BTEP course

Center for Cancer Research

Bioinformatics Training
& Education Program

Alexandra L Emmons Ph.D. & Joe Wu Ph.D.

BTEP/GAU/CCR/NCI/NIH - email ncibtep@mail.nih.gov
Bioinformatics Training and Education Program

Table of Contents

Course overview

® Course Overview

Example data used in this course

Lesson 1 slides

Lesson 1

® | esson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Learning objectives

What is Python and why use it?

Signing onto Biowulf

Change into Biowulf data directory
Request an interactive session

Load Jupyter

Start Jupyter Lab

Jupyter Lab - file explorer and launcher
Jupyter Notebook - cells

Python education resources

Python command syntax

Example of a Python command with and without options
Finding help for Python commands

Example of using help

10

10

10

12

13

13

14

14

15

15

15

15

Copy class data to data directory

Lesson 2

® | esson 2: Python data types and structures

Learning objectives

Signing onto Biowulf

Change into data directory and copy course data
Request interactive session

Load Jupyter

Start Jupyter Lab

Python data types and data structures
Identifying data type and structure in Python
Variable assignments

Conditionals

Data frames

® |mporting tabular data with Pandas

Lists and tuples

® List versus tuples (mutable versus immutable)
Arrays

Range

Dictionaries

Lesson 3

® [esson 3: Data wrangling using Python

Learning objectives

16

17

17

17

17

18

19

20

21

21

22

22

24

24

25

26

26

27

28

29

29

® |mporting tabular data using Pandas
® Get dimensions of a data frame
® Row indices/names
® Data wrangling

® Subsetting

® Subsetting by integer positions
® Subsetting using column names
o

Summary statistics of data frames

Replacing column names

Mathematical operations on data frames and filtering

® Removing and adding columns to a data frame

Lesson 4

® [esson 4: Data visualization using Python
® | earning objectives
® Python data visualization tools
® \Visualization using Seaborn
® | oad packages
® Modify the basic plot elements with Seaborn.

® Constructing biologically relevant plots

Practice questions

Lesson 2 practice

® | esson 2 practice questions

® (Question 1

29
31
32
33
33
33
35
36
37
37

38

43
43
43
43
43
44

48

58

58

58

Lesson 3 practice

® | esson 3 practice questions

Lesson 4 practice

® | esson 4 practice questions

Question 2
Question 3
Question 4
Question 5

Question 6

Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7

Question 8

Question 1
Question 2
Question 3

Question 4

Finding help

® Finding help

58
58
59
59

59

61

61
61
61
61
62
62
62
62

63

64

64
64
64
65

65

66

n Course Overview

BTEP Python Data wrangling Pandas Data visualization Matplotlib Seaborn Numpy Biowulf
Interactive sessions Tunnel Jupyter lab

Course Overview

Welcome to the Python Introductory Education Series (PIES) course. This course is composed
of four lessons (see schedule below) and is meant to help those with no or limited experience in
Python get started using this general purpose scripting language for data analyses. Each one-
hour lesson will be followed by an optional one-hour help session. At the end of this course
series, participants should

e Have obtained a broad overview of Python, including
o Familiarity with tools used to write Python code
o Knowledge of Python command syntax
o Ability to find help for Python commands
o Knowledge of where to find Python packages
o Familiarity with self-learning resources
e Be able to describe Python data types and structures and provide examples of where
some of the data structures are used
e Know how to work with and wrangle tabular data
e Be able to construct data visualizations

Lesson schedule:

e | esson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab
(Tuesday, August 15, 2023) (https.//bioinformatics.ccr.cancer.gov/docs/pies-2023/
pies_lesson1/)

o Lesson 1 recording (https://cbiit. webex.com/cbiit/ldr.php?
RCID=28b10cbe0179993cd0008f1300a1a9ed)

e | esson 2: Python data types and structures (Thursday, August 17, 2023) (https://
bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/)

o Lesson 2 recording (https://cbiit. webex.com/cbiit/ldr.php?
RCID=41f35ca8d9d251425edd765389b47¢c32)

e L esson 3: Data wrangling using Python (Tuesday, August 22, 2023) (https.//
bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/)

o Lesson 3 recording (https://cbiit. webex.com/cbiit/ldr.php?
RCID=0749d0a1a34b9dbcc3ablfbb6b34292ff)

e L esson 4: Data visualization using Python (Thursday, August 24, 2023) (https.//
bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/)

o Lesson 4 recording (https://cbiit. webex.com/cbiit/ldr.php?
RCID=f6dc3393c95achb 10a4ffb2a3b1be6al9)

A Biowulf account is needed for this class. Visit the Biowulf User Dashboard (https:/
hpcnihapps.cit.nih.gov/auth/dashboard/) to unlock an inactive account. For instructions on

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/

Course Overview

obtaining a Biowulf account, visit https://hpc.nih.gov/docs/accounts.html (https://hpc.nih.gov/
docs/accounts.html).

Example data used in this course

Download data used in this course

Bioinformatics Training and Education Program

https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html

n Lesson 1 slides

Lesson 1 slides

Y%

Bioinformatics Training and Education Program

n Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Lesson 1: Short introduction to Python,
signing onto Biowulf, and starting Jupyter
Lab

Learning objectives

After this lesson, participants will

e Be able to describe Python and provide rationale for using it

e Know how to start a Jupyter Lab session on Biowulf (Jupyter Lab will be used to interact
with Python throughout this course)

e Be familiar with places for getting Python packages

e Become familiar with navigating the Jupyter Lab environment

¢ Be able to describe Python command syntax

e Know how to find help for Python commands

e Become familiar with continuing and self-learning resources

What is Python and why use it?

e Scripting language
o Facilitates reuse and reproducibility
e Can be used to analyze large datasets
e Extensive external packages that can be used for
o Data wrangling
o Data visualization
o Single cell RNA sequencing analysis
o Working with biological sequences
o Interfacing with bioinformatics databases
e Strong support community
e Fasy to learn

Note

Python packages can be found at The Python Package Index (https.//pypi.org).

Bioinformatics Training and Education Program

https://pypi.org
https://pypi.org

Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab
Signing onto Biowulf
In this course series, participants will interact with Python through Jupyter Lab on Biowulf. Thus,

the first step is to sign onto Biowulf using ssh. Replace username with participant's own Biowulf
username.

ssh username@biowulf.nih.gov

® Mac: use ssh through the Terminal
® Windows: use ssh through the command prompt

Change into Biowulf data directory

Use cd to change into the participant's data directory on Biowulf. Again, replace username with
participant's Biowulf username.

cd /data/username

Request an interactive session

Request an interactive session using sinteractive with the following options.

® --gres=1lscratch:5: to allocate 5gb of local temporary/scratch storage space

® --mem=2gh: to request 2gb of memory or RAM

® --tunnel: to open up a channel of communication between local machine and Biowulf
to allow interaction with applications like Jupyter Lab

sinteractive --gres=lscratch:5 --mem=2g --tunnel

After resources for the interactive session has been granted, users will see the information
similar to that shown in Figure 1.

Bioinformatics Training and Education Program

Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

DOO wuz8 — wuz8@biowulf:/data/wuz8 — ssh wuz8@biowulf.nih.gov — 93x25
[wuz8@biowulf wuz81$ sinteractive ——gres=lscratch:5 —-—-mem=2gb —--tunnel
salloc: Pending job allocation 6385785

salloc: job 6385785 queued and waiting for resources

salloc: job 6385785 has been allocated resources

salloc: Granted job allocation 6385785

salloc: Waiting for resource configuration

salloc: Nodes cn4275 are ready for job

srun: error: x11: no local DISPLAY defined, skipping

error: unable to open file /tmp/slurm-spank-x11.6385785.0
slurmstepd: error: x11: unable to read DISPLAY value

Created 1 generic SSH tunnel(s) from this compute node to

biowulf for your use at port numbers defined
in the $PORTn ($PORT1, ...) environment variables.

Please create a SSH tunnel from your workstation to these ports on biowulf.
On Linux/MacOS, open a terminal and run:
ssh -L 45081:1localhost:45081 wuz8@biowulf.nih.gov

For Windows instructions, see https://hpc.nih.gov/docs/tunneling

Figure 1: After interactive session resources have been allocated, users will see a ssh
command that looks like that enclosed in the red rectangle. Open a new terminal (if working on
a Mac) or command prompt (if working on a Windows computer) and then copy and paste this
ssh command into the new terminal.

After copying and pasting the ssh command shown in Figure 1 to a new terminal or command
prompt, hit enter to supply password and log in to Biowulf. This will complete the tunnel.

Hit enter after copying and pasting into a new
terminal (Mac) or command prompt (Windows)
to provide password and sign onto Biowulf, which
will complete the tunnel.

base) NCI-02227565-ML:~ wuz8$ ssh -L 45@81:localhost:45081 wuz8@biowulf.nih.govjl
nter passphrase for key '/Users/wuz8/.ssh/id_rsa':

ast login: Tue Aug 15 16:24:28 2023 from 10.248.80.125
wuz8@biowulf ~1$

Figure 2: Hit enter after copying and pasting the ssh command to a new terminal to provide
password and log into Biowulf. This will complete the tunnel.

Bioinformatics Training and Education Program

Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Will vary for each user

ssh -L @Llocalhost;l@l MGbiowulf.nih.ov

Biowulf username will
vary for each user

Figure 3: In the ssh command shown in Figure 1 and Figure 2, the numbers preceding and
following "localhost" will differ depending on user. Also, the Biowulf username will differ for each
user (wuz8 is the instructor's Biowulf username).

Load Jupyter

After the tunnel has been created, go back terminal (Mac) or command prompt (Windows) with
the Biowulf interactive session and activate Jupyter (see Figure 4).

module load jupyter

: job 6385785 queued and waiting for resources
: job 6385785 has been allocated resources
: Granted job allocation 6385785
: Waiting for resource configuration
: Nodes cn4275 are ready for job
: error: x11: no local DISPLAY defined, skipping
: unable to open file /tmp/slurm-spank-x11.6385785.0
slurmstepd: error: x11: unable to read DISPLAY value

Created 1 generic SSH tunnel(s) from this compute node to
biowulf for your use at port numbers defined
in the $PORTn ($PORT1, ...) environment variables.

Please create a SSH tunnel from your workstation to these ports on biowulf.
On Linux/MacOS, open a terminal and run:

ssh -L 45081:1localhost:45081 wuz8@®biowulf.nih.gov
For Windows instructions, see https://hpc.nih.gov/docs/tunneling

[wuz8@cn4275 wuz81$ imodule load jupyter
[+] Loading git 2.39.2

[+] Loading jupyter

[wuz8@cn4275 wuz81$ Ji

Bioinformatics Training and Education Program

Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Figure 4. Go back to the terminal (Mac) or command prompt (Windows) with the interactive
session (look for cn#### at the prompt). Do module load jupyter from here.

Start Jupyter Lab

Use the command below to start a Jupyter Lab session. Copy and paste either of the http links
to a local browser to interact with Jupyter (see Figure 5).

jupyter lab --ip localhost --port $PORT1 --no-browser

[wuz8@cn4275 wuz81$ jupyter lab —-ip localhost —-port $PORT1 —--no-browser Copy

To access the server, open this file in a browser: either
file:///spinl/home/linux/wuz8/.local/share/jupyter/runtime/jpserver-363837-open.html
Or copy and paste one of these URLs: of the
http://localhost:45081/1lab?token=ad4b828f83a0fd8ad468cadaed56590b8al34f7f0418e76f3 h
or http://127.0.0.1:45081/1lab?token=ad4b828f83a0fd8ad468cadaed56590b8a34f7f0418e76F3 ttp
links to
local
browser

Figure 5: Start a Jupyter lab session using jupyter 1lab --ip 1localhost --port
$PORT1 --no-browser and copy and paste either one of the http links to a local browser.

Warning

The URLs change with each Jupyter Lab session, so please do not copy from the examples shown below. Copy
from the URLs provided in the Biowulf interactive session terminal instead.

Jupyter Lab - file explorer and launcher

e File explorer

e | auncher for starting language specific notebooks (for this course series, choose the
python/3.10 notebook)

& %) 0O @ Incognito (4)

File Edit View Run Kernel Git Tabs Settings Help
[2 c < I Z Launcher |+ %
‘ Filter file ne Q|
o i &
m, File explorer /4| Notebook
Name - Last Modified
IP
B8 batch_job_c... 5 days ago P _ -
r .
0 B batch_job_c... 6 days ago ») é ‘
@8 batch_job_c... 5 days ago
. Python 3 Bash MATLAB Kernel Open MATLAB Python 3.8.5 Python 3.9.9
_ | W batch_job c.. 5 days ago (ipykernel) (7 64-bit 64-bit
‘= m batch_job_c... 5 days ago
B8 biostar_class 7 months ago ? ﬂ P p &
* B8 biostar_class... amonth ago R O
& build 6 months ago python/3.10 python/3.8 python/3.8 python/3.9 R/4.2 So0S
B ccbr_exampl... 9 days ago

Bioinformatics Training and Education Program

Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Jupyter Notebook - cells

Python
Run code version
[% Untitled.ipynb * X |+
B + X T 1 » m C » Code v @© st python/3.10 O
[1]: [print("Python welcomes you!") TN E F R
al=1l
a2=2 Insert code Lr’
3=al+a2
orint(a3) Insert new
I ;ython welcomes you! } See output line of code

Python education resources

e Coursera
o Programming for Everybody (Getting Started with Python)
= Instructor: Charles Severance, PhD (University of Michigan)
o Data Analysis with Python
= Instructor: IBM staff
= Includes data wrangling and regression analysis
o Data Visualization with Python
= Intructor: IBM staff
= Introduces data visualization using packages such as Matplotlib and
Seaborn
e Dataquest
o https://www.dataquest.io/course/introduction-to-python/ (https.//www.dataquest.io/
course/introduction-to-python/)
o https://www.dataquest.io/path/data-scientist/ (https.//www.dataquest.io/path/data-
scientist/)
o https://www.dataquest.io/path/data-analyst/ (https.//www.dataquest.io/path/data-
analyst/)

Visit the self learning resources page (https://bioinformatics.ccr.cancer.gov/btep/self-learning/)
to request a Dataquest or Coursera license.

Bioinformatics Training and Education Program

https://www.dataquest.io/course/introduction-to-python/
https://www.dataquest.io/course/introduction-to-python/
https://www.dataquest.io/course/introduction-to-python/
https://www.dataquest.io/course/introduction-to-python/
https://www.dataquest.io/path/data-scientist/
https://www.dataquest.io/path/data-scientist/
https://www.dataquest.io/path/data-scientist/
https://www.dataquest.io/path/data-scientist/
https://www.dataquest.io/path/data-analyst/
https://www.dataquest.io/path/data-analyst/
https://www.dataquest.io/path/data-analyst/
https://www.dataquest.io/path/data-analyst/
https://bioinformatics.ccr.cancer.gov/btep/self-learning/
https://bioinformatics.ccr.cancer.gov/btep/self-learning/

Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab
Python command syntax

The command syntax for Python is composed of the

e Command
e Argument, which is enclosed in the parentheses and what the command will act on
e Options, which is enclosed in parentheses and alters the way the command runs

command (argument, options)

Example of a Python command with and without
options

print("Hello", "welcome to Python")

Hello welcome to Python
Include option sep to place a comma between "Hello" and "welcome to Python".

print("Hello", "welcome to Python", sep=", ")

Hello, welcome to Python

Finding help for Python commands

The help command can be used to view documentations for Python commands. It follows the
Python command syntax. Insert the command in which help is needed into the parentheses.

help ()

Example of using help

help(print)

Bioinformatics Training and Education Program

Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

Help on built-in function print in module builtins:

print(...)
print(value, ..., sep=" "', end='\n', file=sys.stdout, flush=Falst

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.
sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.

Copy class data to data directory

The example datasets used for this course series reside in /data/classes/BTEP/
pies 2023 data. Make a copy in your data directory.

cp -r /data/classes/BTEP/pies 2023 data ./pies_2023

Bioinformatics Training and Education Program

Lesson 2: Python data types and structures

Lesson 2: Python data types and structures

Learning objectives

After this class, participants will

® Be able to describe some common Python data types and structures
e Be able to identify Python data types

® Become familiar with variable assignment

e Be able to use conditional operators and if-else statements

® Be able to load packages

e Know how to import tabular data

e Know how to view tabular data

® Become familiar with constructing a for loop in Python

Signing onto Biowulf

Sign onto Biowulf using the ssh command. Replace username with user's Biowulf ID.

ssh username@biowul.nih.gov

Change into data directory and copy course data

Replace username with user's Biowulf ID.

cd /data/username

The cp command below will copy pies_2023_data in /data/classes/ to the user's data directory
(denoted as "." as this should be present working directory) and save it as a folder called
pies_2023.

cp -r /data/classes/BTEP/pies 2023 data ./pies_2023
Change into pies_2023.

cd pies 2023

Bioinformatics Training and Education Program

Lesson 2: Python data types and structures

Request interactive session

Stay in the /data/username/pies_2023 folder and request an interactive session using
sinteractive with the following options.

®* --gres=1lscratch:5: to allocate 5gb of local temporary/scratch storage space

® --mem=2gh: to request 2gb of memory or RAM

® --tunnel: to open up a channel of communication between local machine and Biowulf
to allow interaction with applications like Jupyter Lab

sinteractive --gres=1lscratch:5 --mem=2g --tunnel

After resources for the interactive session has been granted, users will see the information
similar to that shown in Figure 1.

[X] wuz8 — wuz8@biowulf:/data/wuz8 — ssh wuz8@biowulf.nih.gov — 93x25
[wuz8@biowulf wuz8]$ sinteractive ——gres=lscratch:5 —--mem=2gb —--tunnel
salloc: Pending job allocation 6385785
salloc: job 6385785 queued and waiting for resources
salloc: job 6385785 has been allocated resources
salloc: Granted job allocation 6385785
salloc: Waiting for resource configuration
salloc: Nodes cn4275 are ready for job
srun: error: x11: no local DISPLAY defined, skipping
error: unable to open file /tmp/slurm-spank-x11.6385785.0
slurmstepd: error: x11: unable to read DISPLAY value

Created 1 generic SSH tunnel(s) from this compute node to

biowulf for your use at port numbers defined
in the $PORTn ($PORT1, ...) environment variables.

Please create a SSH tunnel from your workstation to these ports on biowulf.
On Linux/MacOS, open a terminal and run:

ssh -L 45081:localhost:45081 wuz8@biowulf.nih.gov

For Windows instructions, see https://hpc.nih.gov/docs/tunneling

Figure 1: After interactive session resources have been allocated, users will see a ssh
command that looks like that enclosed in the red rectangle. Open a new terminal (if working on
a Mac) or command prompt (if working on a Windows computer) and then copy and paste this
ssh command into the new terminal.

After copying and pasting the ssh command shown in Figure 1 to a new terminal or command
prompt, hit enter to supply password and log in to Biowulf. This will complete the tunnel.

Bioinformatics Training and Education Program

Lesson 2: Python data types and structures

Hit enter after copying and pasting into a new
terminal (Mac) or command prompt (Windows)
to provide password and sign onto Biowulf, which
will complete the tunnel.

base) NCI-02227565-ML:~ wuz8$ ssh -L 45081:localhost:45081 wuz8@biowulf.nih.gov
nter passphrase for key '/Users/wuz8/.ssh/id_rsa':

ast login: Tue Aug 15 16:24:28 2023 from 10.248.80.125
wuz8@biowulf ~1$

Figure 2: Hit enter after copying and pasting the ssh command to a new terminal to provide
password and log into Biowulf. This will complete the tunnel.

Will vary for each user

-L @Eégizlocalhostgggggl wuz8@hiowulf.nih.gov

Biowulf username will
vary for each user

Figure 3: In the ssh command shown in Figure 1 and Figure 2, the numbers preceding and
following "localhost" will differ depending on user. Also, the Biowulf username will differ for each
user (wuz8 is the instructor's Biowulf username).

Load Jupyter

Warning

Make sure to stay in the /data/username/pies_2023 folder for this step.

After the tunnel has been created, go back terminal (Mac) or command prompt (Windows) with
the Biowulf interactive session and activate Jupyter (see Figure 4).

module load jupyter

Bioinformatics Training and Education Program

Lesson 2: Python data types and structures

: job 6385785 queued and waiting for resources
: job 6385785 has been allocated resources
: Granted job allocation 6385785
: Waiting for resource configuration
: Nodes cn4275 are ready for job
: error: x11: no local DISPLAY defined, skipping
: unable to open file /tmp/slurm-spank-x11.6385785.0
slurmstepd: error: x11: unable to read DISPLAY value

Created 1 generic SSH tunnel(s) from this compute node to
biowulf for your use at port numbers defined
in the $PORTn ($PORT1, ...) environment variables.

Please create a SSH tunnel from your workstation to these ports on biowulf.
On Linux/MacOS, open a terminal and run:

ssh -L 45081:localhost:45081 wuz8@®biowulf.nih.gov
For Windows instructions, see https://hpc.nih.gov/docs/tunneling
[wuz8@cn4275 wuz81% imodule load jupyter
[+] Loading git 2.39.2

[+] Loading jupyter
[wuz8@cn4275 wuz8l$ i

Figure 4. Go back to the terminal (Mac) or command prompt (Windows) with the interactive
session (look for cn#### at the prompt). Do module load jupyter from here.

Start Jupyter Lab

Warning

Make sure to stay in the /data/username/pies_2023 folder for this step.

Use the command below to start a Jupyter Lab session. Copy and paste either of the http links
to a local browser to interact with Jupyter (see Figure 5).

jupyter lab --ip localhost --port $PORT1 --no-browser

[wuz8@cn4275 wuz81$ jupyter lab —-ip localhost —--port $PORT1 —--no-browser Copy

To access the server, open this file in a browser: either
file:///spinl/home/linux/wuz8/.local/share/jupyter/runtime/jpserver-363837-open.html
Or copy and paste one of these URLs: of the
http://localhost:45081/1lab?token=ad4b828f83a0fd8ad468cadaed56590b8a34f7f0418e76f3 h
or http://127.0.0.1:45081/1lab?token=ad4b828f83a0fd8ad468cadaed56590b8a34f7f0418e76f3 ttp
links to
local
browser

Figure 5: Start a Jupyter lab session using jupyter 1lab --ip localhost --port
$PORT1 --no-browser and copy and paste either one of the http links to a local browser.

Bioinformatics Training and Education Program

Lesson 2: Python data types and structures

Python data types and data structures

An important step to learning any new programming language and data analysis is to
understand its data types and data structures. Common data types and structures that will be
encountered include the following.

e Text (str)
e Numeric
o int (ie. integers)
o float (ie. decimals)
e Boolean (True or False)
o conditionals
o filtering criteria
o command options
e Data frames
e |ists
® Arrays
e Tuples
e Range
e Dictionaries

|dentifying data type and structure in Python

The command type can be used to identify data types and structures in Python.

type(100)

int

type(3.1415926)

float
type("bioinformatics")

str

Bioinformatics Training and Education Program

Lesson 2: Python data types and structures

Variable assignments

In Python, variables are assigned to values using "=". Users can assign variables to integers,
float, or string.

perfect=100
perfect

100

mole=6.02e23
mole

6.02e+23

btep_class="Python Introductory Education Series"
btep class

'"Python Introductory Education Series'

The command type(btep_class) will return str because the variable btep_class is text.

type(btep_class)

str

Conditionals

Conditionals evaluate the validity of certain conditions and operators include:

® ==: js equal to?

® >: js greater than?

® >=: s greater than or equal to?
® <:jsless than?

® <=:js less than or equal to?

Bioinformatics Training and Education Program

Lesson 2: Python data types and structures

® |=:is not equal t0?
® and
°*or

The command below will evaluate if the variable perfect is equal to the variable mole and
returns the Boolean value, False.

perfect==mole

False

If statements are also conditionals and are used to instruct the computer to do something if a
condition is met. To have the computer do something when the condition is not met, use elif

(elseif) or else.
The command below will accomplish the following:

® Use if to evaluate if perfect==mole, if yes then indicate using print that the two
variables are equal

® |In the case that perfect does not equal mole, use el1if (which stands for else if) to
evaluate if perfect>mole, if yes then use the print statement to indicate that perfect is

greater than mole
® else when the previous two conditions are not met, use print to indicate that perfect is

less than mole

if perfect==mole:

print(perfect, "is equal to", mole)
elif perfect>mole:

print(perfect, "is greater than", mole)

else:
print(perfect, "is less than", mole)

100 is less than 6.02e+23

Note

The print command can be used to print variables by not enclosing in quotes.

A ""isrequired after if, elif, and else. The command(s) to execute when conditions are met
are placed on a separate line but tab indented.

Bioinformatics Training and Education Program

Lesson 2: Python data types and structures

Data frames

Often, in bioinformatics and data science, data comes in the form of rectangular tables, which
are referred to as data frames. Data frames have the following property.

e Study variable(s) form the columns

e Observation(s) form rows

e Can have a mix of data types (strings and numeric) but each column/study variable can
contain only one data type

e | imited to one value per cell

A popular package for working with data frames in Python is Pandas (htips:/
pandas.pydata.org).

To load a Python package use the import command followed by the package name (ie.
pandas).

import pandas

Sometimes the name of the package is long, so users might want to shorten it by creating an
alias. The alias "pd" is often used for the Pandas package. To add an alias, just append as
followed by the user defined alias to the package import command.

import pandas as pd

Importing tabular data with Pandas

This exercise will use the read_csv function of Pandas to import a comma separated value
(csv) file called hbr_uhr_chr22_rna_seq_counts.csv, which contains RNA sequencing gene
expression counts from the Human Brain Reference (hbr) and Universal Human Reference (uhr)
study (https.//rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/).

hbr _uhr _chr22 counts=pandas.read_csv("./hbr_uhr _chr22 rna_seq counts

Note

If a Python package was imported using an alias (ie. pd for Pandas) then use the alias to call the package. For
instance, pd.read_csv rather than pandas.read_csv when the pd alias is used for Pandas.

Take note of the way the csv import command is constructed. First the user specifies the name
of package (ie. pandas) and then the function within the package (ie. read_csv). The package
name and function name is separated by a period.

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/

Lesson 2: Python data types and structures

Next, use type to find out the data type or structure for hbr_uhr_chr22_counts.

type(hbr_uhr_chr22 counts)

pandas.core.frame.DataFrame

Take a look a the first few rows of hbbr_uhr_chr22_counts.

hbr_uhr_chr22 counts.head()

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam

0 u2 0 0 0 0 0 0
1 CU4592111 0 0 0 0 0 0
2 CU1047871 0 0 0 0 0 0
3 BAGES 0 0 0 0 0 0
4 ACTR3BP6 0 0 0 0 0 0

Figure 1: Example of a data frame.

Because hbr_uhr_chr22_counts is a Pandas data frame, it is possible to append one of the
many Pandas commands to it. For instance, the head function was appended to display the
first five rows of hbr_uhr_chr22_counts. The data frame name and function is separated by a
period. This is perhaps one of the most appealing aspects of Python syntax. Note that the head
function was followed by (). If the parentheses is blank, then by default the first five lines will be
shown. There will be more examples of the Pandas head function in a subsequent lesson.

Lists and tuples

Lists and tuples are one dimensional collections of data. The tuple is an immutable list, in which
the elements cannot be modified.

To create a list, enclose the contents in square brackets.

sequencing_list=["whole genome", "rna", "whole exome"]

To create a tuple, enclose the contents in parentheses.

sequencing tuple=("whole genome", "rna", "whole exome")

Bioinformatics Training and Education Program

Lesson 2: Python data types and structures

Lists and tuples are indexed and can contain duplicates. The first item in a list or tuple has an
index of 0, the second item has an index of 1, and the last item has an index of n-1 where n is
the number of items. Indices can be used to recall items in a list or tuple.

sequencing list[1]

rna

List versus tuples (mutable versus immutable)

sequencing_list[1l]="single cell RNA"
sequencing list
['whole genome', 'single cell RNA', 'whole exome']

sequencing_tuple[l]="single cell RNA"

TypeError Traceback (most recent cal’

Cell In[48], line 1
----> 1 sequencing_tuple[l]="single cell RNA"

TypeError: 'tuple' object does not support item assignment

Instructions for modifying Python lists can be found at the W3 school (https./
www.w3schools.com/python/python_lists.asp)

Arrays

Given a list of numbers, it is difficult to perform mathematical operations. For instance

list _of numbers=[1,2,3,4,5]

Multiplying list_of_numbers by 2 will duplicate this list. However, multiplying a list of numbers by
two should double every number in that list. Thus, the expected result is [2,4,6,8,10]. To resolve
this, convert the list to an array using the package numpy (https.//numpy.org).

Bioinformatics Training and Education Program

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://numpy.org
https://numpy.org

Lesson 2: Python data types and structures

list _of numbers*2

Use the array function of numpy to convert list_of_numbers to an array called
array_of_numbers.

array_of numbers=numpy.array(list _of numbers)
array_of numbers*2

array([2, 4, 6, 8, 10])

The array of numbers shown here is a one dimensional array. A special case of arrays is the
matrix, which is two dimensional. Like data frames, matrices store values in columns and rows.
Matrices are encountered in computation and are used to store numeric values (see here for
more on matrices (https.//youtu.be/lZcyZHomFQc)).

Range

Ranges can be used to for subsetting data (ie. extract data in rows 5 thru 10 of a data frame) or
applied to iterate over a task in things like a for loop.

For instance, a for loop can be used to iterate over sequencing_list_new and print the 3rd to
5th entries.

sequencing_list new=["whole genome", "rna", "whole exome","single ce’

for i in range(2,5):
print(sequencing_list new[i])

whole exome
single cell rna
chip

Bioinformatics Training and Education Program

https://youtu.be/IZcyZHomFQc
https://youtu.be/IZcyZHomFQc
https://youtu.be/IZcyZHomFQc

Lesson 2: Python data types and structures

Dictionaries

Dictionaries are key-value pairs and these are encountered as ways to specify options in some

Python packages.

my_dictionary={"apples":"red","oranges":"orange", "bananas":"yellow"}

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

Lesson 3: Data wrangling using Python

Learning objectives

After this lesson, participants will

® Be able to import tabular data into Python using Pandas
e Be able to explore and modify tabular data through various data wrangling approaches,
including
o retrieving dimensions
o subsetting
o obtaining column statistics
o replacing column names
o performing mathematical operations
o filtering
o removing and adding columns

Importing tabular data using Pandas

Pandas (https.//pandas.pydata.org) is a popular Python package used to work with tabular
data.

To work with Pandas, first activate it using the import command.

import pandas

Sometimes the name of the package is long, so users might want to shorten it by creating an
alias. The alias "pd" is often used for the Pandas package. To add an alias, just append as
followed by the user defined alias to the package import command. If importing a package
using an alias, then the package needes to be called using the assigned alias. For instance, if
pd was used to import pandas, then use pd.read_csv to import a csv file.

import pandas as pd

This exercise will use the read_csv function of Pandas to import a comma separated value
(csv) file called hbr_uhr_chr22_rna_seq_counts.csv, which contains RNA sequencing gene
expression counts from the Human Brain Reference (hbr) and Universal Human Reference (uhr)
study (https.//rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/). This data will be stored
as the variable hbr_uhr_chr22_counts.

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/

Lesson 3: Data wrangling using Python

hbr _uhr chr22 counts=pandas.read csv("./hbr_uhr _chr22 rna_seq counts

Take a look at the first few rows of hbr_uhr_chr22_counts by appending the head attribute to
hbr_uhr_chr22_counts.

hbr_uhr_chr22 counts.head()

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam

0 u2 0 0 0 0 0 0
1 CU459211.1 0 0 0 0 0 0
2 CU1047871 0 0 0 0 0 0
3 BAGES 0 0 0 0 0 0
4 ACTR3BP6 0 0 0 0 0 0

Figure 1: The first five rows of hbr_uhr_chr22_counts. The first column contains genes and the
subsequent columns contain gene expression counts for each of the samples. The left most
column of this data frame contains the row indices or names.

Because hbr_uhr_chr22_counts is a Pandas data frame (type(hbr_uhr_chr22 counts),
see lesson 2), it is possible to append one of the many Pandas commands to it. For instance,
the head function was appended to display the first five rows of hbr_uhr_chr22_counts. The
data frame name and function is separated by a period. This is perhaps one of the most
appealing aspects of Python syntax. Note that the head function was followed by (). If the
parentheses are blank, then the default first five lines will be shown. To view the first 10 rows of
hbr_uhr_chr22_counts do the following.

hbr_uhr_chr22 counts.head(10)

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam

0 u2 0 0 0 0 0 0
1 CU4592111 0 0 0 0 0 0
2 CuU1047871 0 0 0 0 0 0
3 BAGE5 0 0 0 0 0 0
4 ACTR3BP6 0 0 0 0 0 0
5 5_8S_rRNA 0 0 0 0 0 0
6 AC137488.1 0 0 0 0 0 0
7 AC137488.2 0 0 0 0 0 0
8 CuU0135441 0 0 0 0 0 0
9 CT867976.1 0 0 0 0 0 0

Figure 2: Include an integer inside the parentheses of pandas.dataframe.head () function
to view the specified number of lines in a tabular dataset.

The function tail can be used to view by default the bottom five lines of a tabular dataset.
Similar to head, the number of lines shown can be customized by specifying an integer inside
the parentheses.

hbr _uhr_chr22 counts.tail()

Get dimensions of a data frame

Pandas data frames have a function shape that informs of the number of rows and number of
columns in a data frame (in other words the dimensions). To get the dimensions for
hbr_uhr_chr22_counts, do the following

hbr_uhr_chr22_counts.shape

The hbr_uhr_chr22_counts data frame has 1335 rows and 7 columns.

(1335, 7)

Note

The elements in tabular data can be referred to by their row and column positions.

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

The size function returns the number elements in a data frame. For instance,
hior_uhr_chr22_counts has 1335 rows and 7 columns, which means that it has 1335 times 7
elements (or 9345).

Row indices/names

Figure 2 shows the first 10 rows of hbr_uhr_chr22_counts. The left most column, which contains
labels starting with "0" is referred to as the row indices or row names. Users can specify a
column in the dataset as the row indices or row names using the index_col options in
read_csv. For instance, the hbr_uhr_chr22_rna_seq_counts.csv dataset could be imported
with gene names as the row indices. To do this, add the index_col1=0 option to read _csv.
Gene names in hbr_uhr_chr22_rna_seq_counts.csv is the first column and is denoted as
column "0" in Python. Thus, setting index_col1=0 ensures that the gene names will be set as
the row indices or row names (see Figure 3).

hbr_uhr_chr22 counts_l=pandas.read _csv("./hbr_uhr_chr22 rna_seq_coun

HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam

Geneid
U2 0 0 0 0 0 0
CuU4592111 0 0 0 0 0 0
CcuU1047871 0 0 0 0 0 0
BAGES5 0 0 0 0 0 0
ACTR3BP6 0 0 0 0 0 0
ACR 0 0 0 0 2 0
AC002056.5 0 0 0 0 0 0
AC002056.3 0 0 0 0 0 0
RPL23AP82 41 59 54 32 23 34
RABL2B 74 62 54 68 50 47

Figure 3. The index_col=0 option in pandas.read_csv sets the gene names as row names
in the imported data frame.

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

Data wrangling

Subsetting

The command below will subset the expression counts for the RABL2B gene.

hbr _uhr _chr22 counts[hbr_uhr_chr22 counts["Geneid"]=="RABL2B"]

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR .
1334 RABL2B 74 62 54 68 !

The "|" symbol can be used as the "or" operator so to also subset the counts for RPL23AP82

hbr _uhr _chr22 counts[(hbr_uhr_chr22 counts["Geneid"]=="RABL2B") | (hl

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR _1.bam I
1333 RPL23AP82 41 59 54 32
1334 RABL2B 74 62 54 68

Alternatively, use the isin function and provide a list of genes to retrieve.

hbr _uhr _chr22 counts[hbr_uhr_chr22 counts["Geneid"].isin(["RABL2B",

Use "." to reference a column.

hbr_uhr_chr22 counts[hbr_uhr_chr22 counts.Geneid=="RABL2B"]

Subsetting by integer positions

Given that the elements in a data frame are referenced by its row and column positions, what
would be the approach for extracting the element in row 60 and column 57 The solution is the
command below, which returns a result of 2. The row and column numbers are enclosed in "[]"
and separated by a comma.

hbr_uhr_chr22 counts.iloc[60,5]

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

2

The above method for subsetting the element in row 60 and column 5 of hbr_uhr_chr22_counts
is great if the goal is to extract the value and do numeric operation on it. But what if the user
wants to return the element along with the corresponding gene in data frame format?

To do this, enclose the row and column indices to extract in their own inner set of square
brackets as shown below. Column 0, which contains the gene name is also included in the
brackets containing the column indices of interest.

hbr_uhr_chr22 counts.iloc[[60],[0,5]]

Geneid UHR_2.bam
60 CCT8L2 2

Pandas offers different approaches for subsetting rectangular data. One method is iloc.

iloc is a "purely integer-location based indexing for selection by position" -- https://
pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html# (https.//
pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#). The row and
column positions are enclosed in "[]".

iloc allows for retrieval of elements in multiple rows and columns. For instance, the following
can be used to retrieve the elements in rows 60 and 65 and columns O, 4, 5, and 6 in
hbr_uhr_chr22_counts. Note that the row and column positions are enclosed in an outer set of
"[]". Within the outer set of "[]" the first set of "[]" enclose a comma separated list of row positions
while the second set of "[]" enclose a comma separated list of column positions.

hbr_uhr_chr22 counts.iloc[[60,65],[0,4,5,6]]

Geneid UHR_1.bam UHR_2.bam UHR_3.bam
60 CCT8L2 1 2 0
65 SLC25A15P5 2 2 4

To get the first three rows of hbr_uhr_chr22_counts do the following. Note that it retrieves the
rows with indices O, 1, and 2.

hbr_uhr_chr22 counts.iloc[:3]

Bioinformatics Training and Education Program

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#

Lesson 3: Data wrangling using Python

Geneid HBR _1.bam

uz2
Cu459211.1
Culo04787.1

0
0
0

HBR_2.bam
0
0
0

HBR_3
0
0
0

.bam UHR _1.bam UHR_2.bat
0 0
0 0
0 0

What will be the output for hbr_uhr_chr22 counts.iloc[[3],:17

{{Sdeth}{{Ssum}}Solution{{Esum}}

The row with an index of 3 will be retrieved.

3

{{Edet}}

Geneid HBR_1.bam

BAGES

0]

HBR_2.bam
0

Subsetting using column names

HBR_3
0

.bam UHR_1.bam UHR_2.bat

0 0

Panda's loc function allows for subsetting by row or column names. For instance, to retrieve

the gene id column, do the following. The ":" denotes get every row.

hbr _uhr _chr22 counts.loc[:,['Geneid']]

B W N R, O

1330
1331
1332
1333
1334

Geneid
u2

Cu459211.1
cule4787.1

BAGES
ACTR3BP6

ACR

AC002056.5
AC002056.3

RPL23AP8
RABL2B

2

To retrieve the counts for the gene SLC25A15P5, use the following where SLC25A15P5 is the
subsetting criteria, where

® hbr_uhr_chr22 counts.loc[:, 'Geneid'] extracts the Geneid column.
® =="SLC25A15P5" will filter out the row with the SLC25A15P5 gene.

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

hbr _uhr _chr22 counts[hbr_uhr _chr22 counts.loc[:, 'Geneid']=="SLC25A15

Geneid HBR _1.bam

65 SLC25A15P5 0

HBR_2.bam

0

HBR_3.bam

UHR 1.bam

UHR_:
0 2 ‘

To retrieve counts for more than one gene, enclose the genes of interest in a list and use the

isin function to filter out the rows containing the genes in the list.

hbr_uhr_chr22 counts[hbr_uhr_chr22 counts.loc[:, 'Geneid'].isin(["SLC

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_.
60 CCT8L2 0 0 0 1 '
65 SLC25A15P5 0 0 0 2

To find all of the SLC genes in hbr_uhr_chr22_counts, the following could be used where

str.startswith searches for text that starts a pattern (ie. "SLC"). Other options for pattern

matching include str.endwith and str.contains.

hbr_uhr_chr22 counts.loc[hbr_uhr_chr22 counts.loc[:, 'Geneid'].str.st:

Geneid HBR 1.bam
54 SLC9B1P4 0
65 SLC25A15P5 0
109 SLC25A18 100
181 SLC25A1 32
249 SLCO9A3P2 0
268 SLC7A4 19
494 SLC2A11 54
726 SLC35E4 18
783 SLC5A1 0
795 SLC5A4 7
955 SLC16A8 9
1046 SLC25A17 39
1099 SLC25A5P1 0

Summary statistics of data frames

hbr_uhr_chr22 counts.describe()

HBR 2 .bam
0
0
111
50
0
25
63
32
0
12
13
39
0

HBR_3.bam UHR_1.bam |
0 0
0 2
74 6
41 226
0 0
14 9
46 28
26 21
0 0
5 13
11 11
40 119
1 0

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

HBR_1.bam HBR_2.bam HBR_3.bam UHR _1.bam UHR_2.bam [
count 1335.000000 1335.000000 1335.000000 1335.000000 1335.000000
mean 29.530337 36.264419 32.084644 50.694382 33.419476 ‘

std 99.177874 120.617793 108.237694 197.575081 122.598310
min 0.000000 0.000000 0.000000 0.000000 0.000000 (
25% 0.000000 0.000000 0.000000 0.000000 0.000000 (
50% 0.000000 0.000000 0.000000 1.000000 1.000000

75% 8.000000 10.000000 9.000000 13.000000 12.000000
max 1532.000000 1797.000000 1637.000000 4027.000000 2406.000000

Replacing column names

To view the column headings of a data frame use the column function. For instance,

hbr_uhr_chr22 counts.columns

HBR 1.bam
HBR 2 .bam
HBR_3.bam
UHR 1.bam
UHR 2 .bam
UHR 3.bam

The str.replace function can be used to replace a string with something else. Here, it used
to remove ".bam" from the sample names in the column heading.

hbr _uhr _chr22 counts.columns=hbr _uhr _chr22 counts.columns.str.replact

Mathematical operations on data frames and filtering

Pandas enables mathematical operations on data frames. For instance, one might want to sum
the total counts across all samples for each gene. The sum function can be used to this. Setting

axis=1 will sum up the counts for each row or gene. Because the Geneid column is a string, it
is necessary to first subset only the sample columns.

hbr_uhr_chr22_counts.loc[:, ['HBR_1', "HBR_2', 'HBR_3', 'UHR_1', 'UHI

Below, genes with zero counts across all samples are removed from hbr_uhr_chr22_counts and
stored as hbr_uhr_chr22_counts_filtered. To accomplish this set

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

hbr_uhr_chr22 counts.loc[:,
"UHR_2', "UHR_3']].sum(axis=1)

['HBR_1"', "HBR_ 2", "HBR_3',
!=0 and use as a filter criteria.

"UHR_1',

hbr_uhr_chr22 counts_filtered=hbr_uhr_chr22 counts.loc[hbr_uhr_chr22

Removing and adding columns to a data frame

For this exercise, stay in the /data/username/pies_2023 folder, which should be the present
working directory (use pwd to check). If not in the /data/username/pies_2023 folder, change into
it. Copy the hbr_uhr_deg_chr22.csv and hcc1395_deg_chr22.csv files from /data/classes/

BTEP/pies_2023_data to the /data/username/pies_2023 directory.

cp /data/classes/BTEP/pies_2023 data/hbr_uhr_deg chr22.csv

cp /data/classes/BTEP/pies 2023 data/hccl395 deg chr22.csv

The file hcc1395_deg_chr22.csv will be needed for the practice questions.

This exercise will use the differential gene expression analysis table from the hbr and uhr study.

hbr _uhr_deg chr22=pandas.read csv("./hbr_uhr_deg chr22.csv")

The info () function will retrieve information regarding the hbr_uhr_deg_chr22 data frame,

which includes the column names.

hbr _uhr_deg chr22.info()

<class
RangeIndex:

"pandas.core.frame.DataFrame'>
1335 entries,

0 to 1334

Data columns (total 18 columns):

Column Non-Null Count Dtype

0 name 1335 non-null object
1 baseMean 1335 non-null float64d
2 baseMeanA 1335 non-null float64d
3 baseMeanB 1335 non-null float64d
4 foldChange 971 non-null float64d
5 log2FoldChange 971 non-null float64d
6 1fcSE 971 non-null float64d
7 stat 971 non-null float64d

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

8 PValue

9 PAd]j

10 FDR

11 falsePos

12 HBR_1.bam

13 HBR_2.bam

14 HBR_3.bam

15 UHR_1.bam

16 UHR_2.bam

17 UHR_3.bam
dtypes:

memory usage:

971
971
639
639
1335
1335
1335
1335
1335
1335

187.9+ KB

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

float64(17), object(l)

float64d
float64d
float64d
float64d
float64d
float64d
float64d
float64d
float64d
float64d

The hbr_uhr_deg_chr22 table contains differential gene expression analysis results. Relevant
columns include

® name: gene names

¢ [og2FoldChange: the gene expression change between the two treatment groups
e PAd]: the adjusted p-value associated with statistical confidence of the expression
change
® The columns labeled with the sample names (ie. columns 12 through 17) are the
normalized gene expression counts

Use str.replace to remove ".bam" from the sample names in columns 12 through 17

hbr_uhr_deg chr22.columns=hbr_uhr_deg chr22.columns.str.replace(".bai

To drop columns in a Pandas data frame, use the .drop function and specify the name(s) of

the column(s) to remove. The example below removes columns baseMean, baseMeanA,and
baseMeanB

hbr_uhr_deg chr22.drop(columns=["baseMean", "baseMeanA", "baseMeanB"]

Subset the name, log2FoldChange, and PAdj columns in hbr_uhr_deg_chr22 and save to a new
data frame hbr_uhr_deg_chr22_1.

hbr uhr _deg chr22 1=hbr _uhr_deg chr22.loc[:,["name", "log2FoldChange

hbr_uhr_deg chr22 1.head()

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

name log2FoldChange PAdj
0 SYNGR1 -4.6 5.200000e-217
1 SEPT3 -4.6 4.500000e-204
2 YWHAH -2.5 4.700000e-191
3 RPL3 1.7 5.400000e-134
4 PI4KA -2.0 2.900000e-118

Next, add a column called "-log10PAd}" to hbr_uhr_deg_chr22_1, which will contain the
negative of log10 of the values in the PAdj column. "-log10PAd|" is used in volcano plots that
depict gene expression change versus statistical confidence. To calculate -log10PAd], the
package numpy will be used. Numpy (https.//numpy.org) enables scientific calculations.

import numpy

hbr_uhr_deg chr22 1["-10glOPAdj"]=numpy.negative(numpy.logl® (hbr_uhr.

Take a look at the first several lines of hbr_uhr_deg_chr22_1

hbr_uhr_deg chr22_1.head()

name log2FoldChange PAdj -loglOPAd]
0 SYNGR1 -4.6 5.200000e-217 216.283997
1 SEPT3 -4.6 4.500000e-204 203.346787
2 YWHAH -2.5 4.700000e-191 190.327902
3 RPL3 1.7 5.400000e-134 133.267606
4 PI4KA -2.0 2.900000e-118 117.537602

Other methods for adding new column to a Pandas data frame include insert and assign.

The final task for this lesson is to add a column that indicates whether a gene is up regulated,
down regulated, or has no change based on the log2FoldChange and PAd] values. The criteria
are as follows.

e PAdj >= 0.01: no change (marked as ns in the column)

e Absolute value of log2FoldChange <2: no change (marked as ns in the column)
¢ [og2FoldChange >= 2 and PAdj < 0.01: (up regulated)

¢ log2FoldChange <=2 and PAd]j < 0.01: (down regulated)

To code this in Python, the first step is to drop the NA values from the hbr_uhr_deg_chr22_1
using dropna.

Bioinformatics Training and Education Program

https://numpy.org
https://numpy.org

Lesson 3: Data wrangling using Python

hbr _uhr _deg chr22 1=hbr_uhr_deg chr22 1.dropna()

Next, create a list called significance_criteria that contains the criteria shown above. In the
criteria list below, '&" is the Boolean for "and'. To calculate the absolute value of
log2FoldChange, numpy . absolute is used.

significance criteria=[(hbr_uhr_deg chr22 1["PAdj"]1>=0.01),
(numpy .absolute (hbr_uhr_deg chr22 1["log2Foldl
(hbr_uhr_deg chr22 1["log2FoldChange"]>=2) & (I
(hbr_uhr_deg chr22 1["log2FoldChange"]<=-2) &

Then, create a list called significance_status that indicates whether the criteria are ns (not
significant), up, or down. These statuses have to correspond to the order in which the criteria
were listed in significance_criteria.

significance_status=["ns","ns","up

, ndownu]

Finally, numpy . select will be used to assign values to the significance column.

hbr _uhr _deg chr22 1["significance"]=numpy.select(significance criter

hbr uhr _deg chr22 1.head(4)

name log2FoldChange PAdj -loglOPAd]j signific:
0 SYNGR1 -4.6 5.200000e-217 216.283997 down
1 SEPT3 -4.6 4.500000e-204 203.346787 down
2 YWHAH -2.5 4.700000e-191 190.327902 down
3 RPL3 1.7 5.400000e-134 133.267606 ns

Write this data frame to a csv file in the /data/username/pies_2023 folder, which should be the
present working directory. Replace username with the user's Biowulf account ID. The to_csv
command in Pandas is used to write data frames to csv files. Setting index=False ensures
that the csv file will not have row names.

hbr _uhr _deg chr22 1.to csv("./hbr_uhr_deg chr22 with significance_ le:

This lesson has shown the participants various data wrangling approaches using the Python
package Pandas. The capabability of Pandas expand to more than what is covered here,

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

participants are encouraged to check out the Pandas documentations (https:/
pandas.pydata.org/docs/) to learn more.

Bioinformatics Training and Education Program

https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/

Lesson 4: Data visualization using Python

Lesson 4: Data visualization using Python

Learning objectives

This lesson will provide participants with enough knowledge to start using Python for data
visualization. Specifically, participants should

e Be able to use the package Seaborn to
o Construct plots that range from very basic to elegant as well as biologically relevant
o Customize plots including altering font size and adding custom annotations

Python data visualization tools

Seaborn (https://seaborn.pydata.org) is a popular Python plotting package, which is the tool
that will be introduced in this lesson. Seaborn is an extension of and builds on Matplotlib
(https.//matplotlib.org) and is oriented towards statistical data visualization. However, there are
other packages, including those that are domain specific, implement grammar of graphics, and
are used for creating web-based visualization dashboards. A non-exhaustive list of Python
plotting packages is shown below.

e Matplotlib (https://matplotlib.org)

e Plotnine: implements grammar of graphics for those familiar with R's ggplot2 (https://
plotnine.readthedocs.io/en/stable/)

e bioinfokit: genomic data visualization (https.//github.com/reneshbedre/bioinfokit)

® pygenomeviz: visuazlize comparative genomics data (https.//moshi4.github.io/
pyGenomeViz/)

e Dash bio: create interactive data visualizations and web dashboards (https.//
dash.plotly.com/dash-bio)

Visualization using Seaborn
Load packages

import pandas

import numpy

import matplotlib.pyplot as plt
import seaborn

Bioinformatics Training and Education Program

https://seaborn.pydata.org
https://seaborn.pydata.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://github.com/reneshbedre/bioinfokit
https://github.com/reneshbedre/bioinfokit
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio

Lesson 4: Data visualization using Python

Modify the basic plot elements with Seaborn.

To plot using Seaborn, start the command with seaborn followed by the plot type, separated
by a period.

seaborn.plot_type

This section will use Seaborn's scatterplot to explore how to work with and modify basic
elements of plotting. The foundations learned in this section form the basis for creating
advanced and elegant plots.

The data that will be plotted is a point located at 5 on the x axis and 5 on the y axis. To generate
x andy, numpy.array was used. Here, x and y are single element arrays that store the number
5.

x=numpy.array([5])
y=numpy.array ([5])

Plot x and y using Seaborn's scatterplot function (see Figure 1 for results), which takes data
frames or Numpy arrays as input. Here, x will be plotted on the x axis, and y will be plotted on
the y axis. The plot can be stored as a variable, which in this example is plotO.

plotO@=seaborn.scatterplot(x=x, y=y)
plt.show()

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

5.2 A

5.1 A

5.0 o

4.9 A

4.8

4.8 4.9 5.0 5.1 5.2

Figure 1

The plot in Figure 1 has no axes labels. Axes labels are an integral part of an informative data
visualization. It might also be useful to include meaningful x and y limits. To do this, append the
various . set* attributes to the plot. See Figure 2a for result.

®* set xlabel: specify x axis label (size is used to set the label font size)

®*set ylabel: specify y axis

® set x1lim: sets the x axis limits

® set _ylim: setsthey axis limits

®* set xticks: sets the location of x axis tick marks

®set xticklabels: sets the x axis tick mark labels, size is used to set the tick mark
label font size

® set yticks: sets the location of y axis tick marks

®set _yticklabels: sets the y axis tick mark labels, size is used to set the tick mark
label font size

plotO@=seaborn.scatterplot (x=x, y=y)

plotO@.set xlabel("x axis", size=14)

plot@.set ylabel("y axis", size=14)

plot@.set x1im(0,10)

plot@.set ylim(0,10)

plot@.set xticks([0,2,4,6,8,10])

plot@.set xticklabels(labels=["O","2",6 "4", "6","8","10"], size=15)

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

plot@.set yticks([0,2,4,6,8,10])
plot@.set yticklabels(labels=["0O","2",6 "4","6","8","10"], size=15)
plt.show()

10

y axis

X axis

Figure 2

The plotting context of a Seaborn plot contains parameters that determine scaling of plot
elements (see https://seaborn.pydata.org/generated/seaborn.plotting_context.html (https.//
seaborn.pydata.org/generated/seaborn.plotting_context.html)). To view these parameters, do
the following, which will return the plot scaling parameters as a dictionary.

print(seaborn.plotting context())

{'font.size': 12.0, 'axes.labelsize': 12.0, 'axes.titlesize': 12.0,

These parameters can be changed using the set context function by providing a
customized dictionary and assigning it to the rc argument.

help(seaborn.set context)

Bioinformatics Training and Education Program

https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html

Lesson 4: Data visualization using Python

Help on function set _context in module seaborn.rcmod:

set _context(context=None, font scale=1, rc=None)
Set the parameters that control the scaling of plot elements.

This affects things 1like the size of the labels, lines, and othe
of the plot, but not the overall style. This is accomplished usii
matplotlib rcParams system.

The base context is "notebook", and the other contexts are "pape
and "poster", which are version of the notebook parameters scalet
values. Font elements can also be scaled independently of (but r¢
the other values.

See :func: plotting context® to get the parameter values.

Parameters
context : dict, or one of {paper, notebook, talk, poster}
A dictionary of parameters or the name of a preconfigured se
font_scale : float, optional
Separate scaling factor to independently scale the size of ti
font elements.
rc : dict, optional
Parameter mappings to override the values in the preset seab
context dictionaries. This only updates parameters that are
considered part of the context definition.

To change the x and 'y axes tick label font size to 20, use
seaborn.set _context(rc={'xtick.labelsize': 20, 'ytick.labelsize': 20})
prior to constructing a Seaborn plot.

The code above can be modified to generate a more complex scatter plot that has more points.
For instance, the inputs for x and y can be changed to numeric arrays of five 6 elements each.

Xx=numpy.array([0,1,2,3,4,5])
y=numpy.multiply(2,x)

print("x is a numeric array composed of: ", x)
print("y is a numeric array composed of: ", y)

X is a numeric array composed of: [0 1 2 3 4 5]
y is a numeric array composed of: [@ 2 4 6 8 10]

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

The code used to generate Figure 2 can then be run again with modifications to the x and y
axes limits to generate the plot shown in Figure 3. To produce a line plot representation of

Figure 3, simply change the plot type to lineplot (seaborn.lineplot).

plotO@=seaborn.scatterplot(x=x, y=y)

plot@.set xlabel("x axis", size=14)

plot@.set ylabel("y axis", size=14)

plot@.set x1im(0,6)

plot@.set ylim(0,12)

plot@.set xticks([0,2,4,6])

plot@.set xticklabels(labels=["0","2","4","6"], size=15)

plot@.set yticks([0,2,4,6,8,10,12])

plot@.set yticklabels(labels=["O",6"2",6 "4", "6","8","10","12"], size=1
plt.show()

12

y axis
[«)]
(=)

X axis

Figure 3

Constructing biologically relevant plots

The next exercise is to practice creating a scatter plot on a biologically relevant dataset.
Namely, the differential expression results from the hbr and uhr RNA sequencing study will be
used to create a scatter plot depicting log?2 fold change of gene expression on the x axis and

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

negative log10 of the adjusted p-values on the y axis. This special case of scatter plot is called
a volcano plot.

Step one is to import the data using Panda's read.csv command.

hbr_uhr_deg chr22=pandas.read _csv("./hbr_uhr_deg chr22 with_signific.

Now, review the contents of this data table by doing the following.

hbr_uhr_deg chr22.head(4)

name log2FoldChange PAdj -loglOPAdj significance
0 SYNGR1 -4.6 5.200000e-217 216.283997 down
1 SEPT3 -4.6 4.500000e-204 203.346787 down
2 YWHAH -2.5 4.700000e-191 190.327902 down
3 RPL3 1.7 5.400000e-134 133.267606 down

To create the volcano plot, provide the following arguments. See Figure 4 for result.

® The data frame (ie. hbr_uhr_deg_chr22)
¢ \What to plot on the x axis (ie. log2FoldChange)
e \WWhat to plot on the y axis (ie. "-log10PAd]")

plotl=seaborn.scatterplot (hbr_uhr_deg chr22,x="1og2FoldChange", y="-

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

=]
200 - °
=]
150 A
. <
=)
E o
o ® o
= 100 - ® o ° °
2 o °* ®
=]
50 1 * o & e
.]
e o
°3 ¢ o
.
® o %’ .é'é' E&.’. .o @ "
0 .“%Illfml(l.[l.l(l(l)i.om).0"0))'."0))[.]0)).
-7.5 =50 =25 0.0 2.5 5.0 7.5 10.0 125
log2FoldChange
Figure 4

The volcano plot in Figure 4 does not help with visualizing the up, down, an non-significant
genes. Fortunately, the hue option can be used to distinguish these. See Figure 5.

plotl=seaborn.scatterplot (hbr_uhr_deg chr22,x="1log2FoldChange", y="-

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

o significance
200 1 ¢ e down
¢ ® ns
® up
150 -
o
=
3 e,
=)
= 100 - ® o ° o
2 °® ¢ o
® o
50 - * . IS
P e o o
°3 ‘ (.: ®
=] o _°® ®
LA 3 a5 e ° o,
o 0 3206t S L Wel Y o
0 - ¢ '?&’;‘t(itiw((;-‘.,"f('iwQmil) 0:?)')9:)%1(0@) e °
-75 =50 =25 0.0 2.5 5.0 7.5 10.0 12.5
log2FoldChange
Figure 5

It would be informative to label some of the top significant differentially expressed genes in the

volcano plot. To do this, import the file hbr_uhr_deg_chr22_top_genes.csv and assign it to the
data frame hbr_uhr_deg_chr22_top_genes.

hbr_uhr_deg chr22 top_genes=pandas.read_csv("./hbr_uhr_deg chr22 top.

hbr_uhr_deg chr22 top_ genes

The table contains the top two differentially expressed genes according to the adjusted p-value
(PAd]). The task to do is to label the points corresponding to these two genes on the volcano
plot. The values for log2FoldChange and -log10PAdj will serve as the x and y coordinates for
plotting the gene name.

name log2FoldChange PAdj -loglOPAdj significance
0 XBP1 2.8 7.300000e-90 89.136677 up
1 SYNGR1 -4.6 5.200000e-217 216.283997 down

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

To label the two top differentially expressed genes, start by constructing the volcano plot from

Figure 5. Then, use a for loop to iterate through the name column in the data frame
hbr_uhr_deg_chr22_top_genes. In the for loop

® i: the number that keeps track of the row number in the data frame
hbr_uhr_deg_chr22_top_genes and is used to
o reference the x coordinate or log2FoldChange value in that row
o reference the y coordinate or -log10PAd] value in that row
® enumerate: iterate through the name column in hbr_uhr_deg_chr22_top_genes and
stores the name to variable gene_name. i is incremented as it iterates through the name
column within the for loop

plotl=seaborn.scatterplot (hbr_uhr_deg chr22,x="1log2FoldChange", y="-
for i, gene name in enumerate(hbr_uhr _deg chr22 top genes["name"]):
plotl.text(hbr_uhr _deg chr22 top genes["log2FoldChange"][i],
hbr_uhr_deg chr22 top_genes["-10glOPAdj"1[i],gene_name.

¢SYNGR1 significance
200 A ¢ ® down
® ® ns
® up
150 A
[s]
=
2 co .°
= 100 - e S o
° o® o o XBP1
L
50 - * o & ° e
o ° o’
.s o ,.0 o
o
o® 3‘; o ° o,
o ® ° ® .o] a .,
0 - ® O'fo";uu iuéooow(ucnno» l);‘.n‘;’)»m nende ©
-75 =50 =25 0.0 2.5 5.0 7.5 10.0 125
log2FoldChange
Figure 6

The next visualization is the heatmap and dendrogram combination, which helps with visualizing
clusters and patterns. Heatmap and dendrogram can be used in RNA sequencing studies to
inspect whether there are cluster of genes with similar expression patterns among treatment

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

groups. The normalized counts for the top differential expressed genes in the hbr and uhr study
will be used to construct a heatmap/dendrogram using Seaborn's clustermap.

Import the data.
hbr_uhr_top_deg normalized counts=pandas.read _csv("./hbr_uhr_top_deg

The seaborn.clustermap command below generates a clustermap of the top differential
expressed genes in the hbr and uhr study. The arguments and options are as follows.

e Argument: The dataset (ie. hbr_uhr_top_deg_normalized_counts)
e Options:
°z_score=0: scale the rows by z-score
o cmap: specify color palette (ie. viridis)
o figsize: specify figure size
o vmin: minimum value on the color scale bar
o vmax: maximum value on the color scale bar
o cbar_kws: dictionary containing key value pair that specifies the title to the color
scale bar
o cbar_pos: coordinates for placement of the color scale bar

plotd=seaborn.clustermap(hbr_uhr_ top deg normalized counts,z score=0
figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=(
cbar _pos=(0.855,0.8,0.025,0.15))

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

o
Z score

-1

CACNG2

CLDNS5

SULT4Al

MPPED1

RP5-1119A7.17

IGLC3

MYO18B

RP3-323A16.1

PRAME

PCAT14

IGLC2

CDC45

HBR_3 HBR_1 HBR_2 UHR_2 UHR_1 UHR_3

Figure 9: Expression heatmap of the top 12 differentially expressed genes in the HBR and UHR
study

Below, a Pandas Series, called samples that contains a mapping of colors to study samples is
created.

samples=pandas.Series({"HBR _1":"orangered", "HBR 2":"orangered", "HBI

Then a variable, column_colors is created that contains a mapping of the
hbr_uhr_top_deg_normalized_counts column headings to the colors specified in samples. This
is accomplished using the map command.

column_colors=hbr_uhr_top_deg normalized counts.columns.map(samples)

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

The option col_colors, which is set to column_colors is added to display a color bar on the
top of the heatmap that helps to distinguish treatment groups (ie. hbr or uhr).

Other options added include

® ax_heatmap.set_xticklabels: allows for customizing the x axis labels' fontsize and
rotation. This requires using ax_heatmap.get xmajorticklabels () to getthe x axis
tick labels

® ax_cbar.tick_params: sets the size for the color scale bar labels

® ax_col _colors.set title: sets the title and location bar displaying the treatment
group to color mapping

plotd=seaborn.clustermap(hbr_uhr_top deg normalized counts,z_score=0
figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=(
col _colors=column_colors, cbar_pos=(0.855,0.:

plotd.ax _heatmap.set xticklabels(plotd.ax heatmap.get xmajorticklabe

plotd.ax cbar.tick params(labelsize=12)

plot4.ax_col _colors.set title("treatment",x=-0.1,y=0.01)

plt.show()

Bioinformatics Training and Education Program

Lesson 4: Data visualization using Python

Z score

treatment
’7 CACNG2
CLDN5
SULT4Al
MPPED1

RP5-1119A7.17

— IGLC3

MYO18B

RP3-323A16.1

PRAME

PCAT14

IGLC2

CDC45

HBR 1
HBR 2
UHR_2
UHR 1
UHR 3

m
a4
[aa]
I

Figure 10: Expression heatmap of the top 12 differentially expressed genes in the HBR and
UHR study with treatment group annotations.

Bioinformatics Training and Education Program

Practice questions

Lesson 2 practice questions

Lesson 2 practice questions

Question 1

Create a variable that stores the value for pi.

{{Sdet}}{{Ssum}}Solution{{Esum}}
pi=3.14

{{Edet}}

Question 2

What data type is stored in the variable pi? And why?

{{Sdet}}{{Ssum}}Solution{{Esum}}

type(pi)

float

The variable pi has decimals, thus it is a float.

{{Edet}}

Question 3

Create a variable that stores Avogadro's number.

{{Sdet}}{{Ssum}}Solution{{Esum}}

avogadro=6.02e23

{{Edet}}

Bioinformatics Training and Education Program

Lesson 2 practice questions

Question 4

How do we check if Avogadro's number is greater than pi?

{{Sdet}}{{Ssum}}Solution{{Esum}}

avogadro > pi

True
{Edet}}

Question 5

Use the i f statement to print out something if Avogadro's number is greater than pi.

{{Sdet}}{{Ssum}}Solution{{Esum}}

if avogadro > pi:

print("Avogadro's number 1is greater than pi")
else:

print("No conclusion can be made")

Avogadro's number 1is greater than pi

{Edet}}

Question 6

Create a list of five random things that you can think of and then use a for loop to print each
item in the list.

{{Sdet}}{{Ssum}}Solution{{Esum}}

town=["Curry","Thompson","Green","Igoudala", "Durant"]

for player in range(0,5):
print(town[player])

Bioinformatics Training and Education Program

m Lesson 2 practice questions

Alternative solution

for player in town:
print(player)

{Edet}}

Bioinformatics Training and Education Program

Lesson 3 practice questions

Lesson 3 practice questions

Question 1

Import hcc1395_chr22_rna_seq_counts.csv and store it as hcc1395_chr22_counts.

{{Sdet}}{{Ssum}}Solution{{Esum}}

import pandas

hccl1395 chr22 counts=pandas.read csv("./hccl395 chr22 rna_seq_counts

{Edet}}

Question 2

How many rows and columns are in hcc1395_chr22_counts?

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl395_chr22_counts.shape

(1335, 7)
{{Edet)}
Question 3

What are the column names in hcc1395_chr22_counts and how to view the first 10 rows of this
data set?

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl395 chr22 counts.head(10)

Alternatively, use hcc1395_chr22_counts.columns to get the column headings for this data
frame.

Bioinformatics Training and Education Program

Lesson 3 practice questions

{Edet}}

Question 4

How many genes start with the letter "C" in hcc1395_chr22_counts?

{{Sdet}}{{Ssum}}Solution{{Esum}}
hccl1395 chr22 counts.loc[hccl395 chr22 counts.loc[:, 'Geneid'].str.st.
{{Edet}}

Question 5

Import hcc1395_deg_chr22.csv and store it as hcc1395_deg_chr22.

{{Sdet}}{{Ssum}}Solution{{Esum}}
hccl395 deg chr22=pandas.read_csv("./hccl395 deg chr22.csv")
{Edet}}

Question 6

Remove ".bam" from the column headers of hcc1395_deg_chr22.

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl1395 deg chr22.columns=hccl395 deg chr22.columns.str.replace(".bar

{{Edet}}

Question 7

Subset out the following columns from hcc1395_deg_chr22 and store it as
hcc1395_deg_chr22_1.

® name
e |og2FoldChange
e PAd]

Bioinformatics Training and Education Program

Lesson 3 practice questions

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl1l395 deg chr22 1=hccl1395 deg chr22.loc[:,["name", "log2FoldChange
Use the . head function to check of the subsetting was done correctly.
hccl1395 deg chr22 1.head()

{{Edet}}

Question 8

Add a column to hcc1395_deg_chr22_1 that contains the negative log10 of the PAdj value.

{{Sdet}}{{Ssum}}Solution{{Esum}}

import numpy

hccl1395 deg chr22 1["-10glOPAdj"]=numpy.negative(numpy.logl®(hccl395

{{Edet}}

Bioinformatics Training and Education Program

Lesson 4 practice questions

Lesson 4 practice questions

Question 1

Create a volcano plot for the differential expression analysis results for the hcc1395 data (hint:
import hcc1395_deg_chr22_with_significance.csv)

{{Sdet}}{{Ssum}}Solution{{Esum}}

import pandas
import matplotlib.pyplot as plt
import seaborn

hccl395 deg chr22=pandas.read _csv("./hccl395 deg chr22 with signific:

plotl=seaborn.scatterplot(hccl395 deg chr22,x="1log2FoldChange", y="-
plt.show()

{{Edet}}

Question 2

Label the two most differential expressed genes in the volcano plot. As a hint, first import
hcc1395_deg_chr22_top_genes.csv.

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl1395 deg chr22 top genes=pandas.read csv("./hccl395 deg chr22 top

plotl=seaborn.scatterplot(hccl395 deg chr22,x="1og2FoldChange", y="-
for i, gene_name 1in enumerate(hccl395 deg chr22 top_genes["name"]):
plotl.text(hccl395 deg chr22 top_genes["log2FoldChange"]1[i],
hccl395 deg chr22 top genes["-10glOPAdj"]1[i],gene _name
plt.show()

{Edet}}

Bioinformatics Training and Education Program

Lesson 4 practice questions

Question 3

Import hcc1395_top_deg_normalized_counts.csv and create an expression heatmap. Use the
Viridis color palette.

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl1395 top deg normalized counts=pandas.read csv("./hccl395 top_deg

plot2=seaborn.clustermap(hccl395 top deg normalized counts,z score=0
figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=(

plt.show()

{Edet}}

Question 4

Add a bar on the top of the heatmap that shows which treatment group the samples belong to.

{{Sdet}}{{Ssum}}Solution{{Esum}}

samples=pandas.Series({"hccl395 normal repl":"orangered", "hccl395 n¢

column_colors = hccl395 top _deg normalized counts.columns.map(sample

plot2=seaborn.clustermap(hccl395 top deg normalized counts,z score=0
figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=(
col _colors=column_colors, cbar_pos=(0.05,0.8

plot2.ax_heatmap.set xticklabels(plot2.ax heatmap.get xmajorticklabe

plot2.ax _cbar.tick params(labelsize=12)

plot2.ax _col colors.set title("treatment",x=1.09,y=-0.3)

plt.show()

{{Edet}}

Bioinformatics Training and Education Program

E Finding help

Finding help

The document provides useful links where participants can find help for the Python packages
that were addressed during the course series.

Pandas - package for working with tabular data (https://pandas.pydata.org)

e Pandas API reference gives instructions for each command (https://pandas.pydata.org/
docs/reference/index.html). To get to the API reference, either

o Navigate to the the Documentation section at the Pandas homepage and click on
APl reference (Figure 1).

o OR, click on the the Documentation tab at the top of the Pandas homepage and
click on the tile labeled API reference in the subsequent page (Figure 2).

About us ¥ Getting started | Documentation | Community > Contribute

Latest version: 2.0.3
What's new in 2.0.3
Release date:

Jun 28, 2023
Documentation (web)
Download source code

pandas

pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
built on top of the Python programming language.

Get the book
Getting started Documentation Community rey o
¢ Install pandas ¢ User guide * About pandas P thon
« Getting started + APl reference = + Ask a question for Data Analysis
¢ Contributing to pandas ¢ Ecosystem Data Wrangling with pandias, NumPy & Jupyter

* Release notes &

With the support of:

Figure 1

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html

Finding help

Getting started User Guide API reference Development Release notes

CUME on
Date: Jun 28, 2023 Version: 2.0.3

Download documentation: Z

Support | Mailing List

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data

analysis tools for the Python programming language.

Getting started

New to pandas? Check out the getting started

guides. They contain an introduction to pandas’

main concepts and links to additional tutorials.

To the
getting
started
guides

API reference

The reference guide contains a detailed description

of the pandas API. The reference describes how the

methods work and which parameters can be used. It

assumes that you have an understanding of the key
concepts.

Figure 2

User guide

The user guide provides in-depth information on the
key concepts of pandas with useful background
information and explanation.

To the user
guide

Developer guide

Saw a typo in the documentation? Want to improve
existing functionalities? The contributing guidelines
will guide you through the process of improving
pandas.

Seaborn for data visualization (https://seaborn.pydata.org/index.html)

e Seaborn API reference gives instructions for each command (https.//seaborn.pydata.org/
api.html). To get to the Seaborn API reference, click on API at the top of the Seaborn

website.

Bioinformatics Training and Education Program

https://seaborn.pydata.org/index.html
https://seaborn.pydata.org/index.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html

E Finding help

@Seaborn Installing Gallery TutoriaIReIeases Citing FAQ

seaborn: statistical data visualization

1955

Figure 3
Numpy for scientific computing (https://numpy.org/doc/stable/index.html)

e Numpy API reference (https://numpy.org/doc/stable/reference/index.html). To get to this,
select Documentation at the top of the Numpy homepage (Figure 4) and then click on
either of the links to the API reference (Figure 5).

Install IDocumentationI Learn Community

‘0

A\

N

N

¢

A\

The fundamental package

LATEST RELEASE:
NUMPY 1.25. VIEW

NumPy

Figure 4

Bioinformatics Training and Education Program

https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html

N NumPy User Guide | APl referencel Development Release notes Learn (4

Figure 5

3
Getting Started

New to NumPy? Check out the Absolute
Beginner's Guide. It contains an introduction to
NumPy’s main concepts and links to additional
tutorials.

[.]

API Reference

The reference guide contains a detailed
description of the functions, modules, and
objects included in NumPy. The reference
describes how the methods work and which
parameters can be used. It assumes that you
have an understanding of the key concepts.

Matplotlib for data visualization (https:/matplotlib.org)

Finding help

User Guide

The user guide provides in-depth information on
the key concepts of NumPy with useful
background information and explanation.

To the user guide

o
T

Contributor's Guide

Want to add to the codebase? Can help add
translation or a flowchart to the documentation?
The contributing guidelines will guide you
through the process of improving NumPy.

e Matplotlib API reference (https./matplotlib.org/stable/api/index). To get to this, click on
reference at the top of the Matplotlib homepage (Figure 6).

.
matpm"b Plot types Examples Tutorials | Reference| User guide Develop Releases

Figure 6

bar(x, height) / barh(y, width)

QOINDO Y

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in
Python. Matplotlib makes easy things easy and hard things possible.

* Create publication quality plots.

* Make interactive figures that can zoom, pan, update.
Customize visual style and layout.
Export to many file formats.

Embed in JupyterLab and Graphical User Interfaces.
Use a rich array of third-party packages built on Matplotlib.

Try Matplotlib (on Binder) ->

Bioinformatics Training and Education Program

https://matplotlib.org
https://matplotlib.org
https://matplotlib.org/stable/api/index
https://matplotlib.org/stable/api/index

	BTEP course
	Table of Contents
	Course overview
	Lesson 1 slides
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Practice questions
	Lesson 2 practice
	Lesson 3 practice
	Lesson 4 practice

	Finding help

	Course Overview
	Example data used in this course

	Lesson 1 slides
	Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab
	Learning objectives
	What is Python and why use it?
	Signing onto Biowulf
	Change into Biowulf data directory
	Request an interactive session
	Load Jupyter
	Start Jupyter Lab
	Jupyter Lab - file explorer and launcher
	Jupyter Notebook - cells
	Python education resources
	Python command syntax
	Example of a Python command with and without options
	Finding help for Python commands
	Example of using help
	Copy class data to data directory

	Lesson 2: Python data types and structures
	Learning objectives
	Signing onto Biowulf
	Change into data directory and copy course data
	Request interactive session
	Load Jupyter
	Start Jupyter Lab
	Python data types and data structures
	Identifying data type and structure in Python
	Variable assignments
	Conditionals
	Data frames
	Importing tabular data with Pandas

	Lists and tuples
	List versus tuples (mutable versus immutable)

	Arrays
	Range
	Dictionaries

	Lesson 3: Data wrangling using Python
	Learning objectives
	Importing tabular data using Pandas
	Get dimensions of a data frame
	Row indices/names
	Data wrangling
	Subsetting
	Subsetting by integer positions
	Subsetting using column names
	Summary statistics of data frames
	Replacing column names
	Mathematical operations on data frames and filtering
	Removing and adding columns to a data frame

	Lesson 4: Data visualization using Python
	Learning objectives
	Python data visualization tools
	Visualization using Seaborn
	Load packages
	Modify the basic plot elements with Seaborn.
	Constructing biologically relevant plots

	Practice questions
	Lesson 2 practice questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6

	Lesson 3 practice questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8

	Lesson 4 practice questions
	Question 1
	Question 2
	Question 3
	Question 4

	Finding help

