
BTEP course

Alexandra L Emmons Ph.D. & Joe Wu Ph.D.

BTEP/GAU/CCR/NCI/NIH - email ncibtep@mail.nih.gov

Bioinformatics Training and Education Program

6

7

9

9

9

9

10

10

11

12

12

14

14

14

15

17

18

Table of Contents

Course overview

• Course Overview

• Example data used in this course

Lesson 1 slides

Lesson 1

• Getting Started with Python

• Lesson 1 learning objectives

• Why use Python?

• Python enables elegant data visualization

• Generating a scatter plot using Matplotlib

• Generating a gene expression heatmap using Seaborn

• Tools for interacting Python

• Python at the command prompt

• Ipython

• Using Python through IDE

• Accessing Python at NIH

• Using Python through Biowulf

• Spin up Jupyter Lab in HPC OnDemand.

• Create a new Jupyter Notebook

• Python Command Syntax

19

21

21

21

21

22

22

24

25

26

27

28

28

31

32

36

36

38

40

40

40

• Installing external packages

Lesson 2

• Python data types, loops and iterators

• Learning objectives

• Start a Jupyter Lab session

• Python data types and data structures

• Identifying data type and structure in Python

• Variable assignments

• Conditionals

• Data frames

• Importing tabular data with Pandas

• Lists and tuples

• List versus tuples (mutable versus immutable)

• Making a copy of a list

• Arrays

• Loops and iterators

• Dictionaries

• Subsetting a dictionary

• Updating a dictionary

Lesson 3

• Lesson 3: Data wrangling using Python

• Learning objectives

• Importing tabular data using Pandas

42

43

44

44

44

46

47

48

48

49

54

54

54

54

54

55

59

68

• Get dimensions of a data frame

• Row indices/names

• Data wrangling

• Subsetting

• Subsetting by integer positions

• Subsetting using column names

• Summary statistics of data frames

• Replacing column names

• Mathematical operations on data frames and filtering

• Removing and adding columns to a data frame

Lesson 4

• Lesson 4: Data visualization using Python

• Learning objectives

• Python data visualization tools

• Visualization using Seaborn

• Load packages

• Modify the basic plot elements with Seaborn.

• Constructing biologically relevant plots

Starting Jupyter Lab through Tunneling

• Illustrations for tunneling and starting Jupyter lab

72

72

72

72

74

74

74

74

74

75

75

75

75

76

77

77

77

77

78

78

Practice questions

Lesson 2 practice

• Lesson 2 practice questions

• Question 1

• Question 2

Lesson 3 practice

• Lesson 3 practice questions

• Question 1

• Question 2

• Question 3

• Question 4

• Question 5

• Question 6

• Question 7

• Question 8

Lesson 4 practice

• Lesson 4 practice questions

• Question 1

• Question 2

• Question 3

• Question 4

79

Finding help

• Finding help

BTEP Python Data wrangling Pandas Data visualization Matplotlib Seaborn Numpy Biowulf

Interactive sessions Tunnel Jupyter lab

Course Overview

Welcome to the Python Introductory Education Series (PIES) course. This course is composed

of four lessons (see schedule below) and is meant to help those with no or limited experience in

Python get started using this general purpose scripting language for data analyses. Each one-

hour lesson will be followed by an optional one-hour help session. At the end of this course

series, participants should

Have obtained a broad overview of Python, including

Familiarity with tools used to write Python code

Knowledge of Python command syntax

Ability to find help for Python commands

Knowledge of where to find Python packages

Familiarity with self-learning resources

Be able to describe Python data types and structures and provide examples of where

some of the data structures are used

Know how to work with and wrangle tabular data

Be able to construct data visualizations

Lesson schedule:

Lesson 1: Short introduction to Python, signing onto Biowulf, and starting Jupyter Lab

(Tuesday, August 15, 2023) (https://bioinformatics.ccr.cancer.gov/docs/pies-2023/

pies_lesson1/)

Lesson 1 recording (https://cbiit.webex.com/cbiit/ldr.php?

RCID=28b10cbe0179993cd0008f1300a1a9ed)

Lesson 2: Python data types and structures (Thursday, August 17, 2023) (https://

bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/)

Lesson 2 recording (https://cbiit.webex.com/cbiit/ldr.php?

RCID=41f35ca8d9d251425edd765389b47c32)

Lesson 3: Data wrangling using Python (Tuesday, August 22, 2023) (https://

bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/)

Lesson 3 recording (https://cbiit.webex.com/cbiit/ldr.php?

RCID=0749d0a1a34b9dbcc3abfbb6b34292ff)

Lesson 4: Data visualization using Python (Thursday, August 24, 2023) (https://

bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/)

Lesson 4 recording (https://cbiit.webex.com/cbiit/ldr.php?

RCID=f6dc3393c95acb10a4ffb2a3b1be6a29)

A Biowulf account is needed for this class. Visit the Biowulf User Dashboard (https://

hpcnihapps.cit.nih.gov/auth/dashboard/) to unlock an inactive account. For instructions on

•

◦

◦

◦

◦

◦

•

•

•

•

◦

•

◦

•

◦

•

◦

6 Course Overview

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson1/
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://cbiit.webex.com/cbiit/ldr.php?RCID=28b10cbe0179993cd0008f1300a1a9ed
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson2/
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://cbiit.webex.com/cbiit/ldr.php?RCID=41f35ca8d9d251425edd765389b47c32
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson3/
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://cbiit.webex.com/cbiit/ldr.php?RCID=0749d0a1a34b9dbcc3abfbb6b34292ff
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://bioinformatics.ccr.cancer.gov/docs/pies-2023/pies_lesson4/
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://cbiit.webex.com/cbiit/ldr.php?RCID=f6dc3393c95acb10a4ffb2a3b1be6a29
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/

obtaining a Biowulf account, visit https://hpc.nih.gov/docs/accounts.html (https://hpc.nih.gov/

docs/accounts.html).

Example data used in this course

Download data used in this course

7 Course Overview

Bioinformatics Training and Education Program

https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html

Lesson 1 slides

%

8 Lesson 1 slides

Bioinformatics Training and Education Program

Getting Started with Python

Joe Wu, PhD

NCI/CCR Bioinformatics Training and Education Program

ncibtep@nih.gov

Lesson 1 learning objectives

After this class, participants will be able to:

Describe Python and provide rationale for using Python

List tools for interacting with Python

Sign onto Biowulf, start a Jupyter Lab session, and become familiar with the Jupyter

Notebook interface.

Describe Python command syntax

Describe where to get and how to install external packages

Get help for Python commands

Why use Python?

General purpose scripting language

Analyze and visualize large datasets

Reusability and reproducibility

Versioning and keeping track of changes is possible when analyzing data using

scripts

Easy to learn

External packages that enhances functionality

Python Package Index (https://pypi.org)

Anaconda (https://www.anaconda.com/)

Biopython (https://biopython.org)

Large community support

Python enables elegant data visualization

An abundance of external packages make scientific computing and data presentation easy. For

instance, the packages matplotlib (https://matplotlib.orghttps://matplotlib.org) and seaborn

(https://seaborn.pydata.org/) good tools for generating data visualizations. With a few lines of

code, scientists can generate scatter plots to view relationship between variables and/or

heatmaps that can reveal distinct clusters in a dataset.

•

•

•

•

•

•

•

◦

◦

◦

◦

•

◦

◦

◦

•

9 Getting Started with Python

Bioinformatics Training and Education Program

https://pypi.org
https://pypi.org
https://www.anaconda.com/
https://www.anaconda.com/
https://biopython.org
https://biopython.org
https://matplotlib.orghttps://matplotlib.org
https://matplotlib.orghttps://matplotlib.org
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/

Generating a scatter plot using Matplotlib

Generating a gene expression heatmap using Seaborn

import matplotlib.pyplot as plt
import numpy

x=numpy.array([0,1,2,3,4,5,6,7,8])
y=numpy.array([0.5,2,5,6,7,10,13,14,16])
plt.scatter(x,y)
slope, intercept=numpy.polyfit(x,y,1)
plt.plot(x,slope*x+intercept)
plt.text(1,14,'y='+str(round(slope,3))+'x' ' + ' + str(round(intercept,3)))
plt.xlabel('x')
plt.ylabel('y')

import pandas
import seaborn
counts1=pandas.read_csv("../data/hbr_uhr_normalized_counts.csv", index_col=[0])

10 Getting Started with Python

Bioinformatics Training and Education Program

Tools for interacting Python

Python can be run at the command prompt

Ipython (https://ipython.org)

Run python script at the command prompt

Integrated Development Environments such as:

Spyder (https://www.spyder-ide.org/)

Pycharm (https://www.jetbrains.com/pycharm/)

Visual Studio Code from Microsoft has extensions that support Python scripting

R Studio

Juptyer Lab/Notebook

seaborn.clustermap(counts1,z_score=0,cmap="viridis", figsize=(5,5))
plt.suptitle("Gene expression heatmap",y=1.1)

•

•

•

•

◦

◦

•

•

•

11 Getting Started with Python

Bioinformatics Training and Education Program

https://ipython.org
https://ipython.org
https://www.spyder-ide.org/
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/

Python at the command prompt

Assuming Python is installed, just type python at the command prompt to start using Python.

Hit control-d to exit back to the command prompt. The downside to this is that users cannot

save the commands into a script.

Ipython

Ipython (https://ipython.org) enables users to run Python commands interactively at the

terminal. It features autocomplete of commands and allows for saving of commands to a python

script using %save followed. The example below save some commands to a file called

pies_class_2025_ipython.py in the /data/$USER/pies_class_2025 directory on

Biowulf.

12 Getting Started with Python

Bioinformatics Training and Education Program

https://ipython.org
https://ipython.org

Hit control-d to exit Ipython and return to the command prompt.

Stay /data/$USER/pies_class_2025 and list the content to make sure that

pies_class_2025_ipython.py is there.

While using Ipython is better than just running commands on the terminal, it still is not very

efficient in terms of saving work. Also, users will not be able to view plots on HPC systems such

as Biowulf since these do not support inspection of graphical outputs.

ls

pies_class_2025_ipython.py pies_data

Note

The pies_class_2025_ipython.py script can be run from the command line. To run a Python script from

command line, just do python followed by name of the script. Python scripts can also be submitted as job to the

Biowulf batch system.

python pies_class_2025_ipython.py

13 Getting Started with Python

Bioinformatics Training and Education Program

Using Python through IDE

Integrated Development Environments or IDE are ideal for scripting in Python as well as other

languages. See https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-

anaconda-vs-intellij.html (https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-

studio-vs-anaconda-vs-intellij.html) for a breakdown of of common ones such as Spyder,

Pycharm, VS Code, R Studio, and Jupyter Lab. Essentially, IDE enable users to write scripts,

access as well as view data, and view plots. These also enable users to generate analysis

report that details steps of an analysis as well as the tool and the code use.

Accessing Python at NIH

Biowulf (HPC OnDemand (https://hpcondemand.nih.gov/) is recommended).

Use Python locally on government furnished personal computer via NIH Anaconda

Professional License (https://nih.sharepoint.com/sites/CIT-ApplicationRepository/

SitePages/Anaconda.aspx). This will require users to install Anaconda to local computer.

NCI scientists also can use Python through Posit Workbench. Fill out the form at https://

forms.office.com/pages/responsepage.aspx?

id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl

(https://forms.office.com/pages/responsepage.aspx?

id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl)

to request access.

Using Python through Biowulf

This class will use Jupyter Lab installed on Biowulf for interactions with Python. To get started,

open a Terminal (if working on a Mac) or a Command Prompt (if working on Windows) and sign

into the user's Biowulf accounts.

In the ssh command construct below, be sure to replace user with the participant's own Biowulf

login ID.

Next, change into the participant's Biowulf data directory. Remember to replace user with the

participant's own Biowulf login ID.

hello
3.141592653589793
5.0

•

•

•

ssh user@biowulf.nih.gov

14 Getting Started with Python

Bioinformatics Training and Education Program

https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-anaconda-vs-intellij.html
https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-anaconda-vs-intellij.html
https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-anaconda-vs-intellij.html
https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-anaconda-vs-intellij.html
https://ritza.co/comparisons/pycharm-vs-spyder-vs-jupyter-vs-visual-studio-vs-anaconda-vs-intellij.html
https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=eHW3FHOX1UKFByUcotwrBnYgWNrH6QdOsCsoiQ9eiaZUQ1ZZODJKT0FERUdHOVZYUkJaMzA2UDAxSi4u&route=shorturl

In the participant's data directory, create a folder called pies_class_2025.

Finally, copy the pies_data directory in /data/classes/BTEP on Biowulf to the

pies_class_2025.

Spin up Jupyter Lab in HPC OnDemand.

Open a web browser on local computer (Google Chrome is recommended) and go to

https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/), which is the URL for

Biowulf's HPC OnDemand.

Once at HPC OnDemand, sign in with participant's NIH credentials.

After signing in, users will see quick links to applications available through HPC

OnDemand. Click on the one for Jupyter.

In subsequent page will allow users to specify compute resources. Leave these as is for

this class.

cd /data/user

mkdir pies_class_2025

cp -r /data/classes/BTEP/pies_data .

•

•

•

•

15 Getting Started with Python

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/

Make sure to specify for Jupyter to start in the /data/$USER/pies_class_2025

directory.

Click on "Connect to Jupyter" when the Jupyter Lab session has been granted.

•

16 Getting Started with Python

Bioinformatics Training and Education Program

users will see an interface that looks like below. The left hand panel is the file explorer. Users

can navigate through files and folders that are available in the directory in which Jupyter Lab

was started. The launcher panel contains quick links for iniitiating a Jupyter Notebook in the

user's language of choice.

Create a new Jupyter Notebook

Create a new Jupyter Notebook in Python 3.12 (click on the "python/3.12" tile). The new

notebook has the name "Untitled.ipynb". Click on the disk icon in the notebook menu bar to

rename it pies_class_2025.

17 Getting Started with Python

Bioinformatics Training and Education Program

Python Command Syntax

Arguments and options for Python commands are enclosed in parentheses. In general, the

anatomy is command(argument, option).

For example, the command below is print and it will display the argument, "Hello BTEP".

To get help for a Python command, use help.

For instance:

Tip

For a detailed overview of Jupyter Lab, see BTEP's Documenting Analysis Steps using Jupyter Lab (https://

bioinformatics.ccr.cancer.gov/docs/analysis-documentation-jupyter/index.html)

print("Hello BTEP")

Hello BTEP

help(print)

18 Getting Started with Python

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/analysis-documentation-jupyter/index.html
https://bioinformatics.ccr.cancer.gov/docs/analysis-documentation-jupyter/index.html
https://bioinformatics.ccr.cancer.gov/docs/analysis-documentation-jupyter/index.html
https://bioinformatics.ccr.cancer.gov/docs/analysis-documentation-jupyter/index.html

From the print command's help information, line breaks can be added using \n. Try the

following to print three sentences, one in each line.

Installing external packages

Python external packages are found at the Python Package Index (https://pypi.org). To install a

package from PyPi, just use pip install package_name, where package_name can be

any package of choice. For instance, to install scipy, do:

pip is the package installer for Python. If pip is not available with the user's Python installation,

see https://pip.pypa.io/en/stable/installation/ (https://pip.pypa.io/en/stable/installation/) to learn

how to get it.

To uninstall, do pip uninstall package_name.

To update a package, use pip install --upgrade package_name.

print("University of Florida is in Gainesville, Florida.\n"
"Their mascot is the Gators.\n"
"The Gators men's basketball team won the national championship in 2025, 2007, and 2006.")

University of Florida is in Gainesville, Florida.
Their mascot is the Gators.
The Gators men's basketball team won the national championship in 2025, 2007, and 2006.

pip install scipy

19 Getting Started with Python

Bioinformatics Training and Education Program

https://pypi.org
https://pypi.org
https://pip.pypa.io/en/stable/installation/
https://pip.pypa.io/en/stable/installation/

pip freeze will pull up a list of currently installed Packages installed via pip.

Those who chose to use the package manager Anaconda can install via the command line

using conda install package_name. Again, package_name is the user's package of

choice. Package managers offer the benefit of reducing issues that arise from versioning,

dependency, and security when installing software. See https://docs.conda.io/projects/conda/

en/stable/user-guide/tasks/manage-pkgs.html (https://docs.conda.io/projects/conda/en/stable/

user-guide/tasks/manage-pkgs.html) to learn more about installing, updating, and uninstalling

packages using Conda. For working locally on government furnished personal computer,

researchers are recommended to use the NIH Anaconda Professional License (https://

nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx). Biowulf also

has a guide on manage Anaconda environments on the cluster. See https://hpc.nih.gov/docs/

diy_installation/conda.html (https://hpc.nih.gov/docs/diy_installation/conda.html).

https://github.com/igvteam/igv-reports http://gorgonzola.cshl.edu/pfb/2014/problem_sets/

IGVTutorial_CSH_2014/igvtools_exercise.pdf

20 Getting Started with Python

Bioinformatics Training and Education Program

https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-pkgs.html
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-pkgs.html
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://nih.sharepoint.com/sites/CIT-ApplicationRepository/SitePages/Anaconda.aspx
https://hpc.nih.gov/docs/diy_installation/conda.html
https://hpc.nih.gov/docs/diy_installation/conda.html
https://hpc.nih.gov/docs/diy_installation/conda.html

Python data types, loops and iterators

Learning objectives

After this class, participants will

Be able to describe Python data types and structures

Become familiar with variable assignment

Be able to use conditional operators and if-else statements

Understand how loops and iterators can be used automate processes

Be able to load packages

Know how to import tabular data

Know how to view tabular data

Start a Jupyter Lab session

Before getting started, make sure to start a Jupyter Lab session with the default resources via

HPC OnDemand (https://hpcondemand.nih.gov/pun/sys/dashboard/).

Next, click on pies_class_2025.ipynb in the file explorer to open it.

Python data types and data structures

An important step to learning any new programming language and data analysis is to

understand its data types and data structures. Common data types and structures that will be

encountered include the following.

Text (str)

Numeric

int (ie. integers)

float (ie. decimals)

Boolean (True or False)

conditionals

filtering criteria

command options

Data frames

•

•

•

•

•

•

•

Hint

Be sure to start the Jupyter Lab session in `/data/$USER/pies_class_2025'. Where $USER is the environmental

variable that points to the participant's Biowulf user ID.

•

•

◦

◦

•

◦

◦

◦

•

21 Python data types, loops and iterators

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/pun/sys/dashboard/
https://hpcondemand.nih.gov/pun/sys/dashboard/

Lists

Arrays

Tuples

Range

Dictionaries

Identifying data type and structure in Python

The command type can be used to identify data types and structures in Python.

Variable assignments

In Python, variables are assigned to values using "=".

•

•

•

•

•

type(100)

int

type(3.1415926)

float

type("bioinformatics")

str

test1_score100
test1_score

100

mole=6.02e23
mole

22 Python data types, loops and iterators

Bioinformatics Training and Education Program

The command type(btep_class) will return str because the variable btep_class is text.

It is also possible assign a variable to another variable.

Change the value of test2_score to 60.

6.02e+23

btep_class="Python Introductory Education Series"
btep_class

'Python Introductory Education Series'

type(btep_class)

str

test2_score=test1_score
test2_score

100

test2_score=60

test2_score

60

test1_score

100

23 Python data types, loops and iterators

Bioinformatics Training and Education Program

Conditionals

Conditionals evaluate the validity of certain conditions and operators include:

==: is equal to?

>: is greater than?

>=: is greater than or equal to?

<: is less than?

<=: is less than or equal to?

!=: is not equal to?

and

or

The command below will evaluate if test1_score is equal to test2_score.

Because test1_score is 100 and test2_score is 60, the result from the above command will be

false.

If statements are also conditionals and are used to instruct the computer to do something if a

condition is met. To have the computer do something when the condition is not met, use elif

(else if) or else.

The command below will accomplish the following:

Use if to evaluate if test1_score>=90, if yes then indicate using print that someone got

an A!

Use elif (which stands for else if) to evaluate if test2_score>=80, if yes then use the

print statement to indicate that someone does not have to take the final!

Finally, else will print for all other conditions that someone failed the class.

print("The student got a", test2_score, "on exam 2.")

Definition

Immutable objects in Python are variables whose values cannot be changed after they have been created. This

includes integers, floats, strings, and tuples. In the above example, test2_score was initially set to test1_score.

However, upon changing test2_score to 60, the value of test1_score does not change. Thus, demonstrating that

integers are immutable.

•

•

•

•

•

•

•

•

test1_score==test2_score

False

•

•

•

24 Python data types, loops and iterators

Bioinformatics Training and Education Program

A ":" is required after if, elif, and else. The command(s) to execute when conditions are met

are placed on a separate line but tab indented.

Data frames

Often, in bioinformatics and data science, data comes in the form of rectangular tables, which

are referred to as data frames. Data frames have the following property.

Study variable(s) form the columns

Observation(s) form rows

Can have a mix of data types (strings and numeric) but each column/study variable can

contain only one data type

Limited to one value per cell

A popular package for working with data frames in Python is Pandas (https://

pandas.pydata.org).

To load a Python package use the import command followed by the package name (ie.

pandas).

Sometimes the name of the package is long, so users might want to shorten it by creating an

alias. The alias "pd" is often used for the Pandas package. To add an alias, just append as

followed by the user defined alias to the package import command.

if test1_score>=90:
 print("You get an A!")
elif test2_score>=80:
 print("You don't have to take the final!")
else:
 print("You failed the class!")

Tip

The print command can be used to print variables by not enclosing in quotes.

•

•

•

•

import pandas

import pandas as pd

25 Python data types, loops and iterators

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org

Importing tabular data with Pandas

This exercise will use the read_csv function of Pandas to import a comma separated value

(csv) file called hbr_uhr_chr22_rna_seq_counts.csv, which contains RNA sequencing gene

expression counts from the Human Brain Reference (hbr) and Universal Human Reference (uhr)

study (https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/).

Take note of the way the csv import command is constructed. First the user specifies the name

of package (ie. pandas) and then the function within the package (ie. read_csv). The package

name and function name is separated by a period.

Next, use type to find out the data type or structure for hbr_uhr_chr22_counts.

Take a look a the first few rows of hbr_uhr_chr22_counts.

Figure 1: Example of a data frame.

Because hbr_uhr_chr22_counts is a Pandas data frame, it is possible to append one of the

many Pandas commands to it. For instance, the head function was appended to display the

first five rows of hbr_uhr_chr22_counts. The data frame name and function is separated by a

hbr_uhr_chr22_counts=pandas.read_csv("./hbr_uhr_chr22_rna_seq_counts.csv")

Note

If a Python package was imported using an alias (ie. pd for Pandas) then use the alias to call the package. For

instance, pd.read_csv rather than pandas.read_csv when the pd alias is used for Pandas.

type(hbr_uhr_chr22_counts)

pandas.core.frame.DataFrame

hbr_uhr_chr22_counts.head()

26 Python data types, loops and iterators

Bioinformatics Training and Education Program

https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/

period. This is perhaps one of the most appealing aspects of Python syntax. Note that the head

function was followed by (). If the parentheses is blank, then by default the first five lines will be

shown. There will be more examples of the Pandas head function in a subsequent lesson.

Lists and tuples

Lists and tuples are one dimensional collections of data. The tuple is an immutable list, in which

the elements cannot be modified. However, lists are mutable.

To create a list, enclose the contents in square brackets.

To create a tuple, enclose the contents in parentheses.

Lists and tuples are indexed and can contain duplicates. The first item in a list or tuple has an

index of 0 (ie. Python uses a 0 based indexing system), the second item has an index of 1, and

the last item has an index of n-1 where n is the number of items. Indices can be used to recall

items in a list or tuple.

What if users wanted to extract the first two items in sequencing list?

But will the following work?

No, there is an error. More on this in section that covers loops and iterators.

sequencing_list=["whole genome", "rna", "whole exome"]

sequencing_tuple=("whole genome", "rna", "whole exome")

sequencing_list[1]

'rna'

sequencing_list[0:2]

['whole genome', 'rna']

sequencing_list[0,1]

27 Python data types, loops and iterators

Bioinformatics Training and Education Program

List versus tuples (mutable versus immutable)

Making a copy of a list

Suppose there is a list called list1 that contains the following numbers.

Next, create copy of list1 was made and assigned to variable list2.

TypeError Traceback (most recent call last)
Cell In[61], line 1
----> 1 sequencing_list[0,1]

TypeError: list indices must be integers or slices, not tuple

sequencing_list[1]="single cell RNA"

sequencing_list

['whole genome', 'single cell RNA', 'whole exome']

sequencing_tuple[1]="single cell RNA"

TypeError Traceback (most recent call last)
Cell In[48], line 1
----> 1 sequencing_tuple[1]="single cell RNA"

TypeError: 'tuple' object does not support item assignment

list1=[1,2,3,4,5]
list1

[1, 2, 3, 4, 5]

list2=list1
list2

28 Python data types, loops and iterators

Bioinformatics Training and Education Program

Then insert 0 as the first item in list2.

When assigning list2 to list1 using =, Python will point list2 to the values stored in list1 (ie. list1

and list2 are referencing the same list). Because lists are mutable, the changes to list2 are

reflected in list1 as well.

Set list1 back to [1,2,3,4,5].

Next, use the deepcopy module from the Python package copy to make a copy of list1 called

list2. To call a module within a Python package follow this general syntax of package.module.

For instance, to call deepcopy use copy.deepcopy.

Set the first element of list2 to 0.

Finally, recall list1.

[1, 2, 3, 4, 5]

list2[0]=0
list2

[0, 1, 2, 3, 4, 5]

[0, 1, 2, 3, 4, 5]

list1=[1,2,3,4,5]

import copy
list2=copy.deepcopy(list1)
list2

list2[0]=0
list2

[0, 1, 2, 3, 4, 5]

list1

29 Python data types, loops and iterators

Bioinformatics Training and Education Program

There actually two types of copies in Python. One is called shallow copy and the other is deep

copy. To create a shallow copy of list1 and store is list2, just do list2=list1.copy().

However, caution still need to taken when shallow copying as this could also lead to unintended

changes to the original variable. To create an independent copy of a variable, use deep copy.

See https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/# (https://

www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#) to learn more.

Source: https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/# (https://

www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#)

[1, 2, 3, 4, 5]

30 Python data types, loops and iterators

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#

Source: https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/# (https://

www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#)

Instructions for modifying Python lists can be found at the W3 school (https://

www.w3schools.com/python/python_lists.asp)

Arrays

Given a list of numbers, it is difficult to perform mathematical operations. For instance

Multiplying list_of_numbers by 2 will duplicate this list. However, multiplying a list of numbers by

two should double every number in that list. Thus, the expected result is [2,4,6,8,10]. To resolve

this, convert the list to an array using the package numpy (https://numpy.org).

Use the array function of numpy to convert list_of_numbers to an array called

array_of_numbers.

list_of_numbers=[1,2,3,4,5]

list_of_numbers*2

[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

31 Python data types, loops and iterators

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/#
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp
https://numpy.org
https://numpy.org

The array of numbers shown here is a one dimensional array. A special case of arrays is the

matrix, which is two dimensional. Like data frames, matrices store values in columns and rows.

Matrices are encountered in computation and are used to store numeric values (see here for

more on matrices (https://youtu.be/IZcyZHomFQc)).

Loops and iterators

Loops and iterators are great for performing repeated tasks. In Python, users will see for and

while loops. To learn about loops, first add a few more items the sequencing_list. To add

multiple items to Python lists, just use the .extend attribute.

The following for loop will print elements with index 2, 3, and 4 from sequencing_list and can

be explained as follows.

for is a type of loop to iterate over repetitive tasks in Python. To use the for loop,

An index is needed to keep track of where in the repetitive task the loop is in. For

instanced, this index can inform the loop which item in a list that it is currently

performing a task on. The index can be named anything. This example will use i as

it is very common across computing.

Next, the loop needs to know the starting and ending point for the repetitive task.

The example below uses a range of 2 through 5. Thus, the index i will initially take

on the value of 2, then increment by 1 in each pass of the loop and stop when i

equals 5.

A ":" follows for loop line. The action for the for loop is written in the next line but

tab indented. In the example below, the action is the print the ith item in the

sequencing_list.

array_of_numbers=numpy.array(list_of_numbers)

array_of_numbers*2

array([2, 4, 6, 8, 10])

sequencing_list.extend(["chip", "atac"])
sequencing_list

['whole genome', 'rna', 'whole exome', 'chip', 'atac']

•

◦

◦

◦

32 Python data types, loops and iterators

Bioinformatics Training and Education Program

https://youtu.be/IZcyZHomFQc
https://youtu.be/IZcyZHomFQc
https://youtu.be/IZcyZHomFQc

The start and end in a for loop does not necessarily need to numeric. The following will loop

through sequencing_list and print each element. In the loop below, sequence_type is set as

the index.

There is also the while loop. The example below will print the first four items in sequencing list

using while. Just like for loop, the while loop needs an index to help it keep track of where it

is at in the task. Here, the index is i and it is initiated with the value 0 outside the while loop.

Next, the while loop will proceed to print the ith item in sequencing_list as long as i is less

than 4. The index i is incremented by 1 in the while loop.

What would happen if i was initialized to 4 and the while loop would iterate until i is equal 0.

for i in range(2,5):
 print(sequencing_list[i])

whole exome
chip
atac

for sequence_type in sequencing_list:
 print(sequence_type)

whole genome
rna
whole exome
chip
atac

i=0
while i < 4:
 print(sequencing_list[i])
 i=i+1

whole genome
rna
whole exome
chip

33 Python data types, loops and iterators

Bioinformatics Training and Education Program

The above while loop will just print the items in sequencing_list in reverse order.

A for loop can be used to solve the issue why sequencing_list[0,1] did not work to

subset the first and second items in sequencing_list. In the command construct below,

to_subset will hold a list containing 0 and 1, which correspond the indices for the first and

second item in sequencing_list. In the following line, sequencing_list[i] will subset the ith

item in sequencing_list but only those indices included in to_subset, which the for loop will

iterate through.

To subset the first and second item in sequencing_list, the map command can be used.

What if the user wanted to add the word "sequencing" at the end of each sequencing type in

sequencing_list? To this, the map function can be used to iterate through sequencing_list and

i=4
while i >= 0:
 print(sequencing_list[i])
 i=i-1

atac
chip
whole exome
rna
whole genome

to_subset=[0,1]
[sequencing_list[i] for i in to_subset]

['whole genome', 'rna']

Definition

"The map() function is used to apply a given function to every item of an iterable, such as a list or tuple, and returns

a map object (which is an iterator)." -- https://www.geeksforgeeks.org/python-map-function/?ref=lbp (https://

www.geeksforgeeks.org/python-map-function/?ref=lbp)

list(map(sequencing_list.__getitem__, [0,1]))

['whole genome', 'rna']

34 Python data types, loops and iterators

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/python-map-function/?ref=lbp
https://www.geeksforgeeks.org/python-map-function/?ref=lbp
https://www.geeksforgeeks.org/python-map-function/?ref=lbp
https://www.geeksforgeeks.org/python-map-function/?ref=lbp

lambda can be used to execute the function that adds " sequencing" to the end of every item in

sequencing_list.

In the example below, lambda is used to define a function that adds " sequencing" to whatever

value is passed onto the variable sl. In this instance, sequencing_list, the last argument in the

map function is passed to sl.

Another example of combining map and lambda to iterate over a task is shown in the

commands below where every entry in numbers_list will be square.

An alternative for squaring every element in numbers_list1 is to use list comprehension, which

will essentially allow the use of one liner for loop to complete the task.

Definition

"A lambda function is a small anonymous function. A lambda function can take any number of arguments, but can

only have one expression." -- https://www.w3schools.com/python/python_lambda.asp (https://www.w3schools.com/

python/python_lambda.asp)

list(map(lambda sl: sl+" sequencing", sequencing_list))

['whole genome sequencing', 'rna sequencing', 'whole exome sequencing', 'chip sequencing',
 'atac sequencing']

numbers_list1=[1,2,3,4,5,6]
list(map(lambda j: j**2, numbers_list1))
numbers_list1

[1, 4, 9, 16, 25, 36]

numbers_list1=[1,2,3,4,5,6]
numbers_list1=list(j**2 for j in numbers_list1)
numbers_list1

[1, 4, 9, 16, 25, 36]

35 Python data types, loops and iterators

Bioinformatics Training and Education Program

https://www.w3schools.com/python/python_lambda.asp
https://www.w3schools.com/python/python_lambda.asp
https://www.w3schools.com/python/python_lambda.asp
https://www.w3schools.com/python/python_lambda.asp

Dictionaries

Dictionaries are key-value pairs and these are encountered as ways to specify options in some

Python packages.

Subsetting a dictionary

There are several methods for subsetting a dictionary. See https://www.geeksforgeeks.org/get-

a-subset-of-dict-in-python/ (https://www.geeksforgeeks.org/get-a-subset-of-dict-in-python/).

First, just enclosing one of the keys in square brackets will retrieve its associated value.

A for loop can be used to subset a dictionary as well. In the example below, a new dictionary

called apples_bananas is created just to hold the key and value pairs for apples and

bananas in my_dictionary. To do this, follow the steps below.

Create any variable with a list that contains dictionary keys to extract. In this example, the

variable will be named keys_to_extract and the list will contain apples and bananas,

which are keys in my_dictionary.

Next, create an empty dictionary called apples_bananas by setting to empty {}.

In the for loop, iterate through keys_to_extract using the variable k to keep track of

progress. If k is in my_dictionary, then use the dictionary's .update attribute to write

it into apples_bananas. apples_bananas can be written to because Python

dictionaries are mutable.

my_dictionary={"apples":"red","oranges":"orange","bananas":"yellow"}

my_dictionary['bananas']

yellow

1.

2.

3.

keys_to_extract = ['apples', 'bananas']
apples_bananas={}
for k in keys_to_extract:
 if k in my_dictionary:
 apples_bananas.update({k: my_dictionary[k]})

apples_bananas

36 Python data types, loops and iterators

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/get-a-subset-of-dict-in-python/
https://www.geeksforgeeks.org/get-a-subset-of-dict-in-python/
https://www.geeksforgeeks.org/get-a-subset-of-dict-in-python/

The above for loop can be condensed to a one liner using dictionary comprehension.

An alternative to using a for loop is Python's zip and map commands.

To demonstrate zip, consider the lists below.

A list where the first, second, and third items in a1 and a2 are paired together.

Next, recall that the map command takes an iterable item like a list and performs a certain

function with it.

The above commands will return a list with values for apples and bananas in my_dictionary

where the map function will use the dictionary's .get attribute to retrieve values for keys list in

keys_to_extract.

Given that zip will perform element-wise combination on iterable items such as list, it can be

used to generate key and value pairs from keys_to_extract and my_dictionary using the

command below where dict is used to specify creation of a dictionary.

{'apples': 'red', 'bananas': 'yellow'}

keys_to_extract = ['apples', 'bananas']
apples_bananas={k: my_dictionary[k] for k in keys_to_extract if k in my_dictionary}

Definition

"The zip() function in Python combines multiple iterables such as lists, tuples, strings, dict etc, into a single iterator of

tuples. Each tuple contains elements from the input iterables that are at the same position." -- https://

www.geeksforgeeks.org/zip-in-python/ (https://www.geeksforgeeks.org/zip-in-python/)

a1=[1,2,3]
a2=[3,4,5]
list(zip(a1,a2))

[(1, 3), (2, 4), (3, 5)]

keys_to_extract = ['apples', 'bananas']
list(map(my_dictionary.get,keys_to_extract))

['red', 'yellow']

37 Python data types, loops and iterators

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/zip-in-python/
https://www.geeksforgeeks.org/zip-in-python/
https://www.geeksforgeeks.org/zip-in-python/

Updating a dictionary

Use the a dictionary's update attribute to add values.

OR

To add multiple items to a dictionary, use .update.

The dictionary's .pop attribute can be used to remove an item.

To delete multiple items, just create a list of keys to remove and assign this list to a variable.

Below, keys_to_remove will be used to store avocado and kiwis, which are keys from

my_dictionary to remove.

dict(zip(keys_to_extract, map(my_dictionary.get, keys_to_extract)))

{'apples': 'red', 'bananas': 'yellow'}

my_dictionary.update({'pears': 'green'})

my_dictionary['pears']='green'

{'apples': 'red', 'oranges': 'orange', 'bananas': 'yellow', 'pears': 'green'}

my_dictionary.update({'avocado': 'green', 'kiwis': 'brown'})

{'apples': 'red', 'oranges': 'orange', 'bananas': 'yellow', 'pears': 'green', 'avocado': 'green', 'kiwis': 'brown'}

my_dictionary.pop('pears')

{'apples': 'red', 'oranges': 'orange', 'bananas': 'yellow', 'pears': 'green', 'kiwis': 'brown'}

keys_to_remove=['avocado', 'kiwis']
list(map(my_dictionary.pop, keys_to_remove))

38 Python data types, loops and iterators

Bioinformatics Training and Education Program

{'apples': 'red', 'oranges': 'orange', 'bananas': 'yellow'}

39 Python data types, loops and iterators

Bioinformatics Training and Education Program

Lesson 3: Data wrangling using Python

Learning objectives

After this lesson, participants will

Be able to import tabular data into Python using Pandas

Be able to explore and modify tabular data through various data wrangling approaches,

including

retrieving dimensions

subsetting

obtaining column statistics

replacing column names

performing mathematical operations

filtering

removing and adding columns

Importing tabular data using Pandas

Pandas (https://pandas.pydata.org) is a popular Python package used to work with tabular

data.

To work with Pandas, first activate it using the import command.

Sometimes the name of the package is long, so users might want to shorten it by creating an

alias. The alias "pd" is often used for the Pandas package. To add an alias, just append as

followed by the user defined alias to the package import command. If importing a package

using an alias, then the package needes to be called using the assigned alias. For instance, if

pd was used to import pandas, then use pd.read_csv to import a csv file.

This exercise will use the read_csv function of Pandas to import a comma separated value

(csv) file called hbr_uhr_chr22_rna_seq_counts.csv, which contains RNA sequencing gene

expression counts from the Human Brain Reference (hbr) and Universal Human Reference (uhr)

study (https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/). This data will be stored

as the variable hbr_uhr_chr22_counts.

•

•

◦

◦

◦

◦

◦

◦

◦

import pandas

import pandas as pd

40 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/
https://rnabio.org/module-01-inputs/0001/05/01/RNAseq_Data/

Take a look at the first few rows of hbr_uhr_chr22_counts by appending the head attribute to

hbr_uhr_chr22_counts.

Figure 1: The first five rows of hbr_uhr_chr22_counts. The first column contains genes and the

subsequent columns contain gene expression counts for each of the samples. The left most

column of this data frame contains the row indices or names.

Because hbr_uhr_chr22_counts is a Pandas data frame (type(hbr_uhr_chr22_counts),

see lesson 2), it is possible to append one of the many Pandas commands to it. For instance,

the head function was appended to display the first five rows of hbr_uhr_chr22_counts. The

data frame name and function is separated by a period. This is perhaps one of the most

appealing aspects of Python syntax. Note that the head function was followed by (). If the

parentheses are blank, then the default first five lines will be shown. To view the first 10 rows of

hbr_uhr_chr22_counts do the following.

hbr_uhr_chr22_counts=pandas.read_csv("./hbr_uhr_chr22_rna_seq_counts.csv")

hbr_uhr_chr22_counts.head()

hbr_uhr_chr22_counts.head(10)

41 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

Figure 2: Include an integer inside the parentheses of pandas.dataframe.head() function

to view the specified number of lines in a tabular dataset.

The function tail can be used to view by default the bottom five lines of a tabular dataset.

Similar to head, the number of lines shown can be customized by specifying an integer inside

the parentheses.

Get dimensions of a data frame

Pandas data frames have a function shape that informs of the number of rows and number of

columns in a data frame (in other words the dimensions). To get the dimensions for

hbr_uhr_chr22_counts, do the following

The hbr_uhr_chr22_counts data frame has 1335 rows and 7 columns.

hbr_uhr_chr22_counts.tail()

hbr_uhr_chr22_counts.shape

(1335, 7)

Note

The elements in tabular data can be referred to by their row and column positions.

42 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

The size function returns the number elements in a data frame. For instance,

hbr_uhr_chr22_counts has 1335 rows and 7 columns, which means that it has 1335 times 7

elements (or 9345).

Row indices/names

Figure 2 shows the first 10 rows of hbr_uhr_chr22_counts. The left most column, which contains

labels starting with "0" is referred to as the row indices or row names. Users can specify a

column in the dataset as the row indices or row names using the index_col options in

read_csv. For instance, the hbr_uhr_chr22_rna_seq_counts.csv dataset could be imported

with gene names as the row indices. To do this, add the index_col=0 option to read_csv.

Gene names in hbr_uhr_chr22_rna_seq_counts.csv is the first column and is denoted as

column "0" in Python. Thus, setting index_col=0 ensures that the gene names will be set as

the row indices or row names (see Figure 3).

Figure 3. The index_col=0 option in pandas.read_csv sets the gene names as row names

in the imported data frame.

hbr_uhr_chr22_counts_1=pandas.read_csv("./hbr_uhr_chr22_rna_seq_counts.csv", index_col=0)

43 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

Data wrangling

Subsetting

The command below will subset the expression counts for the RABL2B gene.

The "|" symbol can be used as the "or" operator so to also subset the counts for RPL23AP82

Alternatively, use the isin function and provide a list of genes to retrieve.

Use "." to reference a column.

Subsetting by integer positions

Given that the elements in a data frame are referenced by its row and column positions, what

would be the approach for extracting the element in row 60 and column 5? The solution is the

command below, which returns a result of 2. The row and column numbers are enclosed in "[]"

and separated by a comma.

hbr_uhr_chr22_counts[hbr_uhr_chr22_counts["Geneid"]=="RABL2B"]

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
1334 RABL2B 74 62 54 68 50 47

hbr_uhr_chr22_counts[(hbr_uhr_chr22_counts["Geneid"]=="RABL2B") | (hbr_uhr_chr22_counts["Geneid"]=="RPL23AP82")]

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
1333 RPL23AP82 41 59 54 32 23 34
1334 RABL2B 74 62 54 68 50 47

hbr_uhr_chr22_counts[hbr_uhr_chr22_counts["Geneid"].isin(["RABL2B", "RPL23AP82"])]

hbr_uhr_chr22_counts[hbr_uhr_chr22_counts.Geneid=="RABL2B"]

hbr_uhr_chr22_counts.iloc[60,5]

44 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

The above method for subsetting the element in row 60 and column 5 of hbr_uhr_chr22_counts

is great if the goal is to extract the value and do numeric operation on it. But what if the user

wants to return the element along with the corresponding gene in data frame format?

To do this, enclose the row and column indices to extract in their own inner set of square

brackets as shown below. Column 0, which contains the gene name is also included in the

brackets containing the column indices of interest.

Pandas offers different approaches for subsetting rectangular data. One method is iloc.

iloc is a "purely integer-location based indexing for selection by position" -- https://

pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html# (https://

pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#). The row and

column positions are enclosed in "[]".

iloc allows for retrieval of elements in multiple rows and columns. For instance, the following

can be used to retrieve the elements in rows 60 and 65 and columns 0, 4, 5, and 6 in

hbr_uhr_chr22_counts. Note that the row and column positions are enclosed in an outer set of

"[]". Within the outer set of "[]" the first set of "[]" enclose a comma separated list of row positions

while the second set of "[]" enclose a comma separated list of column positions.

To get the first three rows of hbr_uhr_chr22_counts do the following. Note that it retrieves the

rows with indices 0, 1, and 2.

2

hbr_uhr_chr22_counts.iloc[[60],[0,5]]

 Geneid UHR_2.bam
60 CCT8L2 2

hbr_uhr_chr22_counts.iloc[[60,65],[0,4,5,6]]

 Geneid UHR_1.bam UHR_2.bam UHR_3.bam
60 CCT8L2 1 2 0
65 SLC25A15P5 2 2 4

hbr_uhr_chr22_counts.iloc[:3]

45 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.iloc.html#

What will be the output for hbr_uhr_chr22_counts.iloc[[3],:]?

{{Sdet}}{{Ssum}}Solution{{Esum}}

The row with an index of 3 will be retrieved.

{{Edet}}

Subsetting using column names

Panda's loc function allows for subsetting by row or column names. For instance, to retrieve

the gene id column, do the following. The ":" denotes get every row.

To retrieve the counts for the gene SLC25A15P5, use the following where SLC25A15P5 is the

subsetting criteria, where

hbr_uhr_chr22_counts.loc[:,'Geneid'] extracts the Geneid column.

=="SLC25A15P5" will filter out the row with the SLC25A15P5 gene.

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
0 U2 0 0 0 0 0 0
1 CU459211.1 0 0 0 0 0 0
2 CU104787.1 0 0 0 0 0 0

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
3 BAGE5 0 0 0 0 0 0

hbr_uhr_chr22_counts.loc[:,['Geneid']]

 Geneid
0 U2
1 CU459211.1
2 CU104787.1
3 BAGE5
4 ACTR3BP6
... ...
1330 ACR
1331 AC002056.5
1332 AC002056.3
1333 RPL23AP82
1334 RABL2B

•

•

46 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

To retrieve counts for more than one gene, enclose the genes of interest in a list and use the

isin function to filter out the rows containing the genes in the list.

To find all of the SLC genes in hbr_uhr_chr22_counts, the following could be used where

str.startswith searches for text that starts a pattern (ie. "SLC"). Other options for pattern

matching include str.endwith and str.contains.

Summary statistics of data frames

hbr_uhr_chr22_counts[hbr_uhr_chr22_counts.loc[:,'Geneid']=="SLC25A15P5"]

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
65 SLC25A15P5 0 0 0 2 2 4

hbr_uhr_chr22_counts[hbr_uhr_chr22_counts.loc[:,'Geneid'].isin(["SLC25A15P5", "CCT8L2"])]

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
60 CCT8L2 0 0 0 1 2 0
65 SLC25A15P5 0 0 0 2 2 4

hbr_uhr_chr22_counts.loc[hbr_uhr_chr22_counts.loc[:,'Geneid'].str.startswith("SLC")]

 Geneid HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
54 SLC9B1P4 0 0 0 0 1 0
65 SLC25A15P5 0 0 0 2 2 4
109 SLC25A18 100 111 74 6 8 7
181 SLC25A1 32 50 41 226 138 216
249 SLC9A3P2 0 0 0 0 0 2
268 SLC7A4 19 25 14 9 4 3
494 SLC2A11 54 63 46 28 34 27
726 SLC35E4 18 32 26 21 12 13
783 SLC5A1 0 0 0 0 6 0
795 SLC5A4 7 12 5 13 9 4
955 SLC16A8 9 13 11 11 5 6
1046 SLC25A17 39 39 40 119 96 116
1099 SLC25A5P1 0 0 1 0 1 0

hbr_uhr_chr22_counts.describe()

47 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

Replacing column names

To view the column headings of a data frame use the column function. For instance,

The str.replace function can be used to replace a string with something else. Here, it used

to remove ".bam" from the sample names in the column heading.

Mathematical operations on data frames and filtering

Pandas enables mathematical operations on data frames. For instance, one might want to sum

the total counts across all samples for each gene. The sum function can be used to this. Setting

axis=1 will sum up the counts for each row or gene. Because the Geneid column is a string, it

is necessary to first subset only the sample columns.

Below, genes with zero counts across all samples are removed from hbr_uhr_chr22_counts and

stored as hbr_uhr_chr22_counts_filtered. To accomplish this set

 HBR_1.bam HBR_2.bam HBR_3.bam UHR_1.bam UHR_2.bam UHR_3.bam
count 1335.000000 1335.000000 1335.000000 1335.000000 1335.000000 1335.000000
mean 29.530337 36.264419 32.084644 50.694382 33.419476 40.334831
std 99.177874 120.617793 108.237694 197.575081 122.598310 154.455918
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
50% 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000
75% 8.000000 10.000000 9.000000 13.000000 12.000000 11.000000
max 1532.000000 1797.000000 1637.000000 4027.000000 2406.000000 3047.000000

hbr_uhr_chr22_counts.columns

HBR_1.bam
HBR_2.bam
HBR_3.bam
UHR_1.bam
UHR_2.bam
UHR_3.bam

hbr_uhr_chr22_counts.columns=hbr_uhr_chr22_counts.columns.str.replace(".bam", "")

hbr_uhr_chr22_counts.loc[:, ['HBR_1', 'HBR_2', 'HBR_3', 'UHR_1', 'UHR_2', 'UHR_3']].sum(axis=1)

48 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

hbr_uhr_chr22_counts.loc[:, ['HBR_1', 'HBR_2', 'HBR_3', 'UHR_1',

'UHR_2', 'UHR_3']].sum(axis=1) !=0 and use as a filter criteria.

Removing and adding columns to a data frame

For this exercise, stay in the /data/username/pies_2023 folder, which should be the present

working directory (use pwd to check). If not in the /data/username/pies_2023 folder, change into

it. Copy the hbr_uhr_deg_chr22.csv and hcc1395_deg_chr22.csv files from /data/classes/

BTEP/pies_2023_data to the /data/username/pies_2023 directory.

The file hcc1395_deg_chr22.csv will be needed for the practice questions.

This exercise will use the differential gene expression analysis table from the hbr and uhr study.

The info() function will retrieve information regarding the hbr_uhr_deg_chr22 data frame,

which includes the column names.

hbr_uhr_chr22_counts_filtered=hbr_uhr_chr22_counts.loc[hbr_uhr_chr22_counts.loc[:, ['HBR_1', 'HBR_2', 'HBR_3', 'UHR_1', 'UHR_2', 'UHR_3']].sum(axis=1)!=0]

cp /data/classes/BTEP/pies_2023_data/hbr_uhr_deg_chr22.csv .

cp /data/classes/BTEP/pies_2023_data/hcc1395_deg_chr22.csv .

hbr_uhr_deg_chr22=pandas.read_csv("./hbr_uhr_deg_chr22.csv")

hbr_uhr_deg_chr22.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1335 entries, 0 to 1334
Data columns (total 18 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 name 1335 non-null object
 1 baseMean 1335 non-null float64
 2 baseMeanA 1335 non-null float64
 3 baseMeanB 1335 non-null float64
 4 foldChange 971 non-null float64
 5 log2FoldChange 971 non-null float64
 6 lfcSE 971 non-null float64
 7 stat 971 non-null float64

49 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

The hbr_uhr_deg_chr22 table contains differential gene expression analysis results. Relevant

columns include

name: gene names

log2FoldChange: the gene expression change between the two treatment groups

PAdj: the adjusted p-value associated with statistical confidence of the expression

change

The columns labeled with the sample names (ie. columns 12 through 17) are the

normalized gene expression counts

Use str.replace to remove ".bam" from the sample names in columns 12 through 17.

To drop columns in a Pandas data frame, use the .drop function and specify the name(s) of

the column(s) to remove. The example below removes columns baseMean, baseMeanA,and

baseMeanB

Subset the name, log2FoldChange, and PAdj columns in hbr_uhr_deg_chr22 and save to a new

data frame hbr_uhr_deg_chr22_1.

 8 PValue 971 non-null float64
 9 PAdj 971 non-null float64
 10 FDR 639 non-null float64
 11 falsePos 639 non-null float64
 12 HBR_1.bam 1335 non-null float64
 13 HBR_2.bam 1335 non-null float64
 14 HBR_3.bam 1335 non-null float64
 15 UHR_1.bam 1335 non-null float64
 16 UHR_2.bam 1335 non-null float64
 17 UHR_3.bam 1335 non-null float64
dtypes: float64(17), object(1)
memory usage: 187.9+ KB

•

•

•

•

hbr_uhr_deg_chr22.columns=hbr_uhr_deg_chr22.columns.str.replace(".bam", "")

hbr_uhr_deg_chr22.drop(columns=["baseMean","baseMeanA", "baseMeanB"])

hbr_uhr_deg_chr22_1=hbr_uhr_deg_chr22.loc[:,["name", "log2FoldChange", "PAdj"]]

hbr_uhr_deg_chr22_1.head()

50 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

Next, add a column called "-log10PAdj" to hbr_uhr_deg_chr22_1, which will contain the

negative of log10 of the values in the PAdj column. "-log10PAdj" is used in volcano plots that

depict gene expression change versus statistical confidence. To calculate -log10PAdj, the

package numpy will be used. Numpy (https://numpy.org) enables scientific calculations.

Take a look at the first several lines of hbr_uhr_deg_chr22_1

Other methods for adding new column to a Pandas data frame include insert and assign.

The final task for this lesson is to add a column that indicates whether a gene is up regulated,

down regulated, or has no change based on the log2FoldChange and PAdj values. The criteria

are as follows.

PAdj >= 0.01: no change (marked as ns in the column)

Absolute value of log2FoldChange <2: no change (marked as ns in the column)

log2FoldChange >= 2 and PAdj < 0.01: (up regulated)

log2FoldChange <=2 and PAdj < 0.01: (down regulated)

To code this in Python, the first step is to drop the NA values from the hbr_uhr_deg_chr22_1

using dropna.

 name log2FoldChange PAdj
0 SYNGR1 -4.6 5.200000e-217
1 SEPT3 -4.6 4.500000e-204
2 YWHAH -2.5 4.700000e-191
3 RPL3 1.7 5.400000e-134
4 PI4KA -2.0 2.900000e-118

import numpy

hbr_uhr_deg_chr22_1["-log10PAdj"]=numpy.negative(numpy.log10(hbr_uhr_deg_chr22_1.loc[:,"PAdj"]))

hbr_uhr_deg_chr22_1.head()

 name log2FoldChange PAdj -log10PAdj
0 SYNGR1 -4.6 5.200000e-217 216.283997
1 SEPT3 -4.6 4.500000e-204 203.346787
2 YWHAH -2.5 4.700000e-191 190.327902
3 RPL3 1.7 5.400000e-134 133.267606
4 PI4KA -2.0 2.900000e-118 117.537602

•

•

•

•

51 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

https://numpy.org
https://numpy.org

Next, create a list called significance_criteria that contains the criteria shown above. In the

criteria list below, "&" is the Boolean for "and". To calculate the absolute value of

log2FoldChange, numpy.absolute is used.

Then, create a list called significance_status that indicates whether the criteria are ns (not

significant), up, or down. These statuses have to correspond to the order in which the criteria

were listed in significance_criteria.

Finally, numpy.select will be used to assign values to the significance column.

Write this data frame to a csv file in the /data/username/pies_2023 folder, which should be the

present working directory. Replace username with the user's Biowulf account ID. The to_csv

command in Pandas is used to write data frames to csv files. Setting index=False ensures

that the csv file will not have row names.

This lesson has shown the participants various data wrangling approaches using the Python

package Pandas. The capabability of Pandas expand to more than what is covered here,

hbr_uhr_deg_chr22_1=hbr_uhr_deg_chr22_1.dropna()

significance_criteria=[(hbr_uhr_deg_chr22_1["PAdj"]>=0.01),
 (numpy.absolute(hbr_uhr_deg_chr22_1["log2FoldChange"])<2),
 (hbr_uhr_deg_chr22_1["log2FoldChange"]>=2) & (hbr_uhr_deg_chr22_1["PAdj"]<0.01),
 (hbr_uhr_deg_chr22_1["log2FoldChange"]<=-2) & (hbr_uhr_deg_chr22_1["PAdj"]<0.01)]

significance_status=["ns","ns","up","down"]

hbr_uhr_deg_chr22_1["significance"]=numpy.select(significance_criteria,significance_status)

hbr_uhr_deg_chr22_1.head(4)

 name log2FoldChange PAdj -log10PAdj significance
0 SYNGR1 -4.6 5.200000e-217 216.283997 down
1 SEPT3 -4.6 4.500000e-204 203.346787 down
2 YWHAH -2.5 4.700000e-191 190.327902 down
3 RPL3 1.7 5.400000e-134 133.267606 ns

hbr_uhr_deg_chr22_1.to_csv("./hbr_uhr_deg_chr22_with_significance_lesson3.csv",index=False)

52 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

participants are encouraged to check out the Pandas documentations (https://

pandas.pydata.org/docs/) to learn more.

53 Lesson 3: Data wrangling using Python

Bioinformatics Training and Education Program

https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/

Lesson 4: Data visualization using Python

Learning objectives

This lesson will provide participants with enough knowledge to start using Python for data

visualization. Specifically, participants should

Be able to use the package Seaborn to

Construct plots that range from very basic to elegant as well as biologically relevant

Customize plots including altering font size and adding custom annotations

Python data visualization tools

Seaborn (https://seaborn.pydata.org) is a popular Python plotting package, which is the tool

that will be introduced in this lesson. Seaborn is an extension of and builds on Matplotlib

(https://matplotlib.org) and is oriented towards statistical data visualization. However, there are

other packages, including those that are domain specific, implement grammar of graphics, and

are used for creating web-based visualization dashboards. A non-exhaustive list of Python

plotting packages is shown below.

Matplotlib (https://matplotlib.org)

Plotnine: implements grammar of graphics for those familiar with R's ggplot2 (https://

plotnine.readthedocs.io/en/stable/)

bioinfokit: genomic data visualization (https://github.com/reneshbedre/bioinfokit)

pygenomeviz: visuazlize comparative genomics data (https://moshi4.github.io/

pyGenomeViz/)

Dash bio: create interactive data visualizations and web dashboards (https://

dash.plotly.com/dash-bio)

Visualization using Seaborn

Load packages

•

◦

◦

•

•

•

•

•

import pandas
import numpy
import matplotlib.pyplot as plt
import seaborn

54 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

https://seaborn.pydata.org
https://seaborn.pydata.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://matplotlib.org
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://plotnine.readthedocs.io/en/stable/
https://github.com/reneshbedre/bioinfokit
https://github.com/reneshbedre/bioinfokit
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://moshi4.github.io/pyGenomeViz/
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio
https://dash.plotly.com/dash-bio

Modify the basic plot elements with Seaborn.

To plot using Seaborn, start the command with seaborn followed by the plot type, separated

by a period.

This section will use Seaborn's scatterplot to explore how to work with and modify basic

elements of plotting. The foundations learned in this section form the basis for creating

advanced and elegant plots.

The data that will be plotted is a point located at 5 on the x axis and 5 on the y axis. To generate

x and y, numpy.array was used. Here, x and y are single element arrays that store the number

5.

Plot x and y using Seaborn's scatterplot function (see Figure 1 for results), which takes data

frames or Numpy arrays as input. Here, x will be plotted on the x axis, and y will be plotted on

the y axis. The plot can be stored as a variable, which in this example is plot0.

seaborn.plot_type

x=numpy.array([5])
y=numpy.array([5])

plot0=seaborn.scatterplot(x=x, y=y)
plt.show()

55 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 1

The plot in Figure 1 has no axes labels. Axes labels are an integral part of an informative data

visualization. It might also be useful to include meaningful x and y limits. To do this, append the

various .set* attributes to the plot. See Figure 2a for result.

set_xlabel: specify x axis label (size is used to set the label font size)

set_ylabel: specify y axis

set_xlim: sets the x axis limits

set_ylim: sets the y axis limits

set_xticks: sets the location of x axis tick marks

set_xticklabels: sets the x axis tick mark labels, size is used to set the tick mark

label font size

set_yticks: sets the location of y axis tick marks

set_yticklabels: sets the y axis tick mark labels, size is used to set the tick mark

label font size

•

•

•

•

•

•

•

•

plot0=seaborn.scatterplot(x=x, y=y)
plot0.set_xlabel("x axis", size=14)
plot0.set_ylabel("y axis", size=14)
plot0.set_xlim(0,10)
plot0.set_ylim(0,10)
plot0.set_xticks([0,2,4,6,8,10])
plot0.set_xticklabels(labels=["0","2","4","6","8","10"], size=15)

56 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 2

The plotting_context of a Seaborn plot contains parameters that determine scaling of plot

elements (see https://seaborn.pydata.org/generated/seaborn.plotting_context.html (https://

seaborn.pydata.org/generated/seaborn.plotting_context.html)). To view these parameters, do

the following, which will return the plot scaling parameters as a dictionary.

These parameters can be changed using the set_context function by providing a

customized dictionary and assigning it to the rc argument.

plot0.set_yticks([0,2,4,6,8,10])
plot0.set_yticklabels(labels=["0","2","4","6","8","10"], size=15)
plt.show()

print(seaborn.plotting_context())

{'font.size': 12.0, 'axes.labelsize': 12.0, 'axes.titlesize': 12.0, 'xtick.labelsize': 11.0, 'ytick.labelsize': 11.0, 'legend.fontsize': 11.0, 'legend.title_fontsize': 12.0, 'axes.linewidth': 1.25, 'grid.linewidth': 1.0, 'lines.linewidth': 1.5, 'lines.markersize': 6.0, 'patch.linewidth': 1.0, 'xtick.major.width': 1.25, 'ytick.major.width': 1.25, 'xtick.minor.width': 1.0, 'ytick.minor.width': 1.0, 'xtick.major.size': 6.0, 'ytick.major.size': 6.0, 'xtick.minor.size': 4.0, 'ytick.minor.size': 4.0}

help(seaborn.set_context)

57 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html
https://seaborn.pydata.org/generated/seaborn.plotting_context.html

To change the x and y axes tick label font size to 20, use

seaborn.set_context(rc={'xtick.labelsize': 20, 'ytick.labelsize': 20})

prior to constructing a Seaborn plot.

The code above can be modified to generate a more complex scatter plot that has more points.

For instance, the inputs for x and y can be changed to numeric arrays of five 6 elements each.

Help on function set_context in module seaborn.rcmod:

set_context(context=None, font_scale=1, rc=None)
 Set the parameters that control the scaling of plot elements.

 This affects things like the size of the labels, lines, and other elements
 of the plot, but not the overall style. This is accomplished using the
 matplotlib rcParams system.

 The base context is "notebook", and the other contexts are "paper", "talk",
 and "poster", which are version of the notebook parameters scaled by different
 values. Font elements can also be scaled independently of (but relative to)
 the other values.

 See :func:`plotting_context` to get the parameter values.

 Parameters

 context : dict, or one of {paper, notebook, talk, poster}
 A dictionary of parameters or the name of a preconfigured set.
 font_scale : float, optional
 Separate scaling factor to independently scale the size of the
 font elements.
 rc : dict, optional
 Parameter mappings to override the values in the preset seaborn
 context dictionaries. This only updates parameters that are
 considered part of the context definition.

x=numpy.array([0,1,2,3,4,5])
y=numpy.multiply(2,x)
print("x is a numeric array composed of: ", x)
print("y is a numeric array composed of: ", y)

x is a numeric array composed of: [0 1 2 3 4 5]
y is a numeric array composed of: [0 2 4 6 8 10]

58 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

The code used to generate Figure 2 can then be run again with modifications to the x and y

axes limits to generate the plot shown in Figure 3. To produce a line plot representation of

Figure 3, simply change the plot type to lineplot (seaborn.lineplot).

Figure 3

Constructing biologically relevant plots

The next exercise is to practice creating a scatter plot on a biologically relevant dataset.

Namely, the differential expression results from the hbr and uhr RNA sequencing study will be

used to create a scatter plot depicting log2 fold change of gene expression on the x axis and

plot0=seaborn.scatterplot(x=x, y=y)
plot0.set_xlabel("x axis", size=14)
plot0.set_ylabel("y axis", size=14)
plot0.set_xlim(0,6)
plot0.set_ylim(0,12)
plot0.set_xticks([0,2,4,6])
plot0.set_xticklabels(labels=["0","2","4","6"], size=15)
plot0.set_yticks([0,2,4,6,8,10,12])
plot0.set_yticklabels(labels=["0","2","4","6","8","10","12"], size=15)
plt.show()

59 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

negative log10 of the adjusted p-values on the y axis. This special case of scatter plot is called

a volcano plot.

Step one is to import the data using Panda's read.csv command.

Now, review the contents of this data table by doing the following.

To create the volcano plot, provide the following arguments. See Figure 4 for result.

The data frame (ie. hbr_uhr_deg_chr22)

What to plot on the x axis (ie. log2FoldChange)

What to plot on the y axis (ie. "-log10PAdj")

hbr_uhr_deg_chr22=pandas.read_csv("./hbr_uhr_deg_chr22_with_significance.csv")

hbr_uhr_deg_chr22.head(4)

 name log2FoldChange PAdj -log10PAdj significance
0 SYNGR1 -4.6 5.200000e-217 216.283997 down
1 SEPT3 -4.6 4.500000e-204 203.346787 down
2 YWHAH -2.5 4.700000e-191 190.327902 down
3 RPL3 1.7 5.400000e-134 133.267606 down

•

•

•

plot1=seaborn.scatterplot(hbr_uhr_deg_chr22,x="log2FoldChange", y="-log10PAdj")

60 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 4

The volcano plot in Figure 4 does not help with visualizing the up, down, an non-significant

genes. Fortunately, the hue option can be used to distinguish these. See Figure 5.

plot1=seaborn.scatterplot(hbr_uhr_deg_chr22,x="log2FoldChange", y="-log10PAdj", hue="significance")

61 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 5

It would be informative to label some of the top significant differentially expressed genes in the

volcano plot. To do this, import the file hbr_uhr_deg_chr22_top_genes.csv and assign it to the

data frame hbr_uhr_deg_chr22_top_genes.

The table contains the top two differentially expressed genes according to the adjusted p-value

(PAdj). The task to do is to label the points corresponding to these two genes on the volcano

plot. The values for log2FoldChange and -log10PAdj will serve as the x and y coordinates for

plotting the gene name.

hbr_uhr_deg_chr22_top_genes=pandas.read_csv("./hbr_uhr_deg_chr22_top_genes.csv")

hbr_uhr_deg_chr22_top_genes

 name log2FoldChange PAdj -log10PAdj significance
0 XBP1 2.8 7.300000e-90 89.136677 up
1 SYNGR1 -4.6 5.200000e-217 216.283997 down

62 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

To label the two top differentially expressed genes, start by constructing the volcano plot from

Figure 5. Then, use a for loop to iterate through the name column in the data frame

hbr_uhr_deg_chr22_top_genes. In the for loop

i: the number that keeps track of the row number in the data frame

hbr_uhr_deg_chr22_top_genes and is used to

reference the x coordinate or log2FoldChange value in that row

reference the y coordinate or -log10PAdj value in that row

enumerate: iterate through the name column in hbr_uhr_deg_chr22_top_genes and

stores the name to variable gene_name. i is incremented as it iterates through the name

column within the for loop

Figure 6

The next visualization is the heatmap and dendrogram combination, which helps with visualizing

clusters and patterns. Heatmap and dendrogram can be used in RNA sequencing studies to

inspect whether there are cluster of genes with similar expression patterns among treatment

•

◦

◦

•

plot1=seaborn.scatterplot(hbr_uhr_deg_chr22,x="log2FoldChange", y="-log10PAdj", hue="significance")
for i, gene_name in enumerate(hbr_uhr_deg_chr22_top_genes["name"]):
 plot1.text(hbr_uhr_deg_chr22_top_genes["log2FoldChange"][i],
 hbr_uhr_deg_chr22_top_genes["-log10PAdj"][i],gene_name)

63 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

groups. The normalized counts for the top differential expressed genes in the hbr and uhr study

will be used to construct a heatmap/dendrogram using Seaborn's clustermap.

Import the data.

The seaborn.clustermap command below generates a clustermap of the top differential

expressed genes in the hbr and uhr study. The arguments and options are as follows.

Argument: The dataset (ie. hbr_uhr_top_deg_normalized_counts)

Options:

z_score=0: scale the rows by z-score

cmap: specify color palette (ie. viridis)

figsize: specify figure size

vmin: minimum value on the color scale bar

vmax: maximum value on the color scale bar

cbar_kws: dictionary containing key value pair that specifies the title to the color

scale bar

cbar_pos: coordinates for placement of the color scale bar

hbr_uhr_top_deg_normalized_counts=pandas.read_csv("./hbr_uhr_top_deg_normalized_counts.csv", index_col=0)

•

•

◦

◦

◦

◦

◦

◦

◦

plot4=seaborn.clustermap(hbr_uhr_top_deg_normalized_counts,z_score=0,cmap="viridis",
 figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=({"label": "z score"}),
 cbar_pos=(0.855,0.8,0.025,0.15))

64 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 9: Expression heatmap of the top 12 differentially expressed genes in the HBR and UHR

study

Below, a Pandas Series, called samples that contains a mapping of colors to study samples is

created.

Then a variable, column_colors is created that contains a mapping of the

hbr_uhr_top_deg_normalized_counts column headings to the colors specified in samples. This

is accomplished using the map command.

samples=pandas.Series({"HBR_1":"orangered", "HBR_2":"orangered", "HBR_3":"orangered", "UHR_1":"blue", "UHR_2":"blue", "UHR_3":"blue"})

column_colors=hbr_uhr_top_deg_normalized_counts.columns.map(samples)

65 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

The option col_colors, which is set to column_colors is added to display a color bar on the

top of the heatmap that helps to distinguish treatment groups (ie. hbr or uhr).

Other options added include

ax_heatmap.set_xticklabels: allows for customizing the x axis labels' fontsize and

rotation. This requires using ax_heatmap.get_xmajorticklabels() to get the x axis

tick labels

ax_cbar.tick_params: sets the size for the color scale bar labels

ax_col_colors.set_title: sets the title and location bar displaying the treatment

group to color mapping

•

•

•

plot4=seaborn.clustermap(hbr_uhr_top_deg_normalized_counts,z_score=0,cmap="viridis",
 figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=({"label": "z score"}),
 col_colors=column_colors, cbar_pos=(0.855,0.8,0.025,0.15))
plot4.ax_heatmap.set_xticklabels(plot4.ax_heatmap.get_xmajorticklabels(),fontsize=12,rotation=90)
plot4.ax_cbar.tick_params(labelsize=12)
plot4.ax_col_colors.set_title("treatment",x=-0.1,y=0.01)
plt.show()

66 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Figure 10: Expression heatmap of the top 12 differentially expressed genes in the HBR and

UHR study with treatment group annotations.

67 Lesson 4: Data visualization using Python

Bioinformatics Training and Education Program

Illustrations for tunneling and starting

Jupyter lab

Figure 1: After interactive session resources have been allocated, users will see a ssh

command that looks like that enclosed in the red rectangle. Open a new terminal (if working on

a Mac) or command prompt (if working on a Windows computer) and then copy and paste this

ssh command into the new terminal.

Figure 2: Hit enter after copying and pasting the ssh command to a new terminal to provide

password and log into Biowulf. This will complete the tunnel.

68 Illustrations for tunneling and starting Jupyter lab

Bioinformatics Training and Education Program

Figure 3: In the ssh command shown in Figure 1 and Figure 2, the numbers preceding and

following "localhost" will differ depending on user. Also, the Biowulf username will differ for each

user (wuz8 is the instructor's Biowulf username).

Figure 4: Go back to the terminal (Mac) or command prompt (Windows) with the interactive

session (look for cn#### at the prompt). Do module load jupyter from here.

69 Illustrations for tunneling and starting Jupyter lab

Bioinformatics Training and Education Program

Figure 5: Start a Jupyter lab session using jupyter lab --ip localhost --port

$PORT1 --no-browser and copy and paste either one of the http links to a local browser.

70 Illustrations for tunneling and starting Jupyter lab

Bioinformatics Training and Education Program

Practice questions

Bioinformatics Training and Education Program

Lesson 2 practice questions

Question 1

Generate a list called twelve that contains numbers 1 through 12 and then afterwards, subset

it to a list called even_numbers that contains only the even entries.

{{Sdet}}{{Ssum}}solution{{Esum}}

OR

OR

{{Edet}}

Question 2

Create the following lists. Then loop through numeric_grades and print the student's letter

grade using the following criteria.

>=90: A

<90 but >=80: B

Hint

Google how to find the remainder of a division operation.

twelve=[1,2,3,4,5,6,7,8,9,10,11,12]

even_numbers=list()
for i in number1:
 if i % 2 == 0:
 even_numbers.append(i)

even_numbers=list()
even_numbers=[i for i in number1 if i % 2 == 0]

even_numbers=list(filter(lambda i: i % 2 == 0, number1))

•

•

72 Lesson 2 practice questions

Bioinformatics Training and Education Program

<80 but >=70: C

<70 but >=60: D

Below 60: Failed

{{Sdet}}{{Ssum}}solution{{Esum}}

{{Edet}}

•

•

•

Hint

Use Google to find out how to make multiple comparisons within Python's elif statement.

numeric_grades=[90,75,80,95,100]
student_name=['Yoda', 'Cat', 'Dog', 'Mouse', 'Spock']

for i in range(len(numeric_grades)):
 if numeric_grades[i]>=90:
 print(student_name[i], "got an A")
 elif (numeric_grades[i]<90) & (numeric_grades[i]>=80):
 print(student_name[i], "got a B")
 elif (numeric_grades[i]<80) & (numeric_grades[i]>=70):
 print(student_name[i], "got a C")
 elif (numeric_grades[i]<70) & (numeric_grades[i]>=60):
 print(student_name[i], "got a D")
 else:
 print(student_name[i], "Failed")

73 Lesson 2 practice questions

Bioinformatics Training and Education Program

Lesson 3 practice questions

Question 1

Import hcc1395_chr22_rna_seq_counts.csv and store it as hcc1395_chr22_counts.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 2

How many rows and columns are in hcc1395_chr22_counts?

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 3

What are the column names in hcc1395_chr22_counts and how to view the first 10 rows of this

data set?

{{Sdet}}{{Ssum}}Solution{{Esum}}

Alternatively, use hcc1395_chr22_counts.columns to get the column headings for this data

frame.

import pandas

hcc1395_chr22_counts=pandas.read_csv("./hcc1395_chr22_rna_seq_counts.csv")

hcc1395_chr22_counts.shape

(1335, 7)

hcc1395_chr22_counts.head(10)

74 Lesson 3 practice questions

Bioinformatics Training and Education Program

{{Edet}}

Question 4

How many genes start with the letter "C" in hcc1395_chr22_counts?

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 5

Import hcc1395_deg_chr22.csv and store it as hcc1395_deg_chr22.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 6

Remove ".bam" from the column headers of hcc1395_deg_chr22.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 7

Subset out the following columns from hcc1395_deg_chr22 and store it as

hcc1395_deg_chr22_1.

name

log2FoldChange

PAdj

hcc1395_chr22_counts.loc[hcc1395_chr22_counts.loc[:,'Geneid'].str.startswith("C")]

hcc1395_deg_chr22=pandas.read_csv("./hcc1395_deg_chr22.csv")

hcc1395_deg_chr22.columns=hcc1395_deg_chr22.columns.str.replace(".bam", "")

•

•

•

75 Lesson 3 practice questions

Bioinformatics Training and Education Program

{{Sdet}}{{Ssum}}Solution{{Esum}}

Use the .head function to check of the subsetting was done correctly.

{{Edet}}

Question 8

Add a column to hcc1395_deg_chr22_1 that contains the negative log10 of the PAdj value.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

hcc1395_deg_chr22_1=hcc1395_deg_chr22.loc[:,["name", "log2FoldChange", "PAdj"]]

hcc1395_deg_chr22_1.head()

import numpy

hcc1395_deg_chr22_1["-log10PAdj"]=numpy.negative(numpy.log10(hcc1395_deg_chr22_1.loc[:,"PAdj"]))

76 Lesson 3 practice questions

Bioinformatics Training and Education Program

Lesson 4 practice questions

Question 1

Create a volcano plot for the differential expression analysis results for the hcc1395 data (hint:

import hcc1395_deg_chr22_with_significance.csv)

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 2

Label the two most differential expressed genes in the volcano plot. As a hint, first import

hcc1395_deg_chr22_top_genes.csv.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

import pandas
import matplotlib.pyplot as plt
import seaborn

hcc1395_deg_chr22=pandas.read_csv("./hcc1395_deg_chr22_with_significance.csv")

plot1=seaborn.scatterplot(hcc1395_deg_chr22,x="log2FoldChange", y="-log10PAdj", hue="significance")
plt.show()

hcc1395_deg_chr22_top_genes=pandas.read_csv("./hcc1395_deg_chr22_top_genes.csv")

plot1=seaborn.scatterplot(hcc1395_deg_chr22,x="log2FoldChange", y="-log10PAdj", hue="significance")
for i, gene_name in enumerate(hcc1395_deg_chr22_top_genes["name"]):
 plot1.text(hcc1395_deg_chr22_top_genes["log2FoldChange"][i],
 hcc1395_deg_chr22_top_genes["-log10PAdj"][i],gene_name)
plt.show()

77 Lesson 4 practice questions

Bioinformatics Training and Education Program

Question 3

Import hcc1395_top_deg_normalized_counts.csv and create an expression heatmap. Use the

Viridis color palette.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

Question 4

Add a bar on the top of the heatmap that shows which treatment group the samples belong to.

{{Sdet}}{{Ssum}}Solution{{Esum}}

{{Edet}}

hcc1395_top_deg_normalized_counts=pandas.read_csv("./hcc1395_top_deg_normalized_counts.csv", index_col=0)

plot2=seaborn.clustermap(hcc1395_top_deg_normalized_counts,z_score=0,cmap="viridis",
 figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=({"label": "z score"}))
plt.show()

samples=pandas.Series({"hcc1395_normal_rep1":"orangered", "hcc1395_normal_rep2":"orangered", "hcc1395_normal_rep3":"orangered", "hcc1395_tumor_rep1":"blue", "hcc1395_tumor_rep2":"blue", "hcc1395_tumor_rep3":"blue"})
column_colors = hcc1395_top_deg_normalized_counts.columns.map(samples)
plot2=seaborn.clustermap(hcc1395_top_deg_normalized_counts,z_score=0,cmap="viridis",
 figsize=(8,8),vmin=-1.5, vmax=1.5,cbar_kws=({"label": "z score"}),
 col_colors=column_colors, cbar_pos=(0.05,0.8,0.025,0.15))
plot2.ax_heatmap.set_xticklabels(plot2.ax_heatmap.get_xmajorticklabels(),fontsize=12,rotation=90)
plot2.ax_cbar.tick_params(labelsize=12)
plot2.ax_col_colors.set_title("treatment",x=1.09,y=-0.3)
plt.show()

78 Lesson 4 practice questions

Bioinformatics Training and Education Program

Finding help

The document provides useful links where participants can find help for the Python packages

that were addressed during the course series.

Pandas - package for working with tabular data (https://pandas.pydata.org)

Pandas API reference gives instructions for each command (https://pandas.pydata.org/

docs/reference/index.html). To get to the API reference, either

Navigate to the the Documentation section at the Pandas homepage and click on

API reference (Figure 1).

OR, click on the the Documentation tab at the top of the Pandas homepage and

click on the tile labeled API reference in the subsequent page (Figure 2).

Figure 1

•

◦

◦

79 Finding help

Bioinformatics Training and Education Program

https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html
https://pandas.pydata.org/docs/reference/index.html

Figure 2

Seaborn for data visualization (https://seaborn.pydata.org/index.html)

Seaborn API reference gives instructions for each command (https://seaborn.pydata.org/

api.html). To get to the Seaborn API reference, click on API at the top of the Seaborn

website.

•

80 Finding help

Bioinformatics Training and Education Program

https://seaborn.pydata.org/index.html
https://seaborn.pydata.org/index.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html
https://seaborn.pydata.org/api.html

Figure 3

Numpy for scientific computing (https://numpy.org/doc/stable/index.html)

Numpy API reference (https://numpy.org/doc/stable/reference/index.html). To get to this,

select Documentation at the top of the Numpy homepage (Figure 4) and then click on

either of the links to the API reference (Figure 5).

Figure 4

•

81 Finding help

Bioinformatics Training and Education Program

https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html

Figure 5

Matplotlib for data visualization (https://matplotlib.org)

Matplotlib API reference (https://matplotlib.org/stable/api/index). To get to this, click on

reference at the top of the Matplotlib homepage (Figure 6).

Figure 6

•

82 Finding help

Bioinformatics Training and Education Program

https://matplotlib.org
https://matplotlib.org
https://matplotlib.org/stable/api/index
https://matplotlib.org/stable/api/index

	BTEP course
	Table of Contents
	Course overview
	Lesson 1 slides
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Starting Jupyter Lab through Tunneling
	Practice questions
	Lesson 2 practice
	Lesson 3 practice
	Lesson 4 practice

	Finding help

	Course Overview
	Example data used in this course

	Lesson 1 slides
	Getting Started with Python
	Lesson 1 learning objectives
	Why use Python?
	Python enables elegant data visualization
	Generating a scatter plot using Matplotlib
	Generating a gene expression heatmap using Seaborn

	Tools for interacting Python
	Python at the command prompt
	Ipython
	Using Python through IDE
	Accessing Python at NIH
	Using Python through Biowulf
	Spin up Jupyter Lab in HPC OnDemand.
	Create a new Jupyter Notebook
	Python Command Syntax
	Installing external packages

	Python data types, loops and iterators
	Learning objectives
	Start a Jupyter Lab session
	Python data types and data structures
	Identifying data type and structure in Python
	Variable assignments
	Conditionals
	Data frames
	Importing tabular data with Pandas

	Lists and tuples
	List versus tuples (mutable versus immutable)
	Making a copy of a list

	Arrays
	Loops and iterators
	Dictionaries
	Subsetting a dictionary
	Updating a dictionary

	Lesson 3: Data wrangling using Python
	Learning objectives
	Importing tabular data using Pandas
	Get dimensions of a data frame
	Row indices/names
	Data wrangling
	Subsetting
	Subsetting by integer positions
	Subsetting using column names
	Summary statistics of data frames
	Replacing column names
	Mathematical operations on data frames and filtering
	Removing and adding columns to a data frame

	Lesson 4: Data visualization using Python
	Learning objectives
	Python data visualization tools
	Visualization using Seaborn
	Load packages
	Modify the basic plot elements with Seaborn.
	Constructing biologically relevant plots

	Illustrations for tunneling and starting Jupyter lab
	Practice questions
	Lesson 2 practice questions
	Question 1
	Question 2

	Lesson 3 practice questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8

	Lesson 4 practice questions
	Question 1
	Question 2
	Question 3
	Question 4

	Finding help

