Python Introductory
Education Series

Center for Cancer Research

Bioinformatics Training
& Education Program

Alexandra L Emmons Ph.D. & Joe Wu Ph.D.

BTEP/GAU/CCR/NCI/NIH - email ncibtep@mail.nih.gov
Bioinformatics Training and Education Program

Table of Contents

Course overview

® Course Overview

Example Data

Lesson 1 slides

Lesson 1

® Getting Started with Python

Lesson 1 Learning Objectives

Why use Python?

Python enables Elegant Data Visualization

® (Generating a Scatter Plot using Matplotlib
® Generating a Gene Expression Heatmap using Seaborn
Tools for Interacting with Python

Python at the Command Prompt

lpython

Using Python through IDE

Accessing Python at NIH

Signing onto Biowulf HPC OnDemand

® (et the Example Data

® Start a Jupyter Lab Session

Create a new Jupyter Notebook

10

11

11

12

12

12

13

14

16

Python Command Syntax

Installing external packages

Lesson 2

® Python Data Types, Loops and lterators

Learning Objectives

Start a Jupyter Lab session

Python Data Types and Data Structures
|dentifying Data Type and Structure in Python
Variable Assignments

Conditionals

Data Frames

® |mporting Tabular Data with Pandas

Lists and Tuples

® | st versus tuples (mutable versus immutable)
® Adding and removing from a list

® Making a Copy of a List

Arrays

Loops and lterators

Dictionaries

® Subsetting a Dictionary

® Updating a dictionary

17

19

21

21

21

21

22

22

24

25

26

27

28

29

29

32

33

37

37

39

Lesson 3

® Data Wrangling using Python
® | earning Objectives
® |mporting Tabular Data using Pandas
® Get Dimensions of a Data Frame
® Row Indices/Names
® Data Wrangling
® Subsetting
® Subsetting by Integer Positions
Subsetting using column names
Replacing Column Names

Mathematical Operations on Data Frames and Filtering

Removing and Adding Columns to a Data Frame

Lesson 4

® Data Visualization using Python
® | earning Objectives
® Python Data Visualization Tools
® \isualization using Seaborn
® | oad Packages
® NModify the Basic Plot Elements with Seaborn.

® Constructing Biologically Relevant Plots

42

42

42

44

46

47

47

48

50

52

52

53

57

57

57

57

57

58

63

Starting Jupyter Lab through Tunneling

® Using Python through Command Line on Biowulf
® Copy Example Data to User's Biowulf Data Directory

® Starting Jupyter Lab

Practice questions

Lesson 2 practice

® | esson 2 practice questions
® Question 1

® Question 2

Lesson 3 practice

® | esson 3 practice questions
® Question 1
® Question 2
® Question 3
()

Question 4

Question 5

Question 6
® Question7

® (Question 8

Lesson 4 practice

® | esson 4 practice questions

® Question 1

73
73

73

78

78
78

78

80

80
80
80
80
81
81
81
81

82

83

83

83

® Question 2
® Question 3

® (Question 4

Finding help

® Finding help

83

84

84

85

n Course Overview

BTEP Python

Course Overview

Welcome to the Python Introductory Education Series (PIES) course. This course is composed
of four lessons (see schedule below) and is meant to help those with no or limited experience in
Python get started using this general purpose scripting language for data analyses. Each one-
hour lesson will be followed by an optional one-hour help session. At the end of this course
series, participants should

* Have obtained a broad overview of Python, including:
o Familiarity with tools used to write Python code
o Knowledge of Python command syntax
o Ability to find help for Python commands
o Knowledge of where to find Python packages
o Familiarity with self-learning resources
e Be able to describe Python data types and structures and provide examples of where
some of the data structures are used.
e Know how to use loops and iterators to perform repetitive tasks.
e Know how to work with tabular data
e Be able to construct data visualizations

Lesson schedule:

e Tuesday June 3, 2025, 2 — 3 PM: Getting Started with Python

e Thursday June 5, 2025, 2 — 3 PM: Python Data Types, Variable Assignment, Conditionals,
Loops and lterators

e Tuesday June 10, 2025, 2 — 3 PM: Data Wrangling using Python

e Thursday June 12, 2025, 2 — 3 PM: Data Visualization using Python

A Biowulf account is required for this class. Visit the Biowulf User Dashboard (https:/
hpcnihapps.cit.nih.gov/auth/dashboard/) to unlock an inactive account. For instructions on
obtaining a Biowulf account, visit https://hpc.nih.gov/docs/accounts.html (https://hpc.nih.gov/
docs/accounts.html).

Example Data

Download data used in this course

Bioinformatics Training and Education Program

https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html

Lesson 1 slides

Lesson 1 slides

Bioinformatics Training and Education Program

n Getting Started with Python

Getting Started with Python

Joe Wu, PhD
NCI/CCR Bioinformatics Training and Education Program
ncibtep@nih.gov

Lesson 1 Learning Objectives

After this class, participants will be able to:

e Describe Python and provide rationale for using Python

e | ist tools for interacting with Python

¢ Sign onto Biowulf, start a Jupyter Lab session, and become familiar with the Jupyter Lab
interface.

e Describe Python command syntax

e Describe where to get and how to install external packages

¢ Get help for Python commands

Why use Python?

e General purpose scripting language
o Analyze and visualize large datasets
o Reusability and reproducibility
o Versioning and keeping track of changes is possible when analyzing data using

scripts

o Easy to learn

e External packages that enhances functionality
o Python Package Index (https.//pypi.org)
o Anaconda (https://www.anaconda.comy)
o Biopython (https://biopython.org)

e Large community support

Python enables Elegant Data Visualization

An abundance of external packages make scientific computing and data presentation easy. For
instance, the packages matplotlib (https:/matplotlib.orghttps.//matplotlib.org) and seaborn
(https.//seaborn.pydata.org/) are good tools for generating data visualizations. With a few lines
of code, scientists can generate scatter plots to view relationship between variables and/or
heatmaps that can reveal distinct clusters in a dataset.

Bioinformatics Training and Education Program

https://pypi.org
https://pypi.org
https://www.anaconda.com/
https://www.anaconda.com/
https://biopython.org
https://biopython.org
https://matplotlib.orghttps://matplotlib.org
https://matplotlib.orghttps://matplotlib.org
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/

n Getting Started with Python

Generating a Scatter Plot using Matplotlib

import matplotlib.pyplot as plt
import numpy

X=numpy.array([0,1,2,3,4,5,6,7,8])
y=numpy.array([0.5,2,5,6,7,10,13,14,16])

plt.scatter(x,y)

slope, intercept=numpy.polyfit(x,y,1)

plt.plot(x,slope*x+intercept)
plt.text(1,14, ' 'y="+str(round(slope,3))+'x" ' + ' + str(round(intercej
plt.xlabel('x")

plt.ylabel('y")

16 A

14 | y=1.967x + 0.3

12 -

10 ~

Generating a Gene Expression Heatmap using Seaborn

import pandas

import seaborn

import matplotlib.pyplot as plt

countsl=pandas.read _csv("./hbr_uhr_top_deg normalized counts.csv", i

Bioinformatics Training and Education Program

Getting Started with Python
seaborn.clustermap(countsl,z score=0,cmap="viridis", figsize=(5,5))

plt.suptitle("Gene expression heatmap",y=1.1)
plt.show()

—

CACNG2

CLDN5
SULT4Al
MPPED1
RP5-1119A7.17
- IGLC3

-1
I O
MYO18B
RP3-323A16.1

- PRAME
- PCAT14
- IGLC2

- CDC45

UHR 3.bam -

HBR_1.bam
HBR_2.bam
UHR_2.bam -
UHR_1.bam -

£
©
-~
m
o
@
I

Tools for Interacting with Python

e Python can be run at the command prompt
e |python (https.//ipython.org)
e Run python script at the command prompt
¢ Integrated Development Environments such as:
o Spyder (https.//www.spyder-ide.org/)
o Pycharm (https://www.jetbrains.com/pycharmy/)
e VVisual Studio Code from Microsoft has extensions that support Python scripting

e R Studio
e Juptyer Lab/Notebook

Bioinformatics Training and Education Program

https://ipython.org
https://ipython.org
https://www.spyder-ide.org/
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/

Getting Started with Python

Python at the Command Prompt

Assuming Python is installed, just type python at the command prompt to start using Python.
Hit control-d to exit back to the command prompt. The downside to this is that users cannot
save the commands into a script.

(base) [wuz8@cn4303 pies_data]$ python

Python 3.12.10 | packaged by conda-forge | (main, Apr 10 2025, 22:21:13) [GCC 13.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>> print("hello")

hello

>>> import numpy as np

>>> print(np.pi)
3.141592653589793

Ipython

lpython (https.//ipython.org) enables users to run Python commands interactively at the
terminal. It features autocomplete of commands and allows for saving of commands to a python
script using %save followed by the name of the script.

((base) [wuz8@cn4303 piles_data]$ ipython

Python 3.12.10 | packaged by conda-forge | (main, Apr 10 2025, 22:21:13) [GCC 13.3.0]

Type 'copyright', 'credits' or 'license' for more information

IPython 9.1.0 -- An enhanced Interactive Python. Type '?' for help. .

Tip: IPython supports combining unicode identifiers, eg F\vec<tab> will become F, useful for physics equations. Play with \dot \d
dot and others.

[1 ("hello")
hello

(2

3 (np.pi)

(5
3.141592653589793

(np.sqrt(25))

(5]: %save pies_class_2025_ipython.py

The following commands were written to file ‘piles_class_2025_ipython.py":
print("hello")

import numpy as np

print(np.pi)

print(np.sqrt(25))

Hit control-d to exit Ipython and return to the command prompt.

While using Ipython is better than just running commands on the terminal, it still is not very
efficient in terms of saving work. Also, users will not be able to view plots on HPC systems such
as Biowulf since these do not support inspection of graphical outputs.

Note

The pies_class_2025_ ipython.py script can be run from the command line. To run a Python script from
command line, just do python followed by name of the script. Python scripts can also be submitted as a job to the
Biowulf batch system.

Bioinformatics Training and Education Program

https://ipython.org
https://ipython.org

Getting Started with Python

python pies class 2025 ipython.py

hello
3.141592653589793
5.0

Using Python through IDE

Integrated Development Environments or IDEs are ideal for scripting in Python as well as other
languages. See https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-
anaconda-vs-intellij.html (https.//ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-
studio-vs-anaconda-vs-intelli.html) for a breakdown of of common ones such as Spyder,
Pycharm, VS Code, R Studio, and Jupyter Lab. Essentially, IDE enable users to write scripts,
access as well as view data, and view plots. Some IDEs enable users to generate analysis
report that details steps of an analysis as well as the tool and the code use.

Accessing Python at NIH

e Biowulf (HPC OnDemand (https.//hpcondemand.nih.gov/) is recommended).

e Use Python locally on government furnished personal computer via NIH Anaconda
Professional License (https.//nih.sharepoint.com/sites/CIT-ApplicationRepository/
SitePages/Anaconda.aspx). This will require users to install Anaconda to local computer.
See BTEP's Topic Spotlight on NIH's Anaconda Professional license (https.//
bioinformatics.ccr.cancer.gov/btep/getting-started-with-an-nih-anaconda-business-
license/) to learn more.

¢ NCI scientists also can use Python through Posit Workbench. Fill out the form at https://
forms.office.com/pages/responsepage.aspx?
id=eHW3FHOX1UKFByUcotwrBnYgWNrH6Qd0OsCsoiQ9eiaZUQ1ZZ0ODJKTOFERUAHOVZYUkJaMzA2
(https.//forms.office.com/pages/responsepage.aspx?
id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QJOsCsoiQ9eiaZUQ 1ZZ0DJKTOFERUJHOVZYUkJaMzAZ
to request access.

Signing onto Biowulf HPC OnDemand

® Open a web browser on local computer (Google Chrome is recommended) and go to
https://hpcondemand.nih.gov/ (https.//hpcondemand.nih.gov/), which is the URL for
Biowulf's HPC OnDemand.

e Once at HPC OnDemand, sign in with participant's NIH PIV card credentials.

Bioinformatics Training and Education Program

https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-anaconda-vs-intellij.html
https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-anaconda-vs-intellij.html
https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-anaconda-vs-intellij.html
https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-anaconda-vs-intellij.html
https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-anaconda-vs-intellij.html
https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://bioinformatics.ccr.cancer.gov/btep/getting-started-with-an-nih-anaconda-business-license/
https://bioinformatics.ccr.cancer.gov/btep/getting-started-with-an-nih-anaconda-business-license/
https://bioinformatics.ccr.cancer.gov/btep/getting-started-with-an-nih-anaconda-business-license/
https://bioinformatics.ccr.cancer.gov/btep/getting-started-with-an-nih-anaconda-business-license/
https://bioinformatics.ccr.cancer.gov/btep/getting-started-with-an-nih-anaconda-business-license/
https://bioinformatics.ccr.cancer.gov/btep/getting-started-with-an-nih-anaconda-business-license/
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/

Getting Started with Python

e After signing in, users will see links to applications available through HPC OnDemand
such as Jupyter. User's Biowulf file system can be accessed via OnDemand as well (just
click Files in the menu bar).

BIOWUL |

HIGH PERFORMANCE COMPUTING AT THE NIH P

HPC OnDemand Files ~ Interactive Apps >~ @ My Interactive Sessions Y HPC Dashboard @ Help ¥ & Logged in as wuz8

W Data /data/user

E’ A Home Directory
OnDemand

HPC OnDemand provides convenient web interfaces to your interactive Biowulf applications.

Pinned Apps A featured subset of all available apps

s_
Jupyter
.\./

Graphical Session Jupyter RStudio Server VS Code

System Installed App System Installed App System Installed App System Installed App

Get the Example Data

Goto the course overview section in the class documents and scroll to the bottom and click on
"Download data used in this course" to download some example data to local computer. Take
note of where it downloads, but typically it should go into the user's local computer Downloads
folder. The data comes as zip file. While Macs will automatically unzip, Windows users may
need to right click on the file to uncompress it. After the download and uncompressing is
finished, participants will see a folder called pies_data.

Next, click "Files" in the HPC OnDemand menu and choose the folder labeled /data/user,
where user is the participant's Biowulf user ID. The subsequent page will show the content (ie.
files and folders) of the participant's Biowulf data directory. Click on the "New Directory" tab to
make a to make a folder to store the example data and Jupyter Notebook for this course series.

HIGH PERFORMANCE COMPUTING AT THE NIH y

HPC OnDemand

Files ¥ Interactive Apps > @ My Interactive Sessions Y HPC Dashboard @ Help ¥ & Loggedinaswuz8 @ LogOut

[e | vwie | e ew v | () D [comve

4 Home Directory

- jarny =)
@ Data (GAU) [J Show Owner/Mode (J Show Dotfiles ~ Filter:

@ Data (LCP_Omics) Showing 42 of 48 rows - 0 rows selected
8 Data (gau) 0O Type & Name Size Modified at

ccbr_chipsequencing_test E] 2/27/2025 9:43:37 PM
O ccbr_example_rna_sequencing E] 5/5/2024 2:47:29 PM
0 chip_sequencing E] 3/28/2025 11:10:36 AM

Name the class directory pies_data. Click "Ok" when ready.

Bioinformatics Training and Education Program

Getting Started with Python

New Directory
Directory name

pies_datal

n Cancel

Start a Jupyter Lab Session

Navigate back to the HPC OnDemand website by clicking "HPC OnDemand" at the top left
corner. Then click on the "Jupyter" tab to launch a Jupyter Lab session.

2 hpcondemand.nih.gov/pun/sys/dashboard/ & Incognito (4)

BIOWULF

HIGH PERFORMANCE COMRUTING AT THE NIH

HPC OnDemand Files ~ Interactive Apps ~ @ My Interactive Sessions Y HPC Dashboard @ Help ~ & Logged inaswuz8 & Log Out

=D
nDemand

HPC OnDemand provides convenient web interfaces to your interactive Biowulf applications.

Pinned Apps A featured subset of all available apps

p—
Jupyter
Ol =z |[@ | %

Graphical Session Jupyter RStudio Server VS Code
System Installed App System Installed App System Installed App System Installed App

HPC @NIH Contact

Disclaimer Privacy Policies Accessibility CIT NIH DHHS USA.gov HHS Vulnerability Disclosure

e The subsequent page allows users to specify compute resources. Leave these as is for
this class. Also, be sure that the radial button for Jupyter Lab is selected.

Bioinformatics Training and Education Program

15 Getting Started with Python

hpcondemand.nih.gov/pun/sys/dashboard/batch_connect/sys/bc_nih_jupyter/session_contexts/new % & Incognito (4)

Interactive Apps Jupyter
Desktops This app will launch a Jupyter server on the Biowulf cluster. This can be used to

D Graphical Session access Python, R, Julia, and Matlab.

Guls To utilize custom environments in Jupyter, please follow the instructions to add a
& 16V Jupyter kernel in our Jupyter documentation
4 MATLAB Mode
Servers O Jupyter Lab
GFA Server Jupyter Notebook
Matlab
Number of hours
- OmicCircosShiny
8
© RStudio Server
Node type
%) VS Code
Standard v
@ iDEP
+ Standard Compute
Shell These are standard HPC machines up to 64 Core/128 CPU and 499 GB
>_ sinteractive allocatable memory.

* GPU Enabled
These are HPC machines with GPUs in several varieties. Only one GPU per job can
be allocated here.

* Large Memory
These are HPC machines with very large amounts of memory, up to 3 TB per

® Make sure to specify for Jupyter to startin the /data/$USER/pies_data directory,
where $USER is a variable that points to the participants Biowulf user ID.

hpcondemand.nih.gov/pun/sys/dashboard/batch_connect/sys/bc_nih_jupyter/session_contexts/new * & Incognito (4)
Number of CPUs
6

Number of CPUs on node type.
Allocated Memory (GB)

12

Total amount of memory to allocate on node. Maximum value depends on node type.
Allocated Local Scratch (GB)

10

Total amount of local scratch to allocate on node

Working directory

/data/$USER/ pies_data

notebook command after changing (cd) to this directory.

1 would like to receive an email when the session starts

* The Jupyter session data for this session can be accessed under the data root
directory.

HPC @ NIH Contact

Disclaimer Privacy Policies Accessibility CIT NIH DHHS USA.gov HHS Vulnerability Disclosure

Click on "Connect to Jupyter" when the Jupyter Lab session has been granted.

Bioinformatics Training and Education Program

Getting Started with Python

25 hpcondemand.nih.gov/pun/sys/dashboard/batch_connect/sessions & Incognito (4)

BIOWULF

HIGH PERFORMANCE COMRUTING AT THE NIH

HPC OnDemand Files ~ Interactive Apps ~ @ My Interactive Sessions Y HPC Dashboard @ Help + & Logged inaswuz8 @ Log Out

Session was successfully created. X

Home / My Interactive Sessions

Jupyter (54336517) @D | @D | Running

Desktops

3 Graphical Session Host: cn4302

ous Created at: 2025-04-17 19:51:45 EDT

i oV
Time Remaining: 7 hours and 59 minutes

4 MATLAB
Session ID: c017d97a-e9bd-4685-88c7-33a781d1096e

GFA Server

3 Connect to Jupyter
= Jupyter

Users will see an interface that looks like the image shown below. The left hand panel is the file
explorer. Users can navigate through files and folders that are available in the directory in which
Jupyter Lab was started. The launcher panel contains quick links for initiating a Jupyter
Notebook in the user's language of choice.

25 hpcondemand.nih.gov:10005/lab

: File Edit View Run Kernel Git Tabs Settings Help

™ B c 2 Launcher + %
& i Start a note in language of choice
o Upload file data/wuz8/pies_data guag &
TP & m/ - [wuz8/pies_data/ E] Notebook
Name -~ Modified
® —
P @ M 4 P & @&
Python 3.85 Bash MATLAB Kernel Open MATLAB Python 3.9.9 python/3.10 python/3.11
» 64-bit %) 64-bit
File explorer p p ﬁ ﬁ P Q Q
python/3.12 python/3.8 python/3.8 python/3.9 Python3.12.0(co R/4.2 R/4.3
nda base)
—~
R =
R4.4 Sos

Note the file explorer is empty. The next step then will be to open the pies_data folder on the
participants local Download directory and select all of the csv files in the folder and drag and
drop in to the Jupyter Lab file explorer or use the upload button.

Create a new Jupyter Notebook

Create a new Jupyter Notebook in Python 3.12 (click on the "python/3.12" tile). The new
notebook has the name "Untitled.ipynb". Click on the disk icon in the notebook menu bar to
rename it pies_class_2025.

Bioinformatics Training and Education Program

Getting Started with Python

25 hpcondemand.nih.gov: & Incognito

Rename file

pies_class_2025.ipynb

(Do not ask me again.

|

Tip

For a detailed overview of Jupyter Lab, see BTEP's Documenting Analysis Steps using Jupyter Lab (https:/
bioinformatics.ccr.cancer.gov/docs/analysis-documentation-jupyter/index.html)

Python Command Syntax

Arguments and options for Python commands are enclosed in parentheses. In general, the
anatomy is command (argument, option).

For example, the command below is print and it will display the argument, "Hello BTEP" as
output.

print("Hello BTEP")

Hello BTEP

To get help for a Python command, use help.

For instance:

help(print)

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/analysis-documentation-jupyter/index.html
https://bioinformatics.ccr.cancer.gov/docs/analysis-documentation-jupyter/index.html
https://bioinformatics.ccr.cancer.gov/docs/analysis-documentation-jupyter/index.html
https://bioinformatics.ccr.cancer.gov/docs/analysis-documentation-jupyter/index.html

Getting Started with Python

Help on built-in function print in module builtins:

print(xargs, sep=' ', end='\n', file=None, flush=False)
Prints the values to a stream, or to sys.stdout by default.

sep
string inserted between values, default a space.

end

string appended after the last value, default a newline.
file
a file-like object (stream); defaults to the current sys.std
out.
flush
whether to forcibly flush the stream.

From the print command's help information, line breaks can be added using \n. Try the
following to print three sentences, one in each line.

print("Python can make data analysis more efficient.\n"

"It helps with reusability and reproducibility.\n"

"There is strong community support.\n"

"External packages are available for data wrangling and visualizatiol

Python can make data analysis more efficient.

It helps with reusability and reproducibility.

There is strong community support.

External packages are available for data wrangling and visualization

What is different with numpy.array used in the earlier example to generate
numeric arrays?

{{Sdet}}{{Ssum}}Answer{{Esum}}

numpy is a Python package that has many subcommands. To call a subcommand from a
package, use the general syntax of package.subcommand.

Bioinformatics Training and Education Program

Getting Started with Python

numpy.
h
Eabsolute

= add

@ add_docstring

© add_newdoc

© add_newdoc_ufunc
@all

@allclose

= ALLOW_THREADS

© append

{Edet}}

numpy has a subcommand divide. How can that be called?
{{Sdet}}{{Ssum}}Answer{{Esum}}
numpy.divide
{Edet}}

What does the divide subcommand from numpy do?
{{Sdet}}{{Ssum}}Answer{{Esum}}
help(numpy.divide)

{Edet}}

Installing external packages

Python external packages are found at the Python Package Index (https:/pypi.org). To install a
package from PyPi, just use pip install package name, where package_name can be
any package of choice. For instance, to install scipy, do:

pip install scipy

Bioinformatics Training and Education Program

https://pypi.org
https://pypi.org

Getting Started with Python

Note

Package management for Python needs to be done at the terminal.

pip is the package installer for Python. If pip is not available with the user's Python installation,
see https://pip.pypa.io/en/stable/installation/ (https.//pip.pypa.io/en/stable/installation/) to learn
how to get it.

To uninstall a package, do pip uninstall package name.
To update a package, use pip install --upgrade package_name.

pip freeze will pull up a list of currently installed Packages installed via pip. To find if a
specific package is installed do pip freeze | grep package name.

Those who chose to use the package manager Anaconda can install via the command line
using conda install package name. Again, package_name is the user's package of
choice. Package managers offer the benefit of reducing issues that arise from versioning,
dependency, and security when installing software. See https://docs.conda.io/projects/conda/
en/stable/user-guide/tasks/manage-pkgs.html (https.//docs.conda.io/projects/conda/en/stable/
user-guide/tasks/manage-pkgs.html) to learn more about installing, updating, and uninstalling
packages using Conda. For working locally on government furnished personal computer,
researchers are recommended to use the NIH Anaconda Professional License (https./
nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx). Biowulf also
has a guide on managing Anaconda environments on the cluster. See https://hpc.nih.gov/docs/
diy_installation/conda.html (https.//hpc.nih.gov/docs/diy_installation/conda.html).

Bioinformatics Training and Education Program

https://pip.pypa.io/en/stable/installation/
https://pip.pypa.io/en/stable/installation/
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-pkgs.html
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://hpc.nih.gov/docs/diy_installation/conda.html
https://hpc.nih.gov/docs/diy_installation/conda.html
https://hpc.nih.gov/docs/diy_installation/conda.html

Python Data Types, Loops and lterators

Python Data Types, Loops and lterators

Learning Objectives

After this class, participants will

® Be able to describe Python data types and structures

e Become familiar with variable assignment

¢ Be able to use conditional operators and if-else statements

e Understand how loops and iterators can be used automate processes
® Be able to load packages

e Know how to import tabular data

e Know how to view tabular data

Start a Jupyter Lab session

Before getting started, make sure to start a Jupyter Lab session with the default resources via
HPC OnDemand (https://hpcondemand.nih.gov/pun/sys/dashboard)/).

Hint

Be sure to start the Jupyter Lab session in “/data/$USER/pies_data'. Where $USER is the environmental variable
that points to the participant's Biowulf user ID.

Next, click on pies_class_2025.1ipynb in the file explorer to open the Jupyter Notebook
used for this class.

Python Data Types and Data Structures

An important step to learning any new programming language and data analysis is to
understand its data types and structures. Common data types and structures that will be
encountered include the following.

e Text (str)
e Numeric
o int (ie. integers)
o float (ie. decimals)
e Boolean (True or False)
o conditionals
o filtering criteria
o command options

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/pun/sys/dashboard/
https://hpcondemand.nih.gov/pun/sys/dashboard/

Python Data Types, Loops and lterators

e Data frames
e |ists

® Arrays

e Tuples

e Range

e Dictionaries

|dentifying Data Type and Structure in Python

The command type can be used to identify data types and structures in Python.
type (100)
This will return int for integer as 100 is an integer.

int

type(3.1415926)
This will return float as 3.1415926 has decimals.

float

type("bioinformatics")
This will return str for string as the word bioinformatics is a text string.
str

Variable Assignments

In Python, variables are assigned to values using "=".

testl score=100
testl score

Bioinformatics Training and Education Program

Python Data Types, Loops and lterators

100

mole=6.02e23
mole

6.02e+23

btep _class="Python Introductory Education Series"
btep class

'"Python Introductory Education Series'

The command type (btep_class) will return str because the variable btep_class is a text
string.

type(btep_class)

str

It is also possible assign a variable to another variable.

test2 score=testl score
test2 score

100

Change the value of test2_score to 60.

test2 score=60

test2 score

60

Bioinformatics Training and Education Program

Python Data Types, Loops and lterators

testl score

100

print("The student got a", test2 score, "on exam 2.")

Definition

Immutable objects in Python are variables whose values cannot be changed after they have been created. This
includes integers, floats, strings, and tuples. In the above example, test2_score was initially set to test1_score.
However, upon changing test2_score to 60, the value of test1_score does not change. Thus, demonstrating that
integers are immutable.

Conditionals

Conditionals evaluate the validity of certain conditions and operators include:

® ==:js equal to?

® > s greater than?

® >=:js greater than or equal to?
® <:isless than?

® <=:is less than or equal to?

® !=:is not equal to?

® and

®or

The command below will evaluate if test1_score is equal to test2_score.

testl score==test2 score

Because test1_score is 100 and test2_score is 60, the result from the above command will be
false.

False

If the expression of gene A is 25 and gene B is 100 as obtained from bulk RNA
sequencing, how would you test if gene B has a higher expression value than gene
A using conditionals in Python?

{{Sdet}}{{Ssum}}Answer{{Esum}}

Bioinformatics Training and Education Program

Python Data Types, Loops and lterators

gene a=25
gene_ b=100
gene_b > gene_a

True

{Edet}}

If statements are also conditionals and are used to instruct the computer to do something if a
condition is met. To have the computer do something when the condition is not met, use elif
(elseif) or else.

The command below will accomplish the following:

® Use if to evaluate if test1_score>=90, if yes then indicate using print that someone got
an Al

® Use elif (which stands for else if) to evaluate if test2_score>=80, if yes then use the
print statement to indicate that someone does not have to take the final!

* Finally, e1se will print for all other conditions that someone failed the class.

if testl score>=90:

print("You get an A!")
elif test2 score>=80:

print("You don't have to take the finall!")
else:

print("You failed the class!")

Tip

The print command can be used to print variables by not enclosing in quotes.

A ""isrequired after if, elif, and else. The command(s) to execute when conditions are met
are placed on a separate line but tab indented.

Data Frames

Often, in bioinformatics and data science, data comes in the form of rectangular tables, which
are referred to as data frames. Data frames have the following property.

e Study variable(s) form the columns
e Observation(s) form rows

Bioinformatics Training and Education Program

Python Data Types, Loops and lterators

e Can have a mix of data types (strings and numeric) between columns but each column/
study variable can contain only one data type
e | imited to one value per cell

A popular package for working with data frames in Python is Pandas (https:/
pandas.pydata.org).

To load a Python package use the import command followed by the package name (ie.
pandas).

import pandas

Sometimes the name of the package is long, so users might want to shorten it by creating an
alias. The alias pd is often used for the Pandas package. To add an alias, just append as
followed by the user defined alias to the package import command.

import pandas as pd

Importing Tabular Data with Pandas

This exercise will use the read_csv function of Pandas to import a comma separated value
(csv) file called hbr_uhr_chr22 rna_seq_counts.csv, which contains RNA sequencing
gene expression counts from the Human Brain Reference (hbr) and Universal Human
Reference (uhr) study (https.//rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/).

hbr_uhr_chr22 counts=pandas.read csv("./hbr_uhr_chr22 rna_seq_counts

Note

If a Python package was imported using an alias (ie. pd for Pandas) then use the alias to call the package. For
instance, pd.read_csv rather than pandas.read_csv when the pd alias is used for Pandas.

Take note of the way the csv import command is constructed. First the user specifies the name
of package (ie. pandas) and then the function within the package (ie. read_csv). The package
name and function name is separated by a period.

Next, use type to find out the data type or structure for hbr_uhr_chr22_counts.

type(hbr_uhr_chr22 counts)

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/

Python Data Types, Loops and lterators

pandas.core.frame.DataFrame

Take a look a the first few rows of hbr_uhr_chr22_counts.

hbr_uhr_chr22_counts.head()

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam

0 u2 0 0 0 0 0 0
1 CU459211.1 0 0 0 0 0 0
2 CU1047871 0 0 0 0 0 0
3 BAGES 0 0 0 0 0 0
4 ACTR3BP6 0 0 0 0 0 0

Figure 1. Example of a data frame.

Because hbr_uhr_chr22 counts is a Pandas data frame, it is possible to append one of the
many Pandas commands to it. For instance, the head function was appended to display the
first five rows of hbr_uhr_chr22_counts. The data frame name and function is separated by a
period. This is perhaps one of the most appealing aspects of Python syntax. Note that the head
function was followed by (). If the parentheses is blank, then by default the first five lines will be
shown. There will be more examples of the Pandas head function in a subsequent lesson.

Lists and Tuples

Lists and tuples are one dimensional collections of data. The tuple is an immutable list, in which
the elements cannot be modified. However, lists are mutable.

To create a list, enclose the contents in square brackets.

sequencing_list=["whole genome", "rna", "whole exome"]

To create a tuple, enclose the contents in parentheses.

sequencing_tuple=("whole genome", "rna", "whole exome")

Lists and tuples are indexed and can contain duplicates. The first item in a list or tuple has an
index of O (Python uses a 0 based indexing), the second item has an index of 1, and the last
item has an index of n-1 where n is the number of items. Indices can be used to recall items in a
list or tuple.

Bioinformatics Training and Education Program

Python Data Types, Loops and lterators

sequencing_list[1]

rna

What if users wanted to extract the first two items in sequencing list?

sequencing list[0:2]

['whole genome', 'rna']
But will the following work?
sequencing list[0,1]
No, there is an error. More on this in section that covers loops and iterators.

TypeError Traceback (most recent cal
Cell In[61l], line 1
----> 1 sequencing list[0,1]

TypeError: 1list indices must be integers or slices, not tuple

List versus tuples (mutable versus immutable)

sequencing list[1l]="single cell RNA"

sequencing_list

['whole genome', 'single cell RNA', 'whole exome']

sequencing_tuple[l]="single cell RNA"

TypeError Traceback (most recent cal
Cell In[48], line 1

Bioinformatics Training and Education Program

Python Data Types, Loops and lterators

----> 1 sequencing tuple[l]="single cell RNA"

TypeError: 'tuple' object does not support item assignment

Adding and removing from a list

Suppose there is a list called states.

states=["florida", "alabama", "wisconsin", "tennessee"]

To add another state as the last entry in the list, used the append attribute for a list.

states.append("kentucky")
states

['florida', 'alabama', 'wisconsin', 'tennessee', 'kentucky']

To remove an item from a list, use remove attribute.

states.remove("wisconsin")
states

['florida', 'alabama', 'tennessee', 'kentucky']

The remove attributes removes the first occurrence of an item from a list. See https://
www.w3schools.com/python/python_lists_remove.asp (https://www.w3schools.com/python/
python_lists_remove.asp) for methods on removing items from a list by index.

To add multiple items at the end of a list, use the extend attribute.

states.extend(["texas", "missouri"])
states
['florida', 'alabama', 'tennessee', 'kentucky', 'missouri', 'texas',

Making a Copy of a List

Suppose there is a list called 11ist1 that contains the following numbers.

Bioinformatics Training and Education Program

https://www.w3schools.com/python/python_lists_remove.asp
https://www.w3schools.com/python/python_lists_remove.asp
https://www.w3schools.com/python/python_lists_remove.asp
https://www.w3schools.com/python/python_lists_remove.asp
https://www.w3schools.com/python/python_lists_remove.asp

Python Data Types, Loops and lterators

listl=[1,2,3,4,5]
listl

Next, create copy of list1 was made and assigned to variable list2.

list2=1istl
list?2

Then insert O as the first item in list2.

list2.insert(0,0)
list2

When assigning list2 to list1 using =, Python will point list2 to the values stored in list1 (ie. list1
and list2 are referencing the same list). Because lists are mutable, the changes to list2 are
reflected in list1 as well.

Set list1 back to [1,2,3,4,5].

listl=[1,2,3,4,5]

Next, use the deepcopy module from the Python package copy to make a copy of list1 called
list2. To call a module within a Python package follow this general syntax of package .module.
For instance, to call deepcopy use copy.deepcopy.

import copy
list2=copy.deepcopy(listl)
list2

Bioinformatics Training and Education Program

Python Data Types, Loops and lterators

Set the first element of list2 to 0.

list2.insert(0,0)
list2

Finally, recall list1.

listl

[1, 2, 3, 4, 5]

There actually two types of copies in Python. One is called shallow copy and the other is deep
copy. To create a shallow copy of list1 and store it as list2, just do 1ist2=1listl.copy().
However, caution still need to taken when shallow copying as this could also lead to unintended
changes to the original variable. To create an independent copy of a variable, use deep copy.
See https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/# (https://
www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#) to learn more.

Deep Copy
Mandy Mandy
Ron Ron
Jacob Jacob
Bayek Bayek
Bag 1 Bag 2

Source: https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/# (https://
www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#)

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#

Python Data Types, Loops and lterators

Shallow Copy

| Mandyl
| Ron |
|Jacob |
|Bayek |
Bag 1 Bag 2

Source: https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/# (https://
www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#)

Instructions for modifying Python lists can be found at the W3 school (https./
www.w3schools.com/python/python_lists.asp)

Arrays

Given a list of numbers, it is difficult to perform mathematical operations. For instance
list of numbers=[1,2,3,4,5]

Multiplying list_of_numbers by 2 will duplicate this list. However, multiplying a list of numbers by
two should double every number in that list. Thus, the expected result is [2,4,6,8,10]. To resolve
this, convert the list to an array using the package numpy (https.//numpy.org).

list_of numbers*2

Use the array function of numpy to convert list_of_numbers to an array called
array_of_numbers.

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://numpy.org
https://numpy.org

Python Data Types, Loops and lterators

import numpy

array_of _numbers=numpy.array(list_of_ numbers)
array_of numbers*2

array([2, 4, 6, 8, 10])

The array of numbers shown here is a one dimensional array. A special case of arrays is the
matrix, which is two dimensional. Like data frames, matrices store values in columns and rows.
Matrices are encountered in computation and are used to store numeric values (see here for
more on matrices (https.//youtu.be/lZcyZHomFQc)).

Loops and lterators

Loops and iterators are great for performing repeated tasks. In Python, users will see for and
while loops. To learn about loops, first recreate sequencing list.

sequencing list=["whole genome", "rna", "whole exome"]

Then add a few more items the sequencing_list. To add multiple items to Python lists, just use
the .extend attribute.

sequencing list.extend(["chip", "atac"])
sequencing_list

['whole genome', 'rna', 'whole exome', 'chip', 'atac']

The following for loop will print elements with index 2, 3, and 4 from sequencing_list and can
be explained as follows.

® for is a type of loop to iterate over repetitive tasks in Python. To use the for loop,

o An index is needed to keep track of where in the repetitive task the loop is in. For
instance, this index can inform the loop which item in a list that it is currently
performing a task on. The index can be named anything. This example will use i as
it is very common across computing.

Bioinformatics Training and Education Program

https://youtu.be/IZcyZHomFQc
https://youtu.be/IZcyZHomFQc
https://youtu.be/IZcyZHomFQc

Python Data Types, Loops and lterators

o Next, the loop needs to know the starting and ending point for the repetitive task.

The example below uses a range of 2 through 5. Thus, the index 1 will initially take
on the value of 2, then increment by 1 in each pass of the loop and stop when i
equals 5.
o A":" follows for loop line. The action for the for loop is written in the next line but
tab indented. In the example below, the action is the print the ith item in the
sequencing_list.

for i in range(2,5):
print(sequencing list[i])

whole exome
chip
atac

The start and end in a for loop does not necessarily need to be numeric in Python. The
following will loop through sequencing_list and print each element. In the loop below,
sequence_type is set as the index and the loop will print each element of
sequencing_list.

for sequence type in sequencing list:
print(sequence type)

whole genome
rna
whole exome
chip
atac

There is also the while loop. The example below will print the first four items in sequencing list
using while. Just like the for loop, the while loop needs an index to help it keep track of
where it is at in the task. Here, the index is i and it is initiated with the value 0 outside the while
loop. Next, the while loop will proceed to print the ith item in sequencing_list aslong as i
is less than 4. The index i is incremented by 1 in the while loop.

i=0

while i < 4:
print(sequencing list[i])
i=i+1

Bioinformatics Training and Education Program

Python Data Types, Loops and lterators

whole genome
rna
whole exome
chip

What would happen if i was initialized to 4 and the while loop would iterate until i is equal O.

i=4

while i >= 0:
print(sequencing list[i])
i=i-1

The above while loop will just print the items in sequencing_list in reverse order.

atac
chip
whole exome
rna
whole genome

A for loop can be used to solve the issue why sequencing_1ist[0,1] did not work to
subset the first and second items in sequencing list. In the command construct below,
to_subset will hold a list containing O and 1, which correspond the indices for the first and
second item in sequencing_list. In the following line, sequencing_1list[i] will subset the ith
item in sequencing_list but only those indices included in to_subset, which the for loop will
iterate through.

to_subset=[0,1]
[sequencing 1ist[i] for i in to_subset]

['whole genome', 'rna']

To subset the first and second item in sequencing_list, the map command can also be
used.

Definition

"The map () function is used to apply a given function to every item of an iterable, such as a list or tuple, and returns
a map object (which is an iterator)." -- https://www.geeksforgeeks.org/python-map-function/?ref=Ilbp (https://
www.geeksforgeeks.org/python-map-function/?ref=1bp)

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/python-map-function/?ref=lbp
https://www.geeksforgeeks.org/python-map-function/?ref=lbp
https://www.geeksforgeeks.org/python-map-function/?ref=lbp
https://www.geeksforgeeks.org/python-map-function/?ref=lbp

Python Data Types, Loops and lterators

list(map(sequencing list. getitem , [0,1]))

['whole genome', 'rna']

What if the user wanted to add the word "sequencing" at the end of each sequencing type in

sequencing list? To do this, the map function can be used to iterate through

sequencing list and lambda can be used to execute the function that adds " sequencing"
to the end of every item in sequencing_list.

Definition

"A lambda function is a small anonymous function. A lambda function can take any number of arguments, but can

only have one expression." -- https://www.w3schools.com/python/python_lambda.asp (https.//www.w3schools.com/
python/python_lambda.asp)

In the example below, 1ambda is used to define a function that adds " sequencing" to whatever

value is passed onto the variable s1. In this instance, sequencing_list, the last argument in the
map function is passed to s1.

list(map(lambda sl: sl+" sequencing", sequencing_ list))

['whole genome sequencing',

'rna sequencing', 'whole exome sequencin
"atac sequencing']

Another example of combining map and lambda to iterate over a task is shown in the
commands below where every entry in numbers_list will be square.

numbers 1listl=[1,2,3,4,5,6]
list(map(lambda j: j**2, numbers 1istl))

[1, 4, 9, 16, 25, 36]

An alternative for squaring every element in numbers_1listl is to use list comprehension
(https://www.w3schools.com/python/python_lists_comprehension.asp), which will

essentially
allow the use of one liner for loop to complete the task.

Bioinformatics Training and Education Program

https://www.w3schools.com/python/python_lambda.asp
https://www.w3schools.com/python/python_lambda.asp
https://www.w3schools.com/python/python_lambda.asp
https://www.w3schools.com/python/python_lambda.asp
https://www.w3schools.com/python/python_lists_comprehension.asp
https://www.w3schools.com/python/python_lists_comprehension.asp
https://www.w3schools.com/python/python_lists_comprehension.asp
https://www.w3schools.com/python/python_lists_comprehension.asp

Python Data Types, Loops and lterators

numbers 1listl=[1,2,3,4,5,6]
numbers 1listl=1ist(j**2 for j in numbers_ listl)
numbers_1listl

[1, 4, 9, 16, 25, 36]

Dictionaries

Dictionaries are key-value pairs and these are encountered as ways to specify options in some
Python packages.

my dictionary={"apples":"red","oranges":"orange", "bananas":"yellow"}

Subsetting a Dictionary

There are several methods for subsetting a dictionary. See https://www.geeksforgeeks.org/get-
a-subset-of-dict-in-python/ (https.//www.geeksforgeeks.org/get-a-subset-of-dict-in-python/).

First, just enclosing one of the keys in square brackets will retrieve its associated value.

my_dictionary['bananas']

yellow

A for loop can be used to subset a dictionary as well. In the example below, a new dictionary
called apples_bananas is created just to hold the key and value pairs for apples and
bananasin my_dictionary. To do this, follow the steps below.

1. Create any variable with a list that contains dictionary keys to extract. In this example, the
variable will be named keys to_extract and the list will contain apples and bananas,
which are keysinmy_dictionary.

2. Next, create an empty dictionary called apples_bananas by setting to empty {}.

3. Inthe for loop, iterate through keys_to_extract using the variable k to keep track of
progress. If kisinmy_dictionary, then use the dictionary's .update attribute to write
itinto apples_bananas. apples_bananas can be written to because Python
dictionaries are mutable.

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/get-a-subset-of-dict-in-python/
https://www.geeksforgeeks.org/get-a-subset-of-dict-in-python/
https://www.geeksforgeeks.org/get-a-subset-of-dict-in-python/

Python Data Types, Loops and lterators

keys to _extract = ['apples', 'bananas']
apples_bananas={}
for k in keys to extract:
if k in my_dictionary:
apples _bananas.update({k: my dictionary[k]})

apples_bananas

{"apples': 'red', 'bananas': 'yellow'}

The above for loop can be condensed to a one liner using dictionary comprehension (https://
www.geeksforgeeks.org/python-dictionary-comprehension/).

keys to_extract = ['apples', 'bananas']
apples_bananas={k: my dictionary[k] for k in keys to extract if k in

An alternative to using a for loop to extract the key and values for apple and bananas in
my_dictionary is Python's zip and map commands.

Definition

"The zip() function in Python combines multiple iterables such as lists, tuples, strings, dict etc, into a single iterator of
tuples. Each tuple contains elements from the input iterables that are at the same position." -- https://
www.geeksforgeeks.org/zip-in-python/ (https.//www.geeksforgeeks.org/zip-in-python/)

To demonstrate z1ip, consider the lists below.

al=[1,2,3]
a2=[3,4,5]
list(zip(al,a2))

A list where the first, second, and third items in al and a2 are paired together.

[(1, 3), (2, 4), (3, 5)]

Next, recall that the map command takes an iterable item like a list and performs a certain
function with it.

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/python-dictionary-comprehension/
https://www.geeksforgeeks.org/python-dictionary-comprehension/
https://www.geeksforgeeks.org/python-dictionary-comprehension/
https://www.geeksforgeeks.org/python-dictionary-comprehension/
https://www.geeksforgeeks.org/zip-in-python/
https://www.geeksforgeeks.org/zip-in-python/
https://www.geeksforgeeks.org/zip-in-python/

Python Data Types, Loops and lterators

keys to _extract = ['apples', 'bananas']
list(map(my_dictionary.get,keys to extract))

The above commands will return a list with values for apples and bananas in my_dictionary
where the map function will use the dictionary's . get attribute to retrieve values for keys list in
keys to_extract.

['red', 'yellow']

Given that zip will perform element-wise combination on iterable items such as list, it can be
used to generate key and value pairs from keys _to_extract and my_dictionary using the
command below where dict is used to specify creation of a dictionary.

dict(zip(keys_to_extract, map(my _dictionary.get, keys to _extract)))

{'apples': 'red', 'bananas': 'yellow'}

Updating a dictionary

Use the a dictionary's update attribute to add values at the end.

my_dictionary.update({'pears': 'green'})

The code below will also append the pear and green value pairtomy_dictionary.

my dictionary['pears']="green'

{'apples': 'red', 'oranges': 'orange', 'bananas': 'yellow', 'pears':
To add multiple items to the end of a dictionary, use .update.

my dictionary.update({'avocado': 'green', 'kiwis': 'brown'})

{'apples': 'red', 'oranges': 'orange', 'bananas': 'yellow', 'pears':

The dictionary's . pop attribute can be used to remove an item.

Bioinformatics Training and Education Program

Python Data Types, Loops and lterators

my dictionary.pop('pears')

The result of . pop is that the value for the removed dictionary key is returned.

green

Recallmy_dictionary to make sure pears was removed.

{'apples': 'red', 'oranges': 'orange',6 'bananas': 'yellow', 'avocado

To delete multiple items, just create a list of keys to remove and assign this list to a variable.
Below, keys to _remove will be used to store avocado and kiwis, which are keys from
my_dictionary toremove.

keys to remove=['avocado', 'kiwis']
list(map(my _dictionary.pop, keys to remove))

The output for the above command is the values for the keys in my_dictionary that were
removed.

['green', 'brown']

Recallmy_dictionary to make sure avocado and kiwi was removed.

{'apples': 'red', 'oranges': 'orange',6 'bananas': 'yellow'}

Write a for loop to print "today is a work day" if the day of the week is Monday,
Tuesday, Wednesday, or Thursday". If it is Friday, print "It is almost the weekend".
For Saturday, print "Happy weekend!" and Sunday, print "Monday will come whether
you like it or not. Hint: use a list that contains the days of the week.

{{Sdeth}{{Ssum}}Answer{{Esum}}

for days in days_of_ week:
if days=="Friday":

print(days, ":", "It is almost the weekend.")
elif days=="Saturday":
print(days, ":", "Happy weekend!")
elif days=="Sunday":
print(days, ":", "Monday will come whether you like it or no

Bioinformatics Training and Education Program

Python Data Types, Loops and lterators

else:
print(days, ":", "Today is a work day.")

{{Edet}}

Bioinformatics Training and Education Program

Data Wrangling using Python

Data Wrangling using Python

Learning Objectives

After this lesson, participants will

® Be able to import tabular data into Python using Pandas
e Be able to explore and modify tabular data through various data wrangling approaches,
including
o retrieving dimensions
o subsetting
o obtaining descriptive statistics
o replacing column names
o performing mathematical operations
o filtering
o removing and adding columns

Importing Tabular Data using Pandas

Pandas (https.//pandas.pydata.org) is a popular Python package used to work with tabular
data.

To work with Pandas, first activate it using the import command.
import pandas

Sometimes the name of a package is long, so users might want to shorten it by creating an
alias. The alias pd is often used for Pandas. To add an alias, just append as followed by the
user defined alias to the package import command. If importing a package using an alias, then
the package needes to be called using the assigned alias. For instance, if pd was used to alias
Pandas, then use pd.read_csv toimport a csv file.

import pandas as pd

This exercise will use the read_csv function of Pandas to import a comma separated value
(csv) file called hbr_uhr_chr22 rna_seq_counts.csv, which contains RNA sequencing
gene expression counts from the Human Brain Reference (hbr) and Universal Human
Reference (uhr) study (https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/). This
data will be stored as the variable hbr_uhr_chr22 counts.

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/

Data Wrangling using Python

hbr _uhr chr22 counts=pandas.read csv("./hbr_uhr _chr22 rna_seq counts

Take a look at the first few rows of hbr_uhr_chr22_ counts by appending the head attribute
to hbr_uhr_chr22 counts.

hbr_uhr_chr22 counts.head()

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam

0 U2 0 0 0 0 0 0
1 CU4592111 0 0 0 0 0 0
2 CU1047871 0 0 0 0 0 0
3 BAGES5 0 0 0 0 0 0
4 ACTR3BP6 0 0 0 0 0 0

Figure 1: The first five rows of hbr_uhr_chr22_counts. The first column contains genes and
the subsequent columns contain gene expression counts for each of the samples. The left most
column of this data frame contains the row indices.

Because hbr_uhr_chr22 counts is a Pandas data frame
(type(hbr_uhr_chr22 counts), see lesson 2), it is possible to append one of the many
Pandas commands to it. For instance, the head function was appended to display the first five
rows of hbr_uhr_chr22 counts. The data frame name and function is separated by a
period. This is perhaps one of the most appealing aspects of Python syntax. Note that the head
function was followed by (). If the parentheses are blank, then the default first five lines will be
shown. To view the first 10 rows of hbr_uhr_chr22_counts do the following.

hbr_uhr_chr22 counts.head(10)

Bioinformatics Training and Education Program

Data Wrangling using Python

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam

0 u2 0 0 0 0 0 0
1 CU4592111 0 0 0 0 0 0
2 CuU1047871 0 0 0 0 0 0
3 BAGE5 0 0 0 0 0 0
4 ACTR3BP6 0 0 0 0 0 0
5 5_8S_rRNA 0 0 0 0 0 0
6 AC137488.1 0 0 0 0 0 0
7 AC137488.2 0 0 0 0 0 0
8 CuU0135441 0 0 0 0 0 0
9 CT867976.1 0 0 0 0 0 0

Figure 2: Include an integer inside the parentheses of pandas.dataframe.head () function
to view a specific number of lines in a tabular dataset.

The function tail can be used to view by default the bottom five lines of a tabular dataset.
Similar to head, the number of lines shown can be customized by specifying an integer inside
the parentheses.

hbr _uhr_chr22 counts.tail()

Get Dimensions of a Data Frame

Pandas data frames have a function shape that informs of the number of rows and number of
columns in a data frame (in other words the dimensions of a tabular dataset). To get the
dimensions for hbr_uhr_chr22_ counts, do the following

hbr_uhr_chr22 counts.shape

The hbr_uhr_chr22 counts data frame has 1335 rows and 7 columns according to the
output below.

(1335, 7)

Note

The elements in tabular data can be referred to by their row and column positions.

Bioinformatics Training and Education Program

Data Wrangling using Python

The size function returns the number elements

hbr_uhr_chr22 counts has 1335 rows and 7 columns,

elements (or 9345).

in a data frame. For instance,
which means that it has 1335 times 7

To view more information regarding a data frame including column headers and data type in

each column use the following.

hbr_uhr_chr22 counts.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1335 entries, 0 to 1334
Data columns (total 7 columns):

Column Non-Null Count Dtype
0 Geneid 1335 non-null object
1 HBR_1.bam 1335 non-null int64
2 HBR_2.bam 1335 non-null int64
3 HBR_3.bam 1335 non-null int64
4 UHR 1.bam 1335 non-null int64
5 UHR _2.bam 1335 non-null int64

6 UHR 3.bam 1335 non-null int64
dtypes: int64(6), object(1l)
memory usage: 73.1+ KB

To get descriptive statistics for a data frame use the describe attribute.

hbr_uhr_chr22 counts.describe()

HBR _1.bam HBR_2.bam HBR_3.bam

UHR_1.bam UHR_2.bam I

count 1335.000000 1335.000000 1335.000000 1335.000000 1335.000000 !

mean 29.530337 36.264419 32.084644

50.694382 33.419476 ‘

std 99.177874 120.617793 108.237694 197.575081 122.598310
min 0.000000 0.000000 0.000000 0.000000 0.000000 (
25% 0.000000 0.000000 0.000000 0.000000 0.000000 (
50% 0.000000 0.000000 0.000000 1.000000 1.000000

75% 8.000000 10.000000 9.000000 13.000000 12.000000
max 1532.000000 1797.000000 1637.000000 4027.000000 2406.000000

The above descriptive statistics table for hbr_uhr_chr22 counts has too many decimal

places. Append the round attribute to include only one decimal.

Bioinformatics Training and Education Program

Data Wrangling using Python

hbr _uhr _chr22 counts.describe().round(decimals=1)

HBR_1.bam HBR_2.bam HBR_3.bam UHR _1.bam UHR_2.bam I

count 1335.0 1335.0 1335.0 1335.0 1335.0 .
mean 29.5 36.3 32.1 50.7 33.4 ‘
std 99.2 120.6 108.2 197.6 122.6 f
min 0.0 0.0 0.0 0.0 0.0 (
25% 0.0 0.0 0.0 0.0 0.0 (
50% 0.0 0.0 0.0 1.0 1.0 '
75% 8.0 10.0 9.0 13.0 12.0

max 1532.0 1797 .0 1637.0 4027.0 2406.0

Row Indices/Names

Figure 3 shows the first 10 rows of hbr_uhr_chr22 counts. The left most column, which
contains labels starting with "0" is referred to as the row indices or row names. Users can
specify a column in the dataset as the row indices or row names using the index_col option in
read_csv. For instance, the hbr_uhr_chr22 rna_seq counts.csv dataset could be
imported with gene names as the row indices. To do this, add the index col=0 option to
read_csv. Gene names in hbr_uhr_chr22 rna_seq_counts.csv is the first column and is
denoted as column "0" in Python. Thus, setting index_co1=0 ensures that the gene names will
be set as the row indices or row names (see Figure 3).

hbr_uhr_chr22 counts_l=pandas.read_csv("./hbr_uhr_chr22 rna_seq_coun

Bioinformatics Training and Education Program

Data Wrangling using Python

HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam

Geneid
U2 0 0 0 0 0 0
CU459211.1 0 0 0 0 0 0
CcuU1047871 0 0 0 0 0 0
BAGES5 0 0 0 0 0 0
ACTR3BP6 0 0 0 0 0 0
ACR 0 0 0 0 2 0
AC002056.5 0 0 0 0 0 0
AC002056.3 0 0 0 0 0 0
RPL23AP82 4 59 54 32 23 34
RABL2B 74 62 54 68 50 47

Figure 3. The index_col=0 option in pandas.read_csv sets the gene names as row names
in the imported data frame.

Data Wrangling

Subsetting

To subset a column of a pandas dataframe, the bracket notation followed by the column name
can be used. For instance, to extract the Geneid column in hbr_uhr_chr22 counts do the
following.

hbr_uhr_chr22 counts["Geneid"]

To subset multiple columns using bracket notation, just inlcude a list of column names to
subset.

hbr _uhr _chr22 counts[["Geneid", "UHR 3.bam"]]

The command below will subset the expression counts for the RABL2B gene.

hbr_uhr_chr22 counts[hbr_uhr_chr22 counts["Geneid"]=="RABL2B"]

Bioinformatics Training and Education Program

Data Wrangling using Python

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR _1.bam UHR .
1334 RABL2B 74 62 54 68 !

The "|" symbol can be used as the "or" operator so to also subset the counts for RPL23AP82 use
the following.

hbr_uhr_chr22 counts[(hbr_uhr_chr22 counts["Geneid"]=="RABL2B") | (hl

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR _1.bam [
1333 RPL23AP82 41 59 54 32
1334 RABL2B 74 62 54 68

Alternatively, use the isin function and provide a list of genes to retrieve.

hbr_uhr_chr22 counts[hbr_uhr_chr22 counts["Geneid"].isin(["RABL2B",

Use "." to reference a column. For instance, the Geneid columnin hbr_uhr_chr22 counts.

hbr_uhr_chr22 counts.Geneid

Applying the "." notation to subset the expression for a specific gene.

hbr _uhr_chr22 counts[hbr_uhr_chr22 counts.Geneid=="RABL2B"]

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_.
1334 RABL2B 74 62 54 68 50

Subsetting by Integer Positions

Given that the elements in a data frame can be referenced by its row and column positions,
what would be the approach for extracting the element in row 60 and column 5?7 The solution is
the command below, which returns a result of 2. The row and column numbers are enclosed in
"[1" and separated by a comma.

hbr_uhr _chr22 counts.iloc[60,5]

Bioinformatics Training and Education Program

Data Wrangling using Python

2

The above method for subsetting the element in row 60 and column 5 of
hbr_uhr_chr22 counts is great if the goal is to extract the value and do numeric operation
on it. But what if the user wants to return the element along with the corresponding gene in data
frame format?

To do this, enclose the row and column indices to extract in their own inner set of square
brackets as shown below. Column 0, which contains the gene name is also included in the
brackets containing the column indices of interest.

hbr_uhr_chr22 counts.iloc[[60],[0,5]]

Geneid UHR_2.bam
60 CCT8L2 2

Pandas offers different approaches for subsetting rectangular data tables. One method is
iloc.

iloc is a "purely integer-location based indexing for selection by position" -- https://
pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html# (https.//
pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#). The row and
column positions are enclosed in "[]".

iloc allows for retrieval of elements in multiple rows and columns. For instance, the following
can be used to retrieve the elements in rows 60 and 65 and columns O, 4, 5, and 6 in
hbr_uhr_chr22 counts. Note that the row and column positions are enclosed in an outer set
of "[]". Within the outer set of "[]" the first set of "[]" enclose a comma separated list of row
positions while the second set of "[]" enclose a comma separated list of column positions.

hbr_uhr_chr22_counts.iloc[[60,65]1,[0,4,5,6]1]

Geneid UHR_1.bam UHR_2.bam UHR_3.bam
60 CCT8L2 1 2 0
65 SLC25A15P5 2 2 4

Note

When working with tabular data, the covention is to specify the row first then the column when referring to or
subsetting elements from the table.

Bioinformatics Training and Education Program

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#

Data Wrangling using Python

To get the first three rows of hbr_uhr_chr22_counts do the following. Note that it retrieves
the rows with indices O, 1, and 2.

hbr_uhr_chr22 counts.iloc[:3]

Geneid HBR _1.bam HBR_2.bam HBR_3.bam UHR _1.bam UHR_2.bar

uz2 0 0 0 0 0
1 Cu459211.1 © 0 0 0 0
2 culoe4787.1 0O 0 0 0 0

What will be the output for hbr_uhr_chr22 counts.iloc[[3],:17
{{Sdet}}{{Ssum}}Solution{{Esum}}
The row with an index of 3 will be retrieved.

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bat
3 BAGES 0 0 0 0 0

{{Edet}}

Subsetting using column names

Panda's loc function allows for subsetting by row or column names. For instance, to retrieve

the Geneid column, do the following. The ":" denotes get every row.

hbr_uhr_chr22 counts.loc[:,['Geneid']]

Geneid

u2
Cu459211.1
Cu104787.1
BAGES
ACTR3BP6

B W N RO

1330 ACR

1331 AC002056.5
1332 AC002056.3
1333 RPL23AP82
1334 RABL2B

Bioinformatics Training and Education Program

Data Wrangling using Python

To retrieve the counts for the gene SLC25A15P5, use the following where SLC25A15P5 is the
subsetting criteria, where

® hbr_uhr_chr22 counts.loc[:, 'Geneid'] extracts the Geneid column.
e =="SLC25A15P5" will filter out the row with the SLC25A15P5 gene.

hbr_uhr_chr22 counts[hbr_uhr_chr22 counts.loc[:, 'Geneid']=="SLC25A15I|

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_.
65 SLC25A15P5 0 0 0 2 '

To retrieve counts for more than one gene, enclose the genes of interest in a list and use the
isin function to filter out the rows containing the genes in the list.

hbr _uhr _chr22 counts[hbr_uhr _chr22 counts.loc[:, 'Geneid'].isin(["SLC:

Geneid HBR _1.bam HBR_2.bam HBR_3.bam UHR _1.bam UHR .
60 CCT8L2 0 0 0 1 ‘
65 SLC25A15P5 0 0 0 2

To find all of the SLC genes in hbr_uhr_chr22 counts, the following could be used where
str.startswith searches for text that starts a pattern (ie. "SLC"). Other options for pattern
matching include str.endwith and str.contains.

hbr_uhr_chr22 counts.loc[hbr_uhr_chr22 counts.loc[:, 'Geneid'].str.st:

Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR _1.bam I
54 SLC9B1P4 0 0 0 0
65 SLC25A15P5 0 0 0 2
109 SLC25A18 100 111 74 6
181 SLC25A1 32 50 41 226
249 SLC9A3P2 0 0 0 0
268 SLC7A4 19 25 14 9
494 SLC2A11 54 63 46 28
726 SLC35E4 18 32 26 21
783 SLC5A1 0 0 0 0
795 SLC5A4 7 12 5 13
955 SLC16A8 9 13 11 11

Bioinformatics Training and Education Program

Data Wrangling using Python

1046 SLC25A17 39 39 40 119
1099 SLC25A5P1 0 0 1 0

Replacing Column Names

To view the column headings of a data frame use the column function. For instance,

hbr_uhr_chr22_counts.columns

HBR_1.bam
HBR_2.bam
HBR_3.bam
UHR 1.bam
UHR 2 .bam
UHR 3 .bam

The str.replace function can be used to replace a string with something else. Here, it used
to remove ".bam" from the sample names in the column heading.

hbr_uhr_chr22_counts.columns=hbr_uhr_chr22 counts.columns.str.replact

Mathematical Operations on Data Frames and Filtering

Pandas enables mathematical operations on data frames. For instance, one might want to sum
the total counts across all samples for each gene. The sum function can be used to do this.
Setting axis=1 will sum up the counts for each row or gene. Because the Geneid column is a
string, it is necessary to first subset only the numeric columns.

hbr_uhr_chr22_counts.loc[:, ['HBR_1', 'HBR 2', 'HBR_ 3', 'UHR_1', 'UHI

Below, genes with zero counts across all samples are removed from hbr_uhr_chr22 counts
and stored as hbr_uhr_chr22_counts_filtered. To accomplish this set
hbr_uhr_chr22_counts.loc[:, ['HBR_1', "HBR_2", "HBR_3", "UHR_1',
"UHR_2', 'UHR_3']].sum(axis=1)!=0 and use as a filter criteria. Essentially, this will keep
the genes whose expression across samples is not O.

hbr_uhr _chr22 counts_filtered=hbr_uhr_chr22 counts.loc[hbr_uhr _chr22

Bioinformatics Training and Education Program

Data Wrangling using Python

Removing and Adding Columns to a Data Frame

This exercise will use the differential gene expression analysis table from the hbr and uhr study.

hbr _uhr_deg chr22=pandas.read csv("./hbr_uhr_deg chr22.csv")

The info () attribute will retrieve information regarding the hbr_uhr_deg_chr22 data frame,
which includes the column names.

hbr _uhr_deg chr22.info()

"pandas.core.frame.DataFrame'>
1335 entries,

Non-Null Count

1335 non-null
1335 non-null
1335 non-null
1335 non-null
971 non-null
971 non-null
971 non-null
971 non-null
971 non-null
971 non-null
639 non-null
639 non-null
1335 non-null
1335 non-null
1335 non-null
1335 non-null
1335 non-null
1335 non-null

<class
RangeIndex:
Data columns (total 18 columns):
Column

0 name

1 baseMean

2 baseMeanA
3 baseMeanB
4 foldChange
5 log2FoldChange
6 1fcSE

7 stat

8 PValue

9 PAd]

10 FDR

11 falsePos
12 HBR_1.bam
13 HBR_2.bam
14 HBR_3.bam
15 UHR_1.bam
16 UHR_2.bam
17 UHR _3.bam

dtypes: float64(17),

memory usage:

187.9+

object (1)
KB

0 to 1334

object

float64d
float64d
float64d
float64
float64d
float64d
float64d
float64d
float64d
float64
float64d
float64d
float64d
float64d
float64
float64d
float64

The hbr_uhr_deg chr22 table contains differential gene expression analysis results. Relevant

columns include:

® name. gene names

¢ log2FoldChange: the gene expression change between the two treatment groups

Bioinformatics Training and Education Program

Data Wrangling using Python

¢ PAd|: the adjusted p-value associated with statistical confidence of the expression
change
e The columns labeled with the sample names (ie. columns 12 through 17) are the

normalized gene expression counts

Use str.replace to remove ".bam" from the sample names in columns 12 through 17.

hbr _uhr _deg chr22.columns=hbr_uhr_deg chr22.columns.str.replace(".bai

To drop columns in a Pandas data frame, use the .drop function and specify the name(s) of
the column(s) to remove. The example below removes columns baseMean, baseMeanA,and
baseMeanB, however it does not overwrite the original data frame. To ovewrite, include the
inplace option and setitto True.

hbr _uhr _deg chr22.drop(columns=["baseMean", "baseMeanA", "baseMeanB"]

hbr _uhr _deg chr22.drop(columns=["baseMean", "baseMeanA", "baseMeanB"]

Subset the name, log2FoldChange, and PAdj columns in hbr_uhr_deg_chr22 and save to a new
data frame hbr_uhr_deg chr22 1.

hbr _uhr _deg chr22 1=hbr _uhr _deg chr22.loc[:,["name", "log2FoldChange

hbr_uhr_deg chr22 1.head()

name log2FoldChange PAdj
0 SYNGR1 -4.6 5.200000e-217
1 SEPT3 -4.6 4.500000e-204
2 YWHAH -2.5 4.700000e-191
3 RPL3 1.7 5.400000e-134
4 PI4KA -2.0 2.900000e-118

Next, add a column called "-log10PAdj" to hbr_uhr_deg_chr22_1, which will contain the
negative of log10 of the values in the PAdj column. "-log10PAd|" is used in volcano plots that
depict gene expression change versus statistical confidence. To calculate -log10PAd], the
package numpy will be used. Numpy (https.//numpy.org) enables scientific calculations.

import numpy

Bioinformatics Training and Education Program

https://numpy.org
https://numpy.org

Data Wrangling using Python

hbr uhr _deg chr22 1["-10gl@OPAdj"]=numpy.negative (numpy.logl@(hbr_uhr

Take a look at the first several lines of hbbr_uhr_deg_chr22_1

hbr uhr _deg chr22 1.head()

name log2FoldChange PAdj -loglOPAd]
0 SYNGR1 -4.6 5.200000e-217 216.283997
1 SEPT3 -4.6 4.500000e-204 203.346787
2 YWHAH -2.5 4.700000e-191 190.327902
3 RPL3 1.7 5.400000e-134 133.267606
4 PI4KA -2.0 2.900000e-118 117.537602

Other methods for adding new column to a Pandas data frame include insert and assign.

The final task for this lesson is to add a column that indicates whether a gene is up regulated,
down regulated, or has no change based on the log2FoldChange and PAd] values. The criteria
are as follows.

e PAdj >= 0.01: no change (marked as ns in the column)

¢ Absolute value of log2FoldChange <2: no change (marked as ns in the column)
¢ [og2FoldChange >= 2 and PAdj < 0.01: (up regulated)

e [og2FoldChange <=2 and PAdj < 0.01: (down regulated)

To code this in Python, the first step is to drop the NA values from the hbr_uhr_deg _chr22 1
using dropna with the axis option set to O to remove rows that contain NA and inplace setto
True to so that the original dataframe will be modified.

hbr_uhr_deg_chr22_1.dropna(axis=0, inplace=True)

Next, create a list called significance_criteria that contains the criteria shown above. In the
criteria list below, '&" is the Boolean for "and'. To calculate the absolute value of
log2FoldChange, numpy . absolute is used.

significance criteria=[(hbr_uhr _deg chr22 1["PAdj"]>=0.01),
(numpy.absolute (hbr_uhr_deg chr22 1["log2Foldl
(hbr_uhr_deg chr22 1["log2FoldChange"]1>=2) & (I
(hbr_uhr_deg chr22 1["log2FoldChange"]<=-2) &

Bioinformatics Training and Education Program

Data Wrangling using Python

Then, create a list called significance_status that indicates whether the criteria are ns (not
significant), up, or down. These statuses have to correspond to the order in which the criteria
were listed in significance_criteria.

significance_status=["ns","ns","up

, udownn]

Finally, numpy . select will be used to assign values to the significance column.

hbr_uhr_deg chr22 1["significance"]l=numpy.select(significance criter

hbr _uhr_deg chr22 1.head(4)

name log2FoldChange PAdj -loglOPAd] significi
0 SYNGR1 -4.6 5.200000e-217 216.283997 down
1 SEPT3 -4.6 4.500000e-204 203.346787 down
2 YWHAH -2.5 4.700000e-191 190.327902 down
3 RPL3 1.7 5.400000e-134 133.267606 ns

Write this data frame to a csv file in the /data/username/pies_data folder, which should be
the present working directory. Replace username with the user's Biowulf account ID. The
to_csv command in Pandas is used to write data frames to csv files. Setting index=False
ensures that the csv file will not have row names.

hbr_uhr_deg chr22 1.to _csv("./hbr_uhr_deg chr22 with significance_ le:

This lesson has shown the participants various data wrangling approaches using the Python
package Pandas. The capabability of Pandas expand to more than what is covered here,
participants are encouraged to check out the Pandas documentations (https:/
pandas.pydata.org/docs/) to learn more.

Bioinformatics Training and Education Program

https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/

Data Visualization using Python

Data Visualization using Python

Learning Objectives

This lesson will provide participants with enough knowledge to start using Python for data
visualization. Specifically, participants should

e Be able to use the package Seaborn to
o Construct plots that range from very basic to elegant as well as biologically relevant
o Customize plots including altering font size and adding custom annotations

Python Data Visualization Tools

Seaborn (https://seaborn.pydata.org) is a popular Python plotting package, which is the tool
that will be introduced in this lesson. Seaborn is an extension of and builds on Matplotlib
(https.//matplotlib.org) and is oriented towards statistical data visualization. However, there are
other packages, including those that are domain specific, implement grammar of graphics, and
are used for creating web-based visualization dashboards. A non-exhaustive list of Python
plotting packages is shown below.

e Matplotlib (https://matplotlib.org)

e Plotnine: implements grammar of graphics for those familiar with R's ggplot2 (https://
plotnine.readthedocs.io/en/stable/)

e bioinfokit: genomic data visualization (https.//github.com/reneshbedre/bioinfokit)

® pygenomeviz: visuazlize comparative genomics data (https.//moshi4.github.io/
pyGenomeViz/)

e Dash bio: create interactive data visualizations and web dashboards (https.//
dash.plotly.com/dash-bio)

Visualization using Seaborn
Load Packages

import pandas

import numpy

import matplotlib.pyplot as plt
import seaborn

Bioinformatics Training and Education Program

https://seaborn.pydata.org
https://seaborn.pydata.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://github.com/reneshbedre/bioinfokit
https://github.com/reneshbedre/bioinfokit
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio

Data Visualization using Python

Modify the Basic Plot Elements with Seaborn.

To plot using Seaborn, start the command with seaborn followed by the plot type (where plot
type can be any plot, for instance if the user wants a scatter plot then the command would be
seaborn.scatterplot), separated by a period. A common alias for Seaborn is sns.

seaborn.plot_type

This section will use Seaborn's scatterplot to explore how to work with and modify basic
elements of plotting. The foundations learned in this section form the basis for creating
advanced and elegant plots.

The data that will be plotted is a point located at 5 on the x axis and 5 on the y axis. To generate
x and y, numpy.array will be used. Here, x and y are single element arrays that store the
number 5.

x=numpy.array([5])
y=numpy.array ([5])

Plot x and y using Seaborn's scatterplot function (see Figure 1 for results), which takes
data frames or Numpy arrays as input. Here, x will be plotted on the x axis, and y will be plotted
on the y axis. The plot can be stored as a variable, which in this example is plotO.

plotO=seaborn.scatterplot(x=x, y=y)
plt.show()

Bioinformatics Training and Education Program

Data Visualization using Python

5.2 A

5.1 A

5.0 o

4.9 A

4.8

4.8 4.9 5.0 5.1 5.2

Figure 1

The plot in Figure 1 has no axes labels. Axes labels are an integral part of an informative data
visualization. It might also be useful to include meaningful x and y limits. To do this, append the
various . set* attributes to the plot. See Figure 2a for result.

®* set xlabel: specify x axis label (size is used to set the label font size)

®*set ylabel: specify y axis label

® set x1lim: sets the x axis limits

® set _ylim: setsthey axis limits

®* set xticks: sets the location of x axis tick marks

®set xticklabels: sets the x axis tick mark labels, size is used to set the tick mark
label font size

® set yticks: sets the location of y axis tick marks

®set _yticklabels: sets the y axis tick mark labels, size is used to set the tick mark
label font size

plotO@=seaborn.scatterplot (x=x, y=y)

plotO@.set xlabel("x axis", size=14)

plot@.set ylabel("y axis", size=14)

plot@.set x1im(0,10)

plot@.set ylim(0,10)

plot@.set xticks([0,2,4,6,8,10])

plot@.set xticklabels(labels=["O","2",6 "4", "6","8","10"], size=15)

Bioinformatics Training and Education Program

m Data Visualization using Python

plot@.set yticks([0,2,4,6,8,10])
plot@.set yticklabels(labels=["0O","2",6 "4","6","8","10"], size=15)
plt.show()

10

y axis

X axis

Figure 2

The plotting context of a Seaborn plot contains parameters that determine scaling of plot
elements (see https://seaborn.pydata.org/generated/seaborn.plotting_context.html (https.//
seaborn.pydata.org/generated/seaborn.plotting_context.html)). To view these parameters, do
the following.

print(seaborn.plotting context())

Essentially, the Seaborn plotting context is a dictionary containing key-value pairs that control
the aesthetics of the data visualization.

{'font.size': 12.0, 'axes.labelsize': 12.0, 'axes.titlesize': 12.0,

These parameters can be changed using the set_context (see https://seaborn.pydata.org/
generated/seaborn.set_context.html (httos://seaborn.pydata.org/generated/

Bioinformatics Training and Education Program

https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.set_context.html
https://seaborn.pydata.org/generated/seaborn.set_context.html
https://seaborn.pydata.org/generated/seaborn.set_context.html

Data Visualization using Python

seaborn.set_context.html)) function by providing a customized dictionary and assigning it to

the rc argument.

help(seaborn.set context)

Help on function set context in module seaborn.rcmod:

set _context(context=None, font scale=1, rc=None)
Set the parameters that control the scaling of plot elements.

This affects things like the size of the labels, lines, and othe]
of the plot, but not the overall style. This is accomplished usii
matplotlib rcParams system.

The base context is "notebook", and the other contexts are "papel
and "poster", which are version of the notebook parameters scale«
values. Font elements can also be scaled independently of (but r«
the other values.

See :func: plotting context™ to get the parameter values.

Parameters
context : dict, or one of {paper, notebook, talk, poster}
A dictionary of parameters or the name of a preconfigured se
font _scale : float, optional
Separate scaling factor to independently scale the size of ti
font elements.
rc : dict, optional
Parameter mappings to override the values in the preset seab
context dictionaries. This only updates parameters that are
considered part of the context definition.

Tip

See https://seaborn.pydata.org/tutorial/aesthetics.html (https://seaborn.pydata.org/tutorial/aesthetics.html) to learn
about adjust aesthetics for Seaborn plots.

To change the x and 'y axes tick label font size to 20, use
seaborn.set _context(rc={'xtick.labelsize': 20, 'ytick.labelsize': 20})
prior to constructing a Seaborn plot.

The code above can be modified to generate a more complex scatter plot. For instance, the
inputs for x and y can be changed to numeric arrays of five 6 elements each.

Bioinformatics Training and Education Program

https://seaborn.pydata.org/generated/seaborn.set_context.html
https://seaborn.pydata.org/generated/seaborn.set_context.html
https://seaborn.pydata.org/tutorial/aesthetics.html
https://seaborn.pydata.org/tutorial/aesthetics.html

Data Visualization using Python

x=numpy.array([0,1,2,3,4,5])
y=numpy.multiply(2,x)

print("x is a numeric array composed of: ", x)
print("y is a numeric array composed of: ", y)

X 1S a numeric array composed of: [0 1 2 3 4 5]
y is a numeric array composed of: [@ 2 4 6 8 10]

The code used to generate Figure 2 can then be run again with modifications to the x and y
axes limits to generate the plot shown in Figure 3. To produce a line plot representation of
Figure 3, simply change the plot type to lineplot (seaborn.lineplot).

plotO@=seaborn.scatterplot(x=x, y=y)

plot@.set xlabel("x axis", size=14)

plotO.set ylabel("y axis", size=14)

plot@.set x1im(0,6)

plot@.set ylim(0,12)

plot@.set xticks([0,2,4,6])

plot@.set xticklabels(labels=["0O","2","4","6"], size=15)

plotO@.set yticks([0,2,4,6,8,10,12])

plot@.set yticklabels(labels=["O",6"2",6 "4", "6","8","10","12"], size=1
plt.show()

Bioinformatics Training and Education Program

Data Visualization using Python

12

10 - I}

y axis
[o)]
(=)

Figure 3

Constructing Biologically Relevant Plots

The next exercise is to practice creating a scatter plot on a biologically relevant dataset.
Namely, the differential expression results from the hbr and uhr RNA sequencing study will be
used to create a scatter plot depicting log?2 fold change of gene expression on the x axis and
negative log10 of the adjusted p-values on the y axis. This special case of scatter plot is called
a volcano plot.

Step one is to import the data using Panda's read.csv command.

hbr_uhr_deg chr22=pandas.read _csv("./hbr_uhr_deg chr22 with_signific.

Now, review the contents of this data table by doing the following.

hbr_uhr_deg chr22.head(4)

name log2FoldChange PAdj -loglOPAdj significance
0 SYNGR1 -4.6 5.200000e-217 216.283997 down
1 SEPT3 -4.6 4.500000e-204 203.346787 down

Bioinformatics Training and Education Program

Data Visualization using Python

2 YWHAH

3 RPL3

-2.
1.7

5

4.700000e-191
5.400000e-134

190.327902
133.267606

down
down

To create the volcano plot, provide the following arguments. See Figure 4 for result.

® The data frame (ie. hbr_uhr_deg_chr22)
¢ \What to plot on the x axis (ie. log2FoldChange)
e \What to plot on the y axis (ie. "-log10PAd]")

plotl=seaborn.scatterplot (hbr_uhr_deg chr22,x="1og2FoldChange", y="-

200
150 A
. o]
=)
&
o ® o
= 100 ® e o
o o
<
50 1 ° o
o . o
3 ¢
. .
e 4, ° o2 %’ .0 e z;u\.. o @ e
0 L) ((lllll(ﬂ(l.[l.l('(("000').')IlOD)lI"(l)Jl.l(l)).m
-7.5 -=5.0 2.5 5.0 7.5 10.0 125
log2FoldChange
Figure 4

The volcano plot in Figure 4 does not help with visualizing the up, down, an non-significant
genes. Fortunately, the hue option can be used to distinguish these. See Figure 5.

plotl=seaborn.scatterplot (hbr_uhr_deg chr22,x="1og2FoldChange", y="-

Bioinformatics Training and Education Program

Data Visualization using Python

o significance
200 1 ¢ e down
. ® ns
® uw
150 A
o
=
2 o . °
= 100 - L o
2 °® ¢ o
® o
50 - * . IS
o ° o’
s ¢ 'o: o
=] o _°® ®
"3 =y ? D 0 e)
Py L N o ‘._?_!) .’32 (Y .C‘.Q] ® o
0 - ¢ 0'?o”;utiiwc(1:"0"317(7?"'ou»il)o’.?)')e:n:*-u):.t'oxﬁ)0‘10'° ¢
-7.5 =50 =25 0.0 2.5 5.0 7.5 10.0 125
log2FoldChange
Figure 5

It would be informative to label some of the top significant differentially expressed genes in the
volcano plot. To do this, import the file hbr_uhr_deg chr22 top_genes.csv and assign it
to the data frame hbr_uhr_deg chr22 top_genes.

hbr _uhr _deg chr22 top genes=pandas.read csv("./hbr_uhr _deg chr22 top

hbr_uhr_deg chr22 top_genes

The table contains the top two differentially expressed genes according to the adjusted p-value
(PAd)). The task to do is to label the points corresponding to these two genes on the volcano
plot. The values for log2FoldChange and -log10PAd] will serve as the x and y coordinates for
plotting the gene name.

name log2FoldChange PAdj -loglOPAd]j significance
0 XBP1 2.8 7.300000e-90 89.136677 up
1 SYNGR1 -4.6 5.200000e-217 216.283997 down

Bioinformatics Training and Education Program

E Data Visualization using Python

To label the two top differentially expressed genes, start by constructing the volcano plot from

Figure 5. Then, use a for loop to iterate through the name column in the data frame
hbr_uhr_deg_chr22_top_genes. Inthe for loop

® i: the number that keeps track of the row number in the data frame
hbr_uhr_deg chr22 top_genes andis used to
o reference the x coordinate or log2FoldChange value in that row
o reference the y coordinate or -log10PAd] value in that row
® enumerate: iterate through the name column in hbr_uhr_deg chr22 top_genes and
stores the name to variable gene_name. i is incremented as it iterates through the name
column within the for loop

plotl=seaborn.scatterplot(hbr_uhr_deg chr22,x="1og2FoldChange", y="-
for i, gene_name 1in enumerate(hbr_uhr_deg chr22 top_genes["name"]):
plotl.text(hbr_uhr_deg chr22 top_genes["log2FoldChange"][i],
hbr_uhr_deg chr22 top genes["-10glOPAdj"]1[i],gene _name.

¢SYNGR1 significance
200 A ¢ ® down
N ® ns
® up
150 A
. 8}
©
2 D
= 100 - S o
° o ° o+ XBP1
L
50 A ® . : o
ie} ® [} ¢
s ® ’o'. o]
e,.% _o 0 o
 J o a 5 . ® 9 0.
° () ,‘: .!‘03‘\ A e s * @
0 ® 0"0’#«(. iwé?‘ O CH)I)O‘H':)) fu)vw :))‘0)10‘ ¢
-75 =50 =25 0.0 2.5 5.0 7.5 10.0 12.5
log2FoldChange
Figure 6

The next visualization is the heatmap and dendrogram combination, which helps with visualizing
clusters and patterns. Heatmap and dendrogram can be used in RNA sequencing studies to
inspect whether there are cluster of genes with similar expression patterns among study

Bioinformatics Training and Education Program

Data Visualization using Python

groups. The normalized counts for the top differential expressed genes in the hbr and uhr study
will be used to construct a heatmap/dendrogram using Seaborn's clustermap.

Import the data.
hbr_uhr_top_deg normalized counts=pandas.read _csv("./hbr_uhr_top_deg

The seaborn.clustermap command below generates a clustermap of the top differential
expressed genes in the hbr and uhr study. The arguments and options are as follows.

® Argument: The dataset (ie. hbr_uhr_top_deg normalized counts)
¢ Options:
°z_score=0: scale the rows by z-score
o cmap: specify color palette (ie. viridis)
o figsize: specify figure size
o vmin: minimum value on the color scale bar
° vmax: maximum value on the color scale bar
o cbar_kws: dictionary containing key value pair that specifies the title to the color
scale bar
o cbar_pos: coordinates for placement of the color scale bar

plot4=seaborn.clustermap(hbr_uhr_top_deg normalized counts,z_score=0
figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=(
cbar_pos=(0.855,0.8,0.025,0.15))

Bioinformatics Training and Education Program

E Data Visualization using Python

o
Z score

-1

CACNG2

CLDNS5

SULT4Al

MPPED1

RP5-1119A7.17

IGLC3

MYO18B

RP3-323A16.1

PRAME

PCAT14

IGLC2

CDC45

HBR_3 HBR_1 HBR_2 UHR_2 UHR_1 UHR_3

Figure 9: Expression heatmap of the top 12 differentially expressed genes in the HBR and UHR
study

Below, a Pandas Series, called samples that contains a mapping of colors to study samples is
created.

samples=pandas.Series({"HBR _1":"orangered", "HBR 2":"orangered", "HBI

Then a variable, column_colors is created that contains a mapping of the
hbr_uhr_top_deg_normalized_counts column headings to the colors specified in samples. This
is accomplished using the map command.

column_colors=hbr_uhr_top_deg normalized counts.columns.map(samples)

Bioinformatics Training and Education Program

E Data Visualization using Python

The option col_colors, which is then added to display a color bar on the top of the heatmap
that helps to distinguish treatment groups (ie. hbr or uhr).

Other options added include

® ax_heatmap.set_xticklabels: allows for customizing the x axis labels' fontsize and
rotation. This requires using ax_heatmap.get xmajorticklabels () to getthe x axis
tick labels

® ax_cbar.tick_params: sets the size for the color scale bar labels

® ax_col _colors.set title: sets the title and location bar displaying the treatment
group to color mapping

plotd=seaborn.clustermap(hbr_uhr_top deg normalized counts,z_score=0
figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=(
col _colors=column_colors, cbar_pos=(0.855,0.:

plotd.ax _heatmap.set xticklabels(plotd.ax heatmap.get xmajorticklabe

plotd.ax cbar.tick params(labelsize=12)

plot4.ax_col _colors.set title("treatment",x=-0.1,y=0.01)

plt.show()

Bioinformatics Training and Education Program

Data Visualization using Python

Z score

treatment

CACNG2

SULT4Al

MPPED1

RP5-1119A7.17

— IGLC3

MYO18B

RP3-323A16.1

PRAME

PCAT14

IGLC2

CDC45

HBR 1
HBR 2
UHR_2
UHR 1
UHR 3

m
a4
[aa]
I

Figure 10: Expression heatmap of the top 12 differentially expressed genes in the HBR and
UHR study with treatment group annotations.

Even though there is a color bar that separates the HBR and UHR groups in the heatmap, there
is no legend showing which color corresponds to which group. This can be resolved by using
the Patch module from Matplotlib.

Note

"A patch is a 2D artist with a face color and an edge color" -- https://matplotlib.org/stable/api/_as_gen/
matplotlib.patches.Patch.html (https.:/matplotlib.org/stable/api/_as_gen/matplotlib.patches.Patch.html)

Bioinformatics Training and Education Program

https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Patch.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Patch.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Patch.html

Data Visualization using Python

from matplotlib.patches import Patch

Then create a dictionary (here it will be called treatment_groups) to store the treatment and
color value pairs.

treatment groups={'HBR': 'orangered', 'UHR': 'blue'}

Next, create variable called handles to store in list, the colored tiles corresponding to each
treatment group (ie. HBR or UHR) in the legend.

handles=[Patch(facecolor="orangered"), Patch(facecolor="blue")]

Finallyy, add plt.legend(handles, treatment_groups, title="'treatment',
bbox_ to_anchor=(-25, 1)) tothe clustermap construct where:

®* handles passes the color tiles set from Matplotlib's Patch module.

* treatment_groups will label each patch according the group that it belongs
(orangered for HBR and blue for UHR).

® The title of the legend is set using the tit1le option.

®* bbox_to_anchor helps set the coordinate location in the plot in which the legend
should appear.

Note

plot4.savefig("./hbr_uhr_heatmap_with _legend.png") is used to save the heatmap as a PNG. Users
will need to replace plot4 with the specific variable that was used to store the plot.

plotd=seaborn.clustermap(hbr_uhr_ top deg normalized counts,z score=0
figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=(
col_colors=column_colors, cbar_pos=(0.855,0.:

plotd.ax_heatmap.set xticklabels(plotd4.ax _heatmap.get xmajorticklabe

plotd.ax cbar.tick params(labelsize=12)

plotd.ax col colors.set title("treatment",x=-0.1,y=0.01)

plt.legend(handles, treatment groups, title="'treatment', bbox to_ancl

plt.show()

plot4.savefig("./hbr_uhr_heatmap_with legend.png")

Bioinformatics Training and Education Program

Data Visualization using Python

treatment
s HBR
HEE UHR

Z score

treatment

:

CACNG2

CLDN5

SULT4Al

MPPED1

RP5-1119A7.17

— IGLC3

MYO18B

RP3-323A16.1

PRAME

PCAT14

IGLC2

CDC45

HBR 1
HBR 2
UHR_2
UHR 1
UHR 3

m
a4
[aa]
I

Bioinformatics Training and Education Program

Using Python through Command Line on Biowulf

Using Python through Command Line on
Biowulf

Copy Example Data to User's Biowulf Data Directory

This class will use Jupyter Lab installed on Biowulf for interactions with Python. To get started,
open a Terminal (if working on a Mac) or a Command Prompt (if working on Windows) and sign
into the user's Biowulf accounts.

In the ssh command construct below, be sure to replace user with the participant's own Biowulf
login ID.

ssh user@biowulf.nih.gov

Next, change into the participant's Biowulf data directory. Remember to replace user with the
participant's own Biowulf login ID.

cd /data/user

Then, copy the pies_data directory in /data/classes/BTEP on Biowulf to the
pies _class_ 2025.

cp -r /data/classes/BTEP/pies_data
Finally, change into pies_data.

cd pies_data

Starting Jupyter Lab

Step 1 to starting Jupyter Lab on Biowulf via command is to request an interactive compute
session using sinteractive with the following options. The local temporary/scratch storage
space and RAM allocation can be modified base on user needs.

® --gres=1lscratch:5: to allocate 5gb of local temporary/scratch storage space
® --mem=2gh: to request 2gb of memory or RAM

Bioinformatics Training and Education Program

Using Python through Command Line on Biowulf

® --tunnel: to open up a channel of communication between local machine and Biowulf
to allow interaction with applications like Jupyter Lab

sinteractive --gres=lscratch:5 --mem=2gb --tunnel

DOO wuz8 — wuz8@biowulf:/data/wuz8 — ssh wuz8@biowulf.nih.gov — 93x25
[wuz8@biowulf wuz81$ sinteractive ——gres=lscratch:5 —-—-mem=2gb —-tunnel
salloc: Pending job allocation 6385785

salloc: job 6385785 queued and waiting for resources

salloc: job 6385785 has been allocated resources

salloc: Granted job allocation 6385785

salloc: Waiting for resource configuration

salloc: Nodes cn4275 are ready for job

srun: error: x11: no local DISPLAY defined, skipping

error: unable to open file /tmp/slurm-spank-x11.6385785.0
slurmstepd: error: x11: unable to read DISPLAY value

Created 1 generic SSH tunnel(s) from this compute node to

biowulf for your use at port numbers defined
in the $PORTn ($PORT1, ...) environment variables.

Please create a SSH tunnel from your workstation to these ports on biowulf.
On Linux/MacOS, open a terminal and run:
ssh -L 45081:localhost:45081 wuz8@biowulf.nih.gov

For Windows instructions, see https://hpc.nih.gov/docs/tunneling

Figure 1: After interactive session resources have been allocated, users will see a ssh
command that looks like that enclosed in the red rectangle in the figure below. Open a new
terminal (if working on a Mac) or command prompt (if working on a Windows computer) and
then copy and paste this ssh command into the new terminal.

Hit enter after copying and pasting into a new
terminal (Mac) or command prompt (Windows)
to provide password and sign onto Biowulf, which
will complete the tunnel.

base) NCI-02227565-ML:~ wuz8$ ssh -L 45@81:localhost:45081 wuz8@biowulf.nih.govjl
nter passphrase for key '/Users/wuz8/.ssh/id_rsa':

ast login: Tue Aug 15 16:24:28 2023 from 10.248.80.125
wuz8@biowulf ~1$

Figure 2: Hit enter after copying and pasting the ssh command to a new terminal to provide
password and log into Biowulf. This will complete the tunnel.

Bioinformatics Training and Education Program

Using Python through Command Line on Biowulf

Will vary for each user

ssh -L @Llocalhost;@l M@biowulf.nih.ov

Biowulf username will
vary for each user

Figure 3: In the ssh command shown in Figure 1 and Figure 2, the numbers preceding and
following "localhost" will differ depending on user. Also, the Biowulf username will differ for each
user (wuz8 is the instructor's Biowulf username).

: job 6385785 queued and waiting for resources
: job 6385785 has been allocated resources
: Granted job allocation 6385785
: Waiting for resource configuration
: Nodes cn4275 are ready for job
: error: x11: no local DISPLAY defined, skipping
: unable to open file /tmp/slurm-spank-x11.6385785.0
slurmstepd: error: x11: unable to read DISPLAY value

Created 1 generic SSH tunnel(s) from this compute node to
biowulf for your use at port numbers defined
in the $PORTn ($PORT1, ...) environment variables.

Please create a SSH tunnel from your workstation to these ports on biowulf.
On Linux/MacOS, open a terminal and run:

ssh -L 45081:1localhost:45081 wuz8@®biowulf.nih.gov
For Windows instructions, see https://hpc.nih.gov/docs/tunneling
[wuz8@cn4275|wuz81$ imodule load jupyter
[+] Loading git 2.39.2

[+] Loading jupyter
[wuz8@cn4275 wuz81$ Ji

Figure 4. Go back to the terminal (Mac) or command prompt (Windows) with the interactive
session (look for cn#### at the prompt). Do module load jupyter from here.

[wuz8@cn4275 wuz81$ jupyter lab ——ip localhost —-port $PORT1 —-no-browser Copy

To access the server, open this file in a browser: either
file:///spinl/home/linux/wuz8/.local/share/jupyter/runtime/jpserver—-363837-open.html
Or copy and paste one of these URLs: of the
http://localhost:45081/1lab?token=ad4b828f83a0fd8ad468cadaed56590b8a34f71f0418e76f3 h
or http://127.0.0.1:45081/1ab?token=ad4b828f83a0fd8ad468cadaed56590b8a34f7f0418e76T3 ttp
links to
local
browser

Bioinformatics Training and Education Program

Using Python through Command Line on Biowulf

Figure 5: Start a Jupyter lab session using jupyter 1lab --ip localhost --port
$PORT1 --no-browser and copy and paste either one of the http links to a local browser.

Bioinformatics Training and Education Program

Practice questions

Lesson 2 practice questions

Lesson 2 practice questions

Question 1

Generate a list called twelve that contains numbers 1 through 12 and then afterwards, subset
it to a list called even_numbers that contains only the even entries

Hint

Google how to find the remainder of a division operation.

{{Sdet}}{{Ssum}}solution{{Esum}}

twelve=[1,2,3,4,5,6,7,8,9,10,11,12]

even_numbers=1list()
for i in twelve:
if i % 2 == 0:
even_numbers.append (i)

OR

even_numbers=list()

even_numbers=[i for i in twelve if i % 2 == 0]
OR

even_numbers=list(filter(lambda i: i % 2 == 0, twelve))
{Edet}}

Question 2

Create a list called numeric grades that contains 90, 75, 80, 95, and 100. Then loop through
numeric_grades and print the student's letter grade using the following criteria.

®>=90: A
® <90 but >=80: B

Bioinformatics Training and Education Program

Lesson 2 practice questions

® <80 but >=70: C
® <70 but >=60: D
e Below 60: Failed

Hint

Use Google to find out how to make multiple comparisons within Python's elif statement.

numeric_grades=[90,75,80,95,100]
student name=['Yoda', 'Cat', 'Dog', 'Mouse', 'Spock']

{{Sdet}}{{Ssum}}solution{{Esum}}

for i in range(len(numeric_grades)):

if numeric _grades[i]>=90:
print(student name[i], "got an A")

elif (numeric_grades[i]<90) & (numeric_grades[i]>=80):
print(student name[i], "got a B")

elif (numeric_grades[i]<80) & (numeric_grades[i]>=70):
print(student name[i], "got a C")

elif (numeric _grades[i]<70) & (numeric_grades[i]>=60):
print(student _name[i], "got a D")

else:
print(student_name[i], "Failed")

{{Edet}}

Bioinformatics Training and Education Program

E Lesson 3 practice questions

Lesson 3 practice questions

Question 1

Import hcc1395_chr22_rna_seq_counts.csv and store it as hcc1395_chr22_counts.

{{Sdet}}{{Ssum}}Solution{{Esum}}

import pandas

hccl1395 chr22 counts=pandas.read csv("./hccl395 chr22 rna_seq_counts
{{Edet}}

Question 2

How many rows and columns are in hcc1395_chr22_counts?

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl395_chr22_counts.shape

(1335, 7)
{{Edet})

Question 3

What are the column names in hcc1395_chr22_counts and how to view the first 10 rows of this
data set?

{{Sdet}}{{Ssum}}Solution{{Esum}}
hccl395 chr22 counts.head(10)

Alternatively, use hcc1395_chr22_counts.columns to get the column headings for this data
frame.

Bioinformatics Training and Education Program

Lesson 3 practice questions

{Edet}}

Question 4

How many genes start with the letter "C" in hcc1395_chr22_counts?

{{Sdet}}{{Ssum}}Solution{{Esum}}
hccl1395 chr22 counts.loc[hccl395 chr22 counts.loc[:, 'Geneid'].str.st.
{{Edet}}

Question 5

Import hcc1395_deg_chr22.csv and store it as hcc1395_deg_chr22.

{{Sdet}}{{Ssum}}Solution{{Esum}}
hccl395 deg chr22=pandas.read_csv("./hccl395 deg chr22.csv")
{Edet}}

Question 6

Remove ".bam" from the column headers of hcc1395_deg_chr22.

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl1395 deg chr22.columns=hccl395 deg chr22.columns.str.replace(".bar

{{Edet}}

Question 7

Subset out the following columns from hcc1395_deg_chr22 and store it as
hcc1395_deg_chr22_1.

® name
e |og2FoldChange
e PAd]

Bioinformatics Training and Education Program

Lesson 3 practice questions

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl1l395 deg chr22 1=hccl1395 deg chr22.loc[:,["name", "log2FoldChange
Use the . head function to check of the subsetting was done correctly.
hccl1395 deg chr22 1.head()

{{Edet}}

Question 8

Add a column to hcc1395_deg_chr22_1 that contains the negative log10 of the PAdj value.

{{Sdet}}{{Ssum}}Solution{{Esum}}

import numpy

hccl1395 deg chr22 1["-10glOPAdj"]=numpy.negative(numpy.logl®(hccl395

{{Edet}}

Bioinformatics Training and Education Program

Lesson 4 practice questions

Lesson 4 practice questions

Question 1

Create a volcano plot for the differential expression analysis results for the hcc1395 data (hint:
import hcc1395_deg_chr22_with_significance.csv)

{{Sdet}}{{Ssum}}Solution{{Esum}}
import pandas

import matplotlib.pyplot as plt
import seaborn

hccl395 deg chr22=pandas.read _csv("./hccl395 deg chr22 with signific:

plotl=seaborn.scatterplot(hccl395 deg chr22,x="1log2FoldChange", y="-
plt.show()

{{Edet}}

Question 2

Label the two most differential expressed genes in the volcano plot. As a hint, first import
hcc1395_deg_chr22_top_genes.csv. What message shows up upon running the code and
suggest a plausible solution.

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl395 deg chr22 top genes=pandas.read _csv("./hccl395 deg chr22 top

plotl=seaborn.scatterplot(hccl395 deg chr22,x="1log2FoldChange", y="-
for i, gene name in enumerate(hccl395 deg chr22 top genes["name"]):
plotl.text(hccl395 deg chr22 top genes["log2FoldChange"][i],
hccl395 deg chr22 top_genes["-10glOPAdj"1[i],gene_name
plt.show()

Bioinformatics Training and Education Program

Lesson 4 practice questions

posx and posy should be finite values

{{Edet}}

Question 3

Import hcc1395_top_deg_normalized_counts.csv and create an expression heatmap. Use the
Viridis color palette.

{{Sdet}}{{Ssum}}Solution{{Esum}}

hccl1395 top deg normalized counts=pandas.read csv("./hccl395 top deg

plot2=seaborn.clustermap(hccl395 top_deg normalized counts,z score=0
figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=(
plt.show()

{{Edet}}

Question 4

Add a bar on the top of the heatmap that shows which treatment group the samples belong to.

{{Sdet}}{{Ssum}}Solution{{Esum}}

samples=pandas.Series({"hccl395 normal repl":"orangered", "hccl395 n¢

column_colors = hccl395 top deg normalized counts.columns.map(sample

plot2=seaborn.clustermap(hccl395 top deg normalized counts,z score=0
figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=(
col_colors=column_colors, char_pos=(0.05,0.8

plot2.ax_heatmap.set xticklabels(plot2.ax _heatmap.get xmajorticklabe

plot2.ax _cbar.tick params(labelsize=12)

plot2.ax _col colors.set title("treatment",x=1.09,y=-0.3)

plt.show()

{{Edet}}

Bioinformatics Training and Education Program

Finding help

Finding help

The document provides useful links where participants can find help for the Python packages
that were addressed during the course series.

Pandas - package for working with tabular data (https://pandas.pydata.org)

e Pandas API reference gives instructions for each command (https://pandas.pydata.org/
docs/reference/index.html). To get to the API reference, either

o Navigate to the the Documentation section at the Pandas homepage and click on
APl reference (Figure 1).

o OR, click on the the Documentation tab at the top of the Pandas homepage and
click on the tile labeled API reference in the subsequent page (Figure 2).

About us ¥ Getting started | Documentation | Community > Contribute

Latest version: 2.0.3
What's new in 2.0.3
Release date:

Jun 28, 2023
Documentation (web)
Download source code

pandas

pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
built on top of the Python programming language.

Get the book
Getting started Documentation Community rey o
¢ Install pandas ¢ User guide * About pandas P thon
« Getting started + APl reference = + Ask a question for Data Analysis
¢ Contributing to pandas ¢ Ecosystem Data Wrangling with pandias, NumPy & Jupyter

* Release notes &

With the support of:

Figure 1

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html

Finding help

Getting started User Guide API reference Development Release notes

CUME on
Date: Jun 28, 2023 Version: 2.0.3

Download documentation: Z

Support | Mailing List

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data

analysis tools for the Python programming language.

Getting started

New to pandas? Check out the getting started

guides. They contain an introduction to pandas’

main concepts and links to additional tutorials.

To the
getting
started
guides

API reference

The reference guide contains a detailed description

of the pandas API. The reference describes how the

methods work and which parameters can be used. It

assumes that you have an understanding of the key
concepts.

Figure 2

User guide

The user guide provides in-depth information on the
key concepts of pandas with useful background
information and explanation.

To the user
guide

Developer guide

Saw a typo in the documentation? Want to improve
existing functionalities? The contributing guidelines
will guide you through the process of improving
pandas.

Seaborn for data visualization (https://seaborn.pydata.org/index.html)

e Seaborn API reference gives instructions for each command (https.//seaborn.pydata.org/
api.html). To get to the Seaborn API reference, click on API at the top of the Seaborn

website.

Bioinformatics Training and Education Program

https://seaborn.pydata.org/index.html
https://seaborn.pydata.org/index.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html

Finding help

@Seaborn Installing Gallery TutoriaIReIeases Citing FAQ

seaborn: statistical data visualization

1955

Figure 3
Numpy for scientific computing (https://numpy.org/doc/stable/index.html)

e Numpy API reference (https://numpy.org/doc/stable/reference/index.html). To get to this,
select Documentation at the top of the Numpy homepage (Figure 4) and then click on
either of the links to the API reference (Figure 5).

Install IDocumentationI Learn Community

‘0

A\

N

N

¢

A\

The fundamental package

LATEST RELEASE:
NUMPY 1.25. VIEW

NumPy

Figure 4

Bioinformatics Training and Education Program

https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html

88 Finding help

N NumPy User Guide | APl referencel Development Release notes Learn (4

3 &)

Getting Started User Guide
New to NumPy? Check out the Absolute The user guide provides in-depth information on
Beginner's Guide. It contains an introduction to the key concepts of NumPy with useful
NumPy’s main concepts and links to additional background information and explanation.
tutorials.
To the user guide
[J
[-] 2
API Reference Contributor’s Guide
The reference guide contains a detailed Want to add to the codebase? Can help add
description of the functions, modules, and translation or a flowchart to the documentation?
objects included in NumPy. The reference The contributing guidelines will guide you
describes how the methods work and which through the process of improving NumPy.
parameters can be used. It assumes that you
have an understanding of the key concepts.

Figure 5
Matplotlib for data visualization (https:/matplotlib.org)

e Matplotlib API reference (https./matplotlib.org/stable/api/index). To get to this, click on
reference at the top of the Matplotlib homepage (Figure 6).

matpm'ib Plot types Examples Tutorials | Reference| User guide Develop Releases Q O |||| D O L 4

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in
Python. Matplotlib makes easy things easy and hard things possible.

* Create publication quality plots.
* Make interactive figures that can zoom, pan, update.
Customize visual style and layout.

Export to many file formats.
Embed in JupyterLab and Graphical User Interfaces.
Use a rich array of third-party packages built on Matplotlib.

bar(x, height), /barh(y, width), Try Matplotlib (on Binder) ->

Figure 6

Bioinformatics Training and Education Program

https://matplotlib.org
https://matplotlib.org
https://matplotlib.org/stable/api/index
https://matplotlib.org/stable/api/index

	Python Introductory Education Series
	Table of Contents
	Course overview
	Lesson 1 slides
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Starting Jupyter Lab through Tunneling
	Practice questions
	Lesson 2 practice
	Lesson 3 practice
	Lesson 4 practice

	Finding help

	Course Overview
	Example Data

	Lesson 1 slides
	Getting Started with Python
	Lesson 1 Learning Objectives
	Why use Python?
	Python enables Elegant Data Visualization
	Generating a Scatter Plot using Matplotlib
	Generating a Gene Expression Heatmap using Seaborn

	Tools for Interacting with Python
	Python at the Command Prompt
	Ipython
	Using Python through IDE
	Accessing Python at NIH
	Signing onto Biowulf HPC OnDemand
	Get the Example Data
	Start a Jupyter Lab Session

	Create a new Jupyter Notebook
	Python Command Syntax
	Installing external packages

	Python Data Types, Loops and Iterators
	Learning Objectives
	Start a Jupyter Lab session
	Python Data Types and Data Structures
	Identifying Data Type and Structure in Python
	Variable Assignments
	Conditionals
	Data Frames
	Importing Tabular Data with Pandas

	Lists and Tuples
	List versus tuples (mutable versus immutable)
	Adding and removing from a list
	Making a Copy of a List

	Arrays
	Loops and Iterators
	Dictionaries
	Subsetting a Dictionary
	Updating a dictionary

	Data Wrangling using Python
	Learning Objectives
	Importing Tabular Data using Pandas
	Get Dimensions of a Data Frame
	Row Indices/Names
	Data Wrangling
	Subsetting
	Subsetting by Integer Positions
	Subsetting using column names
	Replacing Column Names
	Mathematical Operations on Data Frames and Filtering
	Removing and Adding Columns to a Data Frame

	Data Visualization using Python
	Learning Objectives
	Python Data Visualization Tools
	Visualization using Seaborn
	Load Packages
	Modify the Basic Plot Elements with Seaborn.
	Constructing Biologically Relevant Plots

	Using Python through Command Line on Biowulf
	Copy Example Data to User's Biowulf Data Directory
	Starting Jupyter Lab

	Practice questions
	Lesson 2 practice questions
	Question 1
	Question 2

	Lesson 3 practice questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8

	Lesson 4 practice questions
	Question 1
	Question 2
	Question 3
	Question 4

	Finding help

