
Introductory R for

Novices

Alexandra L Emmons Ph.D.

BTEP/GAU/CCR/NCI/NIH - email ncibtep@mail.nih.gov

Bioinformatics Training and Education Program

4

4

4

7

7

7

8

8

8

8

8

9

9

10

10

12

13

14

Table of Contents

Welcome

• Introductory R for Novices

• Course Description

• Course Materials

Getting Started with R

Getting Started with R

• Lessons

• Required Course Materials

Lesson 1: Introduction to R and RStudio IDE

• Learning Objectives

• What is R?

• Why R?

• Where do we get R packages?

• Ways to run R

• What is RStudio?

• Getting Started with R and R Studio

• Connect to RStudio on NIH HPC Open OnDemand

• Creating an R project

• Why renv?

• Creating an R script

14

15

16

16

16

17

18

18

20

20

22

22

22

22

24

25

25

26

28

28

29

30

31

31

• Introduction to the RStudio layout

• When to use Source vs Console?

• Uploading and exporting files from RStudio Server

• Data Management

• Saving your R environment (.Rdata)

• What is a function?

• What is a path?

• Getting help

• Additional Sources for help

• Acknowledgments

Lesson 2: Basics of R Programming: R Objects and Data Types

• Objectives

• R objects

• Creating and deleting objects

• Naming conventions and reproducibility

• Reassigning objects

• Deleting objects

• Object data types

• Special null-able values

• Mathematical operations

• A function is an object.

• The pipe (|>, %>%).

• Pre-defined objects

• Acknowledgments

33

36

36

36

37

Practice Exercises

Exercise 1: Lesson2

Additional Resources

• Additional Resources

• Books and / or Book Chapters of Interest

• R Cheat Sheets

• Other Resources

Introductory R for Novices

Course Description

This course, designed for novices, will introduce the foundational skills necessary to begin to

analyze and visualize data in R. The content for this course is similar to past introductory R

courses, but the pace of the course will be much slower to benefit novices.

Why learn R? R is a great resource for statistical analysis, data visualization, and report

generation. R also provides packages and functions specific to the analysis of -omics data

through efforts like Bioconductor.

This course includes 3-parts:

Part 1: Getting Started with R

Topics covered in Part 1 will focus on the basics of R Programming including getting

started with R and RStudio, creating and manipulating R objects, and understanding and

manipulating vectors and other data structures.

Part 2: Introduction to Data Wrangling

Now that you have an understanding of the basics, Part 2 will show you how to work with

tabular data. Topics covered include filtering, transforming, summarizing, and reshaping

data using the Tidyverse suite of packages.

Part 3: Introduction to Data Visualization

In Part 3, you will learn to visualize your data. Though multiple R graphics systems will be

introduced, Part 3 will focus exclusively on visualizing data using ggplot2.

This course will take place on T, Th, 2:00 - 3:00 PM.

Course Materials

This course will be taught using R and RStudio on Biowulf. To use R on Biowulf, you must have

an NIH HPC account (https://hpc.nih.gov/docs/accounts.html). If you do not have Biowulf, this

course can be taken using a local R installation.

•

•

•

R Installation Instructions

Macbook: Follow these instructions (https://posit.co/download/rstudio-desktop/).

Windows: R and RStudio installation on Windows requires administrative privileges. NCI researchers can

request installation from service.cancer.gov (https://service.cancer.gov/ncisp).

•

•

4 Introductory R for Novices

Bioinformatics Training and Education Program

https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/
https://service.cancer.gov/ncisp
https://service.cancer.gov/ncisp

This is not required if you have a Biowulf account.

Lesson Recordings

Video recordings of BTEP Coding Club events can be found in the BTEP Video Archive (https://

bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/) 24-48 hours following any given event.

5 Introductory R for Novices

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/
https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/
https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/
https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/

Getting Started with R

Bioinformatics Training and Education Program

R programming

Getting Started with R

This course is the first part of a larger 3-part course designed for novices.

Material covered in Part 1 focuses on the basics of R Programming including getting started

with R and RStudio, creating and manipulating R objects, and understanding and manipulating

vectors and other data structures.

Lessons

April 22, 2025 - Introduction to R and RStudio

April 24, 2025 - Basics of R Programming: R Objects and Data Types

April 29, 2025 - Basics of R Programming: Vectors

May 1, 2025 - Introduction to R Data Structures: Data Import

May 6, 2025 - R Data Structures: Data Frames

Required Course Materials

This course will use R on Biowulf. To use R on Biowulf, you must have an NIH HPC account.

However, if you do not have Biowulf, this course can be taken using a local R installation.

1.

2.

3.

4.

5.

7 Getting Started with R

Bioinformatics Training and Education Program

Lesson 1: Introduction to R and RStudio IDE

Learning Objectives

To understand:

1. the difference between R and RStudioIDE.

2. how to work within the RStudio environment including:

creating an Rproject and Rscript

navigating between directories

using functions

obtaining help

By the end of this section, you should be able to easily navigate and explore your RStudio

environment.

What is R?

R is both a computational language and environment for statistical computing and graphics. It

is open-source and widely used by scientists and non-scientists, not just bioinformaticians.

Base packages of R are built into your initial installation, but R functionality is greatly improved

by installing other packages. R as a programming language is based on the S language,

developed by Bell laboratories. R is maintained by a network of collaborators from around the

world, and core contributors are known as the R Core team (Term used for citations). However,

R is also a resource for and by scientists, and R functionality makes it easy to develop and

share packages on any topic. Check out more about R on The R Project for Statistical

Computing (https://www.r-project.org/about.html) website.

Why R?

R is a particularly great resource for statistical analyses, plotting, and report generating. The

fact that it is widely used means that users do not need to reinvent the wheel. There is a

package available for most types of analyses, and if users need help, it is only a Google search

away. As of now, CRAN houses +22,000 available packages. There are also many field specific

packages, including those useful in the -omics (genomics, transcriptomics, metabolomics, etc.).

For example, the latest version of Bioconductor (v 3.20) includes 2,289 software packages, 431

experiment data packages, 928 annotation packages, 30 workflows, and 5 books.

Where do we get R packages?

To take full advantage of R, you need to install R packages. R packages are loadable

extensions that contain code, data, documentation, and tests in a standardized, easy to share

•

•

•

•

8 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://www.r-project.org/about.html
https://www.r-project.org/about.html
https://www.r-project.org/about.html

format that can easily be installed by R users. The primary repository for R packages is the

Comprehensive R Archive Network (CRAN). CRAN (https://cran.r-project.org/

#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.) is

a global network of servers that store identical versions of R code, packages, documentation,

etc (cran.r-project.org). To install a CRAN package, use

install.packages("packageName"). Github is another common source used to store R

packages; though, these packages do not necessarily meet CRAN standards so approach with

caution. To install a Github packages use library(devtools) followed by

install_github(). Many genomics and other packages useful to biologists / molecular

biologists can be found on Bioconductor (https://www.bioconductor.org/). Bioconductor and

Bioconductor packages use BiocManager for installation; see here (https://

www.bioconductor.org/install/).

METACRAN (https://www.r-pkg.org/) is a useful database that allows you to search and browse

CRAN/R packages.

Ways to run R

R is a programming language and it "comes with an environment or console that can read and

execute your code" (https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-

rstudio/). R can be used via command line interactively, command line using a script (https://

support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-

line), or interactively through an environment. This course will demonstrate the utility of the

RStudio integrated development environment (IDE).

What is RStudio?

RStudio (https://posit.co/products/open-source/rstudio/) is an integrated development

environment for R, and now python. RStudio includes a console, editor, and tools for plotting,

history, debugging, and work space management. It provides a graphic user interface for

working with R, thereby making R more user friendly. RStudio is open-source and can be

installed locally or used through a browser (RStudio Server or Posit Cloud). We will be

showcasing RStudio Server on Biowulf (https://hpc.nih.gov/apps/RStudio.html) via HPC Open

OnDemand (https://hpc.nih.gov/ondemand/index.html), but we highly encourage new users to

install R and RStudio locally to their PC or macbook.

What is Posit?

Posit (https://posit.co/) is a company that creates and maintains a variety of software products (some free and

others proprietary) including the RStudio IDE.

Installing R and RStudio

Macbook: Follow these instructions (https://posit.co/download/rstudio-desktop/).

Windows: Request installation from service.cancer.gov (https://service.cancer.gov/ncisp).

9 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.r-pkg.org/
https://www.r-pkg.org/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://posit.co/products/open-source/rstudio/
https://posit.co/products/open-source/rstudio/
https://hpc.nih.gov/apps/RStudio.html
https://hpc.nih.gov/apps/RStudio.html
https://hpc.nih.gov/ondemand/index.html
https://hpc.nih.gov/ondemand/index.html
https://hpc.nih.gov/ondemand/index.html
https://posit.co/
https://posit.co/
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/
https://service.cancer.gov/ncisp
https://service.cancer.gov/ncisp

There is also an RStudio User Guide (https://docs.posit.co/ide/user/).

Getting Started with R and R Studio

This tutorial closely follows the "Intro to R and RStudio for Genomics" lesson provided by

datacarpentry.org (https://datacarpentry.github.io/genomics-r-intro/index.html).

Connect to RStudio on NIH HPC Open OnDemand

NIH HPC Open OnDemand (https://hpc.nih.gov/ondemand/index.html) provides an online

dashboard for users to easily access command line interactive sessions, graphical linux

desktop environments, and interactive applications including RStudio, MATLAB, IGV, iDEP, VS

Code, and Jupyter Notebook. To use NIH HPC Open OnDemand, you must have an NIH HPC

account (https://hpc.nih.gov/docs/accounts.html). If you are interested in bioinformatics, an NIH

HPC account is highly recommended. These accounts are available for a nominal fee of $40

per month.

To connect to Open OnDemand make sure you are on the NIH Network and click on the

following link: https://hpcondemand.nih.gov (https://hpcondemand.nih.gov). This will take you to

the HPC Open OnDemand dashboard.

From there you will need to:

Select RStudio Server.

Step 1: Select RStudio Server from the selection of pinned applications.

Select parameters for your RStudio session including the version of R you want to use.

Click "Launch" to start the session.

Check out this blog (https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/) for information

related to updating R and RStudio.

1.

2.

3.

10 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://docs.posit.co/ide/user/
https://docs.posit.co/ide/user/
https://datacarpentry.github.io/genomics-r-intro/index.html
https://datacarpentry.github.io/genomics-r-intro/index.html
https://hpc.nih.gov/ondemand/index.html
https://hpc.nih.gov/ondemand/index.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpcondemand.nih.gov
https://hpcondemand.nih.gov

Step 2, 3: Alter any job parameters as you see fit and launch the session.

Your session will be queued, and it may take a few minutes to shift to "Running".

Session is queued.

When the session switches to "Running", click "Connect to RStudio Server". 4.

11 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

Step 4: Connect to RStudio Server.

Congratulations! You are now connected.

Creating an R project

If you intend to use R for upcoming analysis projects, you will want to create R projects. R

projects automatically set your working directory to the directory specified for a given project. R

projects are beneficial because they "keep all the files associated with a given project (input

RStudio Server on Biowulf

Using RStudio Server on Biowulf will allow you to 1. interact with your files on Biowulf, 2. use HPC resources (CPUs,

RAM, etc.), and 3. also interact with local files.

12 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/workflow-scripts.html#rstudio-projects

data, R scripts, analytical results, and figures) together in one directory" (https://r4ds.hadley.nz/

workflow-scripts.html#rstudio-projects).

Creating an R project (https://docs.posit.co/ide/user/ide/guide/code/projects.html) for each

project you are working on facilitates organization and scientific reproducibility.

An RStudio project allows you to more easily:

Save data, files, variables, packages, etc. related to a specific analysis

project

Restart work where you left off

Collaborate, especially if you are using version control such as git. ---

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-introduction/

index.html)

R projects simplify data reproducibility by allowing us to use relative file paths that will translate

well when sharing the project.

To start a new R project, select File > New Project... or use the R project button (See

image below).

A New project wizard will appear. Click New Directory and New Project. Choose a new

directory name....perhaps "Getting_Started_with_R"?

While we will not select renv today, this option will make a project more reproducible. See

below. To make your project more reproducible, consider clicking the option box for renv.

The R project file ends in .Rproj. "This file contains various project options and can also be used

as a shortcut for opening the project directly from the filesystem." (https://docs.posit.co/ide/

user/ide/guide/code/projects.html)

Why renv?

R projects allow us to easily share data, code, and other related information, but this only

scratches the surface of what is required for true data analysis reproducibility.

Too often an R script will fail simply due to a clash in package dependencies. Versions are

important. R versions change over time; Bioconductor versions evolve, and R packages

change. While we can include session info using the sessionInfo() function (more on

functions later) at the end of a script or markdown file, this in no way facilitates our ability to truly

•

•

•

13 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/workflow-scripts.html#rstudio-projects
https://r4ds.hadley.nz/workflow-scripts.html#rstudio-projects
https://r4ds.hadley.nz/workflow-scripts.html#rstudio-projects
https://r4ds.hadley.nz/workflow-scripts.html#rstudio-projects
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html

replicate the infrastructure surrounding our code. Thankfully, there are R packages available

that help us do just that.

"The renv package helps you create reproducible environments for your R projects" (https://

rstudio.github.io/renv/index.html), primarily by tracking and managing package dependencies.

Read more about renv here (https://rstudio.github.io/renv/articles/renv.html).

Creating an R script

As we learn more about R and start learning our first commands, we will keep a record of our

commands using an R script. Remember, good annotation is key to reproducible data analysis.

An R script can also be generated to run on its own without user interaction, from R console

using source() and from linux command line using Rscript.

To create an R script, click File > New File > R Script. You can save your script by

clicking on the floppy disk icon. You can name your script whatever you want, perhaps

"Lesson_1". R scripts end in .R. Save your R script to your working directory, which will be the

default location on RStudio Server.

Introduction to the RStudio layout

Let's look a bit into our RStudio layout.

Reproducibility

There is even more that can be done to make projects reproducible beyond R Projects and renv. For example, you

can use version control (git), R packages, and containerization (e.g., Singularity, Docker).

14 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html

Source: This pane is where you will write/view R scripts. Some outputs (such as if

you view a dataset using View()) will appear as a tab here.

Console/Terminal/Jobs: This is actually where you see the execution of commands.

This is the same display you would see if you were using R at the command line

without RStudio. You can work interactively (i.e. enter R commands here), but for

the most part we will run a script (or lines in a script) in the source pane and watch

their execution and output here. The “Terminal” tab give you access to the BASH

terminal (the Linux operating system, unrelated to R). RStudio also allows you to run

jobs (analyses) in the background. This is useful if some analysis will take a while to

run. You can see the status of those jobs in the background.

Environment/History: Here, RStudio will show you what datasets and objects

(variables) you have created and which are defined in memory. You can also see

some properties of objects/datasets such as their type and dimensions. The

“History” tab contains a history of the R commands you’ve executed.

Files/Plots/Packages/Help/Viewer: This multi-purpose pane will show you the

contents of directories on your computer. You can also use the “Files” tab to

navigate and set the working directory. The “Plots” tab will show the output of any

plots generated. In “Packages” you will see what packages are actively loaded, or

you can attach installed packages. “Help” will display help files for R functions and

packages. “Viewer” will allow you to view local web content (e.g. HTML outputs).

---datacarpentry.org (https://datacarpentry.github.io/genomics-r-intro/00-

introduction.html)

Additional panes may show up depending on what you are doing in RStudio. For example, you

may notice a Render tab in the Console/Terminal/Jobs pane when working with Rmarkdown

(.Rmd) or Quarto (.qmd) files.

Also, you can change your RStudio layout. See this blog (https://www.r-bloggers.com/2018/05/

a-perfect-rstudio-layout/) if you are interested. For simplicity, please do NOT change the layout

during this course.

When to use Source vs Console?

We will use the Source pane to keep a record of the code that we run. However, at times, we

may want to do quick testing without keeping a record. This is the scenario in which you would

use the Console.

Look under the files tab

You can already see our R project and R script file in our project directory under the Files tab. If you chose to use

renv you will also see some files and directories related to that.

15 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://datacarpentry.github.io/genomics-r-intro/00-introduction.html
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/

Uploading and exporting files from RStudio Server

RStudio Server works via a web browser, and so you see this additional Upload option in the

Files pane. If you select this option, you can upload files from your local computer into the

server environment. If you select More, you will also see an Export option. You can use this to

export files to your local computer.

Data Management

Data organization is extremely important to reproducible science. Consider organizing your

project directory in a way that facilitates reproducibility. All inputs and outputs (where possible)

should be contained within the project directory, and a consistent directory structure should be

created. For example, you may want directories for data, docs, outputs, figures, and scripts.

See additional details here (https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-

biowulf/L3_PackageManagement/). How you organize project directories is up to you, but

consistency is fairly important for reproducibility. We will discuss more on this subject when

introducing data frames.

Saving your R environment (.Rdata)

When exiting RStudio, you will be prompted to save your R workspace or .RData. The .RData

file saves the objects generated in your R environment. You can also save the .RData at any

time using the floppy disk icon just below the Environment tab. You may also save your R

workspace from the console using save.image(). RData files are often not visible in a

directory. You can see them using ls -a from the terminal. RData files within a working

directory associated with a given project will launch automatically under the default option

Restore .RData into workspace at startup. You may also load .Rdata by using load().

Use relative file paths

Do not use absolute file paths in scripts. These will cause the script to fail unexpectedly for other users.

16 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/
https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/
https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/
https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/

Another file to be aware of is the .Rhistory file. The R history file contains a list of commands

from your previous R sessions.

What is a function?

Now we are ready to work with some of our first R commands. In R, commands are generally

called functions.

A function in R (or any computing language) is a short program that takes some

input and returns some output.

An R function has three key properties:

Functions have a name (e.g. dir, getwd); note that functions are case

sensitive!

Following the name, functions have a pair of ()

Inside the parentheses, a function may take 0 or more arguments ---

datacarpentry.org (https://datacarpentry.github.io/genomics-r-intro/00-

introduction.html#using-functions-in-r-without-needing-to-master-them).

There are thousands of available functions to use in R, and if there isn't a function available for a

specific task, you can write your own. We will be using many more functions, so there will be

many more opportunities to learn the syntax.

We are going to run commands directly from our R script rather than typing into the R console.

Our first function will be getwd(). This simply prints your working directory and is the R

equivalent of pwd (if you know Unix coding).

To run this function, we have a number of options. First, you can use the Run button above. This

will run highlighted or selected code. You may also use the source button to run your entire

script. My preferred method is to use keyboard shortcuts. Move your cursor to the code of

interest and use command + return for macs or control + enter for PCs. If a command is

taking a long time to run and you need to cancel it, use control + c from the command line or

escape in RStudio. Once you run the command, you will see the command print to the console

Restoring your R environment

If you are working with significantly large datasets, you may not want to automatically save and restore .RData. To

turn this off, go to Tools -> Global Options -> deselect "Restore .RData into workspace at startup" and choose

"Never" for "Save workspace to .RData on exit". It is usually recommended not to restore the .RData file (https://

r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth) at the beginning of a session.

•

•

•

#print our working directory
getwd()

17 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth
https://r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth
https://r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth
https://r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth
https://r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html#using-functions-in-r-without-needing-to-master-them
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html#using-functions-in-r-without-needing-to-master-them
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html#using-functions-in-r-without-needing-to-master-them
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html#using-functions-in-r-without-needing-to-master-them

in blue followed by the output.

It is good practice to annotate your code using a comment. We can denote comments with #.

We designated or set our working directory when we created our R project, but if for some

reason we needed to set our working directory, we can do this with setwd(). There is no need

to run currently. However, if you were to run it, you would use the following notation:

setwd("path_to_your_directory")

The path should be in quotes. You can use tab completion to fill in the path.

What is a path?

According to Wikipedia, a path is "a string of characters used to uniquely identify a location in a

directory structure."

Therefore, a file path simply tells us where a file or files are located. You will need to direct R to

the location of files that you want to work with or output that you create.

The working directory is the location in your file system that you are currently working in. In other

words, it is the default location that R will look for input files and write output files.

Getting help

Now we know a bit about using functions, but what if I had no idea what the function setwd()

was used for or what arguments to provide?

Getting help in R is fairly easy. In the pane to the bottom right, you should see a Help tab. You

can search for help regarding a specific topic using the search field (look for the magnifying

glass).

[1] "/vf/users/emmonsal/Getting_Started_with_R"

Note

R uses Unix formatting for directories, so regardless of whether you have a Windows computer or a mac, the way

you enter the directory information will be the same. You can use tab completion to help you fill in directory

information.

18 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

Alternatively, you can search directly for help in the console using ?setwd() or ??setwd().

help.search() or ?? can be used to search for a function using a keyword and will also work

for unloaded packages; for example, you may try help.search("anova").

R help pages provide a lot of information. The description and argument sections are likely

where you will want to start. If you are still unsure how to use the function, scroll down and

check out the examples section of the documentation. Consider testing some of the examples

yourself and applying to your own data.

Many R packages also include more detailed help documentation known as a vignette. To see a

package vignette, use browseVignettes() (e.g.,

browseVignettes(package="dplyr")).

To see a function's arguments, you can use args().

Because setwd(dir) is used to set the working directory to dir, it requires only a single

argument (dir).

args(setwd)

function (dir)
NULL

Note

R arguments can be specified by name with `argument_name= ____", by position, or by partial name. More on this

later.

19 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

Additional Sources for help

Try googling your problem or using some other search engine. rseek (https://rseek.org/) is an

R specific search engine that searches several R related sites. If using Google or other major

search engine directly, make sure you use R to tag your search.

Stack Overflow is a particularly great resource for finding help. If you post a question, you will

need to make a reproducible example (reprex) and be as descriptive as possible regarding the

problem. For this purpose, you may find the reprex (https://reprex.tidyverse.org/) package

particularly useful.

To provide details about your R session, use

Acknowledgments

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-

introduction/index.html). Material was also inspired by content from Introduction to data analysis

with R and Bioconductor (https://carpentries-incubator.github.io/bioc-intro/), which is part of the

sessionInfo()

R version 4.5.0 (2025-04-11)
Platform: aarch64-apple-darwin20
Running under: macOS Sequoia 15.4

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.1

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):
 [1] compiler_4.5.0 fastmap_1.2.0 cli_3.6.4 tools_4.5.0
 [5] htmltools_0.5.8.1 rstudioapi_0.17.1 yaml_2.3.10 rmarkdown_2.29
 [9] knitr_1.50 jsonlite_2.0.0 xfun_0.52 digest_0.6.37
[13] rlang_1.1.6 evaluate_1.0.3

20 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://rseek.org/
https://rseek.org/
https://rseek.org/
https://reprex.tidyverse.org/
https://reprex.tidyverse.org/
https://reprex.tidyverse.org/
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://carpentries-incubator.github.io/bioc-intro/
https://carpentries-incubator.github.io/bioc-intro/
https://carpentries-incubator.github.io/bioc-intro/

Carpentries Incubator (https://github.com/carpentries-incubator/proposals/#the-carpentries-

incubator).

21 Lesson 1: Introduction to R and RStudio IDE

Bioinformatics Training and Education Program

https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator

R programming

Lesson 2: Basics of R Programming: R

Objects and Data Types

Objectives

To understand some of the most basic features of the R language including:

Creating and manipulating R objects.

Understanding object types and classes.

Using mathematical operations.

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to

NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to

connect: https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/). Then follow the

instructions outlined here.

R objects

Objects (and functions) are key to understanding and using R programming.

Everything assigned a value in R is technically an object. Mostly we think of R objects as

something in which a method (or function) can act on; however, R functions, too, are R objects.

R objects are what gets assigned to memory in R and are of a specific type or class. Objects

include things like vectors, lists, matrices, arrays, factors, and data frames. Don't get too

bogged down by terminology. Many of these terms will become clear as we begin to use them

in our code. In order to be assigned to memory, an r object must be created.

Creating and deleting objects

To create an R object, you need a name, a value, and an assignment operator (e.g., <- or =)

(https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html). R is

case sensitive, so an object with the name "FOO" is not the same as "foo".

•

•

•

Note

You can use alt + - on a PC to generate the -> or option + - on a mac.

Using = for assignment?

22 Lesson 2: Basics of R Programming: R Objects and Data Types

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html

Let's create a simple object and run our code. There are a few methods to run code:

The run button

Key shortcuts (Windows: ctrl+Enter, Mac: Command+Return)

Type directly into the console.

Use comments (#) to annotate your code for better reproducibility.

In this example, "a" is the name of the object, 1 is the value, and <- is the assignment operator.

Now, if we use a in our code, R will replace it with its value during execution. Try the following:

To improve the readability of your code, you should use the -> operator to assign values to objects rather than =. =

has other purposes. For example, setting function arguments.

•

•

•

#Create an object called "a" assigned to a value of 1.
a <- 1

#Simply call the name of the object to print the value to the screen
a

[1] 1

a + 5

[1] 6

5 - a

[1] 4

a^2

[1] 1

a + a

23 Lesson 2: Basics of R Programming: R Objects and Data Types

Bioinformatics Training and Education Program

Naming conventions and reproducibility

There are rules regarding the naming of objects.

Avoid spaces or special characters EXCEPT '_' and '.'

No numbers or underscores at the beginning of an object name.

For example:

In contrast:

What do you think would have happened if we didn't put 'apples' in quotes?

[1] 2

1.

2.

1a<-"apples" # this will throw and error
1a

Error in parse(text = input): <text>:1:2: unexpected symbol
1: 1a
 ^

Note

It is generally a good habit to not begin sample names with a number.

a<-"apples" #this works fine
a

[1] "apples"

Strings

R recognizes different types of data (See below). We have used numbers above, but we can also use

characters or strings. A string is a sequence of characters. It can contain letters, numbers, symbols and

spaces, but to be recognized as a string it must be wrapped in quotes (either single or double). If a

sequence of characters are not wrapped in quotes, R will try to interpret it as something other than a string

like an R object.



24 Lesson 2: Basics of R Programming: R Objects and Data Types

Bioinformatics Training and Education Program

Avoid common names with special meanings (See ?Reserved) or assigned to existing

functions (These will auto complete).

See the tidyverse style guide (https://style.tidyverse.org/syntax.html) for more information on

naming conventions.

Object names should be short but informative. If you use a, b, c, you will likely forget what those

object names represent. However, something like

This_is_my_scientific_data_from_blah_experiment is far too long. Strike a nice

balance.

Reassigning objects

To reassign an object, simply overwrite the object.

Deleting objects

3.

How do I know what objects have been created?

To view a list of the objects you have created, use `ls()' or look at your global environment pane.

#Create an object with gene named 'tp53'
gene_name<-"tp53"
gene_name

[1] "tp53"

#Re-assign gene_name to a different gene
gene_name<-"GH1"
gene_name

[1] "GH1"

Warning

R will not warn you when objects are being overwritten, so use caution.

delete the object 'gene_name'
rm(gene_name)

25 Lesson 2: Basics of R Programming: R Objects and Data Types

Bioinformatics Training and Education Program

https://style.tidyverse.org/syntax.html
https://style.tidyverse.org/syntax.html

Object data types

Data types are familiar in many programming languages, but also in natural

language where we refer to them as the parts of speech, e.g. nouns, verbs,

adverbs, etc. Once you know if a word - perhaps an unfamiliar one - is a noun, you

can probably guess you can count it and make it plural if there is more than one

(e.g. 1 Tuatara, or 2 Tuataras). If something is a adjective, you can usually change it

into an adverb by adding “-ly” (e.g. jejune vs. jejunely). Depending on the context,

you may need to decide if a word is in one category or another (e.g “cut” may be a

noun when it’s on your finger, or a verb when you are preparing vegetables). These

concepts have important analogies when working with R objects.

--- datacarpentry.org (https://datacarpentry.org/genomics-r-intro/02-r-basics/

index.html)

The type and class of an R object affects how that object can be used or will behave. Examples

of base R data types include double, integer, complex, character, and logical.

R objects can also have certain assigned attributes like class (e.g., data frame, factor, date),

and these attributes will be important for how they interact with certain methods / functions.

Ultimately, understanding the type and class of an object will be important for how an object

can be used in R. When the type (mode) of an object is changed, we call this "coercion". You

may see a coercion warning pop up when working with objects in the future.

The type of an object can be examined using typeof(), while the class of an object can be

viewed using class(). typeof() returns the storage mode of any object. Here, I am using

mode and type interchangeably but they do differ. To find out more check out the help docs: ?

mode() or ?typeof.

We now know what data types are, but what is a class?

'class' is a property assigned to an object that determines how generic functions

operate with it. It is not a mutually exclusive classification. If an object has no

specific class assigned to it, such as a simple numeric vector, it's class is usually

the same as its mode, by convention. ---stackexchange (https://

stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-

objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.)

#the object no longer exists, so calling it will result in an error
gene_name

Error: object 'gene_name' not found

26 Lesson 2: Basics of R Programming: R Objects and Data Types

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.

It is often most useful to use class() and typeof() to find out more about an object or str()

(more on this function later).

Let's create some objects and determine their types and classes.

There are also functions that can gauge types directly, for example, is.numeric(),

is.character(), is.logical(). And, there are functions for explicit coercion from one

type to another: as.double(), as.integer(), as.factor(), as.character(), etc.

If an object has a class attribute, there is likely an associated "constructor function", or function

used to build an object of that class. For example, ?data.frame(), ?factor(). We will

discuss both data frames and factors in a later lesson.

chromosome_name <- 'chr02'
typeof(chromosome_name)
[1] "character"
class(chromosome_name)
[1] "character"

od_600_value <- 0.47
typeof(od_600_value)
[1] "double"
class(od_600_value)
[1] "numeric"

df<-head(iris)
typeof(df)
[1] "list"
class(df)
[1] "data.frame"

chr_position <- '1001701bp'
typeof(chr_position)
[1] "character"
class(chr_position)
[1] "character"

spock <- TRUE
typeof(spock)
[1] "logical"
class(spock)
[1] "logical"

27 Lesson 2: Basics of R Programming: R Objects and Data Types

Bioinformatics Training and Education Program

Special null-able values

There are also special use, null-able values that you should be aware of. Read more to learn

about NULL, NA, NaN, and Inf (https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-

inf/).

Mathematical operations

As mentioned, an object's type/mode can be used to understand the methods that can be

applied to it. Objects of mode numeric can be treated as such, meaning mathematical

operators can be used directly with those objects.

This chart from datacarpentry.org (https://datacarpentry.org/genomics-r-intro/02-r-basics/

index.html) shows many of the mathematical operators used in R.

() are additionally used to establish the order of operations.

Let's see this in practice.

#create an object storing the number of human chromosomes (haploid)
human_chr_number<-23
#let's check the type of this object
typeof(human_chr_number)

[1] "double"

#Now, lets get the total number of human chromosomes (diploid)
human_chr_number * 2 #The output is 46!

28 Lesson 2: Basics of R Programming: R Objects and Data Types

Bioinformatics Training and Education Program

https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html

Moreover, we do not need an object to perform mathematical computations. R can be used like

a calculator.

For example,

A function is an object.

R functions are saved as objects, and if we type the name of the function, we can see the value

of the object (i.e., the code underlying the function). Functions are important to R programming,

as anything that happens in R is due to the use of a function.

We have used some R functions in Lesson 1 (e.g. getwd() and setwd())! Let's look at

another example using the round() function.

round() "rounds the values in its first argument to the specified number of decimal places

(default 0)" --- R help.

Consider

[1] 46

(1 + (5 ** 0.5))/2

[1] 1.618034

Looking up Compiled Code

When looking at R source code, sometimes calls to one of the following functions show up:

.C(), .Call(), .Fortran(), .External(), or .Internal() and .Primitive(). These functions are calling entry

points in compiled code such as shared objects, static libraries or dynamic link libraries. Therefore, it

is necessary to look into the sources of the compiled code, if complete understanding of the code is

required. --- RNews 2006 (https://cran.r-project.org/doc/Rnews/Rnews_2006-4.pdf)



round(5.65) #can provide a single number

[1] 6

round(c(5.65,7.68,8.23)) #can provide a vector

29 Lesson 2: Basics of R Programming: R Objects and Data Types

Bioinformatics Training and Education Program

https://cran.r-project.org/doc/Rnews/Rnews_2006-4.pdf
https://cran.r-project.org/doc/Rnews/Rnews_2006-4.pdf

In this example, we only provided the required argument in this case, which was any numeric or

complex vector. We can see that two arguments can be included by the context prompt while

typing (See below image). The optional second argument (i.e., digits) indicates the number of

decimal places to round to. Contextual help is generally provided as you type the name of a

function in RStudio.

At times a function may be masked by another function. This can happen if two functions are

named the same (e.g., dplyr::filter() vs plyr::filter()). We can get around this by

explicitly calling a function from the correct package using the following syntax:

package::function().

The pipe (|>, %>%).

Functions can be chained together using a pipe (|>, %>%). The pipe improves the readability of

the code by minimizing nesting.

For example,

We will talk about the pipe more in part 2 and 3 of this series. For now, it is helpful to know that it

exists and what it is doing.

[1] 6 8 8

#provide an additional argument rounding to the tenths place
round(5.65,digits=1)

[1] 5.7

ex<- -5.679

ex |> round() |> abs()

[1] 6

Differences between |> and %>%

There are some crucial differences between the native pipe |> and the maggitr pipe (%>%). Check out this blog

(https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/) for details.

30 Lesson 2: Basics of R Programming: R Objects and Data Types

Bioinformatics Training and Education Program

https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/

Pre-defined objects

Base R comes with a number of built-in functions, vectors, data frames, and other objects. You

can view all using the function, builtins(). If you are interested in built-in datasets, check

out help(package="datasets").

Acknowledgments

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-

introduction/index.html).

31 Lesson 2: Basics of R Programming: R Objects and Data Types

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html

Practice Exercises

Bioinformatics Training and Education Program

Exercise 1: Lesson2

Q1. What is the value of each object? Run the code and print the values.

(Question taken from https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r/

index.html)

Q2. Create the following objects; give each object an appropriate name.

a. Create an object that has the value of the number of bones in the adult human body.

b. We can create a vector of values using c(). For example to create a vector of fruits, we

could use the following: fruit <- c("apples", "bananas", "mango", "kiwi"). Use

this information to create an object containing the names of four different bones. (We will learn

more about vectors in Lesson 3.)

mass <- 47.5 # mass?
age <- 122 # age?
mass <- mass * 2.0 # mass?
age <- age - 20 # age?
mass_index <- mass / age # mass_index?

Q1: Solution 

mass <- 47.5 # mass?
mass
[1] 47.5
age <- 122 # age?
age
[1] 122
mass <- mass * 2.0 # mass?
mass
[1] 95
age <- age - 20 # age?
age
[1] 102
mass_index <- mass / age # mass_index?
mass_index
[1] 0.9313725

Q2: Solution 

a.
bone_num<- 206
bone_num

33 Exercise 1: Lesson2

Bioinformatics Training and Education Program

Q3. What types of data are stored in the objects created in question 2.

Q4. Modify bone_num to contain the number of bones in an adult human hand.

Q5. Here is an object storing multiple values:

What is the mean of this vector? How about the median? What functions can you use to find this

information?

Q6. What does the function paste() do? How can you find out? Can you use it to collapse

bone_names into a string of length 1? Hint: Read the help documentation closely.

[1] 206

b.
bone_names<- c("talus","calcaneus","tibia","fibula")
bone_names
[1] "talus" "calcaneus" "tibia" "fibula"

Q3: Solution 

typeof(bone_num)
[1] "double"
typeof(bone_names)
[1] "character"

Q4: Solution 

bone_num <- 27
bone_num
[1] 27

num_vec <- c(1:100)

Q5: Solution 

mean(num_vec)
[1] 50.5
median(num_vec)
[1] 50.5

Q6: Solution 

34 Exercise 1: Lesson2

Bioinformatics Training and Education Program

To find help, use the ?
?paste

To collapse the vector to length 1, check the collapse argument
paste(bone_names, collapse=", ")
[1] "talus, calcaneus, tibia, fibula"
length(bone_names)
[1] 4

35 Exercise 1: Lesson2

Bioinformatics Training and Education Program

Additional Resources

Books and / or Book Chapters of Interest

R for Data Science (https://r4ds.hadley.nz/)

Hands-on Programming with R (https://rstudio-education.github.io/hopr/)

Statistical Inference via Data Science: A ModernDive into R and the Tidyverse (https://

moderndive.com/v2/preface.html#about-the-bookl)

The R Graphics Cookbook (https://r-graphics.org/index.html)

ggplot2: Elegant Graphics for Data Analysis (https://ggplot2-book.org/index.html)

Advanced R (https://adv-r.hadley.nz/)

YaRrr! The Pirate’s Guide to R (https://bookdown.org/ndphillips/YaRrr/)

R Cheat Sheets

Cheat sheets can be accessed directly using the Help tab within RStudio (Help > Cheat Sheets

> Browse Cheat Sheets).

1.

2.

3.

4.

5.

6.

7.

36 Additional Resources

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/
https://r4ds.hadley.nz/
https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/
https://moderndive.com/v2/preface.html#about-the-bookl
https://moderndive.com/v2/preface.html#about-the-bookl
https://moderndive.com/v2/preface.html#about-the-bookl
https://moderndive.com/v2/preface.html#about-the-bookl
https://r-graphics.org/index.html
https://r-graphics.org/index.html
https://ggplot2-book.org/index.html
https://ggplot2-book.org/index.html
https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
https://bookdown.org/ndphillips/YaRrr/
https://bookdown.org/ndphillips/YaRrr/

Other Resources

The R Graph Gallery (https://www.r-graph-gallery.com/)

From Data to Viz (https://www.data-to-viz.com/)

RMarkdown from RStudio (https://rmarkdown.rstudio.com/lesson-1.html)

Quarto for R (https://quarto.org/docs/computations/r.html)

Ten simple rules for teaching yourself R, Lawlor et al. 2022, PLoS Comput Biol (https://

www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/)

1.

2.

3.

4.

5.

37 Additional Resources

Bioinformatics Training and Education Program

https://www.r-graph-gallery.com/
https://www.r-graph-gallery.com/
https://www.data-to-viz.com/
https://www.data-to-viz.com/
https://rmarkdown.rstudio.com/lesson-1.html
https://rmarkdown.rstudio.com/lesson-1.html
https://quarto.org/docs/computations/r.html
https://quarto.org/docs/computations/r.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/

	Introductory R for Novices
	Table of Contents
	Welcome
	Getting Started with R
	Getting Started with R
	Lesson 1: Introduction to R and RStudio IDE
	Lesson 2: Basics of R Programming: R Objects and Data Types

	Practice Exercises
	Exercise 1: Lesson2

	Additional Resources

	Introductory R for Novices
	Course Description
	Course Materials

	Getting Started with R
	Getting Started with R
	Lessons
	Required Course Materials

	Lesson 1: Introduction to R and RStudio IDE
	Learning Objectives
	What is R?
	Why R?
	Where do we get R packages?
	Ways to run R
	What is RStudio?

	Getting Started with R and R Studio
	Connect to RStudio on NIH HPC Open OnDemand
	Creating an R project
	Why renv?

	Creating an R script
	Introduction to the RStudio layout
	When to use Source vs Console?

	Uploading and exporting files from RStudio Server
	Data Management
	Saving your R environment (.Rdata)
	What is a function?
	What is a path?

	Getting help
	Additional Sources for help
	Acknowledgments

	Lesson 2: Basics of R Programming: R Objects and Data Types
	Objectives
	R objects
	Creating and deleting objects
	Naming conventions and reproducibility
	Reassigning objects
	Deleting objects
	Object data types
	Special null-able values

	Mathematical operations
	A function is an object.
	The pipe (|>, %>%).

	Pre-defined objects
	Acknowledgments

	Practice Exercises
	Exercise 1: Lesson2
	Additional Resources
	Books and / or Book Chapters of Interest
	R Cheat Sheets
	Other Resources

