
BTEP course

Alexandra L Emmons Ph.D. & Joe Wu Ph.D.

BTEP/GAU/CCR/NCI/NIH - email ncibtep@mail.nih.gov

Bioinformatics Training and Education Program

6

7

9

9

9

10

10

10

12

13

13

14

14

15

15

15

15

Table of Contents

Course overview

• Course Overview

• Example data used in this course

Lesson 1 slides

Lesson 1

• Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

• Learning objectives

• What is Python and why use it?

• Signing onto Biowulf

• Change into Biowulf data directory

• Request an interactive session

• Load Jupyter

• Start Jupyter Lab

• Jupyter Lab - file explorer and launcher

• Jupyter Notebook - cells

• Python education resources

• Python command syntax

• Example of a Python command with and without options

• Finding help for Python commands

• Example of using help

16

17

17

17

17

18

19

20

21

21

22

22

24

24

25

26

26

27

28

29

29

• Copy class data to data directory

Lesson 2

• Lesson 2: Python data types and structures

• Learning objectives

• Signing onto Biowulf

• Change into data directory and copy course data

• Request interactive session

• Load Jupyter

• Start Jupyter Lab

• Python data types and data structures

• Identifying data type and structure in Python

• Variable assignments

• Conditionals

• Data frames

• Importing tabular data with Pandas

• Lists and tuples

• List versus tuples (mutable versus immutable)

• Arrays

• Range

• Dictionaries

Lesson 3

• Lesson 3: Data wrangling using Python

• Learning objectives

29

31

32

33

33

33

35

36

37

37

38

43

43

43

43

43

44

48

58

58

58

• Importing tabular data using Pandas

• Get dimensions of a data frame

• Row indices/names

• Data wrangling

• Subsetting

• Subsetting by integer positions

• Subsetting using column names

• Summary statistics of data frames

• Replacing column names

• Mathematical operations on data frames and filtering

• Removing and adding columns to a data frame

Lesson 4

• Lesson 4: Data visualization using Python

• Learning objectives

• Python data visualization tools

• Visualization using Seaborn

• Load packages

• Modify the basic plot elements with Seaborn.

• Constructing biologically relevant plots

Practice questions

Lesson 2 practice

• Lesson 2 practice questions

• Question 1

58

58

59

59

59

61

61

61

61

61

62

62

62

62

63

64

64

64

64

65

65

66

• Question 2

• Question 3

• Question 4

• Question 5

• Question 6

Lesson 3 practice

• Lesson 3 practice questions

• Question 1

• Question 2

• Question 3

• Question 4

• Question 5

• Question 6

• Question 7

• Question 8

Lesson 4 practice

• Lesson 4 practice questions

• Question 1

• Question 2

• Question 3

• Question 4

Finding help

• Finding help

BTEP Python Data wrangling Pandas Data visualization Matplotlib Seaborn Numpy Biowulf

Interactive sessions Tunnel Jupyter lab

Course Overview

Welcome to the Python Introductory Education Series (PIES) course. This course is composed

of four lessons (see schedule below) and is meant to help those with no or limited experience in

Python get started using this general purpose scripting language for data analyses. Each one-

hour lesson will be followed by an optional one-hour help session. At the end of this course

series, participants should

Have obtained a broad overview of Python, including

Familiarity with tools used to write Python code

Knowledge of Python command syntax

Ability to find help for Python commands

Knowledge of where to find Python packages

Familiarity with self-learning resources

Be able to describe Python data types and structures and provide examples of where

some of the data structures are used

Know how to work with and wrangle tabular data

Be able to construct data visualizations

Lesson schedule:

Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

(Tuesday, August 15, 2023) (https://bioinformatics.ccr.cancer.gov/docs/pies-2023/

pies_lesson1/)

Lesson 1 recording (https://cbiit.webex.com/cbiit/ldr.php?

RCID=28b10cbe0179993cd0008f1300a1a9ed)

Lesson 2: Python data types and structures (Thursday, August 17, 2023) (https://

bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/)

Lesson 2 recording (https://cbiit.webex.com/cbiit/ldr.php?

RCID=41f35ca8d9d251425edd765389b47c32)

Lesson 3: Data wrangling using Python (Tuesday, August 22, 2023) (https://

bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/)

Lesson 3 recording (https://cbiit.webex.com/cbiit/ldr.php?

RCID=0749d0a1a34b9dbcc3abfbb6b34292ff)

Lesson 4: Data visualization using Python (Thursday, August 24, 2023) (https://

bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/)

Lesson 4 recording (https://cbiit.webex.com/cbiit/ldr.php?

RCID=f6dc3393c95acb10a4ffb2a3b1be6a29)

A Biowulf account is needed for this class. Visit the Biowulf User Dashboard (https://

hpcnihapps.cit.nih.gov/auth/dashboard/) to unlock an inactive account. For instructions on

•

◦

◦

◦

◦

◦

•

•

•

•

◦

•

◦

•

◦

•

◦

6 Course Overview

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/

obtaining a Biowulf account, visit https://hpc.nih.gov/docs/accounts.html (https://hpc.nih.gov/

docs/accounts.html).

Example data used in this course

Download data used in this course

7 Course Overview

Bioinformatics Training and Education Program

https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html

Lesson 1 slides

%

8 Lesson 1 slides

Bioinformatics Training and Education Program

Lesson 1: Short introduction to Python,

signing onto Biowulf, and starting Jupyter

Lab

Learning objectives

After this lesson, participants will

Be able to describe Python and provide rationale for using it

Know how to start a Jupyter Lab session on Biowulf (Jupyter Lab will be used to interact

with Python throughout this course)

Be familiar with places for getting Python packages

Become familiar with navigating the Jupyter Lab environment

Be able to describe Python command syntax

Know how to find help for Python commands

Become familiar with continuing and self-learning resources

What is Python and why use it?

Scripting language

Facilitates reuse and reproducibility

Can be used to analyze large datasets

Extensive external packages that can be used for

Data wrangling

Data visualization

Single cell RNA sequencing analysis

Working with biological sequences

Interfacing with bioinformatics databases

Strong support community

Easy to learn

•

•

•

•

•

•

•

•

◦

•

•

◦

◦

◦

◦

◦

•

•

Note

Python packages can be found at The Python Package Index (https://pypi.org).

9 Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Bioinformatics Training and Education Program

https://pypi.org
https://pypi.org

Signing onto Biowulf

In this course series, participants will interact with Python through Jupyter Lab on Biowulf. Thus,

the first step is to sign onto Biowulf using ssh. Replace username with participant's own Biowulf

username.

Mac: use ssh through the Terminal

Windows: use ssh through the command prompt

Change into Biowulf data directory

Use cd to change into the participant's data directory on Biowulf. Again, replace username with

participant's Biowulf username.

Request an interactive session

Request an interactive session using sinteractive with the following options.

--gres=lscratch:5: to allocate 5gb of local temporary/scratch storage space

--mem=2gb: to request 2gb of memory or RAM

--tunnel: to open up a channel of communication between local machine and Biowulf

to allow interaction with applications like Jupyter Lab

After resources for the interactive session has been granted, users will see the information

similar to that shown in Figure 1.

ssh username@biowulf.nih.gov

•

•

cd /data/username

•

•

•

sinteractive --gres=lscratch:5 --mem=2g --tunnel

10 Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Bioinformatics Training and Education Program

Figure 1: After interactive session resources have been allocated, users will see a ssh

command that looks like that enclosed in the red rectangle. Open a new terminal (if working on

a Mac) or command prompt (if working on a Windows computer) and then copy and paste this

ssh command into the new terminal.

After copying and pasting the ssh command shown in Figure 1 to a new terminal or command

prompt, hit enter to supply password and log in to Biowulf. This will complete the tunnel.

Figure 2: Hit enter after copying and pasting the ssh command to a new terminal to provide

password and log into Biowulf. This will complete the tunnel.

11 Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Bioinformatics Training and Education Program

Figure 3: In the ssh command shown in Figure 1 and Figure 2, the numbers preceding and

following "localhost" will differ depending on user. Also, the Biowulf username will differ for each

user (wuz8 is the instructor's Biowulf username).

Load Jupyter

After the tunnel has been created, go back terminal (Mac) or command prompt (Windows) with

the Biowulf interactive session and activate Jupyter (see Figure 4).

module load jupyter

12 Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Bioinformatics Training and Education Program

Figure 4: Go back to the terminal (Mac) or command prompt (Windows) with the interactive

session (look for cn#### at the prompt). Do module load jupyter from here.

Start Jupyter Lab

Use the command below to start a Jupyter Lab session. Copy and paste either of the http links

to a local browser to interact with Jupyter (see Figure 5).

Figure 5: Start a Jupyter lab session using jupyter lab --ip localhost --port

$PORT1 --no-browser and copy and paste either one of the http links to a local browser.

Jupyter Lab - file explorer and launcher

File explorer

Launcher for starting language specific notebooks (for this course series, choose the

python/3.10 notebook)

jupyter lab --ip localhost --port $PORT1 --no-browser

Warning

The URLs change with each Jupyter Lab session, so please do not copy from the examples shown below. Copy

from the URLs provided in the Biowulf interactive session terminal instead.

•

•

13 Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Bioinformatics Training and Education Program

Jupyter Notebook - cells

Python education resources

Coursera

Programming for Everybody (Getting Started with Python)

Instructor: Charles Severance, PhD (University of Michigan)

Data Analysis with Python

Instructor: IBM staff

Includes data wrangling and regression analysis

Data Visualization with Python

Intructor: IBM staff

Introduces data visualization using packages such as Matplotlib and

Seaborn

Dataquest

https://www.dataquest.io/course/introduction-to-python/ (https://www.dataquest.io/

course/introduction-to-python/)

https://www.dataquest.io/path/data-scientist/ (https://www.dataquest.io/path/data-

scientist/)

https://www.dataquest.io/path/data-analyst/ (https://www.dataquest.io/path/data-

analyst/)

Visit the self learning resources page (https://bioinformatics.ccr.cancer.gov/btep/self-learning/)

to request a Dataquest or Coursera license.

•

◦

▪

◦

▪

▪

◦

▪

▪

•

◦

◦

◦

14 Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Bioinformatics Training and Education Program

https://www.dataquest.io/course/introduction-to-python/
https://www.dataquest.io/course/introduction-to-python/
https://www.dataquest.io/course/introduction-to-python/
https://www.dataquest.io/course/introduction-to-python/
https://www.dataquest.io/path/data-scientist/
https://www.dataquest.io/path/data-scientist/
https://www.dataquest.io/path/data-scientist/
https://www.dataquest.io/path/data-scientist/
https://www.dataquest.io/path/data-analyst/
https://www.dataquest.io/path/data-analyst/
https://www.dataquest.io/path/data-analyst/
https://www.dataquest.io/path/data-analyst/
https://bioinformatics.ccr.cancer.gov/btep/self-learning/
https://bioinformatics.ccr.cancer.gov/btep/self-learning/

Python command syntax

The command syntax for Python is composed of the

Command

Argument, which is enclosed in the parentheses and what the command will act on

Options, which is enclosed in parentheses and alters the way the command runs

Example of a Python command with and without

options

Include option sep to place a comma between "Hello" and "welcome to Python".

Finding help for Python commands

The help command can be used to view documentations for Python commands. It follows the

Python command syntax. Insert the command in which help is needed into the parentheses.

Example of using help

•

•

•

command(argument, options)

print("Hello", "welcome to Python")

Hello welcome to Python

print("Hello", "welcome to Python", sep=", ")

Hello, welcome to Python

help()

help(print)

15 Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Bioinformatics Training and Education Program

Copy class data to data directory

The example datasets used for this course series reside in /data/classes/BTEP/

pies_2023_data. Make a copy in your data directory.

Help on built-in function print in module builtins:

print(...)
 print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

 Prints the values to a stream, or to sys.stdout by default.
 Optional keyword arguments:
 file: a file-like object (stream); defaults to the current sys.stdout.
 sep: string inserted between values, default a space.
 end: string appended after the last value, default a newline.
 flush: whether to forcibly flush the stream.

cp -r /data/classes/BTEP/pies_2023_data ./pies_2023

16 Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Bioinformatics Training and Education Program

Lesson 2: Python data types and structures

Learning objectives

After this class, participants will

Be able to describe some common Python data types and structures

Be able to identify Python data types

Become familiar with variable assignment

Be able to use conditional operators and if-else statements

Be able to load packages

Know how to import tabular data

Know how to view tabular data

Become familiar with constructing a for loop in Python

Signing onto Biowulf

Sign onto Biowulf using the ssh command. Replace username with user's Biowulf ID.

Change into data directory and copy course data

Replace username with user's Biowulf ID.

The cp command below will copy pies_2023_data in /data/classes/ to the user's data directory

(denoted as "." as this should be present working directory) and save it as a folder called

pies_2023.

Change into pies_2023.

•

•

•

•

•

•

•

•

ssh username@biowul.nih.gov

cd /data/username

cp -r /data/classes/BTEP/pies_2023_data ./pies_2023

cd pies_2023

17 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

Request interactive session

Stay in the /data/username/pies_2023 folder and request an interactive session using

sinteractive with the following options.

--gres=lscratch:5: to allocate 5gb of local temporary/scratch storage space

--mem=2gb: to request 2gb of memory or RAM

--tunnel: to open up a channel of communication between local machine and Biowulf

to allow interaction with applications like Jupyter Lab

After resources for the interactive session has been granted, users will see the information

similar to that shown in Figure 1.

Figure 1: After interactive session resources have been allocated, users will see a ssh

command that looks like that enclosed in the red rectangle. Open a new terminal (if working on

a Mac) or command prompt (if working on a Windows computer) and then copy and paste this

ssh command into the new terminal.

After copying and pasting the ssh command shown in Figure 1 to a new terminal or command

prompt, hit enter to supply password and log in to Biowulf. This will complete the tunnel.

•

•

•

sinteractive --gres=lscratch:5 --mem=2g --tunnel

18 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

Figure 2: Hit enter after copying and pasting the ssh command to a new terminal to provide

password and log into Biowulf. This will complete the tunnel.

Figure 3: In the ssh command shown in Figure 1 and Figure 2, the numbers preceding and

following "localhost" will differ depending on user. Also, the Biowulf username will differ for each

user (wuz8 is the instructor's Biowulf username).

Load Jupyter

After the tunnel has been created, go back terminal (Mac) or command prompt (Windows) with

the Biowulf interactive session and activate Jupyter (see Figure 4).

Warning

Make sure to stay in the /data/username/pies_2023 folder for this step.

module load jupyter

19 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

Figure 4: Go back to the terminal (Mac) or command prompt (Windows) with the interactive

session (look for cn#### at the prompt). Do module load jupyter from here.

Start Jupyter Lab

Use the command below to start a Jupyter Lab session. Copy and paste either of the http links

to a local browser to interact with Jupyter (see Figure 5).

Figure 5: Start a Jupyter lab session using jupyter lab --ip localhost --port

$PORT1 --no-browser and copy and paste either one of the http links to a local browser.

Warning

Make sure to stay in the /data/username/pies_2023 folder for this step.

jupyter lab --ip localhost --port $PORT1 --no-browser

20 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

Python data types and data structures

An important step to learning any new programming language and data analysis is to

understand its data types and data structures. Common data types and structures that will be

encountered include the following.

Text (str)

Numeric

int (ie. integers)

float (ie. decimals)

Boolean (True or False)

conditionals

filtering criteria

command options

Data frames

Lists

Arrays

Tuples

Range

Dictionaries

Identifying data type and structure in Python

The command type can be used to identify data types and structures in Python.

•

•

◦

◦

•

◦

◦

◦

•

•

•

•

•

•

type(100)

int

type(3.1415926)

float

type("bioinformatics")

str

21 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

Variable assignments

In Python, variables are assigned to values using "=". Users can assign variables to integers,

float, or string.

The command type(btep_class) will return str because the variable btep_class is text.

Conditionals

Conditionals evaluate the validity of certain conditions and operators include:

==: is equal to?

>: is greater than?

>=: is greater than or equal to?

<: is less than?

<=: is less than or equal to?

perfect=100
perfect

100

mole=6.02e23
mole

6.02e+23

btep_class="Python Introductory Education Series"
btep_class

'Python Introductory Education Series'

type(btep_class)

str

•

•

•

•

•

22 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

!=: is not equal to?

and

or

The command below will evaluate if the variable perfect is equal to the variable mole and

returns the Boolean value, False.

If statements are also conditionals and are used to instruct the computer to do something if a

condition is met. To have the computer do something when the condition is not met, use elif

(else if) or else.

The command below will accomplish the following:

Use if to evaluate if perfect==mole, if yes then indicate using print that the two

variables are equal

In the case that perfect does not equal mole, use elif (which stands for else if) to

evaluate if perfect>mole, if yes then use the print statement to indicate that perfect is

greater than mole

else when the previous two conditions are not met, use print to indicate that perfect is

less than mole

A ":" is required after if, elif, and else. The command(s) to execute when conditions are met

are placed on a separate line but tab indented.

•

•

•

perfect==mole

False

•

•

•

if perfect==mole:
 print(perfect, "is equal to", mole)
elif perfect>mole:
 print(perfect, "is greater than", mole)
else:
 print(perfect, "is less than", mole)

100 is less than 6.02e+23

Note

The print command can be used to print variables by not enclosing in quotes.

23 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

Data frames

Often, in bioinformatics and data science, data comes in the form of rectangular tables, which

are referred to as data frames. Data frames have the following property.

Study variable(s) form the columns

Observation(s) form rows

Can have a mix of data types (strings and numeric) but each column/study variable can

contain only one data type

Limited to one value per cell

A popular package for working with data frames in Python is Pandas (https://

pandas.pydata.org).

To load a Python package use the import command followed by the package name (ie.

pandas).

Sometimes the name of the package is long, so users might want to shorten it by creating an

alias. The alias "pd" is often used for the Pandas package. To add an alias, just append as

followed by the user defined alias to the package import command.

Importing tabular data with Pandas

This exercise will use the read_csv function of Pandas to import a comma separated value

(csv) file called hbr_uhr_chr22_rna_seq_counts.csv, which contains RNA sequencing gene

expression counts from the Human Brain Reference (hbr) and Universal Human Reference (uhr)

study (https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/).

Take note of the way the csv import command is constructed. First the user specifies the name

of package (ie. pandas) and then the function within the package (ie. read_csv). The package

name and function name is separated by a period.

•

•

•

•

import pandas

import pandas as pd

hbr_uhr_chr22_counts=pandas.read_csv("./hbr_uhr_chr22_rna_seq_counts.csv")

Note

If a Python package was imported using an alias (ie. pd for Pandas) then use the alias to call the package. For

instance, pd.read_csv rather than pandas.read_csv when the pd alias is used for Pandas.

24 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/

Next, use type to find out the data type or structure for hbr_uhr_chr22_counts.

Take a look a the first few rows of hbr_uhr_chr22_counts.

Figure 1: Example of a data frame.

Because hbr_uhr_chr22_counts is a Pandas data frame, it is possible to append one of the

many Pandas commands to it. For instance, the head function was appended to display the

first five rows of hbr_uhr_chr22_counts. The data frame name and function is separated by a

period. This is perhaps one of the most appealing aspects of Python syntax. Note that the head

function was followed by (). If the parentheses is blank, then by default the first five lines will be

shown. There will be more examples of the Pandas head function in a subsequent lesson.

Lists and tuples

Lists and tuples are one dimensional collections of data. The tuple is an immutable list, in which

the elements cannot be modified.

To create a list, enclose the contents in square brackets.

To create a tuple, enclose the contents in parentheses.

type(hbr_uhr_chr22_counts)

pandas.core.frame.DataFrame

hbr_uhr_chr22_counts.head()

sequencing_list=["whole genome", "rna", "whole exome"]

sequencing_tuple=("whole genome", "rna", "whole exome")

25 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

Lists and tuples are indexed and can contain duplicates. The first item in a list or tuple has an

index of 0, the second item has an index of 1, and the last item has an index of n-1 where n is

the number of items. Indices can be used to recall items in a list or tuple.

List versus tuples (mutable versus immutable)

Instructions for modifying Python lists can be found at the W3 school (https://

www.w3schools.com/python/python_lists.asp)

Arrays

Given a list of numbers, it is difficult to perform mathematical operations. For instance

Multiplying list_of_numbers by 2 will duplicate this list. However, multiplying a list of numbers by

two should double every number in that list. Thus, the expected result is [2,4,6,8,10]. To resolve

this, convert the list to an array using the package numpy (https://numpy.org).

sequencing_list[1]

'rna'

sequencing_list[1]="single cell RNA"

sequencing_list

['whole genome', 'single cell RNA', 'whole exome']

sequencing_tuple[1]="single cell RNA"

TypeError Traceback (most recent call last)
Cell In[48], line 1
----> 1 sequencing_tuple[1]="single cell RNA"

TypeError: 'tuple' object does not support item assignment

list_of_numbers=[1,2,3,4,5]

26 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://numpy.org
https://numpy.org

Use the array function of numpy to convert list_of_numbers to an array called

array_of_numbers.

The array of numbers shown here is a one dimensional array. A special case of arrays is the

matrix, which is two dimensional. Like data frames, matrices store values in columns and rows.

Matrices are encountered in computation and are used to store numeric values (see here for

more on matrices (https://youtu.be/IZcyZHomFQc)).

Range

Ranges can be used to for subsetting data (ie. extract data in rows 5 thru 10 of a data frame) or

applied to iterate over a task in things like a for loop.

For instance, a for loop can be used to iterate over sequencing_list_new and print the 3rd to

5th entries.

list_of_numbers*2

[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

array_of_numbers=numpy.array(list_of_numbers)

array_of_numbers*2

array([2, 4, 6, 8, 10])

sequencing_list_new=["whole genome", "rna", "whole exome","single cell rna", "chip", "atac", "cite", "single cell chip", "single cell atac"]

for i in range(2,5):
 print(sequencing_list_new[i])

whole exome
single cell rna
chip

27 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

https://youtu.be/IZcyZHomFQc
https://youtu.be/IZcyZHomFQc
https://youtu.be/IZcyZHomFQc

Dictionaries

Dictionaries are key-value pairs and these are encountered as ways to specify options in some

Python packages.

my_dictionary={"apples":"red","oranges":"orange","bananas":"yellow"}

28 Lesson 2: Python data types and structures

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

Learning objectives

After this lesson, participants will

Be able to import tabular data into Python using Pandas

Be able to explore and modify tabular data through various data wrangling approaches,

including

retrieving dimensions

subsetting

obtaining column statistics

replacing column names

performing mathematical operations

filtering

removing and adding columns

Importing tabular data using Pandas

Pandas (https://pandas.pydata.org) is a popular Python package used to work with tabular

data.

To work with Pandas, first activate it using the import command.

Sometimes the name of the package is long, so users might want to shorten it by creating an

alias. The alias "pd" is often used for the Pandas package. To add an alias, just append as

followed by the user defined alias to the package import command. If importing a package

using an alias, then the package needes to be called using the assigned alias. For instance, if

pd was used to import pandas, then use pd.read_csv to import a csv file.

This exercise will use the read_csv function of Pandas to import a comma separated value

(csv) file called hbr_uhr_chr22_rna_seq_counts.csv, which contains RNA sequencing gene

expression counts from the Human Brain Reference (hbr) and Universal Human Reference (uhr)

study (https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/). This data will be stored

as the variable hbr_uhr_chr22_counts.

•

•

◦

◦

◦

◦

◦

◦

◦

import pandas

import pandas as pd

29 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/

Take a look at the first few rows of hbr_uhr_chr22_counts by appending the head attribute to

hbr_uhr_chr22_counts.

Figure 1: The first five rows of hbr_uhr_chr22_counts. The first column contains genes and the

subsequent columns contain gene expression counts for each of the samples. The left most

column of this data frame contains the row indices or names.

Because hbr_uhr_chr22_counts is a Pandas data frame (type(hbr_uhr_chr22_counts),

see lesson 2), it is possible to append one of the many Pandas commands to it. For instance,

the head function was appended to display the first five rows of hbr_uhr_chr22_counts. The

data frame name and function is separated by a period. This is perhaps one of the most

appealing aspects of Python syntax. Note that the head function was followed by (). If the

parentheses are blank, then the default first five lines will be shown. To view the first 10 rows of

hbr_uhr_chr22_counts do the following.

hbr_uhr_chr22_counts=pandas.read_csv("./hbr_uhr_chr22_rna_seq_counts.csv")

hbr_uhr_chr22_counts.head()

hbr_uhr_chr22_counts.head(10)

30 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

Figure 2: Include an integer inside the parentheses of pandas.dataframe.head() function

to view the specified number of lines in a tabular dataset.

The function tail can be used to view by default the bottom five lines of a tabular dataset.

Similar to head, the number of lines shown can be customized by specifying an integer inside

the parentheses.

Get dimensions of a data frame

Pandas data frames have a function shape that informs of the number of rows and number of

columns in a data frame (in other words the dimensions). To get the dimensions for

hbr_uhr_chr22_counts, do the following

The hbr_uhr_chr22_counts data frame has 1335 rows and 7 columns.

hbr_uhr_chr22_counts.tail()

hbr_uhr_chr22_counts.shape

(1335, 7)

Note

The elements in tabular data can be referred to by their row and column positions.

31 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

The size function returns the number elements in a data frame. For instance,

hbr_uhr_chr22_counts has 1335 rows and 7 columns, which means that it has 1335 times 7

elements (or 9345).

Row indices/names

Figure 2 shows the first 10 rows of hbr_uhr_chr22_counts. The left most column, which contains

labels starting with "0" is referred to as the row indices or row names. Users can specify a

column in the dataset as the row indices or row names using the index_col options in

read_csv. For instance, the hbr_uhr_chr22_rna_seq_counts.csv dataset could be imported

with gene names as the row indices. To do this, add the index_col=0 option to read_csv.

Gene names in hbr_uhr_chr22_rna_seq_counts.csv is the first column and is denoted as

column "0" in Python. Thus, setting index_col=0 ensures that the gene names will be set as

the row indices or row names (see Figure 3).

Figure 3. The index_col=0 option in pandas.read_csv sets the gene names as row names

in the imported data frame.

hbr_uhr_chr22_counts_1=pandas.read_csv("./hbr_uhr_chr22_rna_seq_counts.csv", index_col=0)

32 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

Data wrangling

Subsetting

The command below will subset the expression counts for the RABL2B gene.

The "|" symbol can be used as the "or" operator so to also subset the counts for RPL23AP82

Alternatively, use the isin function and provide a list of genes to retrieve.

Use "." to reference a column.

Subsetting by integer positions

Given that the elements in a data frame are referenced by its row and column positions, what

would be the approach for extracting the element in row 60 and column 5? The solution is the

command below, which returns a result of 2. The row and column numbers are enclosed in "[]"

and separated by a comma.

hbr_uhr_chr22_counts[hbr_uhr_chr22_counts["Geneid"]=="RABL2B"]

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
1334 RABL2B 74 62 54 68 50 47

hbr_uhr_chr22_counts[(hbr_uhr_chr22_counts["Geneid"]=="RABL2B") | (hbr_uhr_chr22_counts["Geneid"]=="RPL23AP82")]

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
1333 RPL23AP82 41 59 54 32 23 34
1334 RABL2B 74 62 54 68 50 47

hbr_uhr_chr22_counts[hbr_uhr_chr22_counts["Geneid"].isin(["RABL2B", "RPL23AP82"])]

hbr_uhr_chr22_counts[hbr_uhr_chr22_counts.Geneid=="RABL2B"]

hbr_uhr_chr22_counts.iloc[60,5]

33 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

The above method for subsetting the element in row 60 and column 5 of hbr_uhr_chr22_counts

is great if the goal is to extract the value and do numeric operation on it. But what if the user

wants to return the element along with the corresponding gene in data frame format?

To do this, enclose the row and column indices to extract in their own inner set of square

brackets as shown below. Column 0, which contains the gene name is also included in the

brackets containing the column indices of interest.

Pandas offers different approaches for subsetting rectangular data. One method is iloc.

iloc is a "purely integer-location based indexing for selection by position" -- https://

pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html# (https://

pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#). The row and

column positions are enclosed in "[]".

iloc allows for retrieval of elements in multiple rows and columns. For instance, the following

can be used to retrieve the elements in rows 60 and 65 and columns 0, 4, 5, and 6 in

hbr_uhr_chr22_counts. Note that the row and column positions are enclosed in an outer set of

"[]". Within the outer set of "[]" the first set of "[]" enclose a comma separated list of row positions

while the second set of "[]" enclose a comma separated list of column positions.

To get the first three rows of hbr_uhr_chr22_counts do the following. Note that it retrieves the

rows with indices 0, 1, and 2.

2

hbr_uhr_chr22_counts.iloc[[60],[0,5]]

 Geneid UHR_2.bam
60 CCT8L2 2

hbr_uhr_chr22_counts.iloc[[60,65],[0,4,5,6]]

 Geneid UHR_1.bam UHR_2.bam UHR_3.bam
60 CCT8L2 1 2 0
65 SLC25A15P5 2 2 4

hbr_uhr_chr22_counts.iloc[:3]

34 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#

What will be the output for hbr_uhr_chr22_counts.iloc[[3],:]?

{{Sdet}}{{Ssum}}Solution{{Esum}}

The row with an index of 3 will be retrieved.

{{Edet}}

Subsetting using column names

Panda's loc function allows for subsetting by row or column names. For instance, to retrieve

the gene id column, do the following. The ":" denotes get every row.

To retrieve the counts for the gene SLC25A15P5, use the following where SLC25A15P5 is the

subsetting criteria, where

hbr_uhr_chr22_counts.loc[:,'Geneid'] extracts the Geneid column.

=="SLC25A15P5" will filter out the row with the SLC25A15P5 gene.

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
0 U2 0 0 0 0 0 0
1 CU459211.1 0 0 0 0 0 0
2 CU104787.1 0 0 0 0 0 0

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
3 BAGE5 0 0 0 0 0 0

hbr_uhr_chr22_counts.loc[:,['Geneid']]

 Geneid
0 U2
1 CU459211.1
2 CU104787.1
3 BAGE5
4 ACTR3BP6
... ...
1330 ACR
1331 AC002056.5
1332 AC002056.3
1333 RPL23AP82
1334 RABL2B

•

•

35 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

To retrieve counts for more than one gene, enclose the genes of interest in a list and use the

isin function to filter out the rows containing the genes in the list.

To find all of the SLC genes in hbr_uhr_chr22_counts, the following could be used where

str.startswith searches for text that starts a pattern (ie. "SLC"). Other options for pattern

matching include str.endwith and str.contains.

Summary statistics of data frames

hbr_uhr_chr22_counts[hbr_uhr_chr22_counts.loc[:,'Geneid']=="SLC25A15P5"]

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
65 SLC25A15P5 0 0 0 2 2 4

hbr_uhr_chr22_counts[hbr_uhr_chr22_counts.loc[:,'Geneid'].isin(["SLC25A15P5", "CCT8L2"])]

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
60 CCT8L2 0 0 0 1 2 0
65 SLC25A15P5 0 0 0 2 2 4

hbr_uhr_chr22_counts.loc[hbr_uhr_chr22_counts.loc[:,'Geneid'].str.startswith("SLC")]

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
54 SLC9B1P4 0 0 0 0 1 0
65 SLC25A15P5 0 0 0 2 2 4
109 SLC25A18 100 111 74 6 8 7
181 SLC25A1 32 50 41 226 138 216
249 SLC9A3P2 0 0 0 0 0 2
268 SLC7A4 19 25 14 9 4 3
494 SLC2A11 54 63 46 28 34 27
726 SLC35E4 18 32 26 21 12 13
783 SLC5A1 0 0 0 0 6 0
795 SLC5A4 7 12 5 13 9 4
955 SLC16A8 9 13 11 11 5 6
1046 SLC25A17 39 39 40 119 96 116
1099 SLC25A5P1 0 0 1 0 1 0

hbr_uhr_chr22_counts.describe()

36 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

Replacing column names

To view the column headings of a data frame use the column function. For instance,

The str.replace function can be used to replace a string with something else. Here, it used

to remove ".bam" from the sample names in the column heading.

Mathematical operations on data frames and filtering

Pandas enables mathematical operations on data frames. For instance, one might want to sum

the total counts across all samples for each gene. The sum function can be used to this. Setting

axis=1 will sum up the counts for each row or gene. Because the Geneid column is a string, it

is necessary to first subset only the sample columns.

Below, genes with zero counts across all samples are removed from hbr_uhr_chr22_counts and

stored as hbr_uhr_chr22_counts_filtered. To accomplish this set

 HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
count 1335.000000 1335.000000 1335.000000 1335.000000 1335.000000 1335.000000
mean 29.530337 36.264419 32.084644 50.694382 33.419476 40.334831
std 99.177874 120.617793 108.237694 197.575081 122.598310 154.455918
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
50% 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000
75% 8.000000 10.000000 9.000000 13.000000 12.000000 11.000000
max 1532.000000 1797.000000 1637.000000 4027.000000 2406.000000 3047.000000

hbr_uhr_chr22_counts.columns

HBR_1.bam
HBR_2.bam
HBR_3.bam
UHR_1.bam
UHR_2.bam
UHR_3.bam

hbr_uhr_chr22_counts.columns=hbr_uhr_chr22_counts.columns.str.replace(".bam", "")

hbr_uhr_chr22_counts.loc[:, ['HBR_1', 'HBR_2', 'HBR_3', 'UHR_1', 'UHR_2', 'UHR_3']].sum(axis=1)

37 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

hbr_uhr_chr22_counts.loc[:, ['HBR_1', 'HBR_2', 'HBR_3', 'UHR_1',

'UHR_2', 'UHR_3']].sum(axis=1) !=0 and use as a filter criteria.

Removing and adding columns to a data frame

For this exercise, stay in the /data/username/pies_2023 folder, which should be the present

working directory (use pwd to check). If not in the /data/username/pies_2023 folder, change into

it. Copy the hbr_uhr_deg_chr22.csv and hcc1395_deg_chr22.csv files from /data/classes/

BTEP/pies_2023_data to the /data/username/pies_2023 directory.

The file hcc1395_deg_chr22.csv will be needed for the practice questions.

This exercise will use the differential gene expression analysis table from the hbr and uhr study.

The info() function will retrieve information regarding the hbr_uhr_deg_chr22 data frame,

which includes the column names.

hbr_uhr_chr22_counts_filtered=hbr_uhr_chr22_counts.loc[hbr_uhr_chr22_counts.loc[:, ['HBR_1', 'HBR_2', 'HBR_3', 'UHR_1', 'UHR_2', 'UHR_3']].sum(axis=1)!=0]

cp /data/classes/BTEP/pies_2023_data/hbr_uhr_deg_chr22.csv .

cp /data/classes/BTEP/pies_2023_data/hcc1395_deg_chr22.csv .

hbr_uhr_deg_chr22=pandas.read_csv("./hbr_uhr_deg_chr22.csv")

hbr_uhr_deg_chr22.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1335 entries, 0 to 1334
Data columns (total 18 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 name 1335 non-null object
 1 baseMean 1335 non-null float64
 2 baseMeanA 1335 non-null float64
 3 baseMeanB 1335 non-null float64
 4 foldChange 971 non-null float64
 5 log2FoldChange 971 non-null float64
 6 lfcSE 971 non-null float64
 7 stat 971 non-null float64

38 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

The hbr_uhr_deg_chr22 table contains differential gene expression analysis results. Relevant

columns include

name: gene names

log2FoldChange: the gene expression change between the two treatment groups

PAdj: the adjusted p-value associated with statistical confidence of the expression

change

The columns labeled with the sample names (ie. columns 12 through 17) are the

normalized gene expression counts

Use str.replace to remove ".bam" from the sample names in columns 12 through 17.

To drop columns in a Pandas data frame, use the .drop function and specify the name(s) of

the column(s) to remove. The example below removes columns baseMean, baseMeanA,and

baseMeanB

Subset the name, log2FoldChange, and PAdj columns in hbr_uhr_deg_chr22 and save to a new

data frame hbr_uhr_deg_chr22_1.

 8 PValue 971 non-null float64
 9 PAdj 971 non-null float64
 10 FDR 639 non-null float64
 11 falsePos 639 non-null float64
 12 HBR_1.bam 1335 non-null float64
 13 HBR_2.bam 1335 non-null float64
 14 HBR_3.bam 1335 non-null float64
 15 UHR_1.bam 1335 non-null float64
 16 UHR_2.bam 1335 non-null float64
 17 UHR_3.bam 1335 non-null float64
dtypes: float64(17), object(1)
memory usage: 187.9+ KB

•

•

•

•

hbr_uhr_deg_chr22.columns=hbr_uhr_deg_chr22.columns.str.replace(".bam", "")

hbr_uhr_deg_chr22.drop(columns=["baseMean","baseMeanA", "baseMeanB"])

hbr_uhr_deg_chr22_1=hbr_uhr_deg_chr22.loc[:,["name", "log2FoldChange", "PAdj"]]

hbr_uhr_deg_chr22_1.head()

39 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

Next, add a column called "-log10PAdj" to hbr_uhr_deg_chr22_1, which will contain the

negative of log10 of the values in the PAdj column. "-log10PAdj" is used in volcano plots that

depict gene expression change versus statistical confidence. To calculate -log10PAdj, the

package numpy will be used. Numpy (https://numpy.org) enables scientific calculations.

Take a look at the first several lines of hbr_uhr_deg_chr22_1

Other methods for adding new column to a Pandas data frame include insert and assign.

The final task for this lesson is to add a column that indicates whether a gene is up regulated,

down regulated, or has no change based on the log2FoldChange and PAdj values. The criteria

are as follows.

PAdj >= 0.01: no change (marked as ns in the column)

Absolute value of log2FoldChange <2: no change (marked as ns in the column)

log2FoldChange >= 2 and PAdj < 0.01: (up regulated)

log2FoldChange <=2 and PAdj < 0.01: (down regulated)

To code this in Python, the first step is to drop the NA values from the hbr_uhr_deg_chr22_1

using dropna.

 name log2FoldChange PAdj
0 SYNGR1 -4.6 5.200000e-217
1 SEPT3 -4.6 4.500000e-204
2 YWHAH -2.5 4.700000e-191
3 RPL3 1.7 5.400000e-134
4 PI4KA -2.0 2.900000e-118

import numpy

hbr_uhr_deg_chr22_1["-log10PAdj"]=numpy.negative(numpy.log10(hbr_uhr_deg_chr22_1.loc[:,"PAdj"]))

hbr_uhr_deg_chr22_1.head()

 name log2FoldChange PAdj -log10PAdj
0 SYNGR1 -4.6 5.200000e-217 216.283997
1 SEPT3 -4.6 4.500000e-204 203.346787
2 YWHAH -2.5 4.700000e-191 190.327902
3 RPL3 1.7 5.400000e-134 133.267606
4 PI4KA -2.0 2.900000e-118 117.537602

•

•

•

•

40 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

https://numpy.org
https://numpy.org

Next, create a list called significance_criteria that contains the criteria shown above. In the

criteria list below, "&" is the Boolean for "and". To calculate the absolute value of

log2FoldChange, numpy.absolute is used.

Then, create a list called significance_status that indicates whether the criteria are ns (not

significant), up, or down. These statuses have to correspond to the order in which the criteria

were listed in significance_criteria.

Finally, numpy.select will be used to assign values to the significance column.

Write this data frame to a csv file in the /data/username/pies_2023 folder, which should be the

present working directory. Replace username with the user's Biowulf account ID. The to_csv

command in Pandas is used to write data frames to csv files. Setting index=False ensures

that the csv file will not have row names.

This lesson has shown the participants various data wrangling approaches using the Python

package Pandas. The capabability of Pandas expand to more than what is covered here,

hbr_uhr_deg_chr22_1=hbr_uhr_deg_chr22_1.dropna()

significance_criteria=[(hbr_uhr_deg_chr22_1["PAdj"]>=0.01),
 (numpy.absolute(hbr_uhr_deg_chr22_1["log2FoldChange"])<2),
 (hbr_uhr_deg_chr22_1["log2FoldChange"]>=2) & (hbr_uhr_deg_chr22_1["PAdj"]<0.01),
 (hbr_uhr_deg_chr22_1["log2FoldChange"]<=-2) & (hbr_uhr_deg_chr22_1["PAdj"]<0.01)]

significance_status=["ns","ns","up","down"]

hbr_uhr_deg_chr22_1["significance"]=numpy.select(significance_criteria,significance_status)

hbr_uhr_deg_chr22_1.head(4)

 name log2FoldChange PAdj -log10PAdj significance
0 SYNGR1 -4.6 5.200000e-217 216.283997 down
1 SEPT3 -4.6 4.500000e-204 203.346787 down
2 YWHAH -2.5 4.700000e-191 190.327902 down
3 RPL3 1.7 5.400000e-134 133.267606 ns

hbr_uhr_deg_chr22_1.to_csv("./hbr_uhr_deg_chr22_with_significance_lesson3.csv",index=False)

41 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

participants are encouraged to check out the Pandas documentations (https://

pandas.pydata.org/docs/) to learn more.

42 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/

Lesson 4: Data visualization using Python

Learning objectives

This lesson will provide participants with enough knowledge to start using Python for data

visualization. Specifically, participants should

Be able to use the package Seaborn to

Construct plots that range from very basic to elegant as well as biologically relevant

Customize plots including altering font size and adding custom annotations

Python data visualization tools

Seaborn (https://seaborn.pydata.org) is a popular Python plotting package, which is the tool

that will be introduced in this lesson. Seaborn is an extension of and builds on Matplotlib

(https://matplotlib.org) and is oriented towards statistical data visualization. However, there are

other packages, including those that are domain specific, implement grammar of graphics, and

are used for creating web-based visualization dashboards. A non-exhaustive list of Python

plotting packages is shown below.

Matplotlib (https://matplotlib.org)

Plotnine: implements grammar of graphics for those familiar with R's ggplot2 (https://

plotnine.readthedocs.io/en/stable/)

bioinfokit: genomic data visualization (https://github.com/reneshbedre/bioinfokit)

pygenomeviz: visuazlize comparative genomics data (https://moshi4.github.io/

pyGenomeViz/)

Dash bio: create interactive data visualizations and web dashboards (https://

dash.plotly.com/dash-bio)

Visualization using Seaborn

Load packages

•

◦

◦

•

•

•

•

•

import pandas
import numpy
import matplotlib.pyplot as plt
import seaborn

43 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

https://seaborn.pydata.org
https://seaborn.pydata.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://github.com/reneshbedre/bioinfokit
https://github.com/reneshbedre/bioinfokit
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio

Modify the basic plot elements with Seaborn.

To plot using Seaborn, start the command with seaborn followed by the plot type, separated

by a period.

This section will use Seaborn's scatterplot to explore how to work with and modify basic

elements of plotting. The foundations learned in this section form the basis for creating

advanced and elegant plots.

The data that will be plotted is a point located at 5 on the x axis and 5 on the y axis. To generate

x and y, numpy.array was used. Here, x and y are single element arrays that store the number

5.

Plot x and y using Seaborn's scatterplot function (see Figure 1 for results), which takes data

frames or Numpy arrays as input. Here, x will be plotted on the x axis, and y will be plotted on

the y axis. The plot can be stored as a variable, which in this example is plot0.

seaborn.plot_type

x=numpy.array([5])
y=numpy.array([5])

plot0=seaborn.scatterplot(x=x, y=y)
plt.show()

44 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 1

The plot in Figure 1 has no axes labels. Axes labels are an integral part of an informative data

visualization. It might also be useful to include meaningful x and y limits. To do this, append the

various .set* attributes to the plot. See Figure 2a for result.

set_xlabel: specify x axis label (size is used to set the label font size)

set_ylabel: specify y axis

set_xlim: sets the x axis limits

set_ylim: sets the y axis limits

set_xticks: sets the location of x axis tick marks

set_xticklabels: sets the x axis tick mark labels, size is used to set the tick mark

label font size

set_yticks: sets the location of y axis tick marks

set_yticklabels: sets the y axis tick mark labels, size is used to set the tick mark

label font size

•

•

•

•

•

•

•

•

plot0=seaborn.scatterplot(x=x, y=y)
plot0.set_xlabel("x axis", size=14)
plot0.set_ylabel("y axis", size=14)
plot0.set_xlim(0,10)
plot0.set_ylim(0,10)
plot0.set_xticks([0,2,4,6,8,10])
plot0.set_xticklabels(labels=["0","2","4","6","8","10"], size=15)

45 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 2

The plotting_context of a Seaborn plot contains parameters that determine scaling of plot

elements (see https://seaborn.pydata.org/generated/seaborn.plotting_context.html (https://

seaborn.pydata.org/generated/seaborn.plotting_context.html)). To view these parameters, do

the following, which will return the plot scaling parameters as a dictionary.

These parameters can be changed using the set_context function by providing a

customized dictionary and assigning it to the rc argument.

plot0.set_yticks([0,2,4,6,8,10])
plot0.set_yticklabels(labels=["0","2","4","6","8","10"], size=15)
plt.show()

print(seaborn.plotting_context())

{'font.size': 12.0, 'axes.labelsize': 12.0, 'axes.titlesize': 12.0, 'xtick.labelsize': 11.0, 'ytick.labelsize': 11.0, 'legend.fontsize': 11.0, 'legend.title_fontsize': 12.0, 'axes.linewidth': 1.25, 'grid.linewidth': 1.0, 'lines.linewidth': 1.5, 'lines.markersize': 6.0, 'patch.linewidth': 1.0, 'xtick.major.width': 1.25, 'ytick.major.width': 1.25, 'xtick.minor.width': 1.0, 'ytick.minor.width': 1.0, 'xtick.major.size': 6.0, 'ytick.major.size': 6.0, 'xtick.minor.size': 4.0, 'ytick.minor.size': 4.0}

help(seaborn.set_context)

46 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html

To change the x and y axes tick label font size to 20, use

seaborn.set_context(rc={'xtick.labelsize': 20, 'ytick.labelsize': 20})

prior to constructing a Seaborn plot.

The code above can be modified to generate a more complex scatter plot that has more points.

For instance, the inputs for x and y can be changed to numeric arrays of five 6 elements each.

Help on function set_context in module seaborn.rcmod:

set_context(context=None, font_scale=1, rc=None)
 Set the parameters that control the scaling of plot elements.

 This affects things like the size of the labels, lines, and other elements
 of the plot, but not the overall style. This is accomplished using the
 matplotlib rcParams system.

 The base context is "notebook", and the other contexts are "paper", "talk",
 and "poster", which are version of the notebook parameters scaled by different
 values. Font elements can also be scaled independently of (but relative to)
 the other values.

 See :func:`plotting_context` to get the parameter values.

 Parameters

 context : dict, or one of {paper, notebook, talk, poster}
 A dictionary of parameters or the name of a preconfigured set.
 font_scale : float, optional
 Separate scaling factor to independently scale the size of the
 font elements.
 rc : dict, optional
 Parameter mappings to override the values in the preset seaborn
 context dictionaries. This only updates parameters that are
 considered part of the context definition.

x=numpy.array([0,1,2,3,4,5])
y=numpy.multiply(2,x)
print("x is a numeric array composed of: ", x)
print("y is a numeric array composed of: ", y)

x is a numeric array composed of: [0 1 2 3 4 5]
y is a numeric array composed of: [0 2 4 6 8 10]

47 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

The code used to generate Figure 2 can then be run again with modifications to the x and y

axes limits to generate the plot shown in Figure 3. To produce a line plot representation of

Figure 3, simply change the plot type to lineplot (seaborn.lineplot).

Figure 3

Constructing biologically relevant plots

The next exercise is to practice creating a scatter plot on a biologically relevant dataset.

Namely, the differential expression results from the hbr and uhr RNA sequencing study will be

used to create a scatter plot depicting log2 fold change of gene expression on the x axis and

plot0=seaborn.scatterplot(x=x, y=y)
plot0.set_xlabel("x axis", size=14)
plot0.set_ylabel("y axis", size=14)
plot0.set_xlim(0,6)
plot0.set_ylim(0,12)
plot0.set_xticks([0,2,4,6])
plot0.set_xticklabels(labels=["0","2","4","6"], size=15)
plot0.set_yticks([0,2,4,6,8,10,12])
plot0.set_yticklabels(labels=["0","2","4","6","8","10","12"], size=15)
plt.show()

48 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

negative log10 of the adjusted p-values on the y axis. This special case of scatter plot is called

a volcano plot.

Step one is to import the data using Panda's read.csv command.

Now, review the contents of this data table by doing the following.

To create the volcano plot, provide the following arguments. See Figure 4 for result.

The data frame (ie. hbr_uhr_deg_chr22)

What to plot on the x axis (ie. log2FoldChange)

What to plot on the y axis (ie. "-log10PAdj")

hbr_uhr_deg_chr22=pandas.read_csv("./hbr_uhr_deg_chr22_with_significance.csv")

hbr_uhr_deg_chr22.head(4)

 name log2FoldChange PAdj -log10PAdj significance
0 SYNGR1 -4.6 5.200000e-217 216.283997 down
1 SEPT3 -4.6 4.500000e-204 203.346787 down
2 YWHAH -2.5 4.700000e-191 190.327902 down
3 RPL3 1.7 5.400000e-134 133.267606 down

•

•

•

plot1=seaborn.scatterplot(hbr_uhr_deg_chr22,x="log2FoldChange", y="-log10PAdj")

49 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 4

The volcano plot in Figure 4 does not help with visualizing the up, down, an non-significant

genes. Fortunately, the hue option can be used to distinguish these. See Figure 5.

plot1=seaborn.scatterplot(hbr_uhr_deg_chr22,x="log2FoldChange", y="-log10PAdj", hue="significance")

50 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 5

It would be informative to label some of the top significant differentially expressed genes in the

volcano plot. To do this, import the file hbr_uhr_deg_chr22_top_genes.csv and assign it to the

data frame hbr_uhr_deg_chr22_top_genes.

The table contains the top two differentially expressed genes according to the adjusted p-value

(PAdj). The task to do is to label the points corresponding to these two genes on the volcano

plot. The values for log2FoldChange and -log10PAdj will serve as the x and y coordinates for

plotting the gene name.

hbr_uhr_deg_chr22_top_genes=pandas.read_csv("./hbr_uhr_deg_chr22_top_genes.csv")

hbr_uhr_deg_chr22_top_genes

 name log2FoldChange PAdj -log10PAdj significance
0 XBP1 2.8 7.300000e-90 89.136677 up
1 SYNGR1 -4.6 5.200000e-217 216.283997 down

51 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

To label the two top differentially expressed genes, start by constructing the volcano plot from

Figure 5. Then, use a for loop to iterate through the name column in the data frame

hbr_uhr_deg_chr22_top_genes. In the for loop

i: the number that keeps track of the row number in the data frame

hbr_uhr_deg_chr22_top_genes and is used to

reference the x coordinate or log2FoldChange value in that row

reference the y coordinate or -log10PAdj value in that row

enumerate: iterate through the name column in hbr_uhr_deg_chr22_top_genes and

stores the name to variable gene_name. i is incremented as it iterates through the name

column within the for loop

Figure 6

The next visualization is the heatmap and dendrogram combination, which helps with visualizing

clusters and patterns. Heatmap and dendrogram can be used in RNA sequencing studies to

inspect whether there are cluster of genes with similar expression patterns among treatment

•

◦

◦

•

plot1=seaborn.scatterplot(hbr_uhr_deg_chr22,x="log2FoldChange", y="-log10PAdj", hue="significance")
for i, gene_name in enumerate(hbr_uhr_deg_chr22_top_genes["name"]):
 plot1.text(hbr_uhr_deg_chr22_top_genes["log2FoldChange"][i],
 hbr_uhr_deg_chr22_top_genes["-log10PAdj"][i],gene_name)

52 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

groups. The normalized counts for the top differential expressed genes in the hbr and uhr study

will be used to construct a heatmap/dendrogram using Seaborn's clustermap.

Import the data.

The seaborn.clustermap command below generates a clustermap of the top differential

expressed genes in the hbr and uhr study. The arguments and options are as follows.

Argument: The dataset (ie. hbr_uhr_top_deg_normalized_counts)

Options:

z_score=0: scale the rows by z-score

cmap: specify color palette (ie. viridis)

figsize: specify figure size

vmin: minimum value on the color scale bar

vmax: maximum value on the color scale bar

cbar_kws: dictionary containing key value pair that specifies the title to the color

scale bar

cbar_pos: coordinates for placement of the color scale bar

hbr_uhr_top_deg_normalized_counts=pandas.read_csv("./hbr_uhr_top_deg_normalized_counts.csv", index_col=0)

•

•

◦

◦

◦

◦

◦

◦

◦

plot4=seaborn.clustermap(hbr_uhr_top_deg_normalized_counts,z_score=0,cmap="viridis",
 figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=({"label": "z score"}),
 cbar_pos=(0.855,0.8,0.025,0.15))

53 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 9: Expression heatmap of the top 12 differentially expressed genes in the HBR and UHR

study

Below, a Pandas Series, called samples that contains a mapping of colors to study samples is

created.

Then a variable, column_colors is created that contains a mapping of the

hbr_uhr_top_deg_normalized_counts column headings to the colors specified in samples. This

is accomplished using the map command.

samples=pandas.Series({"HBR_1":"orangered", "HBR_2":"orangered", "HBR_3":"orangered", "UHR_1":"blue", "UHR_2":"blue", "UHR_3":"blue"})

column_colors=hbr_uhr_top_deg_normalized_counts.columns.map(samples)

54 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

The option col_colors, which is set to column_colors is added to display a color bar on the

top of the heatmap that helps to distinguish treatment groups (ie. hbr or uhr).

Other options added include

ax_heatmap.set_xticklabels: allows for customizing the x axis labels' fontsize and

rotation. This requires using ax_heatmap.get_xmajorticklabels() to get the x axis

tick labels

ax_cbar.tick_params: sets the size for the color scale bar labels

ax_col_colors.set_title: sets the title and location bar displaying the treatment

group to color mapping

•

•

•

plot4=seaborn.clustermap(hbr_uhr_top_deg_normalized_counts,z_score=0,cmap="viridis",
 figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=({"label": "z score"}),
 col_colors=column_colors, cbar_pos=(0.855,0.8,0.025,0.15))
plot4.ax_heatmap.set_xticklabels(plot4.ax_heatmap.get_xmajorticklabels(),fontsize=12,rotation=90)
plot4.ax_cbar.tick_params(labelsize=12)
plot4.ax_col_colors.set_title("treatment",x=-0.1,y=0.01)
plt.show()

55 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 10: Expression heatmap of the top 12 differentially expressed genes in the HBR and

UHR study with treatment group annotations.

56 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Practice questions

Bioinformatics Training and Education Program

Lesson 2 practice questions

Question 1

Create a variable that stores the value for pi.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 2

What data type is stored in the variable pi? And why?

{{Sdet}}{{Ssum}}Solution{{Esum}}

The variable pi has decimals, thus it is a float.

{{Edet}}

Question 3

Create a variable that stores Avogadro's number.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

pi=3.14

type(pi)

float

avogadro=6.02e23

58 Lesson 2 practice questions

Bioinformatics Training and Education Program

Question 4

How do we check if Avogadro's number is greater than pi?

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 5

Use the if statement to print out something if Avogadro's number is greater than pi.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 6

Create a list of five random things that you can think of and then use a for loop to print each

item in the list.

{{Sdet}}{{Ssum}}Solution{{Esum}}

avogadro > pi

True

if avogadro > pi:
 print("Avogadro's number is greater than pi")
else:
 print("No conclusion can be made")

Avogadro's number is greater than pi

town=["Curry","Thompson","Green","Igoudala","Durant"]

for player in range(0,5):
 print(town[player])

59 Lesson 2 practice questions

Bioinformatics Training and Education Program

Alternative solution

{{Edet}}

for player in town:
 print(player)

60 Lesson 2 practice questions

Bioinformatics Training and Education Program

Lesson 3 practice questions

Question 1

Import hcc1395_chr22_rna_seq_counts.csv and store it as hcc1395_chr22_counts.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 2

How many rows and columns are in hcc1395_chr22_counts?

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 3

What are the column names in hcc1395_chr22_counts and how to view the first 10 rows of this

data set?

{{Sdet}}{{Ssum}}Solution{{Esum}}

Alternatively, use hcc1395_chr22_counts.columns to get the column headings for this data

frame.

import pandas

hcc1395_chr22_counts=pandas.read_csv("./hcc1395_chr22_rna_seq_counts.csv")

hcc1395_chr22_counts.shape

(1335, 7)

hcc1395_chr22_counts.head(10)

61 Lesson 3 practice questions

Bioinformatics Training and Education Program

{{Edet}}

Question 4

How many genes start with the letter "C" in hcc1395_chr22_counts?

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 5

Import hcc1395_deg_chr22.csv and store it as hcc1395_deg_chr22.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 6

Remove ".bam" from the column headers of hcc1395_deg_chr22.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 7

Subset out the following columns from hcc1395_deg_chr22 and store it as

hcc1395_deg_chr22_1.

name

log2FoldChange

PAdj

hcc1395_chr22_counts.loc[hcc1395_chr22_counts.loc[:,'Geneid'].str.startswith("C")]

hcc1395_deg_chr22=pandas.read_csv("./hcc1395_deg_chr22.csv")

hcc1395_deg_chr22.columns=hcc1395_deg_chr22.columns.str.replace(".bam", "")

•

•

•

62 Lesson 3 practice questions

Bioinformatics Training and Education Program

{{Sdet}}{{Ssum}}Solution{{Esum}}

Use the .head function to check of the subsetting was done correctly.

{{Edet}}

Question 8

Add a column to hcc1395_deg_chr22_1 that contains the negative log10 of the PAdj value.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

hcc1395_deg_chr22_1=hcc1395_deg_chr22.loc[:,["name", "log2FoldChange", "PAdj"]]

hcc1395_deg_chr22_1.head()

import numpy

hcc1395_deg_chr22_1["-log10PAdj"]=numpy.negative(numpy.log10(hcc1395_deg_chr22_1.loc[:,"PAdj"]))

63 Lesson 3 practice questions

Bioinformatics Training and Education Program

Lesson 4 practice questions

Question 1

Create a volcano plot for the differential expression analysis results for the hcc1395 data (hint:

import hcc1395_deg_chr22_with_significance.csv)

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 2

Label the two most differential expressed genes in the volcano plot. As a hint, first import

hcc1395_deg_chr22_top_genes.csv.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

import pandas
import matplotlib.pyplot as plt
import seaborn

hcc1395_deg_chr22=pandas.read_csv("./hcc1395_deg_chr22_with_significance.csv")

plot1=seaborn.scatterplot(hcc1395_deg_chr22,x="log2FoldChange", y="-log10PAdj", hue="significance")
plt.show()

hcc1395_deg_chr22_top_genes=pandas.read_csv("./hcc1395_deg_chr22_top_genes.csv")

plot1=seaborn.scatterplot(hcc1395_deg_chr22,x="log2FoldChange", y="-log10PAdj", hue="significance")
for i, gene_name in enumerate(hcc1395_deg_chr22_top_genes["name"]):
 plot1.text(hcc1395_deg_chr22_top_genes["log2FoldChange"][i],
 hcc1395_deg_chr22_top_genes["-log10PAdj"][i],gene_name)
plt.show()

64 Lesson 4 practice questions

Bioinformatics Training and Education Program

Question 3

Import hcc1395_top_deg_normalized_counts.csv and create an expression heatmap. Use the

Viridis color palette.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 4

Add a bar on the top of the heatmap that shows which treatment group the samples belong to.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

hcc1395_top_deg_normalized_counts=pandas.read_csv("./hcc1395_top_deg_normalized_counts.csv", index_col=0)

plot2=seaborn.clustermap(hcc1395_top_deg_normalized_counts,z_score=0,cmap="viridis",
 figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=({"label": "z score"}))
plt.show()

samples=pandas.Series({"hcc1395_normal_rep1":"orangered", "hcc1395_normal_rep2":"orangered", "hcc1395_normal_rep3":"orangered", "hcc1395_tumor_rep1":"blue", "hcc1395_tumor_rep2":"blue", "hcc1395_tumor_rep3":"blue"})
column_colors = hcc1395_top_deg_normalized_counts.columns.map(samples)
plot2=seaborn.clustermap(hcc1395_top_deg_normalized_counts,z_score=0,cmap="viridis",
 figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=({"label": "z score"}),
 col_colors=column_colors, cbar_pos=(0.05,0.8,0.025,0.15))
plot2.ax_heatmap.set_xticklabels(plot2.ax_heatmap.get_xmajorticklabels(),fontsize=12,rotation=90)
plot2.ax_cbar.tick_params(labelsize=12)
plot2.ax_col_colors.set_title("treatment",x=1.09,y=-0.3)
plt.show()

65 Lesson 4 practice questions

Bioinformatics Training and Education Program

Finding help

The document provides useful links where participants can find help for the Python packages

that were addressed during the course series.

Pandas - package for working with tabular data (https://pandas.pydata.org)

Pandas API reference gives instructions for each command (https://pandas.pydata.org/

docs/reference/index.html). To get to the API reference, either

Navigate to the the Documentation section at the Pandas homepage and click on

API reference (Figure 1).

OR, click on the the Documentation tab at the top of the Pandas homepage and

click on the tile labeled API reference in the subsequent page (Figure 2).

Figure 1

•

◦

◦

66 Finding help

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html

Figure 2

Seaborn for data visualization (https://seaborn.pydata.org/index.html)

Seaborn API reference gives instructions for each command (https://seaborn.pydata.org/

api.html). To get to the Seaborn API reference, click on API at the top of the Seaborn

website.

•

67 Finding help

Bioinformatics Training and Education Program

https://seaborn.pydata.org/index.html
https://seaborn.pydata.org/index.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html

Figure 3

Numpy for scientific computing (https://numpy.org/doc/stable/index.html)

Numpy API reference (https://numpy.org/doc/stable/reference/index.html). To get to this,

select Documentation at the top of the Numpy homepage (Figure 4) and then click on

either of the links to the API reference (Figure 5).

Figure 4

•

68 Finding help

Bioinformatics Training and Education Program

https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html

Figure 5

Matplotlib for data visualization (https://matplotlib.org)

Matplotlib API reference (https://matplotlib.org/stable/api/index). To get to this, click on

reference at the top of the Matplotlib homepage (Figure 6).

Figure 6

•

69 Finding help

Bioinformatics Training and Education Program

https://matplotlib.org
https://matplotlib.org
https://matplotlib.org/stable/api/index
https://matplotlib.org/stable/api/index

	BTEP course
	Table of Contents
	Course overview
	Lesson 1 slides
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Practice questions
	Lesson 2 practice
	Lesson 3 practice
	Lesson 4 practice

	Finding help

	Course Overview
	Example data used in this course

	Lesson 1 slides
	Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab
	Learning objectives
	What is Python and why use it?
	Signing onto Biowulf
	Change into Biowulf data directory
	Request an interactive session
	Load Jupyter
	Start Jupyter Lab
	Jupyter Lab - file explorer and launcher
	Jupyter Notebook - cells
	Python education resources
	Python command syntax
	Example of a Python command with and without options
	Finding help for Python commands
	Example of using help
	Copy class data to data directory

	Lesson 2: Python data types and structures
	Learning objectives
	Signing onto Biowulf
	Change into data directory and copy course data
	Request interactive session
	Load Jupyter
	Start Jupyter Lab
	Python data types and data structures
	Identifying data type and structure in Python
	Variable assignments
	Conditionals
	Data frames
	Importing tabular data with Pandas

	Lists and tuples
	List versus tuples (mutable versus immutable)

	Arrays
	Range
	Dictionaries

	Lesson 3: Data wrangling using Python
	Learning objectives
	Importing tabular data using Pandas
	Get dimensions of a data frame
	Row indices/names
	Data wrangling
	Subsetting
	Subsetting by integer positions
	Subsetting using column names
	Summary statistics of data frames
	Replacing column names
	Mathematical operations on data frames and filtering
	Removing and adding columns to a data frame

	Lesson 4: Data visualization using Python
	Learning objectives
	Python data visualization tools
	Visualization using Seaborn
	Load packages
	Modify the basic plot elements with Seaborn.
	Constructing biologically relevant plots

	Practice questions
	Lesson 2 practice questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6

	Lesson 3 practice questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8

	Lesson 4 practice questions
	Question 1
	Question 2
	Question 3
	Question 4

	Finding help

