the variouse hierarchical clustering methods. In pheatmap, the clustering

method is specified by the clustering_method argument.

https://hlab.stanford.edu/brian/forming_clusters.htm (https://hlab.stanford.edu/brian/

forming_clusters.htm)

https://dataaspirant.com/hierarchical-clustering-algorithm/ (https://dataaspirant.com/

hierarchical-clustering-algorithm/)

https://www.learndatasci.com/glossary/hierarchical-clustering/ (https://

www.learndatasci.com/glossary/hierarchical-clustering/) 

Scaling

Prior to sending our data into the heatmap generating algorithm, it  is a good idea to sacle.

There are several reasons for doing this

Variables in the data might not have the same units, thus without scaling we will be, to

borrow a phrase, comparing apples to oranges

• 

• 

• 

• 

• 

• 

• 
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Scaling allows us to discern patterns in variables with low values when plotting on the

color scale. Without scaling, variables with large values will drown out the signal from

those with low values. We will see an example of this using the mtcars data.

Scaling also prevents variables with large values from contributing too much weight to

distance https://medium.com/analytics-vidhya/why-is-scaling-required-in-knn-and-k-

means-8129e4d88ed7 (https://medium.com/analytics-vidhya/why-is-scaling-required-in-

knn-and-k-means-8129e4d88ed7). Without scaling, it will hard to discern whether

variables with lower values contribute to separation.

A common method for scaling is to use the z score (see z score formula), which tells us how

many standard deviations away from the mean is a given value in our data. This is the scaling

method for pheatmap.

z score=(individual value - mean) \ (standard deviation) 

Below, we will  use the mtcars data to look at  how scaling influences a heatmap. Because

mtcars is built into R, we can use the data command to load it and we will save this as an

object named cars. Next, we will use the head command to view the first few rows of the cars

data.

Note that variables like disp and hp has larger magnitudes as compared to one like mpg. Also,

the variables in this data does not have the same units. If we constructed a heatmap of the

mtcars data without scaling, we will not be able to discern patterns in variables like mpg among

the samples. This is because the values for mpg are small in comparison to those for disp and

hp, they get squeeze towards the bottom of color scale.

• 

• 

data(mtcars)
cars <- mtcars
head(cars)

##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

pheatmap(cars)
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However, if we scaled then it becomes easier to observe differences in values for each of the

variables. We are interested in the differences in each variable across the car types, thus, we

scale by column because the sample names (ie. car brands) are listed down the rows. If the car

brands were listed across columns, we would have scaled by row.

pheatmap(cars, scale="column")
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Getting back to RNA seq and something more biologically relevant, we can scale by row in mat.

pheatmap(mat, scale="row")
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Working with color customization

pheatmap(mat,scale="row",
         color=colorRampPalette(c("navy", "white", "red"))(50))
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Adding treatment group information to samples (annotation_col, 

annotation_colors)

The code below generates a data frame, dfh, that contains information on the treatment group

in  which  a  sample  was  assigned.  To  create  a  data  frame in  R,  we  use  the  data.frame

command. In the data.frame command, we set the sample to the column names of the data

mat using colnames(mat) to extract the mat column headings. We then want to convert the

column headings in mat to character using as.character.  Next,  also in the data.frame

command, we set the column dex to "Treatment".

Using %>%, we pass the dfh data frame to the column_to_rownames command to set the

rownames of the dfh data frame to the sample IDs. Finally, we will change the values in the dex

column to either untrt (untreated) or trt (treated) using ifelse to check if the row names of dfh

(rownames(dfh)) are samples 508, 512, 516, or 520. If yes, then the value for these samples

in  the  dex  column  becomes  untrt.  In  other  words,  508,  512,  516,  and  520  are  untreated

samples. Else, we will assign the samples to the trt group, which indicates they are treated.

#create data frame for annotations
dfh<-data.frame(sample=as.character(colnames(mat)),dex="Treatment")%>%
                column_to_rownames("sample")
dfh$dex<-ifelse(rownames(dfh) %in% c("508","512","516","520"),
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Add the annotations column

We can add the sample treatment annotation by setting the annotation_col argument to dfh

in pheatmap. We use annotation_col rather than annotation_row because the samples

IDs are listed along the horizontal  axis  so essentially  corresponding to  the columns of  the

heatmap. The result is that the samples are now color coded by the treatment group in which

they belong and this color coding is provided in the legend.

                "untrt","trt")
dfh

##       dex
## 508 untrt
## 509   trt
## 512 untrt
## 513   trt
## 516 untrt
## 517   trt
## 520 untrt
## 521   trt

pheatmap(mat,scale="row", annotation_col = dfh,
         color=colorRampPalette(c("navy", "white", "red"))(50))
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Modify the annotations colors

Using  the  annotation_colors argument,  we  can  reassign  the  colors  of  the  sample  to

treatment mapping legend.

pheatmap(mat,scale="row", annotation_col = dfh,
         annotation_colors=list(dex=c(trt="orange",untrt="black")),
         color=colorRampPalette(c("navy", "white", "red"))(50))
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Splitting heatmap into multiple columns and rows

It maybe helpful to split the heatmap into different portions to illustrate clusters more efficiently.

Here, we can split the heatmap into two columns using the argument cutree_col and setting

this to 2. Doing so will split the heatmap into a column containing the dexamethasone (dex)

treated samples (trt) and untreated samples (untrt).

pheatmap(mat,scale="row", annotation_col = dfh,
         annotation_colors=list(dex=c(trt="orange",untrt="black")),
         color=colorRampPalette(c("navy", "white", "red"))(50),
         cutree_cols=2)
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If we include cutree_rows=2, then the heatmap will be split into two rows. Note that it is split in a

way that the top row represents genes that are down-regulated in the treated group and up-

regulated in the untreated group. The bottom row represents those genes that are up-regulated

by dexamethasone treatment but down-regulated when not treated.

pheatmap(mat,scale="row", annotation_col = dfh,
         annotation_colors =list(dex=c(trt="orange",untrt="black")),
         color=colorRampPalette(c("navy", "white", "red"))(50),
         cutree_cols=2, cutree_rows=2)
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Add a title to heatmap

A title for our heatmap can be included using the main argument

pheatmap(mat,scale="row", annotation_col = dfh,
         annotation_colors =list(dex=c(trt="orange",untrt="black")),
         color=colorRampPalette(c("navy", "white", "red"))(50),
         cutree_cols=2, cutree_rows=2, 
         main="Expression and clustering of top 20 DE genes")
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The last few customization we will do with the heatmap is to adjust the fontsize using argument

fontsize. We will adjust the cellwidth to move the treatment legend into the plot canvas.

We also use cellheight to adjust the height of the heatmap to fill more of the plotting canvas.

pheatmap(mat,scale="row", annotation_col = dfh,
         annotation_colors=list(dex=c(trt="orange",untrt="black")),
         color=colorRampPalette(c("navy", "white", "red"))(50),
         cutree_cols=2, cutree_rows=2, 
         main="Expression and clustering of top 20 DE genes",
         fontsize=11, cellwidth=35, cellheight=10.25)
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Saving a non-ggplot

Recall that we can use the ggsave command to save a ggplot. However, heatmaps generated

using the pheatmap package are not ggplots, therefore we need to turn to either the image

export feature (Figure 7) in R studio or use one of the several image saving commands.
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The programmatic ways to save an image include the following commands

jpeg

bmp

tiff

png

pdf

All of these take the file name in which we would like to save the image, resolution (res), image

width (width), image height (height), and units of image dimension (unit) as arguments.

Below, we use png to save our heatmap as file pheatmap_1.png at 300 dpi as specified in

res.  The workflow is  to  first  create  the file  using one of  the image save commands,  then

generate the plot, and set dev.off() to turn off the current graphical device. If we do not set

dev.off(), subsequent plots will overwrite the file that we just saved and will not show up in the

plot pane.

• 

• 

• 

• 

• 

dev.new()
png("./data/pheatmap_1.png", res=300, width=7, height=4.5, unit="in")
pheatmap(mat,scale="row", annotation_col = dfh,
         annotation_colors=list(dex=c(trt="orange",untrt="black")),
         color=colorRampPalette(c("navy", "white", "red"))(50),
         cutree_cols=2, cutree_rows=2,
         main="Expression and clustering of top DE genes",
         fontsize=11, cellwidth=35, cellheight=10.25)
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Make this plot compatible with ggplot2 using the

package ggplotify.

Save as an R object

Below, we assign the heatmap to the R object hm_ph and we can import this back to R in the

future.

dev.off()

## quartz_off_screen 
##                 3

hm_gg<-as.ggplot(pheatmap(mat,scale="row", annotation_col=
                dfh,annotation_colors =list(dex=c(trt="orange",
                untrt="black")),color=colorRampPalette(c("navy", 
                "white", "red"))(50)))
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We will wrap up lesson 5 with an introduction to the package heatmaply, which can be used to

generate  interactive  heatmaps.  Below  is  a  basic  interactive  heatmap  generated  using  this

package for the airway top 20 differentially expressed genes (mat).

Similar to pheatmap, we will start by providing heatmaply the data that we would like to plot. We

can also scale by row like we did in pheatmap. Plot margins can also be set to ensure the entire

plot fits on the canvas. Like in pheatmap, we assign the plot title using the argument main.

Setting col_side_colors to  the  data  frame dfh,  which contains  the sample  to  treatment

mapping,  creates  a  legend  that  spans  the  columns  of  the  heatmap,  informing  us  of  the

treatment group to which the samples belong.

hm_ph <- pheatmap(mat,scale="row", annotation_col = 
                  dfh,annotation_colors =list(dex=c(trt="orange",
                  untrt="black")), color=colorRampPalette(c("navy", 
                  "white", "red"))(50),cutree_cols=2, cutree_rows=2,
                  main="Expression and clustering of top DE genes",
                  fontsize=11, cellwidth=35, cellheight=10.25)

saveRDS(hm_ph, file="./data/airways_pheatmap.rds")

heatmaply(mat, scale="row", margins=c(0.5,1,50,1),
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heatmaply example

          main="Interactively explore airway DE genes",
          col_side_colors=dfh)
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Lesson 6: Multi-figure panel

Objectives

Combine multiple plots into a single figure 

Learn how to use aspects of cowplot and patchwork

The primary purpose of this lesson is to learn how to combine multiple figures into a single

multi-panel figure using patchwork and a few features of cowplot. While we will learn how to

customize and arrange plots in a multi-figure panel, this is not a comprehensive lesson on all

aspects of patchwork and cowplot.  If  you have something specific in mind for your own

data,  I  implore  you to  read the  documentation  for  these packages to  understand their  full

potential for customization. 

Why do we need to learn to combine figures?

Combining  multiple  figures  is  advantageous  when  preparing  results  for  conference

presentations (via poster) or publication. Most journals place limits on the number of figures

permitted per publication. 

Example journals and their figure limits:

Journal Impact Factor Number of Figures

Nature Cancer 60.72 5-8

Science 47.73 6

Cancer Cell 31.74 8

Journal of Clinical Oncology 44.54 6

JAMA Oncology 31.78 5

Cell Host and Microbe 21.02 7

1. 

2. 
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Example Multi-figure panel from Zhang et al.(2022). Longitudinal single-cell RNA-seq analysis

reveals stress-promoted chemoresistance in metastatic ovarian cancer. Science advances, 8(8),

eabm1831. 

Load the libraries

There are multiple ways to combine figures using R. In this lesson, we will learn how to combine

figures primarily with patchwork. Though, we will also learn some components of cowplot. 

To get started, load the libraries. All packages used today can be installed from CRAN using

install.packages().

#Get patchwork
#To install use install.packages('patchwork')
#load 
library(patchwork)

#Get cowplot
#To install use install.packages('cowplot')
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The Data

This is the sixth lesson in our Data Visualization with R Series. At this point, we have created

quite a few plots. For this lesson, we will focus on the RNA-Seq plots that we created in previous

lessons. We will also include other related plots that were created using the same RNA-Seq

data, but were not created throughout this course series. All plots were saved as R objects

(.rds). To load the data into R, we will need to use the readRDS() function. 

Let's load and view our plots. To view our plots, we can simply call the objects by name.

#load 
library(cowplot)

#We will also use ggplot2
library(ggplot2)

pca<-readRDS("./data/airwaypca.rds")  

volcano<-readRDS("./data/volcanoplot.rds")

hmap<-readRDS("./data/airwayhm.rds")

sc<-readRDS("./data/stripchart.rds")

#view objects
pca
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volcano

## Warning: Using alpha for a discrete variable is not advised.
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hmap
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sc
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What is cowplot?

The cowplot package provides various features that help with creating publication-

quality figures, such as a set of themes, functions to align plots and arrange them

into complex compound figures, and functions that make it easy to annotate plots

and or mix plots with images. The package was originally written for internal use in

the Wilke lab, hence the name (Claus O. Wilke’s plot package). --- cowplot 1.1.1

(https://wilkelab.org/cowplot/index.html) 

The cowplot documentation (https://wilkelab.org/cowplot/index.html) is very user friendly, so

be sure to check it out. Until recently cowplot has been my go to for arranging and combining

plots in a multi-figure plot panel. Today we will primarily focus on patchwork, described below,

for this purpose because it is, in my opinion, far easier to use for simple figure alignment in a

grid format. However, cowplot does have some features that are notable, especially related to

label  customization,  unique  plot  arrangements,  and  image  drawing.  The  drawing  functions

(https://wilkelab.org/cowplot/articles/drawing_with_on_plots.html),  which  allow  you  to  easily

integrate outside images onto your plots, are especially useful,  so take a look at the linked

documentation. Some of the more difficult  features of cowplot,  such as getting a combined

legend, have been simplified by wrapper functions from other packages (See ggarrange()

from ggpubr).
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Using cowplot to arrange figures

The main function to combine figures using cowplot is plot_grid(). Let's check out the help

documentation using ?plot_grid(). The first and most important parameter is the list of plots

we want to combine, plotlist. 

Let's check out the basic use of this function by calling the plots we want to combine and by

providing labels using the labels argument. 

plot_grid(pca,volcano,hmap,sc, labels="AUTO")

## Warning: Using alpha for a discrete variable is not advised.

112 Lesson 6: Multi-figure panel

Bioinformatics Training and Education Program



This figure isn't bad. Though, we would likely want to change the relative sizes of the plots and

work on the plot alignments. This can be done with rel_heights, rel_widths, align, and

axis. We are not going to work with these today because cowplot does not do well with plot

alignments  when  a  given  plot's  aspect  ratio  has  been  fixed  (e.g.,  coord_fixed(), 

coord_equal()). 

However, I do want to point out some of the options for label customization before moving on to

ggdraw(). 

Plotting labels with cowplot

There are quite a few parameters to adjust figure labels. To re-position labels, see label_x, 

label_y, hjust, and vjust. These each take either a single value to move all labels or a

vector  of  values,  one  for  each  subplot.  We  can  also  change  the  size  of  the  labels

(label_size),  the font (label_fontface),  the label color (label_colour),  and the font

type (label_fontfamily). In general, there seem to be more options for plot customization

(without adding ggplot2 layers) with cowplot. 

plot_grid(pca,volcano,hmap,sc, labels="AUTO",label_size = 14, 
          label_fontface  = "bold.italic", label_colour  ="blue",
          label_fontfamily ="Times New Roman",
                   label_y=0.25)

## Warning: Using alpha for a discrete variable is not advised.
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Here we changed the size of the labels to 14 pt and the color to blue. Also, the labels are now

bold and italicized, and the font is Times New Roman. We also re-positioned the labels. 

Other notable features of cowplot

You can nest figures by combining figures using plot_grid(), saving that to an object, and

then plotting those pre-combined figures with another figure using plot_grid() again. Shared

legends can be obtained using cowplot's get_legend(). cowplot also has its own function

to save plots (save_plot()), which is a bit more dynamic for multi-figure panels, but you may

also use ggsave(). 

114 Lesson 6: Multi-figure panel

Bioinformatics Training and Education Program



Taking advantage of ggdraw

An  extremely  useful  feature  of  cowplot is  ggdraw() combined  with  draw_plot(), 

draw_grob(), draw_image() and draw_label(). These can be used to add or combine

text, images, and plots and create more complicated plot arrangements. ggdraw() can be

used directly with any package that creates grid grobs. It can also be used with lattice and

base R graphics. The output of these functions can be treated like ggplot2 objects. 

Note:  Grobs  are  graphical  objects  that  you  can  make  and  change  with  grid

graphics functions. The ggplot2 package is built on top of grid graphics, so the grid

graphics system “plays well” with ggplot2 objects. --- Pang, Kross, and Andersen,

2020 (https://bookdown.org/rdpeng/RProgDA/the-grid-package.html) 

Let's look at the basics of drawing an image.

Note: Drawing an image requires library(magick).

plos <- "./images/himesetal2014_plos.png" #save our image file path

#Create an image to add to a multi-figure plot.
a<-ggdraw() + #create blank canvas
  draw_image(plos,scale=1) # draw the image and save to object  

a
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ggdraw() creates a new ggplot2 canvas without visible axes or background grid.

The  draw_*  functions  are  simply  wrappers  around  regular  geoms.  ---  cowplot

documentation (https://wilkelab.org/cowplot/articles/drawing_with_on_plots.html) 

Let's add this to the background of our PCA. 

pca + draw_image(plos,x=-15,y=-2,width=30,height=20)
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Using cowplot we can get an image such as this:

p1<-plot_grid(NULL,a,NULL,(pca+theme(legend.position="right")),labels=c("","","A"),ali

bc<-plot_grid(volcano,sc,labels = c("B","C"),align="h",axis="b")
## Warning: Using alpha for a discrete variable is not advised.

p2<-plot_grid(p1,NULL,bc,ncol=1,align="v",axis="l",rel_heights = c(1,0.05,1.75))

p2b<-plot_grid(hmap,NULL,nrow=1,align="h",axis="b",rel_widths=c(0.65,0.25))

p3<-plot_grid(NULL,p2,NULL,p2b,ncol=1,labels=c("","","D"),align="v",axis="l",rel_heigh

labp<-ggdraw(p3)+
   draw_label("Airway Data", color = "Black", size = 14, x=0.1,y=0.97,hjust=0.65,fontf

labp

117 Lesson 6: Multi-figure panel

Bioinformatics Training and Education Program



What is patchwork?

The goal of patchwork is to make it ridiculously simple to combine separate ggplots

into  the  same  graphic.  As  such  it  tries  to  solve  the  same  problem  as

gridExtra::grid.arrange()  and  cowplot::plot_grid  but  using  an  API  that  incites

exploration and iteration,  and scales to  arbitrily  complex layouts.  ---Thomas Lin

Pederson,  Patchwork  documentation (https://patchwork.data-imaginist.com/

index.html). 
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Patchwork allows users to combine plots using simple mathematic operations such as + and /. 

Combining two plots

Let's combine our PCA and volcano plots. 

The last plot included in patchwork statements is considered the active plot, to which we can

add  additional  ggplot2  layers.  Notice  the  seamless  alignment  of  these  plots.  Without  any

additional parameters, coord_fixed() is maintained in the pca plot. patchwork does a lot

better with a fixed aspect plot. 

Let's customize the legend position of the active plot.

pca + volcano

## Warning: Using alpha for a discrete variable is not advised.

pca + volcano +
  theme(legend.position="right")
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We can easily add ggplot2 layers within our patchwork code. 

We can continue  to  add plots  using the  + symbol,  and patchwork  will  try  to  form a  grid,

proceeding from left to right row-wise. Let's see this in action. 

## Warning: Using alpha for a discrete variable is not advised.

pca + volcano + hmap + sc

## Warning: Using alpha for a discrete variable is not advised.
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The plot layout can be controlled further with additional operators. The | symbol is used to

place plots side by side, while the / symbol is used to stack plots vertically. Plotting layouts

kind of follow the rules designated by the order of operations (Remember back to PEMDAS),

the / occurs before | and +. 

#vertical stacking
pca / volcano

## Warning: Using alpha for a discrete variable is not advised.
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#horizontal
pca | volcano

## Warning: Using alpha for a discrete variable is not advised.
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pca | volcano / sc

## Warning: Using alpha for a discrete variable is not advised.
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For specific layouts, it is a good idea to use parentheses for correct evaluation. 

For example, what if we want our pca and heatmap side by side stacked on top of our box plot?

Compare the following: 

pca | hmap / sc

((pca | hmap) / sc)  
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Using plot_layout()

The  function  plot_layout() can  be  used  to  control  the  layout,  combine  legends,  and

overwrite plot titles. 

pca1 <-pca + ggtitle("(A)")
pca1
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sc1 <- sc + ggtitle("(B)")
sc1
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#combine legends
pca1 + sc1 + plot_layout(ncol =1, guides = 'collect') 
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#Can control the relative heights and widths
pca1 +  guides(shape = guide_legend(nrow=4)) + sc1 + 
  plot_layout(nrow=1,guides = 'collect',widths=c(1.5,2)) 
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Changing the relative sizes of the figures alters the alignment. Units may also be specified to

control the height or width. 

It is possible to design unique (non-grid) layouts using patchwork, but it seems a bit more

difficult than cowplot in that regard.

Adding a spacer

We can add a spacer using plot_spacer() to add blank sections to our plot. These blank

sections are the size of our figure panels and may be different depending on how the plot is

arranged.

(pca1 + guides(shape = guide_legend(nrow=4), 
               color = guide_legend(nrow=2))) / plot_spacer() | sc1
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Add our cowplot image

pca2<- pca + guides(shape = guide_legend(nrow=4))
((a |pca2) / sc / hmap) + plot_layout(guides='collect')
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Including a title

To include a title, subtitle, or caption use the function plot_annotation(). 

patchf<-((a | pca2) / sc / hmap) + 
  plot_layout(guides='collect',heights=c(1,1,3)) + 
  plot_annotation(title = 'Airway Data', tag_levels = "A")  &
    theme(plot.tag = element_text(face = 'bold'), 
          title= element_text(face = 'bold'))
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Notice that the assignment of "A" and "B" were automatic with the tag_levels parameter. The

parentheses here  are  required.  Also,  & was used to  apply  theme() to  all  subplots  in  the

patchwork. 

Save the plot

patchf
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Which package to use?

This is ultimately up to you. In general, patchwork is easier to combine nicely aligned grid

style plots. cowplot seems to include greater opportunities for customization, but you could

easily customize things like titles using ggplot2 layers with either package prior to combining

figures. patchwork also allows integration of ggplot2 layers. Both packages also allow you to

inset figures and add non-ggplot2 figures. As you gain more experience with R, you may find

yourself using both packages to achieve specific goals, or you may look to other packages.

egg (https://cran.r-project.org/web/packages/egg/vignettes/Overview.html)  is  another  popular

package for combining figures. ggarrange() (https://rpkgs.datanovia.com/ggpubr/reference/

ggarrange.html) from the package ggpubris also popular. 

Acknowledgements

Content  in  this  tutorial  was adapted from information in the cowplot  documentation (https://

wilkelab.org/cowplot/articles/plot_grid.html) and  patchwork  documentation (https://

patchwork.data-imaginist.com/).

ggsave("patchf.png",height=5,width=4.25,dpi=300,units="in",scale=2)
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Getting the Data



 

Course Data

Course data is available in the attached zipped archive: data.zip. 
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Practice Questions



 

Practice plotting using ggplot2: Lesson 2

Load the data

For these exercises, you will explore the titanic data from kaggle.com (https://www.kaggle.com/

c/titanic/data),  which  was  downloaded  from  here (https://web.stanford.edu/class/archive/cs/

cs109/cs109.1166/problem12.html). You will need to download the data and load into R. As this

is a comma separated file, you will need to explore the read.csv() function. 

Description of the data:

Column Description

Survived 0 = No, 1 = Yes

Pclass Ticket Class / Socioeconomic status (1 = 1st, 2 = 2nd, 3 = 3rd)

Name Passenger name

Sex Male / Female

Age Numeric age in years

Siblings/Spouses Aboard # of siblings / spouses aboard the Titanic

Parents/Children Aboard # of parents / children aboard the Titanic

Fare Passenger fare

Get the data here.

Load ggplot2. 

Exercise Questions

Question 1

Load titanic.csv and save to an object named titanic. 

{{Sdet}}

Possible Solution{{Esum}}

library(ggplot2)



137 Practice plotting using ggplot2: Lesson 2

Bioinformatics Training and Education Program

https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/c/titanic/data
https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html
https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html
https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html
https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html
../titanic.csv


{{Edet}}

Question 2

Explore the data. What is the structure of the data? Try str(). What are the column names? Try

colnames(). How can you get help if you do not know how to use these functions? 

{{Sdet}}

Possible Solution{{Esum}} 

{{Edet}} 

titanic <- read.csv("https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/

str(titanic) # get the structure 

## 'data.frame':    887 obs. of  8 variables:
##  $ Survived               : int  0 1 1 1 0 0 0 0 1 1 ...
##  $ Pclass                 : int  3 1 3 1 3 3 1 3 3 2 ...
##  $ Name                   : chr  "Mr. Owen Harris Braund" "Mrs. John Bradley (Flore
##  $ Sex                    : chr  "male" "female" "female" "female" ...
##  $ Age                    : num  22 38 26 35 35 27 54 2 27 14 ...
##  $ Siblings.Spouses.Aboard: int  1 1 0 1 0 0 0 3 0 1 ...
##  $ Parents.Children.Aboard: int  0 0 0 0 0 0 0 1 2 0 ...
##  $ Fare                   : num  7.25 71.28 7.92 53.1 8.05 ...

colnames(titanic) # get the column names. 

## [1] "Survived"                "Pclass"                 
## [3] "Name"                    "Sex"                    
## [5] "Age"                     "Siblings.Spouses.Aboard"
## [7] "Parents.Children.Aboard" "Fare"

?str # get help
?colnames
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Question 3

Make a simple scatter plot. Is there a relationship between the age of the passenger and the

passenger fare? 

{{Sdet}}

Possible Solution{{Esum}} 

{{Edet}} 

Question 4

Color the points from question 3 by Pclass. Remember that Pclass is a proxy for socioeconomic

status. While the values are treated as numeric upon loading, they are really categorical and

should be treated as such. You will need to coerce Pclass into a categorical (factor) variable.

See factor() and as.factor(). 

{{Sdet}}



ggplot(titanic) + 
  geom_point(aes(x=Age, y=Fare))
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Possible Solution{{Esum}} 

{{Edet}} 

Question 5

Manually scale the colors in question 4. 1st class = yellow, 2nd class = purple, 3rd class =

seagreen. Also change the legend labels (1 = 1st Class, 2 = 2nd Class, 3 = 3rd Class). 

{{Sdet}}

Possible Solution{{Esum}} 



ggplot(titanic) + 
  geom_point(aes(x=Age, y=Fare, color=as.factor(Pclass)))



ggplot(titanic) + 
  geom_point(aes(x=Age, y=Fare, color=as.factor(Pclass)))+ 
  scale_color_manual(values=c("yellow","purple","seagreen"),
                     labels=c("1st Class","2nd Class","3rd Class"))
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{{Edet}} 

Question 6

Facet the plot made in 5 by the column 'Sex'. 

{{Sdet}}

Possible Solution{{Esum}} 



ggplot(titanic) + 
  geom_point(aes(x=Age, y=Fare, color=as.factor(Pclass))) +
  scale_color_manual(values=c("yellow","purple","seagreen"),
                     labels=c("1st Class","2nd Class","3rd Class")) + 
  facet_wrap(~Sex)
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{{Edet}}

Challenge question 1

Let's use some other geoms. Plot the number of passengers (a simple count) that survived by

ticket class and facet by sex. 

{{Sdet}}

Possible Solution{{Esum}} 



ggplot(titanic) + 
  geom_bar(aes(x=Pclass, fill=factor(Survived)), 
           position=position_dodge()) + 
  facet_wrap(~Sex)+
  labs( y="Number of Passengers", x="Passenger Class", 
        title="Titanic Survival Rate by Passenger Class")
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{{Edet}}

Challenge question 2

Add a variable to the data frame called age_cat (child = <12, adolescent = 12-17,adult= 18+).

Plot the number of passengers (a simple count) that survived by age_cat, fill by Sex, and facet

by class and survival. 

{{Sdet}}

Possible Solution{{Esum}} 



library(dplyr)

## 
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
## 
##     filter, lag
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{{Edet}}

## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

titanic %>%
  mutate(age_cat= case_when(Age < 12 ~ "child",
  Age >= 12 & Age < 18  ~ "adolescent",
  Age >= 18 ~ "adult"
)) %>%
  ggplot() + 
  geom_bar(aes(x=age_cat, fill=factor(Sex)), 
           position=position_dodge()) + 
  facet_grid(Pclass~Survived)+
  labs( y="Number of Passengers", x="Age Category", 
        title="Titanic Survival")
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Want more practice?

Let's use the dataset mtcars. According to the help documentation (?mtcars), "the data was

extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10

aspects of automobile design and performance for 32 automobiles (1973–74 models)." Each

question below will depend on code from the previous question.

Question 1

Let's check out the structure of the data. 

{{Sdet}}

Possible Solution{{Esum}}

{{Edet}}

Question 2

How might we plot automobile weight (wt) versus miles per gallon (mpg). 

{{Sdet}}

Possible Solution{{Esum}}



str(mtcars)

## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...



ggplot(mtcars, aes(wt, mpg)) + 
  geom_point()
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{{Edet}} 

Question 3

What if we want to represent the number of cylinders (cyl) by color and shape? 

{{Sdet}}

Possible Solution{{Esum}}



ggplot(mtcars, aes(wt, mpg)) + 
  geom_point(aes(color = factor(cyl),shape = factor(cyl)))
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{{Edet}} 

Question 4

Make the size of the points change by the quarter mile time (qsec). 

{{Sdet}}

Possible Solution{{Esum}}



ggplot(mtcars, aes(wt, mpg)) + 
  geom_point(aes(color = factor(cyl),shape = factor(cyl),size=qsec))
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{{Edet}} 

Question 5

Create subplots by transmission (am). 

{{Sdet}}

Possible Solution{{Esum}} 



ggplot(mtcars, aes(wt, mpg)) + 
  geom_point(aes(color = factor(cyl),shape = factor(cyl),size=qsec))+
  facet_wrap(~am)
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{{Edet}} 

Question 6

Model the trend using geom_smooth(). What is the default method used by geom_smooth()?

{{Sdet}}

Possible Solution{{Esum}}



ggplot(mtcars, aes(wt, mpg)) + 
  geom_point(aes(color = factor(cyl),shape = factor(cyl),size=qsec))+
  facet_wrap(~am) +
  geom_smooth()

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
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{{Edet}}
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Practice plotting using ggplot2: Lesson 3

The following questions synthesize several of the skills you have learned thus far. It may not be

immediately apparent how you would go about answering these questions. Remember, the R

community is expansive, and there are a number of ways to get help including but not limited to

google search. These questions have multiple solutions, but you should try to stick to the tools

you have learned to use thus far. 

Your mission is to make a publishable figure using the iris data set. 

Question 1

Start by plotting Petal.Length on the x-axis and Petal.Width on the y-axis. 

{{Sdet}}

Possible Solution{{Esum}}



library(ggplot2)
ggplot(iris)+
  geom_point(aes(Petal.Length,Petal.Width,color=Species))
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{{Edet}} 

Question 2

Fix the axes so that the dimensions on the x-axis and the y-axis are equal. Both axes should

start at 0. Label the axis breaks every 0.5 units on the y-axis and every 1.0 units on the x-axis. 

{{Sdet}}

Possible Solution{{Esum}}



ggplot(iris)+
  geom_point(aes(Petal.Length,Petal.Width,color=Species))+
  coord_fixed(ratio=1,ylim=c(0,2.75),xlim=c(0,7),expand=FALSE) +
  scale_y_continuous(breaks=c(0,0.5,1,1.5,2,2.5)) +
  scale_x_continuous(breaks=c(0,1,2,3,4,5,6,7))
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{{Edet}} 

Question 3

Change to color of the points by species to be color blind friendly, and change the legend title

to "Iris Species". Label the x and y axis to eliminate the variable names and add unit information.

{{Sdet}}

Possible Solution{{Esum}}



#multiple ways to find color blind friendly palettes. 
#using color brewer scales 
RColorBrewer::display.brewer.all(colorblindFriendly=TRUE)
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ggplot(iris)+
  geom_point(aes(Petal.Length,Petal.Width,color=Species))+
  coord_fixed(ratio=1,ylim=c(0,2.75),xlim=c(0,7),expand=FALSE) +
  scale_y_continuous(breaks=c(0,0.5,1,1.5,2,2.5)) +
  scale_x_continuous(breaks=c(0,1,2,3,4,5,6,7)) +
  scale_color_brewer(palette = "Dark2",name="Iris Species") +
  labs(x="Petal Length (cm)", y= "Petal Width (cm)")
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{{Edet}} 

Question 4

Play with the theme to make this a bit nicer. Change font style to "Times". Change all font sizes

to 12 pt font. Bold the legend title and the axes titles. Increase the size of the points on the plot

to 2. Bonus: fill the points with color and have a black outline around each point. 

{{Sdet}}

Possible Solution{{Esum}}



ggplot(iris)+
  geom_point(aes(Petal.Length,Petal.Width,fill=Species),size=2,shape=
  coord_fixed(ratio=1,ylim=c(0,2.75),xlim=c(0,7),expand=FALSE) +
  scale_y_continuous(breaks=c(0,0.5,1,1.5,2,2.5)) +
  scale_x_continuous(breaks=c(0,1,2,3,4,5,6,7)) +
  scale_fill_brewer(palette = "Dark2",name="Iris Species") +
  labs(x="Petal Length (cm)", y= "Petal Width (cm)") +
  theme_bw()+
  theme(axis.text=element_text(family="Times",size=12),
        axis.title=element_text(family="Times",face="bold",size=12),
        legend.text=element_text(family="Times",size=12),
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{{Edet}} 

Question 5

Now, save your plot using ggsave. 

{{Sdet}}

Possible Solution{{Esum}}

{{Edet}}

        legend.title = (element_text(family="Times",face="bold",size=
        )



ggsave("iris.tiff", width=5.5, height=3.5,units="in")
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Lesson 4: Stat Transformations: Bar plots,

box plots, and histograms

The following questions will have you explore the mtcars dataset through creating plots that

were presented in Lesson 4. At the end of these exercises, you should be more comfortable

creating plots that convey statistical summary information about data.

Activate packages

Load the mtcars dataset using the code below. This is a dataset that

comes with R.

Question 1

How many cars in this dataset have 4, 6, or 8 cylinders (cyl)?

{{Sdet}}

Solution{{Esum}}

library(ggplot2)

data(mtcars)



ggplot(mtcars,aes(x=factor(cyl)))+geom_bar(fill="ivory4")
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{{Edet}}

Question 2

Does the number of cylinders (cyl) that a car has influence it's quarter mile time (qsec)?

{{Sdet}}

Solution{{Esum}}



ggplot(mtcars,aes(x=factor(cyl),y=qsec))+stat_summary(fun=mean,position

## Warning: Ignoring unknown parameters: tion

158 Lesson 4: Stat Transformations: Bar plots, box plots, and histograms

Bioinformatics Training and Education Program



{{Edet}}

Question 3

What is the distribution of fuel efficiency (mpg)? Use 7 bins for this exercise.

{{Sdet}}

Solution{{Esum}}



ggplot(mtcars,aes(x=mpg))+geom_histogram(fill="orange",bins=7)
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{{Edet}}

Question 4

Can you create a box plot of horsepower (hp) as a function of the number of cylinders (cyl) a

car has?

{{Sdet}}

Solution{{Esum}}



ggplot(mtcars,aes(x=factor(cyl),y=hp))+geom_boxplot(colour="orangered"
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{{Edet}}
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Lesson5: Visualizing clusters with heatmap

and dendrogram

The following questions will help you gain more confidence in exploring data through heatmap.

We  will  work  with  a  subset  of  the  Human  Brain  Reference  (HBR)  and  Universal  Human

Reference  (UHR)  RNA  sequencing  dataset (https://rnabio.org/module-01-inputs/0001/05/01/

RNAseq_Data/) and use the heatmap to

Visualize gene expression

Determine whether subsets of genes can help us differentiate between the HBR and UHR

samples

Load necessary packages

Question 1

Could you import the hbr_uhr_normalized_counts.csv file into your workspace?

{{Sdet}}

Solution{{Esum}}

{{Edet}}

• 

• 

library(pheatmap)

library(tidyverse)

## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6     ✔ purrr   0.3.4
## ✔ tibble  3.1.8     ✔ dplyr   1.0.9
## ✔ tidyr   1.2.0     ✔ stringr 1.4.0
## ✔ readr   2.1.2     ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()



hbr_uhr_normalized_counts <- read.csv("./data/hbr_uhr_normalized_counts.csv"
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Question 2

Explore this  gene expression dataset  a bit.  How many samples (columns)  and genes (row

names) does this dataset have?

{{Sdet}}

Solution{{Esum}}

This dataset contains 6 samples (

HBR_1.bam

HBR_2.bam

HBR_3.bam

UHR_1.bam

UHR_2.bam

UHR_3.bam

The samples with names starting with HBR are from the Human Brain Reference (HBR) and

those with names starting with UHR are from the Universal Human Reference (UHR). Remember

this for a later questions.

{{Edet}}

Question 3

Create a heatmap for to visualize gene expression for this dataset.

{{Sdet}}



• 

• 

• 

• 

• 

• 

hbr_uhr_normalized_counts

##               HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
## SULT4A1           375.0     343.6     339.4       3.5       6.9       2.6
## MPPED1            157.8     158.4     162.6       0.7       3.0       2.6
## PRAME               0.0       0.0       0.0     568.9     467.3     519.2
## IGLC2               0.0       0.0       0.0     488.6     498.0     457.5
## IGLC3               0.0       0.0       0.0     809.7     313.8     688.0
## CDC45               2.6       1.0       0.0     155.0     152.5     149.9
## CLDN5              77.6      88.5      67.2       1.4       2.0       0.0
## PCAT14              0.0       0.0       1.2     139.8     154.4     155.1
## RP5-1119A7.17      53.0      57.6      51.9       0.0       0.0       0.0
## MYO18B              0.0       0.0       0.0      59.5      84.2      56.5
## RP3-323A16.1        0.0       0.0       1.2      51.9      76.2      53.1
## CACNG2             42.7      35.0      56.6       0.0       1.0       0.0
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Solution{{Esum}}

{{Edet}}

Question 4

Create a data frame called annotation_df that contains the sample and treatment group

information that we will add to the legend for this heatmap.

{{Sdet}}

Solution{{Esum}}



pheatmap(hbr_uhr_normalized_counts,scale="row")



annotation_df <- data.frame(sample=c("HBR_1.bam","HBR_2.bam","HBR_3.bam"

annotation_df

##           treatment
## HBR_1.bam       HBR
## HBR_2.bam       HBR
## HBR_3.bam       HBR
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{{Edet}}

Question 5

Add the annotations for  the legend and color  the HBR samples orangered and the UHR

samples blue. Also, add a title to the heatmap.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

## UHR_1.bam       UHR
## UHR_2.bam       UHR
## UHR_3.bam       UHR



pheatmap(hbr_uhr_normalized_counts,scale="row", annotation_col =annotation_df

         annotation_colors =list(treatment=c(HBR="orangered",UHR="blue"

         main="Expression and clustering of top 12 DE genes")
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Additional Resources



 

For Further Reading

Getting started with R

Hands on Programming with R (https://rstudio-education.github.io/hopr/index.html) 

R for Data Science (R4DS) (https://r4ds.had.co.nz/index.html) 

BTEP R Introductory Series (https://bioinformatics.ccr.cancer.gov/docs/rintro/index.html) 

Base R cheat sheet 

RStudio cheat sheet 

General help with ggplot2

ggplot2 cheatsheet 

R Graph Gallery (https://www.r-graph-gallery.com/) 

The R Graphics Cookbook (https://r-graphics.org/recipe-quick-bar) 

R4DS (https://r4ds.had.co.nz/data-visualisation.html) 

Troubleshooting error messages

Epidemiologist R Handbook (47 Common errors) (https://epirhandbook.com/en/common-

errors.html) 

R for Graduate Students (Troubleshooting Error Messages) (https://bookdown.org/

yih_huynh/Guide-to-R-Book/trouble.html) 

Other Resources

Helpful search engine for R: rseek (https://rseek.org/) 

1. 

2. 

3. 

4. 

5. 

1. 

2. 

3. 

4. 

1. 

2. 

1. 
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Navigating DNAnexus

DNAnexus is a Cloud-based platform for NextGen Sequence analysis for which

CCR has a "site-license".  For  this  class we are using the platform to provide a

uniform, stable, preinstalled interface for R training. This interface makes use of the

Web version of  R-studio.  In  addition  to  the R-studio  interface this  process also

integrates the course-notes for the class in one window.

The  following  instructions  should  be  followed  when  using  this  resource  during

formal class time. For using this resource outside class times see the document

entitled "DNAnexus Basics".

Instruction for using DNAnexus for the Intro to R

class

Getting a DNAnexus account - every student should go to the main DNAnexus web page

(https://dnanexus.com/) and apply for a "free account". The BTEP staff will associate each

account with the NCI/CCR paid account prior to the first class. 

Logging into DNAnexus account - Prior to the class each student should log into their

account, and navigate to the R Class project (DataViz_Apr_2023). 

Starting R - Starting 30 mins before each class there will be a file labelled

"Start_Here.html" at the top level of the project. Select this file by clicking on it, and then

find your name on the list (arranged alphabetically by first name) and click on it. Note: if

there is more than one Start_Here.html file, you will need to select the file that has a

range of letters in which your first name would be included. For example, if there were two

files, Start_Here_A_J.html and Start_Here_K_Z.html, and my name was "Alex", I

would select Start_Here_A_J.html. The names of these files will vary based on the

total number of students in the class. 

1. 

2. 

3. 
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Once you select your name from the correct file, a window with the RStudio login page

will open. 
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Log in using the username "rstudio" and the password "rstudio". At this point you will be

presented with the RStudio main interface (shown below). 

Splitting the window - If you wish to integrate the class notes into the same window as the

R-Studio interface, click on the file "Hsplit.html" or "Vsplit.html" (found in the lower right

hand segment) and select the "View in Web Browser" option from the pop-up menu. This

will add the class notes to the top portion of the browser window. There is a horizontal or

vertical bar separating the class notes window from the RStudio interface, and this bar

can be dragged up and down or right to left, depending on which file you selected

(Hsplit.html vs Vsplit.html), to change the size of the window dedicated to each function.

4. 
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DNAnexus Outside of Class

Setting up the R-Studio environment outside of Class

hours

These  instructions  should  be  followed  if  you  are  setting  up  the  R-Studio  Web

environment  outside  the  normal  class  hours.  For  instructions  about  using  the

resource  during  class  hours  follow  the  instructions  found  in  the  document

"Navigating DNAnexus".

Log into DNAnexus

Each  student  should  log  into  their  account,  and  navigate  to  the  R  Class  project

(DataViz_Apr_2023). For these instructions to make sense, you should use the "New Version"

of DNAnexus. If you are instead using the "Classic Version", your screen will look like this: 

 

You need to select "Start Using New Version". 

Your screen should now look like the following: 

Note

Your class project ID WILL NOT be the same as the project ID in the picture. 
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To Start the Application

To start the application, select "Practicing R - Outside of Class App". 

 

Then follow these steps: 

Step 1: Under Analysis Settings, enter your name in the Execution Name field. 

Step 2: Change Priority from "Normal" to "High". 

• 

• 
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Step 3: Select the green button in the upper right labeled "Start Analysis". 

 

Step 4: Navigate to the "Monitor" tab to check the status of the job. 

• 

• 
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Open the R-Studio Web interface

Step 5: Wait approximately 5 minutes and then select the link under "Worker URL". The link will

look similar to this: "https://job-g7v6z280k4yp6qg4pbkz1gvb.dnanexus.cloud"). 

 

The reason for waiting ~5 mins is to give the system time to get everything in place. If you click

too soon you will see an error message. 

176 DNAnexus Outside of Class

Bioinformatics Training and Education Program



 

177 DNAnexus Outside of Class

Bioinformatics Training and Education Program



Don't PANIC, just wait a little longer and refresh the screen, until you are finally presented with

the  RStudio  login  screen.

Proceed with running content from the R Class

From the login  screen,  login  with  the username/passwd "rstudio/rstudio",  and proceed from

there.

If you encounter any problems send email to BTEP at ncibtep@nih.gov (mailto:ncibtep@nih.gov)
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