Introductory R for
Novices

Alexandra L Emmons Ph.D.
BTEP/GAU/CCR/NCI/NIH - email ncibtep@mail.nih.gov
Bioinformatics Training and Education Program

Table of Contents

Welcome

® [ntroductory R for Novices
® Course Description

® Course Materials

Getting Started with R

Getting Started with R

® |essons

® Required Course Materials

Lesson 1: Introduction to R and RStudio IDE

® [earning Objectives
® Whatis R?
® Why R?
® Where do we get R packages?
® WaystorunR
® \What is RStudio?
® (Getting Started with R and R Studio
® Connect to RStudio on NIH HPC Open OnDemand
® Creating an R project
® Why renv?

® Creating an R script

12
12

12

15

15

15

16

16
16
16
16
17
17
18
18
20
21

22

® |ntroduction to the RStudio layout 22

® When to use Source vs Console? 23

® Uploading and exporting files from RStudio Server 24

® Data Management 24

® Saving your R environment (.Rdata) 24

® What is a function? 25

® What is a path? 26

® Getting help 26

® Additional Sources for help 28

® Acknowledgments 28
Lesson 2: Basics of R Programming: R Objects and Data Types 30
® Objectives 30
® R objects 30
® (Creating and deleting objects 30

® Naming conventions and reproducibility 32

® Reassigning objects 33

® Deleting objects 33

® Object data types 34

® Special null-able values 36

® Mathematical operations 36

® A function is an object. 37

® The pipe (|>, %>%). 38

® Pre-defined objects 39

® Acknowledgments 39
Lesson 3: Basics of R Programming: Vectors 40

® Objectives 40

® \ectors

® Creating vectors

® (Creating, modifying, sub-setting exporting
® Vector sub-setting

® | ogical subsetting
® Other ways to handle missing data
® Using objects to store thresholds

® Using the %in% operator.

® Saving and loading objects

® Acknowledgments

Lesson 4: Introduction to R Data Structures - Data Import

® | earning Objectives
® [nstalling and Loading Packages
® Where do we get R packages”?
® Data Structures
® What are factors?
® |mportant functions
® |sts
® |mportant functions
® Example
® Data Matrices
® Data Frames: Working with Tabular Data
® Best Practices for organizing genomic data
® Example Data
® Obtaining the data
® |mporting Data
® \Whatis a tibble?

® Reasons to use readr functions

40
40
42
43
46
47
48
48
49

50

51

51
51
51
52
52
53
53
53
54
55
56
57
58
58
58
59

59

® Excelfiles (.xls, .xIsx)

® Tab-delimited files (.tsv, .txt)
® Comma separated files (.csv)
® Other file types

Data Export.

Acknowledgements

Lesson 5: R Data Structures - Data Frames

Learning Objectives

Load the libraries

Examining and summarizing data frames

® What is the length of our data.frame? What are the dimensions?
® Other useful functions for inspecting data frames
Data frame coercion and accessors

® Using colnames() to rename columns
Subsetting data frames with base R

® Using %in%

® Tips to remember for subsetting

Data Wrangling

Acknowledgements

Intro to Data Wrangling

Introduction to Data Wrangling

® | essons
® Prerequisites

® Course materials

Introduction to Data Wrangling

59
62
65
67
67

67

68

68
68
69
71
71
72
74
75
78
79
79

79

81

81
81

81

82

Introducing Tidyr for Reshaping and Formatting Data 83

® | esson Objectives 83
® | oad the tidyverse 83
® |mporting data 84
® Some different import functions 84

® | oad the lesson data 85

® Get the Data 85

® | oad the Data 85

® Data reshape 87
® \What do we mean by reshaping data? 87

® pivot_wider() and pivot_longer() 90

® Pivot_longer a0

® Pivot_wider 92

® Test our knowledge 93
® Unite and separate 94
® Separate 94
® Unite 95
® A word about regular expressions 95

® The Janitor package. 95
® Acknowledgements 96
® Resources 96
Subsetting Data with dplyr 97
® Objectives 97
® What is dplyr? 97
® | oading dplyr 97

® |mporting data 98

® Subsetting data in base R 101

® Subsetting with dplyr 101

® Subsetting by column (select()) 101

® \We can rename while selecting. 102

® Excluding columns 103

® We can reorder using select(). 104

® Selecting a range of columns 106

® Helper functions 106

® Select columns of a particular type 107

® Subsetting by row (filter()) 108

® Comparison operators 109

® The %in% operator 110

® |ncluding multiple phrases 111

® Filtering across columns 112

® Subsetting rows by position 113

® |[ntroducing the pipe 113

® Step by Step 113

® Nesting Code 114

® Using the pipe (%&agat;%,|&gat;) 114

® Acknowledgments 116
Summarizing Data with dplyr 117
® Objectives. 117
® | oad Tidyverse 117
® [oad the data 118
® Group_by and summarize 119
® Key Functions 120

® Additional Examples 125

® Reordering rows with arrange() 126

® Additional useful functions 128

® Acknowledgments 128

Joining and Transforming Data with dplyr 129
® Objectives 129
® [oading Tidyverse 129
® |oad the data 129
® Joining data frames 131

® Mutating joins 131
® Filtering joins 136
® Transforming variables 138
® mutate() 138
® Mutating several variables at once 140
® Coercing variables with mutate 140
® Using rowwise() and mutate() 140
® What's next? 142
® Acknowledgments 142

Introduction to Data Visualization

Introduction to Data Visualization 144
® |essons 144

® Prerequisites 144

® Course materials 144

® Getthe Data 144
Introduction to ggplot2 for R Data Visualization 145
® [earning Objectives 145

® \Why use R for Data Visualization”? 145

® Example Data 146

® Practice Data 148

® The ggplot2 template 148
® Geom functions 152

® Create aline plot 153

® Create a box plot 153

® Mapping and aesthetics (aes()) 154

® Map a Color to a Variable 155

® How can we modify colors? 158
® More on Colors 160

® Facets 161
® Building upon our template 164
® [abels, legends, scales, and themes 165
® Resource list 165
® Acknowledgements 165
Plot Customization with ggplot2 166
® [earning Objectives 166
® QOur grammar of graphics template 166
® | oading the libraries 167
® [mporting the data 167

® Using Multiple Geoms per Plot 168
® Setting global aesthetics 169

® Setting local aesthetics 169

® Subsetting data per geom 170

® Statistical transformations 171
® Coordinate systems 176
® |abels, legends, scales, and themes 177

® (Create a custom theme to use with multiple figures. 183

® Saving plots (ggsave()) 185

® Acknowledgements 185
From Data to Display: Crafting a Publishable Plot 186
® [earning Objectives 186
® Step 1: Load the required packages. 186
® Step 2: Load and view the data. 187
® Step 3: Define significance 188
® Step 4: Create the plot beginning with our 3 required entities. 189
® Step 5: Customize Our Figure 190
® Scale the Colors 190

® Add Size and Alpha attributes to our Mapping Aesthetics 191

® Fix the legend 193

® Clean it up with theme 195

® Step 6: Label the most significant points. 196
® Using an External Package. 198
® EnhancedVolcano 199

® Acknowledgements 200
Recommendations and Tips for Creating Effective Plots with ggplot2 201
® | earning Objectives 201
® Recommendations for creating publishable figures 201
® Complementary or Related Packages 202
® Genomics 202

® Statistics integration 203

® Combining plots 203

® Miscellaneous 204

® Using ggplot2 in a function 205

® The Syntax 205

® Functions that use ggplot2

® Tips on Saving and Scaling

® Finding R packages for Beginners

® Resources for Further Learning

Practice Exercises

Part 1: Exercises
Exercise 1: Lesson?2
Exercise 2: Lesson 3

Exercise 3: Lesson 4

® | oading data

® Challenge data load

Exercise 4: Lesson 5

Part 2: Exercises

Exercise 1: Lesson 2

® Data Reshape

® Reshape challenge

Exercise 2: Lesson 3

® Select and Filter

Exercise 3: Lesson 4

® Group_by, Summarize, Arrange

Exercise 4: Lesson 5

® Mutate and Wrangle Challenge

206
209
210

211

214
217
220

220

221

223

227

227

230

232

232

237

237

240

240

Part 3: Exercises

Lesson 1 Exercise Questions: ggplot2 basics

Lesson 2 Exercise Questions: ggplot2 Plot Customization
Lesson 3 Exercise Questions: Building a Publication Quality Plot

Lesson 4 Exercise Questions: ggplot2

Additional Resources

® Additional Resources
® Books and / or Book Chapters of Interest
® R Cheat Sheets

® Other Resources

244

252
260
266

277
277
277

278

Introductory R for Novices

Introductory R for Novices

Course Description

This course, designed for novices, will introduce the foundational skills necessary to begin to
analyze and visualize data in R. The content for this course is similar to past introductory R
courses, but the pace of the course will be much slower to benefit novices.

Why learn R? R is a great resource for statistical analysis, data visualization, and report
generation. R also provides packages and functions specific to the analysis of -omics data
through efforts like Bioconductor.

This course includes 3-parts:
Part 1. Getting Started with R

e Topics covered in Part 1 will focus on the basics of R Programming including getting
started with R and RStudio, creating and manipulating R objects, and understanding and
manipulating vectors and other data structures.

Part 2: Introduction to Data Wrangling

e Now that you have an understanding of the basics, Part 2 will show you how to work with
tabular data. Topics covered include filtering, transforming, summarizing, and reshaping
data using the Tidyverse suite of packages.

Part 3: Introduction to Data Visualization

e |n Part 3, you will learn to visualize your data. Though multiple R graphics systems will be
introduced, Part 3 will focus exclusively on visualizing data using ggplot?2.

Course Materials

This course will be taught using R and RStudio on Biowulf. To use R on Biowulf, you must have
an NIH HPC account (https.//hpc.nih.gov/docs/accounts.html). If you do not have Biowulf, this
course can be taken using a local R installation.

R Installation Instructions

e Macbook: Follow these instructions (https.//posit.co/download/rstudio-desktop/).
e Windows: R and RStudio installation on Windows requires administrative privileges. NCI researchers can
request installation from service.cancer.gov (https.//service.cancer.gov/ncisp).

This is not required if you have a Biowulf account.

Bioinformatics Training and Education Program

https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/
https://service.cancer.gov/ncisp
https://service.cancer.gov/ncisp

Introductory R for Novices

Lesson Recordings

Video recordings of BTEP Coding Club events can be found in the BTEP Video Archive (https://
bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/) 24-48 hours following any given event.

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/
https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/
https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/
https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/

Getting Started with R

Getting Started with R

R programming

Getting Started with R

This course is the first part of a larger 3-part course designed for novices.

Material covered in Part 1 focuses on the basics of R Programming including getting started
with R and RStudio, creating and manipulating R objects, and understanding and manipulating
vectors and other data structures.

Lessons

1. April 22, 2025 - Introduction to R and RStudio

2. April 24, 2025 - Basics of R Programming: R Objects and Data Types
3. April 29, 2025 - Basics of R Programming: Vectors

4. May 1, 2025 - Introduction to R Data Structures: Data Import

5. May 6, 2025 - R Data Structures: Data Frames

Required Course Materials

This course will use R on Biowulf. To use R on Biowulf, you must have an NIH HPC account.
However, if you do not have Biowulf, this course can be taken using a local R installation.

Bioinformatics Training and Education Program

Lesson 1: Introduction to R and RStudio IDE

Lesson 1: Introduction to R and RStudio IDE

Learning Objectives

To understand:
1. the difference between R and RStudiolDE.
2. how to work within the RStudio environment including:

e creating an Rproject and Rscript
® navigating between directories

e using functions

e obtaining help

By the end of this section, you should be able to easily navigate and explore your RStudio
environment.

What is R?

R is both a computational language and environment for statistical computing and graphics. It is
open-source and widely used by scientists and non-scientists, not just biocinformaticians. Base
packages of R are built into your initial installation, but R functionality is greatly improved by
installing other packages. R as a programming language is based on the S language,
developed by Bell laboratories. R is maintained by a network of collaborators from around the
world, and core contributors are known as the R Core team (Term used for citations). However,
R is also a resource for and by scientists, and R functionality makes it easy to develop and
share packages on any topic. Check out more about R on The R Project for Statistical
Computing (https.//www.r-project.org/about.html) website.

Why R?

R is a particularly great resource for statistical analyses, plotting, and report generating. The
fact that it is widely used means that users do not need to reinvent the wheel. There is a
package available for most types of analyses, and if users need help, it is only a Google search
away. As of now, CRAN houses +22,000 available packages. There are also many field specific
packages, including those useful in the -omics (genomics, transcriptomics, metabolomics, etc.).
For example, the latest version of Bioconductor (v 3.20) includes 2,289 software packages, 431
experiment data packages, 928 annotation packages, 30 workflows, and 5 books.

Where do we get R packages?

To take full advantage of R, you need to install R packages. R packages are loadable
extensions that contain code, data, documentation, and tests in a standardized, easy to share

Bioinformatics Training and Education Program

https://www.r-project.org/about.html
https://www.r-project.org/about.html
https://www.r-project.org/about.html

Lesson 1: Introduction to R and RStudio IDE

format that can easily be installed by R users. The primary repository for R packages is the
Comprehensive R Archive Network (CRAN). CRAN (https.//cran.r-project.org/
#:~:text=CRAN %20is %20a % 20network % 200f,you % 20to % 20minimize % 20network % 20load.) is
a global network of servers that store identical versions of R code, packages, documentation,
etc (cran.r-project.org). To install a CRAN package, use
install.packages ("packageName"). Github is another common source used to store R
packages; though, these packages do not necessarily meet CRAN standards so approach with
caution. To install a Github packages use 1library(devtools) followed by
install_github(). Many genomics and other packages useful to biologists / molecular
biologists can be found on Bioconductor (https.//www.bioconductor.org/). Bioconductor and
Bioconductor packages use BiocManager for installation; see here (htips./
www.bioconductor.org/install/).

METACRAN (https.//www.r-pkg.org/) is a useful database that allows you to search and browse
CRAN/R packages.

Ways to run R

R is a programming language and it ‘comes with an environment or console that can read and
execute your code" (https.//www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-
rstudio/). R can be used via command line interactively, command line using a script (https://
support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-
line), or interactively through an environment. This course will demonstrate the utility of the
RStudio integrated development environment (IDE).

What is RStudio?

RStudio (https://posit.co/products/open-source/rstudio/) is an integrated development
environment for R, and now python. RStudio includes a console, editor, and tools for plotting,
history, debugging, and work space management. It provides a graphic user interface for
working with R, thereby making R more user friendly. RStudio is open-source and can be
installed locally or used through a browser (RStudio Server or Posit Cloud). We will be
showcasing RStudio Server on Biowulf (https://hpc.nih.gov/apps/RStudio.html) via HPC Open
OnDemand (https.//hpc.nih.gov/ondemand/index.html), but we highly encourage new users to
install R and RStudio locally to their PC or macbook.

What is Posit?

Posit (https.//posit.co/) is a company that creates and maintains a variety of software products (some free and
others proprietary) including the RStudio IDE.

Installing R and RStudio

Macbook: Follow these instructions (https://posit.co/download/rstudio-desktop/).
Windows: Request installation from service.cancer.gov (https.//service.cancer.gov/ncisp).

Bioinformatics Training and Education Program

https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.bioconductor.org/install/
https://www.r-pkg.org/
https://www.r-pkg.org/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://posit.co/products/open-source/rstudio/
https://posit.co/products/open-source/rstudio/
https://hpc.nih.gov/apps/RStudio.html
https://hpc.nih.gov/apps/RStudio.html
https://hpc.nih.gov/ondemand/index.html
https://hpc.nih.gov/ondemand/index.html
https://hpc.nih.gov/ondemand/index.html
https://posit.co/
https://posit.co/
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/
https://service.cancer.gov/ncisp
https://service.cancer.gov/ncisp

Lesson 1: Introduction to R and RStudio IDE

Check out this blog (https.//www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/) for information
related to updating R and RStudio.

There is also an RStudio User Guide (https:/docs.posit.co/ide/user/).

Getting Started with R and R Studio

This tutorial closely follows the ‘Intro to R and RStudio for Genomics" lesson provided by
datacarpentry.org (https://datacarpentry.github.io/genomics-r-intro/index.htmi).

Connect to RStudio on NIH HPC Open OnDemand

NIH HPC Open OnDemand (https.//hpc.nih.gov/ondemand/index.html) provides an online
dashboard for users to easily access command line interactive sessions, graphical linux
desktop environments, and interactive applications including RStudio, MATLAB, I1GV, iDEP, VS
Code, and Jupyter Notebook. To use NIH HPC Open OnDemand, you must have an NIH HPC
account (https://hpc.nih.gov/docs/accounts.html). If you are interested in bioinformatics, an NIH
HPC account is highly recommended. These accounts are available for a nominal fee of $40
per month.

To connect to Open OnDemand make sure you are on the NIH Network and click on the
following link: https://hpcondemand.nih.gov (https.//hpcondemand.nih.gov). This will take you to
the HPC Open OnDemand dashboard.

From there you will need to:

1. Select RStudio Server.

BIOWULF

HIGH

ctive Apps ~ @ My Interactive Sessions Y HPC Dashboard @ Help ~ & Logged in as|

OnDemand

HPC OnDemand provides convenient web interfaces to your interactive Biowulf applications.

Pinned Apps A featured subset of all available apps

-
Jupyter
=

Graphical Session Jupyter RStudio Server VS Code
System Installed App System Installed App System Installed App System Installed App

Step 1: Select RStudio Server from the selection of pinned applications.
2. Select parameters for your RStudio session including the version of R you want to use.

3. Click "Launch" to start the session.

Bioinformatics Training and Education Program

https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/
https://docs.posit.co/ide/user/
https://docs.posit.co/ide/user/
https://datacarpentry.github.io/genomics-r-intro/index.html
https://datacarpentry.github.io/genomics-r-intro/index.html
https://hpc.nih.gov/ondemand/index.html
https://hpc.nih.gov/ondemand/index.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpcondemand.nih.gov
https://hpcondemand.nih.gov

Lesson 1: Introduction to R and RStudio IDE

Files ~ Interactive Apps ~ @ My Interactive Sessions

Home / My Interactive Sessions / RStudio Server

Desktops This app will launch an Rstudio server on the Biowulf cluster.

3 Graphical Session Number of hours

GUIs

8
@ oV
4 MATLAB Number of CPUs
Servers 2
GFA Server Number of CPUs on node type.
= Jupyter Allocated Memory (GB)
OmicCircosShiny 20

X Total amount of memory to allocate on node.
2 RStudio Server

Allocated Local Scratch (GB)

9 VS Code

10
@ iDEP

Total amount of local scratch to allocate on node
shell
" R Version

>_ sinteractive

4.4

Starting working directory of the R session

/data/emmonsal

I would like to receive an email when the session starts

Launch

* The RStudio Server session data for this session can be accessed under the data

root directory.

'Y HPC Dashboard

Toggle between R
versions here.

Step 2, 3: Alter any job parameters as you see fit and launch the session.

Your session will be queued, and it may take a few minutes to shift to "Running".

Session was successfully created.

Home / My Interactive Sessions

Interactive Apps

Desktops

] Graphical Session

GUIs

i@ 16V

4 MATLAB
Servers

GFA Server
= Jupyter
OmicCircosShiny
© RStudio Server
g VS Code

@ iDEP

Shell

>_ sinteractive

It may take a few

minutes for the job

to begin.
RStudio Server (54351824)
Created at: 2025-04-18 04:45:38 EDT
Time Requested: 8 hours
Session ID: bce92700-b230-4e3a-b8ad-378e84517932

Starting working directory of the R session: /dataemmonsal

requested.

Session is queued.

Queued

Please be patient as your job currently sits in queue. The wait time depends on the number of cores as well as time

4. When the session switches to "Running", click "Connect to RStudio Server".

Bioinformatics Training and Education Program

20 Lesson 1: Introduction to R and RStudio IDE

Session was successfully created. X

Home / My Interactive Sessions

RStudio Server (54351824) @D | @ [raming

Desktops
3 Graphical Session Host: cn0007
cous Created at: 2025-04-18 04:45:38 EDT
i Iev . L .
Time Remaining: 7 hours and 59 minutes
4 MATLAB .
Session ID: bce92700-b230-4e3a-b8ad-378e84517932
Servers
Starting working directory of the R session: /datafemmonsal
GFA Server

= Jupyter
. X ® Connect to RStudio Server
OmicCircosShiny

© RStudio Server
g VS Code

@ DEP

Shell

>_ sinteractive

Step 4: Connect to RStudio Server.

Congratulations! You are now connected.

File Edit Code View Plots Session Guilld Debug Profile Tools Help emmonsal (3 ©
o -joml@-l 1 i3 A Got - Addins - 1 project: (None) -
Conse I Background Jobs a)
- (vHfusers/emmonsal/ st).
R version 4.4.3 (2025-02-28) -~ “Trophy Case”
Copyright (C) 2025 The R Foundation for Statistical Conputing
Platform: x86_64-pc-linux-gnu Enironment is empty
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcone to redistribute it under certain conditions.
Type "license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type *contributors()’ for more information and
“citation()’ on how to cite R or R packages in publications.
Type “deno()’ for some denos, ‘help()" for on-line help, or
*help.start()" for an HTML browser interface to help. Files Plots Packages Help Viewer Presentation =0
Type 'a0" to quit R © NewFolder © NewFile - O | Upload @ Delete | Rename | G More -
A Home
4 Name size Modified
.
@) Renviron 458 Ju1 20, 2023, 7:40 PM
21 Rhistory K8 Feb 6, 2025, 9:35 PM
bin
Desktop
nebi_error_report.txt 6.5KB Aug 16,2024, 4:00 PM

R
trimmed_reads

RStudio Server on Biowulf

Using RStudio Server on Biowulf will allow you to 1. interact with your files on Biowulf, 2. use HPC resources (CPUs,
RAM, etc.), and 3. also interact with local files.

Creating an R project

If you intend to use R for upcoming analysis projects, you will want to create R projects. R
projects automatically set your working directory to the directory specified for a given project. R
projects are beneficial because they "keep all the files associated with a given project (input

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/workflow-scripts.html#rstudio-projects

Lesson 1: Introduction to R and RStudio IDE

data, R scripts, analytical results, and figures) together in one directory" (https.//r4ds.hadley.nz/
workflow-scripts.html#rstudio-projects).

Creating an R project (https://docs.posit.co/ide/user/ide/quide/code/projects.himl) for each
project you are working on facilitates organization and scientific reproducibility.

An RStudio project allows you to more easily:

e Save data, files, variables, packages, etc. related to a specific analysis
project

e Restart work where you left off

e Collaborate, especially if you are using version control such as git. ---
datacarpentry.org (https.//datacarpentry.org/genomics-r-intro/O1-introduction/
index.html)

R projects simplify data reproducibility by allowing us to use relative file paths that will translate
well when sharing the project.

To start a new R project, select File > New Project... or use the R project button (See
image below).

File Edit Code View

Console Terminal Background Ji

‘R ~ R 4.4.3 - /vfjusers/emmonsal/Get

A New project wizard will appear. Click New Directory and New Project. Choose a new
directory name....perhaps "Getting_Started_with_R"?

While we will not select renv today, this option will make a project more reproducible. See
below. To make your project more reproducible, consider clicking the option box for renv.

The R project file ends in .Rproj. "This file contains various project options and can also be used
as a shortcut for opening the project directly from the filesystem." (https.//docs.posit.co/ide/user/
ide/quide/code/projects.html)

Why renv?

R projects allow us to easily share data, code, and other related information, but this only
scratches the surface of what is required for true data analysis reproducibility.

Too often an R script will fail simply due to a clash in package dependencies. Versions are
important. R versions change over time; Bioconductor versions evolve, and R packages
change. While we can include session info using the sessionInfo() function (more on
functions later) at the end of a script or markdown file, this in no way facilitates our ability to truly

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/workflow-scripts.html#rstudio-projects
https://r4ds.hadley.nz/workflow-scripts.html#rstudio-projects
https://r4ds.hadley.nz/workflow-scripts.html#rstudio-projects
https://r4ds.hadley.nz/workflow-scripts.html#rstudio-projects
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html
https://docs.posit.co/ide/user/ide/guide/code/projects.html

Lesson 1: Introduction to R and RStudio IDE

replicate the infrastructure surrounding our code. Thankfully, there are R packages available
that help us do just that.

"The renv package helps you create reproducible environments for your R projects" (https./
rstudio.github.io/renv/index.html), primarily by tracking and managing package dependencies.

Read more about renv here (hitps.//rstudio.qgithub.io/renv/articles/renv.html).

Reproducibility

There is even more that can be done to make projects reproducible beyond R Projects and renv. For example, you
can use version control (git), R packages, and containerization (e.g., Singularity, Docker).

Creating an R script

As we learn more about R and start learning our first commands, we will keep a record of our
commands using an R script. Remember, good annotation is key to reproducible data analysis.
An R script can also be generated to run on its own without user interaction, from R console
using source () and from linux command line using Rscript.

To create an R script, click File > New File > R Script. You can save your script by
clicking on the floppy disk icon. You can name your script whatever you want, perhaps

‘Lesson_1". R scripts end in .R. Save your R script to your working directory, which will be the
default location on RStudio Server.

Introduction to the RStudio layout

File Edit Code View Plots Session Build Debug Profile Tools Help rstudio [+ | @
© -0/ - H Al S| A Gotofiesfunction 5 - Addins - 2 Learning_R _for_genomics -

© LearningR intro.R (7 Environment History Connections Tutorial =0
0 i [sourceonsave O /v “Run | %% Source - =

L

Environment is empty

Global Environment

Files Plots Packages Help Viewer =0
© | New Folder @ | Upload © Delete = Rename G More ~
¥ ..
size Modified
B Rprofile 268 Jan 18, 2022, 5:02 PM
") % Learning_R_for_genomics.Rproj 2058 Jan 18, 2022, 5:02 PM
O renv
11| (Top LeveD) 2 R Script [renvlock 3808 Jan 18, 2022, 5:02 PM
©7 LearningR_intro.R 08 Jan 18, 2022, 5:16 PM
=0
R verston 4.0.5 (2071.05-31) — "Shake and Throw” Files / Plots / Packages /
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-conda-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY. H e | / VI eWer
You are welcome to redistribute it under certain conditions._
»Gonsote/ Terminal / Jobs
R is o CollaBbrative Brojett with many contributors.
Type 'contributors()' for more information and

"citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()’ for on-line help, or
*help.start()' for an HTML browser interface to help.

Type 'gQ)" to quit R.

* Project '~/Learning_R_for_genomics' loaded. [renv 0.15.1]

Let's look a bit into our RStudio layout.

Bioinformatics Training and Education Program

https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html

Lesson 1: Introduction to R and RStudio IDE

Source: This pane is where you will write/view R scripts. Some outputs (such as if
you view a dataset using View ()) will appear as a tab here.
Console/Terminal/Jobs: This is actually where you see the execution of
commands. This is the same display you would see if you were using R at the
command line without RStudio. You can work interactively (i.e. enter R commands
here), but for the most part we will run a script (or lines in a script) in the source
pane and watch their execution and output here. The “Terminal” tab give you
access to the BASH terminal (the Linux operating system, unrelated to R). RStudio
also allows you to run jobs (analyses) in the background. This is useful if some
analysis will take a while to run. You can see the status of those jobs in the
background.

Environment/History: Here, RStudio will show you what datasets and objects
(variables) you have created and which are defined in memory. You can also see
some properties of objects/datasets such as their type and dimensions. The
“History” tab contains a history of the R commands you've executed.
Files/Plots/Packages/Help/Viewer: This multi-purpose pane will show you the
contents of directories on your computer. You can also use the “Files” tab to
navigate and set the working directory. The “Plots” tab will show the output of any
plots generated. In “Packages” you will see what packages are actively loaded, or
you can attach installed packages. “Help” will display help files for R functions and
packages. “Viewer” will allow you to view local web content (e.g. HTML outputs).
---datacarpentry.org (https.//datacarpentry.github.io/genomics-r-intro/00-
introduction.html)

Look under the files tab

You can already see our R project and R script file in our project directory under the Files tab. If you chose to use
renv you will also see some files and directories related to that.

Additional panes may show up depending on what you are doing in RStudio. For example, you
may notice a Render tab in the Console/Terminal/Jobs pane when working with Rmarkdown
(.Rmd) or Quarto (.gmd) files.

Also, you can change your RStudio layout. See this blog (hitps.//www.r-bloggers.com/2018/05/
a-perfect-rstudio-layout/) if you are interested. For simplicity, please do NOT change the
layout during this course.

When to use Source vs Console?

We will use the Source pane to keep a record of the code that we run. However, at times, we
may want to do quick testing without keeping a record. This is the scenario in which you would
use the Console.

Bioinformatics Training and Education Program

https://datacarpentry.github.io/genomics-r-intro/00-introduction.html
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/

Lesson 1: Introduction to R and RStudio IDE

Uploading and exporting files from RStudio Server

RStudio Server works via a web browser, and so you see this additional Upload option in the
Files pane. If you select this option, you can upload files from your local computer into the
server environment. If you select More, you will also see an Export option. You can use this to
export files to your local computer.

Files Plots Packages Help Viewer]
©] New Folder © Delete -]Rename = {3 More ~ g
Q Home Copy...
A Name Size Modified
- Copy To...
@] diffexp_results_edger_airways.rds M 34.5 MB Jan 13, 2022, 1:17 PM
ove...
|| diffexp_results_edger_airways.txt 2.1 MB Jan 13, 2022, 1:14 PM
@] filtlowabund_scaledcounts_airways.rds 34.5 MB Jan 13, 2022, 1:17 PM
|| filtlowabund_scaledcounts_airways.txt Set As Working Directory 23.4 MB Jan 13, 2022, 1:16 PM
Go To Working Directory
Open New Terminal Here
Show Hidden Files

Data Management

Data organization is extremely important to reproducible science. Consider organizing your
project directory in a way that facilitates reproducibility. All inputs and outputs (where possible)
should be contained within the project directory, and a consistent directory structure should be
created. For example, you may want directories for data, docs, outputs, figures, and scripts.
See additional details here (https.//bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-
biowulf/L3_PackageManagement/). How you organize project directories is up to you, but
consistency is fairly important for reproducibility. We will discuss more on this subject when
introducing data frames.

Use relative file paths

Do not use absolute file paths in scripts. These will cause the script to fail unexpectedly for other users.

Saving your R environment (.Rdata)

When exiting RStudio, you will be prompted to save your R workspace or .RData. The .RData
file saves the objects generated in your R environment. You can also save the .RData at any
time using the floppy disk icon just below the Environment tab. You may also save your R
workspace from the console using save.image(). RData files are often not visible in a
directory. You can see them using 1s -a from the terminal. RData files within a working
directory associated with a given project will launch automatically under the default option
Restore .RData into workspace at startup. You may also load .Rdata by using 1oad ().

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/
https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/
https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/
https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/

Lesson 1: Introduction to R and RStudio IDE

Restoring your R environment

If you are working with significantly large datasets, you may not want to automatically save and restore .RData. To
turn this off, go to Tools -> Global Options -> deselect "Restore .RData into workspace at startup" and choose
‘Never" for "Save workspace to .RData on exit". It is usually recommended not to restore the .RData file (htips:/
r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth) at the beginning of a session.

Another file to be aware of is the .Rhistory file. The R history file contains a list of commands
from your previous R sessions.

What is a function?

Now we are ready to work with some of our first R commands. In R, commands are generally
called functions.

A function in R (or any computing language) is a short program that takes some
input and returns some output.

An R function has three key properties:

e Functions have a name (e.g. dir, getwd); note that functions are case
sensitive!

e Following the name, functions have a pair of ()

¢ Inside the parentheses, a function may take 0 or more arguments ---
datacarpentry.org (https.//datacarpentry.github.io/genomics-r-intro/00-
introduction. html#using-functions-in-r-without-needing-to-master-them).

There are thousands of available functions to use in R, and if there isn't a function available for a
specific task, you can write your own. We will be using many more functions, so there will
be many more opportunities to learn the syntax.

We are going to run commands directly from our R script rather than typing into the R console.

Our first function will be getwd (). This simply prints your working directory and is the R
equivalent of pwd (if you know Unix coding).

#print our working directory
getwd ()

To run this function, we have a number of options. First, you can use the Run button above. This
will run highlighted or selected code. You may also use the source button to run your entire
script. My preferred method is to use keyboard shortcuts. Move your cursor to the code of
interest and use command + return for macs or control + enter for PCs. If a command is
taking a long time to run and you need to cancel it, use control + ¢ from the command line or
escape in RStudio. Once you run the command, you will see the command print to the console

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth
https://r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth
https://r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth
https://r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth
https://r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html#using-functions-in-r-without-needing-to-master-them
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html#using-functions-in-r-without-needing-to-master-them
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html#using-functions-in-r-without-needing-to-master-them
https://datacarpentry.github.io/genomics-r-intro/00-introduction.html#using-functions-in-r-without-needing-to-master-them

Lesson 1: Introduction to R and RStudio IDE

in blue followed by the output.
[1] "/vf/users/emmonsal/Getting_Started with R"

It is good practice to annotate your code using a comment. We can denote comments with #.

We designated or set our working directory when we created our R project, but if for some
reason we needed to set our working directory, we can do this with setwd (). There is no need
to run currently. However, if you were to run it, you would use the following notation:

setwd("path_to_your_directory")

The path should be in quotes. You can use tab completion to fill in the path.

What is a path?

According to Wikipedia, a path is "a string of characters used to uniquely identify a location in a
directory structure."

Therefore, a file path simply tells us where a file or files are located. You will need to direct R to
the location of files that you want to work with or output that you create.

The working directory is the location in your file system that you are currently working in. In other
words, it is the default location that R will look for input files and write output files.

Note

R uses Unix formatting for directories, so regardless of whether you have a Windows computer or a mac, the way
you enter the directory information will be the same. You can use tab completion to help you fill in directory
information.

Getting help

Now we know a bit about using functions, but what if | had no idea what the function setwd ()
was used for or what arguments to provide?

Getting help in R is fairly easy. In the pane to the bottom right, you should see a Help tab. You
can search for help regarding a specific topic using the search field (look for the magnifying
glass).

Bioinformatics Training and Education Program

Lesson 1: Introduction to R and RStudio IDE

Files Plots Packages E Viewer Presentation P o |
BB S|4 I 2 Isetwd '
Home + Find in Topic setwd

| setWindowTitle
e RStudio show,MethodWithNext-method
show,MethodWithNextWithTrace-method
Posit Support show,ObjectsWithPackage-method
show,MethodDefinitionWithTrace-method
show,genericFunctionWithTrace-method

R R Resources

Learning R Online

W

CRAN Task Views = Posit Community H

R on StackOverflow Posit Cheat Sheets'

Getting Help with R RStudio Packages
Posit Products

Manuals

An Introduction to R The R Language Definition
Writing R Extensions R Installation and Administration
R Data Import/Export R Internals

Alternatively, you can search directly for help in the console using ?setwd () or ??setwd().
help.search() or ?? can be used to search for a function using a keyword and will also work
for unloaded packages; for example, you may try help.search("anova").

R help pages provide a lot of information. The description and argument sections are likely
where you will want to start. If you are still unsure how to use the function, scroll down and
check out the examples section of the documentation. Consider testing some of the examples
yourself and applying to your own data.

Many R packages also include more detailed help documentation known as a vignette. To see a
package vignette, use browseVignettes () (e.q.,
browseVignettes (package="dplyr")).

To see a function's arguments, you can use args ().

args(setwd)

function (dir)
NULL

Because setwd(dir) is used to set the working directory to dir, it requires only a single
argument (dir).

Note

R arguments can be specified by name with “argument_name= ", by position, or by partial name. More on this
later.

Bioinformatics Training and Education Program

Lesson 1: Introduction to R and RStudio IDE

Additional Sources for help

Try googling your problem or using some other search engine. rseek (https.//rseek.org/) is an
R specific search engine that searches several R related sites. If using Google or other major
search engine directly, make sure you use R to tag your search.

Stack Overflow is a particularly great resource for finding help. If you post a question, you will
need to make a reproducible example (reprex) and be as descriptive as possible regarding the
problem. For this purpose, you may find the reprex (https.//reprex.tidyverse.org/) package
particularly useful.

To provide details about your R session, use

sessionInfo()

R version 4.5.0 (2025-04-11)
Platform: aarch64-apple-darwin20
Running under: macOS Sequoia 15.4

Matrix products: default
BLAS: /Library/Frameworks/R. framework/Versions/4.5-arm64/Resources.

LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources.

locale:
[1] en US.UTF-8/en US.UTF-8/en US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):

[1] compiler_4.5.0 fastmap_1.2.0 cli_3.6.4 tools 4.5
[5] htmltools 0.5.8.1 rstudiocapi_0.17.1 yaml _2.3.10 rmarkdown
[9] knitr_1.50 jsonlite 2.0.0 xfun_0.52 digest 0.1
[13] rlang 1.1.6 evaluate 1.0.3

Acknowledgments

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for
Genomics lesson provided by datacarpentry.org (https.//datacarpentry.org/genomics-r-intro/01-
introduction/index.html). Material was also inspired by content from Introduction to data analysis
with R and Bioconductor (https.//carpentries-incubator.github.io/bioc-intro/), which is part of the

Bioinformatics Training and Education Program

https://rseek.org/
https://rseek.org/
https://rseek.org/
https://reprex.tidyverse.org/
https://reprex.tidyverse.org/
https://reprex.tidyverse.org/
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://carpentries-incubator.github.io/bioc-intro/
https://carpentries-incubator.github.io/bioc-intro/
https://carpentries-incubator.github.io/bioc-intro/

Lesson 1: Introduction to R and RStudio IDE

Carpentries Incubator (https./github.com/carpentries-incubator/proposals/#the-carpentries-
incubator).

Bioinformatics Training and Education Program

https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator

Lesson 2: Basics of R Programming: R Objects and Data Types

R programming

Lesson 2: Basics of R Programming: R
Objects and Data Types

Objectives

To understand some of the most basic features of the R language including:

¢ Creating and manipulating R objects.
e Understanding object types and classes.
e Using mathematical operations.

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to
NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to
connect: https://hpcondemand.nih.gov/ (https.//hpcondemand.nih.gov/). Then follow the
instructions outlined here.

R objects

Objects (and functions) are key to understanding and using R programming.

Everything assigned a value in R is technically an object. Mostly we think of R objects as
something in which a method (or function) can act on; however, R functions, too, are R objects.
R objects are what gets assigned to memory in R and are of a specific type or class. Objects
include things like vectors, lists, matrices, arrays, factors, and data frames. Don't get too
bogged down by terminology. Many of these terms will become clear as we begin to use them
in our code. In order to be assigned to memory, an r object must be created.

Creating and deleting objects

To create an R object, you need a name, a value, and an assignment operator (e.g., <- or =)
(https.//blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html). R is
case sensitive, so an object with the name "FOQ" is not the same as "foo".

Note

Youcanuse alt + - on a PC to generate the -> or option + - on a mac.

Using = for assignment?

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html

Lesson 2: Basics of R Programming: R Objects and Data Types

To improve the readability of your code, you should use the -> operator to assign values to objects rather than =. =
has other purposes. For example, setting function arguments.

Let's create a simple object and run our code. There are a few methods to run code:

® The run button
® Key shortcuts (Windows: ctr1+Enter, Mac: Command+Return)
e Type directly into the console.

Use comments (#) to annotate your code for better reproducibility.

#Create an object called "a" assigned to a value of 1.
a <-1

#Simply call the name of the object to print the value to the screen
a

[1] 1

In this example, "a" is the name of the object, 1 is the value, and <- is the assignment operator.

Now, if we use a in our code, R will replace it with its value during execution. Try the following:

a + 5

[1] 6

[1] 4

[1] 1

Bioinformatics Training and Education Program

Lesson 2: Basics of R Programming: R Objects and Data Types

[1] 2

Naming conventions and reproducibility
There are rules regarding the naming of objects.
1. Avoid spaces or special characters EXCEPT '_"and "'

2. No numbers or underscores at the beginning of an object name.

For example:

la<-"apples" # this will throw and error
la

Error in parse(text = input): <text>:1:2: unexpected symbol
1: 1a
VAN

Note

Itis generally a good habit to not begin sample names with a number.

In contrast:

a<-"apples" #this works fine
a

[1] "apples"

What do you think would have happened if we didn't put '‘apples' in quotes?
Strings

R recognizes different types of data (See below). We have used numbers above, but we can also use
characters or strings. A string is a sequence of characters. It can contain letters, numbers, symbols and
spaces, but to be recognized as a string it must be wrapped in quotes (either single or double). If a

sequence of characters are not wrapped in quotes, R will try to interpret it as something other than a string
like an R object.

Bioinformatics Training and Education Program

Lesson 2: Basics of R Programming: R Objects and Data Types

3. Avoid common names with special meanings (See ?Reserved) or assigned to existing
functions (These will auto complete).

See the tidyverse style guide (hitps:/style.tidyverse.org/syntax.html) for more information on
naming conventions.

How do | know what objects have been created?

To view a list of the objects you have created, use "Is()' or look at your global environment pane.

Object names should be short but informative. If you use a, b, ¢, you will likely forget
what those object names represent. However, something like
This_is my scientific_data_from _blah experiment is far too long. Strike a nice
balance.

Reassigning objects

To reassign an object, simply overwrite the object.

#(Create an object with gene named 'tp53'
gene_name<-"tp53"
gene_name

[1] lltp53ll

#Re-assign gene_name to a different gene
gene_name<-"GH1"
gene_name

[1] "GH1"

Warning

R will not warn you when objects are being overwritten, so use caution.

Deleting objects

delete the object 'gene name'
rm(gene_name)

Bioinformatics Training and Education Program

https://style.tidyverse.org/syntax.html
https://style.tidyverse.org/syntax.html

Lesson 2: Basics of R Programming: R Objects and Data Types

#the object no longer exists, so calling it will result in an error
gene_name

Error: object 'gene_name' not found

Object data types

Data types are familiar in many programming languages, but also in natural
language where we refer to them as the parts of speech, e.g. nouns, verbs,
adverbs, etc. Once you know if a word - perhaps an unfamiliar one - is a noun, you
can probably guess you can count it and make it plural if there is more than one
(e.g. 1 Tuatara, or 2 Tuataras). If something is a adjective, you can usually change it
into an adverb by adding “ly” (e.g. jejune vs. jejunely). Depending on the context,
you may need to decide if a word is in one category or another (e.g “cut” may be a
noun when it’'s on your finger, or a verb when you are preparing vegetables). These
concepts have important analogies when working with R objects.

- datacarpentry.org (https://datacarpentry.org/genomics-r-intro/02-r-basics/
index.html)

The type and class of an R object affects how that object can be used or will behave. Examples
of base R data types include double, integer, complex, character, and logical.

R objects can also have certain assigned attributes like class (e.g., data frame, factor, date),
and these attributes will be important for how they interact with certain methods / functions.
Ultimately, understanding the type and class of an object will be important for how an object
can be used in R. When the type (mode) of an object is changed, we call this "coercion". You
may see a coercion warning pop up when working with objects in the future.

The type of an object can be examined using typeof (), while the class of an object can be
viewed using class (). typeof () returns the storage mode of any object. Here, | am using
mode and type interchangeably but they do differ. To find out more check out the help docs: ?
mode () or ?typeof.

We now know what data types are, but what is a class?

‘class' is a property assigned to an object that determines how generic functions

operate with it. It is not a mutually exclusive classification. If an object has no

specific class assigned to it, such as a simple numeric vector, it's class is usually

the same as its mode, by convention. ---stackexchange (https:/
stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-

objects#:~:text=class %20is % 20an % 20attribute % 200f,physical % 20characteristic % 200f%20an % 200bj¢

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.

Lesson 2: Basics of R Programming: R Objects and Data Types

It is often most useful to use class () and typeof () to find out more about an object or
str () (more on this function later).

Let's create some objects and determine their types and classes

chromosome name <- 'chr02'
typeof (chromosome name)
[1] "character"
class(chromosome_name)

[1] "character"

od 600 value <- 0.47
typeof (od 600 value)
[1] "double"
class(od 600 value)
[1] "numeric"

df<-head(iris)
typeof (df)

[1] "list"
class(df)

[1] "data.frame"

chr_position <- '1001701bp'
typeof (chr_position)

[1] "character"
class(chr_position)

[1] "character"

spock <- TRUE
typeof (spock)

[1] "logical"
class (spock)

[1] "logical"

There are also functions that can gauge types directly, for example, is.numeric(),
is.character (), is.logical(). And, there are functions for explicit coercion from one
type to another: as.double(), as.integer (), as.factor (), as.character (), etc.

If an object has a class attribute, there is likely an associated "constructor function®, or function
used to build an object of that class. For example, ?data.frame(), ?factor (). We will
discuss both data frames and factors in a later lesson.

Bioinformatics Training and Education Program

Lesson 2: Basics of R Programming: R Objects and Data Types

Special null-able values

There are also special use, null-able values that you should be aware of. Read more to learn
about NULL, NA, NaN, and Inf (https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-
inf/).

Mathematical operations

As mentioned, an object's type/mode can be used to understand the methods that can be
applied to it. Objects of mode numeric can be treated as such, meaning mathematical
operators can be used directly with those objects.

This chart from datacarpentry.org (hitps./datacarpentry.org/genomics-r-intro/02-r-basics/
index.html) shows many of the mathematical operators used in R.

Operator Description
+ addition

- subtraction

S multiplication

/ division

& @ exponentiation

a%/%b integer division (division where the remainder is discarded)
a%%b modulus (returns the remainder after division)

() are additionally used to establish the order of operations.

Let's see this in practice.

#create an object storing the number of human chromosomes (haploid)
human_chr_number<-23

#let's check the type of this object

typeof (human_chr_number)

[1] "double"

#Now, lets get the total number of human chromosomes (diploid)
human_chr_number * 2 #The output is 46!

Bioinformatics Training and Education Program

https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html

Lesson 2: Basics of R Programming: R Objects and Data Types

[1] 46
Moreover, we do not need an object to perform mathematical computations. R can be used like
a calculator.

For example,

(1 + (5 ** 0.5))/2

[1] 1.618034

A function is an object.

R functions are saved as objects, and if we type the name of the function, we can see the value
of the object (i.e., the code underlying the function). Functions are important to R programming,
as anything that happens in R is due to the use of a function.

Looking up Compiled Code

When looking at R source code, sometimes calls to one of the following functions show
up: .C(), .Call(), .Fortran(), .External(), or .Internal() and .Primitive(). These functions are calling entry
points in compiled code such as shared objects, static libraries or dynamic link libraries. Therefore, it
is necessary to look into the sources of the compiled code, if complete understanding of the code is
required. --- RNews 2006 (https://cran.r-project.org/doc/Rnews/Rnews_2006-4.pdf)

We have used some R functions in Lesson 1 (e.g. getwd() and setwd())! Let's look at
another example using the round () function.

round () "rounds the values in its first argument to the specified number of decimal places
(default 0)" --- R help.

Consider

round(5.65) #can provide a single number

[1] 6

round(c(5.65,7.68,8.23)) #can provide a vector

Bioinformatics Training and Education Program

https://cran.r-project.org/doc/Rnews/Rnews_2006-4.pdf
https://cran.r-project.org/doc/Rnews/Rnews_2006-4.pdf

Lesson 2: Basics of R Programming: R Objects and Data Types

[1] 6 8 8

In this example, we only provided the required argument in this case, which was any numeric or
complex vector. We can see that two arguments can be included by the context prompt while
typing (See below image). The optional second argument (i.e., digits) indicates the number of
decimal places to round to. Contextual help is generally provided as you type the name of a
function in RStudio.

#provide an additional argument rounding to the tenths place
round(5.65,digits=1)

[1] 5.7

At times a function may be masked by another function. This can happen if two functions are
named the same (e.g., dplyr::filter() vs plyr::filter()). We can get around this by
explicitly calling a function from the correct package using the following syntax:
package: :function().

The pipe (| >, %>%).

Functions can be chained together using a pipe (| >, %>%). The pipe improves the readability of
the code by minimizing nesting.

For example,

ex<- -5.679

ex |> round() |> abs()

[1] 6

We will talk about the pipe more in part 2 and 3 of this series. For now, it is helpful to know that it
exists and what it is doing.

Differences between | > and %>%

There are some crucial differences between the native pipe | > and the maggitr pipe (%>%). Check out this blog
(https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/) for details.

Bioinformatics Training and Education Program

https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/

Lesson 2: Basics of R Programming: R Objects and Data Types

Pre-defined objects

Base R comes with a number of built-in functions, vectors, data frames, and other objects. You
can view all using the function, builtins (). If you are interested in built-in datasets, check out
help(package="datasets").

Acknowledgments

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for
Genomics lesson provided by datacarpentry.org (https.//datacarpentry.org/genomics-r-intro/01-
introduction/index.html).

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html

Lesson 3: Basics of R Programming: Vectors

Lesson 3: Basics of R Programming: Vectors

Objectives

To understand some of the most basic features of the R language including creating, modifying,
sub-setting, and exporting vectors.

As with previous lessons, to get started with this lesson, you will first need to connect to RStudio
on Biowulf. To connect to NIH HPC Open OnDemand, you must be on the NIH network. Use the
following website to connect: https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/).
Then follow the instructions outlined here.

Vectors

Vectors are probably the most commonly used object type in R. A vector is a
collection of values that are all of the same type (numbers, characters, etc.). The
columns that make up a data frame are vectors. One of the most common ways to
create a vector is to use the c () function - the “concatenate” or “combine” function.
Inside the function you may enter one or more values; for multiple values, separate
each value with a comma. --- datacarpentry.org (htitps.//datacarpentry.github.io/
genomics-r-intro/01-r-basics.htmi).

Creating vectors

#create a vector of gene names
transcript_names <- c("TSPAN6", "TNMD", "SCYL3", "GCLC")

transcript_names

[1] "TSPAN6" "TNMD" "SCYL3" "GCLC"

Let's check out the type of data within the vector. What do you think?

typeof (transcript_names)

[1] "character"
Another property of vectors worth exploring is their length. Try Tength ()

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://datacarpentry.github.io/genomics-r-intro/01-r-basics.html
https://datacarpentry.github.io/genomics-r-intro/01-r-basics.html
https://datacarpentry.github.io/genomics-r-intro/01-r-basics.html
https://datacarpentry.github.io/genomics-r-intro/01-r-basics.html

Lesson 3: Basics of R Programming: Vectors

length(transcript _names)

(1] 4

In addition, you can assess the underlying structure of the object (vector in this case) by using
str(). str () will be invaluable for understanding more complicated data structures such as
matrices and data frames, which will be discussed later.

this will return properties of the object's underlying structure
in this case, the length and type
str(transcript_names)

chr [1:4] "TSPAN6" "TNMD" "SCYL3" "GCLC"

Here, the length and type of data in the vector are returned, as well as a summary of the data.

#We know this is a vector from the length but you could always check
is.vector(transcript _names)

[1] TRUE
Vectors can also have a names attribute.

counts<-c("TSPAN6"= 679, "TNMD" = @, "SCYL3" = 467)
counts

TSPAN6 TNMD SCYL3
679 0 467

names (counts)

[1] "TSPAN6" "TNMD" "SCYL3"

Bioinformatics Training and Education Program

Lesson 3: Basics of R Programming: Vectors

Creating, modifying, sub-setting exporting

Let's learn how to further work with vectors, including creating, sub-setting, modifying, and
saving. First, we will create a few vectors. Again, the c () vector is necessary for this task.

#Some possible RNASeq data

cell line<- c("NG©52611", "NO61O011", "NO8O611", "N61311")

sample id <- c("SRR1039508", "SRR1039509", "SRR1©39512",
"SRR1039513", "SRR1039516", "SRR1039517",
"SRR1039520", "SRR1039521")

transcript_counts <- c(679, 0, 467, 260, 60, 0)

Creating vectors with functions

Vectors can also be created with different functions. Some common functions used to create vectors include seq ()
and rep().

Vector operations

If our vectors are numeric, we can apply mathematic operations and arithmetic expressions.

Apply some basic math
transcript_counts + 10

[1] 689 10 477 270 70 10
transcript_counts”2 +100
[1] 461141 100 218189 67700 3700 100

Transform the data using a log 10 transformation
loglO(transcript_counts + 1)

[1] 2.832509 0.000000 2.670246 2.416641 1.785330 0.000000

Add two vectors together
transcript_counts + rep(2,times=6)
[1] 681 2 469 262 62 2

#Add different sized vectors
transcript_counts + c(0,1)
[1] 679 1 467 261 60 1

Bioinformatics Training and Education Program

Lesson 3: Basics of R Programming: Vectors

transcript_counts + c(0,1,0,1)

Warning in transcript counts + c(0, 1, 0, 1): longer object length is not a
multiple of shorter object length

[1] 679 1 467 261 60 1

Some things to note here:

1. With vectors of the same length, we can add, subtract, multiply, etc., but operations are performed on
elements in the same position of each vector.

2. With vectors of different lengths, the shorter vector will be recyled (https.//www.geeksforgeeks.org/vector-
recycling-in-r/) until the operation is complete. If the larger vector is not a multiple of the shorter vector, a
warning will be thrown.

Vector sub-setting

There may be moments where you want to retrieve a specific value or values from a vector. To
do this, we use bracket notation sub-setting ([]).In bracket notation, you call the name of the
vector followed by brackets. The brackets contain an index for the value that we want. The
index is the numerical position of the value in the vector. For example, take a look at
cell line.

cell _line

[1] "NO52611" "NO61011" "NO8O611" "N61311"

The first position [1] is held by "N052611". The next position is 2 followed by 3, etc.

[1] "N@52611" "N@61011" "N@80611" "N61311"

(1] (2] (3] [4]

Index positionsin cell_line.

With numerical indexing, we can access a given value from the vector using name[index],
where name is the name of the vector, and index is the numerical position within the vector.

Let's get the second value from cell_types.

cell line[2]

[1] "NO61O11"

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/vector-recycling-in-r/
https://www.geeksforgeeks.org/vector-recycling-in-r/
https://www.geeksforgeeks.org/vector-recycling-in-r/
https://www.geeksforgeeks.org/vector-recycling-in-r/

Lesson 3: Basics of R Programming: Vectors

In R vector indices start with 1 and end with length(vector). This is important and can
differ based on programming language.

For example:

Programming languages like Fortran, MATLAB, Julia, and R start counting at 1,
because that's what human beings typically do. Languages in the C family
(including C++, Java, Perl, and Python) count from 0 because that's simpler for
computers to do.---bioc-intro (https.//carpentries-incubator.github.io/bioc-intro/23-
starting-with-r.html).

So to extract the last element in a vector, you could use the following annotation:

#retrieve the last element in the sample_id vector
sample _id[length(sample id)]

[1] "SRR1039521"

This is the same as:

#retrieve the last element in the sample_ id vector
sample id[8]

[1] "SRR1©39521"
You may also want to subset a range of values. In R, use a colon (:) to represent a range.

#Retrieve the 2nd and 3rd value from cell line
cell line[2:3]

[1] "NO61O011" "NO8O611"

#Retrieve the 1st, 4th, 5th, and 6th values from transcript counts
transcript _counts[c(1,4:6)]

[1] 679 260 60 0

Bioinformatics Training and Education Program

https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html
https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html
https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html
https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html

Lesson 3: Basics of R Programming: Vectors

The combine function c () can also be used to add 1 or more elements to a vector. To be
overwritten the object has to be reassigned.

#lLets add two genes to transcript names

transcript _names <- c(transcript _names, "ANAPC1OP1", "ABCD1")
transcript_names

[1] "TSPANG6" "TNMD" "SCYL3" "GCLC" "ANAPC10OP1" "

Subtraction can be used to remove a value.

#Let's remove "SCYL3"

transcript_names <- transcript names[-3]
transcript_names

[1] "TSPAN6" "TNMD" "GCLC" "ANAPC10P1" "ABCD1"

We can rename a value by

#Let's rename "GCLC"
transcript _names[3] <- "NNAME"
transcript_names

[1] "TSPAN6" "TNMD" "NNAME " "ANAPC10P1" "ABCD1"

We can use the names attribute to query or subset a vector.

counts["SCYL3"]

SCYL3
467

We can also call a value directly; More on this below.

#Rename "ABCD1" to "NEW"

transcript_names[transcript _names == "ABCD1"] <- "NEW"
transcript_names

Bioinformatics Training and Education Program

Lesson 3: Basics of R Programming: Vectors

[1] "TSPANG" "TNMD" "NNAME" "ANAPC1OP1" "NEW"

Logical subsetting

It is also possible to subset in R using logical evaluation or numerical comparison. To do this, we
use comparison operators, as we did in the last example. See the table below for a list of

operators.
Comparison Operator Description
> greater than
>= greater than or equal to
< less than
<= less than or equal to
I= Not equal
== equal
alb aorb
a&b aandb

So if, for example, we wanted a subset of all transcript counts greater than 260, we could use
indexing combined with a comparison operator:

transcript_counts[transcript _counts > 260]

[1] 679 467

Why does this work? Let's break down the code.

transcript _counts > 260

[1] TRUE FALSE TRUE FALSE FALSE FALSE

This returns a logical vector. We can see that positions 1 and 3 are TRUE, meaning they are
greater than 260. Therefore, the initial sub-setting above is asking for a subset based on TRUE
values. Here is the equivalent:

transcript_counts[c(TRUE, FALSE, TRUE, FALSE, FALSE, FALSE)]

Bioinformatics Training and Education Program

Lesson 3: Basics of R Programming: Vectors

[1] 679 467

You can also use this functionality to do a kind of find and replace. Perhaps we want to find
zero values and replace them with NAs. We could use:

transcript_counts[transcript _counts==0]<-NA
Note

if you instead ran transcript_counts[transcript_counts==0]<-"NA", you would coerce this vector to a
character vector.

Now, if we want to return only values that aren't NAs, we can use

transcript _counts[!is.na(transcript counts)] #values that aren't NAs

[1] 679 467 260 60

is.na(transcript _counts) #if you simply want to know if there are NA:
[1] FALSE TRUE FALSE FALSE FALSE TRUE

which(is.na(transcript counts)) #if you want the indices of those NA:
[1] 2 6

Other ways to handle missing data

Other functions you may find useful when working with NAs inclue na.omit() and
complete.cases().

na.omit () removes the NAs from a vector.

na.omit(transcript _counts)

Bioinformatics Training and Education Program

Lesson 3: Basics of R Programming: Vectors

[1] 679 467 260 60
attr(,"na.action")
[1] 2 6
attr(,"class")

[1] "omit"

complete.cases () creates a logical vector that you can use for subs-etting based on the

absence of NAs.

transcript_counts[complete.cases(transcript counts)]

[1] 679 467 260 60
Many functions will also have an na. rm argument. For example, see ?mean.

Using objects to store thresholds

To make scripting reproducible, you could avoid calling a specific number directly and use
objects in logical evaluations like those above. If we use an object, the value itself could easily
be replaced with whatever value is needed. For example:

trnsc_cutoff <- 260
#note: this will also include NAs in the output
transcript _counts[transcript counts>trnsc _cutoff]

[1] 679 NA 467 NA

#if we want to exclude possible NAs, something like this will work
transcript_counts[!is.na(transcript _counts) & transcript counts>trns:

[1] 679 467

Using the %1in% operator.

There may be a time you want to know whether there are specific values in your vector. To do
this, we can use the %1in% operator (?match ()). This operator returns TRUE for any value that
is in your vector and can be used for sub-setting. It makes more sense to use this with data
frames but we can see how this works here.

Bioinformatics Training and Education Program

Lesson 3: Basics of R Programming: Vectors

For example:

have a look at transcript_names
transcript_names

[1] "TSPANG" "TNMD" "NNAME" "ANAPC1OP1" "NEW"

test to see if "NNAME" and "ANAPC1OP1" are in this vector
if you are looking for more than one value, you must pass this as .

c ("NNAME", "ANAPC10P1") %in% transcript_names
[1] TRUE TRUE

#We could also save the search vector to an object and search that wi
find _transcripts<-c("NNAME", "ANAPC1OP1")
find _transcripts %in% transcript names

[1] TRUE TRUE

#to use this for subetting the vector lengths should match
transcript_names[transcript_names %in% find_transcripts]

[1] "NNAME" "ANAPC10OP1"

Saving and loading objects

We discussed saving the R workspace (.RData), but what if we simply want to save a single
object. In such a case, we can use saveRDS ().

Let's save our transcript_counts vector to our working directory.
saveRDS (transcript _counts,"transcript counts.rds")

Check the Files pane for your newly created file. Make sure you are viewing the contents of
your working directory (getwd ()).

Bioinformatics Training and Education Program

Lesson 3: Basics of R Programming: Vectors

To load the object back into your R workspace, use readRDS ().

Acknowledgments

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for
Genomics lesson provided by datacarpentry.org (https.//datacarpentry.org/genomics-r-intro/01-
introduction/index.html). Material was also inspired by content from Introduction to data analysis
with R and Bioconductor (https.//carpentries-incubator.github.io/bioc-intro/), which is part of the

Carpentries Incubator (https.//github.com/carpentries-incubator/proposals/#the-carpentries-
incubator).

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://carpentries-incubator.github.io/bioc-intro/
https://carpentries-incubator.github.io/bioc-intro/
https://carpentries-incubator.github.io/bioc-intro/
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator

Lesson 4: Introduction to R Data Structures - Data Import

Lesson 4: Introduction to R Data Structures -
Data Import

Learning Objectives

1. Learn about data structures including factors, lists, matrices, and data frames.
2. Learn how to import data in a tabular format (data frames)
3. Learn to write out (export) data from the R environment

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to
NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to
connect: https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/). Then follow the
instructions outlined here.

Installing and Loading Packages

In this lesson, we will learn how to import data with different file extensions, including Excel files.
We will make use of Base R functions for data import as well as popular functions from readr
(https.//readr.tidyverse.org/) and readx1 (https.//readxl.tidyverse.org/).

So far we have only worked with objects that we created in RStudio. We have not installed or
loaded any packages. R packages extend the use of R programming beyond base R.

Where do we get R packages?

As a reminder, R packages are loadable extensions that contain code, data, documentation,
and tests in a standardized shareable format that can easily be installed by R users. The
primary repository for R packages is the Comprehensive R Archive Network (CRAN) (hitps./
cran.r-project.org/index.html). CRAN is a global network of servers that store identical versions
of R code, packages, documentation, etc (cran.r-project.org). To install a CRAN package, use
install.packages().

Github is another common source used to store R packages; though, these packages do not
necessarily meet CRAN standards so approach with caution. To install a Github package, use
library(devtools) followed by install_github(). devtools is a CRAN package. If
you have not installed it, you may use install.packages("devtools") prior to the
previous steps.

Many genomics and other packages useful to biologists / molecular biologists can be found on
Bioconductor. To install a Bioconductor package, you will first need to install BiocManager, a
CRAN package (install.packages("BiocManager")). You can then use BiocManager

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://readr.tidyverse.org/
https://readr.tidyverse.org/
https://readr.tidyverse.org/
https://readr.tidyverse.org/
https://readr.tidyverse.org/
https://readxl.tidyverse.org/
https://readxl.tidyverse.org/
https://readxl.tidyverse.org/
https://cran.r-project.org/index.html
https://cran.r-project.org/index.html
https://cran.r-project.org/index.html
https://cran.r-project.org/index.html

Lesson 4: Introduction to R Data Structures - Data Import

to install the Bioconductor core packages or any specific package (e.g.,
BiocManager::install("DESeqg2")).

Packages are installed into your file system at a given location denoted by .1ibPaths (). This
is your R library, a directory of installed R packages. To use one or more packages, you have
to load it within your R session. This has to be done with each new R session.

Key functions:

®* install.packages () install packages from CRAN.
* library () load packages in R session.

Load the libraries:

library(readxl)
library(readr)

Tip

Itis good practice to load libraries needed for a script at the beginning of the script.

Data Structures

Data structures are objects that store data.

Previously, we learned that vectors are collections of values of the same type (https./
datacarpentry.org/genomics-r-intro/01-r-basics. html#vectors). A vector is also one of the most
basic data structures.

Other common data structures in R include:

e factors

e lists

e data frames
e matrices

What are factors?

Factors are an important data structure in statistical computing. They are specialized vectors
(ordered or unordered) for the storage of categorical data (data with fixed values). While they
appear to be character vectors, data in factors are stored as integers. These integers are
associated with pre-defined levels, which represent the different groups or categories in the
vector.

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-r-basics.html#vectors
https://datacarpentry.org/genomics-r-intro/01-r-basics.html#vectors
https://datacarpentry.org/genomics-r-intro/01-r-basics.html#vectors
https://datacarpentry.org/genomics-r-intro/01-r-basics.html#vectors

Lesson 4: Introduction to R Data Structures - Data Import

Reference level
Generally for statistical models, the reference or control level is set to level 1. You can reorder the levels using

factor () or forcats::relevel().

Important functions

®* factor () -to create a factor and reorder levels

® as.factor () - to coerce to a factor

® levels() - view and/or rename the levels of a factor
®* nlevels () - return the number of levels

For example:

SeX <_ factor(c(llMll’IIFII’IIFII,IIMII,IIMII,IIMII))
levels (sex)

[1] IIFII IIMII

Check out the package forcats (https.//forcats.tidyverse.org/) for managing and reordering
factors.

Note

R will organize factor levels alphabetically by default. This will be especially noticeable when plotting.

Warning

Pay attention when coercing from a factor to a numeric. To do this, you should first convert to a character vector.
Otherwise, the numbers that you want to be numeric (the factor level names) will be returned as integers.

See more about working with factors here (https.//r4ds.had.co.nz/factors.html#factors).

Lists

Unlike an atomic vector, a list can contain multiple elements of different types, (e.g., character
vector, numeric vector, list, data frame, matrix). Lists are not the focus of this lesson, but you
should be aware of them, as you will likely come across them at some point, as many functions,
including those specific to bioinformatics, may output data in the form of a list.

Important functions
® 1ist () - create alist

Bioinformatics Training and Education Program

https://forcats.tidyverse.org/
https://forcats.tidyverse.org/
https://forcats.tidyverse.org/
https://r4ds.had.co.nz/factors.html#factors
https://r4ds.had.co.nz/factors.html#factors

Lesson 4: Introduction to R Data Structures - Data Import

®* names () - create named elements (Also useful for vectors)
® lapply (), sapply () - for looping over elements of the list

Example

#(Create a list
My exp <- list(c("N©52611", "NO61011", "NO8G611", "N61311"),
c("SRR1039508", "SRR1039509", "SRR1039512",
"SRR1039513", "SRR1039516", "SRR1039517",
"SRR1039520", "SRR1039521"),c(100,200,300,400))

#Look at the structure
str(My_exp)

List of 3

$: chr [1:4] "NO52611" "NO61011" "NO8O611" "N61311"

$: chr [1:8] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513"
$: num [1:4] 100 200 300 400

#Name the elements of the list

names (My exp)<-c("cell lines","sample id", "counts")
#See how the structure changes

str(My_exp)

List of 3
$ cell lines: chr [1:4] "NO52611" "NO61011" "NO8O611" "N61311"

$ sample_id : chr [1:8] "SRR1039508" "SRR1039509" "SRR1039512" "SRR:

$ counts num [1:4] 100 200 300 400

#Subset the list
My_exp[[1]1]1[2]

[1] "NO610O11"

My exp$cell lines[2]

[1] "NO61O11"

Bioinformatics Training and Education Program

Lesson 4: Introduction to R Data Structures - Data Import

#Apply a function (remove the first index from each vector)
lapply (My exp, function(x){x[-11})

$cell_lines
[1] "NO61O11" "NO8O611" "N61311"

$sample id
[1] "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516" "SRR1039517"
[6] "SRR1039520" "SRR1039521"

$counts
[1] 200 300 400

We are not going to spend a lot of time on lists, but you should consider learning more about
them in the future, as you may receive output at some point in the form of a list. For a brief
introduction to lists, see the following resources:

® R4DS (https://r4ds.had.co.nz/vectors.html#lists)
e UVA list tutorial (https.//bioconnector.github.io/workshops/r-lists. html)

e Steve’s Data Tips and Tricks (https.//www.spsanderson.com/steveondata/posts/
2024-10-29/)

Data Matrices

Another important data structure in R is the data matrix. Data frames and data matrices are
similar in that both are tabular in nature and are defined by dimensions (i.e., rows (m) and
columns (n), commonly denoted m x n). However, a matrix contains only values of a single type
(i.e., numeric, character, logical, etc.).

Note

A vector can be viewed as a 1 dimensional matrix.

Elements in a matrix and a data frame can be referenced by using their row and column indices
(for example, a[1,1] references the element in row 1 and column 1).

Below, we create the object a1, a 3-row by 4-column matrix.

al <- matrix(c(3,4,2,4,6,3,8,1,7,5,3,2), ncol=4)
al

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/vectors.html#lists
https://r4ds.had.co.nz/vectors.html#lists
https://bioconnector.github.io/workshops/r-lists.html
https://bioconnector.github.io/workshops/r-lists.html
https://www.spsanderson.com/steveondata/posts/2024-10-29/
https://www.spsanderson.com/steveondata/posts/2024-10-29/
https://www.spsanderson.com/steveondata/posts/2024-10-29/
https://www.spsanderson.com/steveondata/posts/2024-10-29/

Lesson 4: Introduction to R Data Structures - Data Import

[,11 [,2]1 [,3] [.,4]
[1,] 3 4 8 5
[2,] 4 6 1 3
[3,] 2 3 7 2

Using the typeof() and class() command, we see that the elements in a1 are double and al a
matrix, respectively.

typeof(al)
[1] "double"
class(al)

[1] "matrix" "array"

Similar to lists, we aren't going to focus much on matrices.

Data Frames: Working with Tabular Data

In genomics, we work with a lot of tabular data - data organized in rows and columns. The data
structure that stores this type of data is a data frame. Data frames are collections of vectors of
the same length but can be of different types. Because we often have data of multiple types, it
is natural to examine that data in a data frame.

You may be tempted to open and manually work with these data in excel. However, there are a
number of reasons why this can be to your detriment. First, it is very easy to make mistakes
when working with large amounts of tabular data in excel. Have you ever mistakenly left out a
column or row while sorting data”? Second, many of the files that we work with are so large (big
data) that excel and your local machine do not have the bandwidth to handle them. Third, you
will likely need to apply analyses that are unavailable in excel. Lastly, it is difficult to keep track
of any data manipulation steps or analyses in a point and click environment like excel.

R, on the other hand, can make analyzing tabular data more efficient and reproducible. But
before getting into working with this data in R, let's review some best practices for data
management.

Bioinformatics Training and Education Program

Lesson 4: Introduction to R Data Structures - Data Import

Best Practices for organizing genomic data

1. "Keep raw data separate from analyzed data" -- datacarpentry.org (https.//
datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.htm)

For large genomic data sets, you may want to include a project folder with two main
subdirectories (i.e., raw_data and data_analysis). You may even consider changing the
permissions (check out the unix command chmod (https.//www.howtogeek.com/437958/how-to-
use-the-chmod-command-on-linux/)) in your raw directory to make those files read only.
Keeping raw data separate is not a problem in R, as one must explicitly import and export data.

1. "Keep spreadsheet data Tidy" -- datacarpentry.org (https.//datacarpentry.org/
genomics-r-intro/03-basics-factors-dataframes. html)

Data organization can be frustrating, and many scientists devote a great deal of time and
energy toward this task. Keeping data tidy, can make data science more efficient, effective, and
reproducible. There is a collection of packages in R that embrace the philosophy of tidy data
and facilitate working with data frames. That collection is known as the tidyverse (htips./
www.tidyverse.org/).

1. "Trust but verify" -- datacarpentry.org (https://datacarpentry.org/genomics-r-
intro/03-basics-factors-dataframes.html)

R makes data analysis more reproducible and can eliminate some mistakes from human error.
However, you should approach data analysis with a plan, and make sure you understand what
a function is doing before applying it to your data. Often using small subsets of data can be
used as a form of data debugging to make sure the expected result materialized.

Some functions for creating practice data include: data.frame(), rep(), seq(), rnorm(),
sample() and others. See some examples here (hiips://ademos.people.uic.edu/
Chapter7.html#32_b_using_the_rep_function_to_create_data_frames).

Let's use some of these to create a data frame.

df<-data.frame(Samples=c(1:10),Counts=sample(1:5000, size=10, replact
df

Samples Counts Treatment
1 4939 control
2 191 control
3 3697 control
4 4933 control
5 2938 control
6 1721 treated
7 214 treated

N oot D wWw N

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://www.tidyverse.org/
https://www.tidyverse.org/
https://www.tidyverse.org/
https://www.tidyverse.org/
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://ademos.people.uic.edu/Chapter7.html#32_b_using_the_rep_function_to_create_data_frames
https://ademos.people.uic.edu/Chapter7.html#32_b_using_the_rep_function_to_create_data_frames
https://ademos.people.uic.edu/Chapter7.html#32_b_using_the_rep_function_to_create_data_frames
https://ademos.people.uic.edu/Chapter7.html#32_b_using_the_rep_function_to_create_data_frames

Lesson 4: Introduction to R Data Structures - Data Import

8 8 2999 treated
9 9 2084 treated
10 10 2196 treated

Example Data

There are data sets available in R to practice with or showcase different packages; for example,
library(help = "datasets"). For the next two lessons, we will use data derived from the
Bioconductor package airway (https./bioconductor.org/packages/release/data/experiment/
html/airway.html) as well as data internal to or derived from Base R and packages within the
tidyverse. Check out the Acknowledgements section for additional data sources.

Obtaining the data

e To download the data used in this lesson to your local computer, click here. You can then
move the downloaded directory to your working directory in R.

e To use the data on Biowulf, open your Terminal in R and follow these steps:

cd /data/$USER/Getting Started with_R
wget https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Gettiny

unzip data.zip

Note

"'Getting_Started_with_R" is the name of the project directory | created in Lesson 1. If you do not have this directory,
make sure you change directories to your working directory in R.

Importing Data

Before we can do anything with our data, we need to first import it into R. There are several
ways to do this.

First, the RStudio IDE has a drop down menu for data import. Simply go to File > Import
Dataset and select one of the options and follow the prompts.

Pay close attention to the import functions and their arguments. Using the import arguments
correctly can save you from a headache later down the road. You will notice two types of import
functions under Import Dataset 'from text" base R import functions and readr import
functions. We will use both in this course.

Row names

Bioinformatics Training and Education Program

https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html

Lesson 4: Introduction to R Data Structures - Data Import

Tidyverse packages are generally against assigning rownames and instead prefer that all column data are
treated the same, but there are times when this is beneficial and will be required for genomics data (e.g., See
SummarizedExperiment (https.//bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/
doc/SummarizedExperiment.html) from Bioconductor).

What is a tibble?

When loading tabular data with readr, the default object created will be a tibble. Tibbles are
like data frames with some small but apparent modifications. For example, they can have
numbers for column names, and the column types are immediately apparent when viewing.
Additionally, when you call a tibble by running the object name, the entire data frame does not
print to the screen, rather the first ten rows along with the columns that fit the screen are shown.

Reasons to use readr functions

Compared to the corresponding base functions, readr functions:

Use a consistent naming scheme for the parameters (e.g. col_names and
col_types not header and colClasses).

Are generally much faster (up to 10x-100x) depending on the dataset.
Leave strings as is by default, and automatically parse common date/time formats.
Have a helpful progress bar if loading is going to take a while.

All functions work exactly the same way regardless of the current locale. To
override the US-centric defaults, use locale(). - readrtidyverse.org (https://
readr.tidyverse.org/#base-r).

Excel files (.xls, .xIsx)

Excel files are the primary means by which many people save spreadsheet data. .xIs or .xIsx
files store workbooks composed of one or more spreadsheets.

Importing excel files requires the R package readx1. While this is a tidyverse package, it is not
core and must be loaded separately. We loaded this above.

The functions to import excel files are read_excel (), read _x1s(), and read _x1sx (). The
latter two are more specific based on file format, whereas the first will guess which format (.xIs
or .xlsx) we are working with.

Let's look at its basic usage using an example data set from the readx1 package. To access

the example data we use readx1l_example().

#makes example data accessible by storing the path

Bioinformatics Training and Education Program

https://bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html
https://bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html
https://bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html
https://bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html
https://bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/doc/SummarizedExperiment.html
https://readr.tidyverse.org/#base-r
https://readr.tidyverse.org/#base-r
https://readr.tidyverse.org/#base-r
https://readr.tidyverse.org/#base-r

Lesson 4: Introduction to R Data Structures - Data Import

ex Xxl<-readxl example("datasets.xlsx")

ex_xl1

[1] "/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/1il

Now, let's read in the data. The only required argument is a path to the file to be imported.

irisdata<-read_excel(ex_x1)

irisdata

A tibble: 32

mpg cyl
<dbl> <dbl>

21
21

W 00 N O Ul B WIN B

[EY
S

i 22

22.
21.
18.
18.
14.
24.
22.
19.

6

N 00O b W E N B
A~ B GO OO O B~ O

[ep]

x 11

disp

hp

<dbl> <dbl>

160
160
108
258
360
225
360

147.
141.
168.

more rows

110
110

93
110
175
105
245

62

95
123

drat
<dbl>

w

w W w w N WwWw w w

.85
.08
.15
.76
.21
.69
.92
.92

wt

<dbl>

No

w W w w w w w NN

.62
.88
.32
.22
.44
.46
.57
.19
.15
.44

gsec VA am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl>
16.5 0] 1 4 4
17.0 0 1 4 4
18.6 1 1 4 1
19.4 1 0] 3 1
17.0 0] 0] 3 2
20.2 1 0] 3 1
15.8 0 0 3 4
20 1 0 4 2
22.9 1 0] 4 2
18.3 1 0] 4 4

Notice that the resulting imported data is a tibble. This is a feature specific to tidyverse. Now,

let's check out some of the additional arguments. We can view the help information using ?

read_excel().

The arguments likely to be most pertinent to you are:

sheet - the name or numeric position of the excel sheet to read.

col_names - default TRUE uses the first read in row for the column names. You can also
provide a vector of names to name the columns.

skip - will allow us to skip rows that we do not wish to read in.

.name_repair - automatically set to "unique", which makes sure that the column names are

not empty and are all unique. read_excel () and readr functions will not correct column

names to make them syntactic. If you want corrected names, use .name_repair =

"universal".

Let's check out another example:

Bioinformatics Training and Education Program

Lesson 4: Introduction to R Data Structures - Data Import

sum_air<-read excel("./data/RNASeq totalcounts vs totaltrans.xlsx")

New names:

o T > .27
e T > 37
R Y
sum_air

A tibble: 11 x 4
"Uses Airway Data’
<chr>

Some RNA-Seq summary information
<NA>

Sample Name
GSM1275863
GSM1275867
GSM1275871
GSM1275875
GSM1275862
GSM1275866
GSM1275870
GSM1275874

W 00 N O U1l B W N B

RS
_ ©

.2
<chr>
<NA>
<NA>
Treatment
Dexamethasone
Dexamethasone
Dexamethasone
Dexamethasone
None
None
None
None

.3
<chr>
<NA>
<NA>
Number of Transcrij
10768
10051
11658
10900
11177
11526
11425
11000

Upon importing these data, we can immediately see that something is wrong with the column

names.

colnames (sum_air)

[1] "Uses Airway Data" "...2"

II...3II

tLoou4"

There are some extra rows of information at the beginning of the data frame that should be
excluded. We can take advantage of additional arguments to load only the data we are

interested in. We are also going to tell read_excel () that we want the names repaired to

eliminate spaces.

sum_air<-read excel("./data/RNASeq totalcounts vs totaltrans.xlsx",
skip=3,.name_repair = "universal")

Bioinformatics Training and Education Program

Lesson 4: Introduction to R Data Structures - Data Import

New names:

e "Sample Name™ -> “Sample.Name"

* "Number of Transcripts® -> “Number.of.Transcripts’
+ "Total Counts®™ -> "Total.Counts"

sum_air

A tibble: 8 x 4

Sample.Name Treatment Number.of.Transcripts Total.Counts

<chr> <chr> <dbl> <dbl>
1 GSM1275863 Dexamethasone 10768 18783120
2 GSM1275867 Dexamethasone 10051 15144524
3 GSM1275871 Dexamethasone 11658 30776089
4 GSM1275875 Dexamethasone 10900 21135511
5 GSM1275862 None 11177 20608402
6 GSM1275866 None 11526 25311320
7 GSM1275870 None 11425 24411867
8 GSM1275874 None 11000 19094104

Tab-delimited files (.tsv, .txt)

In tab delimited files, data columns are separated by tabs.

To import tab-delimited files there are several options. There are base R functions such as
read.delim() and read.table() as well as the readr functions read_delim(),
read _tsv(),and read table().

Let's take a look at ?read.delim() and ?read_delim(), which are most appropriate if you
are working with tab delimited data stored in a .txt file.

For read.delim(), you will notice that the default separator (sep) is white space, which can
be one or more spaces, tabs, newlines. However, you could use this function to load a comma
separated file as well; you simply need to use sep = ",". The same is true of
read_delim(), except the argumentis delim rather than sep.

Let's load sample information from the RNA-Seq project airway (htips:/
bioconductor.org/packages/release/data/experiment/html/airway.html). We will refer back to
some of these data frequently throughout our lessons. The airway data is from Himes et al.
(2014) (https://pubmed.ncbi.nlm.nih.gov/24926665/). These data, which are available in R as a
RangedSummarizedExperiment object, are from a bulk RNA-Seq experiment. In the
experiment, the authors "characterized transcriptomic changes in four primary human ASM cell
lines that were treated with dexamethasone," a common therapy for asthma. The airway

Bioinformatics Training and Education Program

https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/

Lesson 4: Introduction to R Data Structures - Data Import

package includes RNAseq count data from 8 airway smooth muscle cell samples. Each cell line
includes a treated and untreated negative control.

Using read.delim():

smeta<-read.delim("./data/airway_sampleinfo.txt")
head(smeta)

SampleName cell dex albut Run avglLength Experiment !
1 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS
2 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS!
3 GSM1275866 NO52611 untrt untrt SRR1039512 126 SRX384349 SRS!
4 GSM1275867 N052611 trt untrt SRR1039513 87 SRX384350 SRS!
5 GSM1275870 NO80611 untrt untrt SRR1039516 120 SRX384353 SRS!
6 GSM1275871 NO80611 trt untrt SRR1039517 126 SRX384354 SRS!
BioSample
1 SAMNO2422669
2 SAMNO2422675
3 SAMNO2422678
4 SAMNO2422670
5 SAMNG2422682
6 SAMNG2422673

Some other arguments of interest for read.delim():
row.names - used to specify row names.

col.names - use to specify column names if header = FALSE

skip - Similar to read_excel (), used to skip a number of lines preceding the data we are
interested in importing

check.names - makes names syntactically valid and unique.

Using read_delim():

smeta2<-read delim("./data/airway_sampleinfo.txt")

Rows: 8 Columns: 9

— Column specification
Delimiter: "\t"

chr (8): SampleName, cell, dex, albut, Run, Experiment, Sample, BioS:
dbl (1): avglLength

i Use “spec()’ to retrieve the full column specification for this da
i Specify the column types or set “show col types = FALSE" to quiet

Bioinformatics Training and Education Program

Lesson 4: Introduction to R Data Structures - Data Import

smeta2

A tibble: 8 x 9

SampleName cell dex albut Run avglength Experiment Samp

<chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr
1 GSM1275862 N61311 wuntrt untrt SRR10395.. 126 SRX384345 SRS5I
2 GSM1275863 N61311 trt untrt SRR10395.. 126 SRX384346 SRS5I
3 GSM1275866 NO52611 untrt untrt SRR10395.. 126 SRX384349 SRSS5(
4 GSM1275867 NO52611 trt untrt SRR10395.. 87 SRX384350 SRS5!
5 GSM1275870 NO80611 untrt untrt SRR10395.. 120 SRX384353 SRSS5(
6 GSM1275871 NO80611 trt untrt SRR10395.. 126 SRX384354 SRS5I
7 GSM1275874 NO61011 untrt untrt SRR10395.. 101 SRX384357 SRS5I
8 GSM1275875 NO61011 trt untrt SRR10395.. 98 SRX384358 SRS5I

What if we want to retain row names?

Let's load in a count matrix from airway.

aircount<-read.delim("./data/head50 airway nonnorm_count.txt")
head (aircount)

X Accession.SRR1039508 Accession.SRR1039509

1 ENSGOOOOOOOO0O3.TSPANG 679 448

2 ENSGOOOOOOOOOO5. TNMD 0 0

3 ENSGOOOO0000419.DPM1 467 515

4 ENSGOOO00000457.SCYL3 260 211

5 ENSGOOO00000460.Clorfll2 60 55

6 ENSGOOOOO000938.FGR 0 0
Accession.SRR1039512 Accession.SRR1039513 Accession.SRR1039516

1 873 408 1138

2 0 0 0

3 621 365 587

4 263 164 245

5 40 35 78

6 2 0 1
Accession.SRR1039517 Accession.SRR1039520 Accession.SRR1039521

1 1047 770 572

2 0 0 0

3 799 417 508

4 331 233 229

5 63 76 60

6 0 0 0

Bioinformatics Training and Education Program

Lesson 4: Introduction to R Data Structures - Data Import

Because this is a count matrix, we want to save column X', which was automatically named, as

row names rather than a column. Remember, readr is a part of the tidyverse and does not play

well with row names. Therefore, we will use read.delim() withe the argument row.names.

Let's reload and overwrite the previous object:

aircount<-read.delim("./data/head50_ airway nonnorm_count.txt",

head (aircount)

ENSGOOOOO000003.
ENSGOOOOO00000S5.
ENSGOOOOO000419.
ENSGOOOOO000457.
ENSGOOOOO000460.
ENSGOOOOO000938.

ENSGOOOOO000003.
ENSGOOOOO00000S5.
ENSGOOOOO000419.
ENSGOOOOO000457.
ENSGOOOO0000460.
ENSGOOOOO000938.

ENSGOOOOO000003.
ENSGOOOOO00000S5.
ENSGOOOOO000419.
ENSGOOOOO000457 .
ENSGOOOO0000460.
ENSGOOOOO000938.

ENSGOOOOO000003.
ENSGOOOOO00000S5.
ENSGOOOOO000419.
ENSGOOOOO000457 .
ENSGOOOO0000460.
ENSGOOOOO000938.

FOW.names

Accession
TSPANG
TNMD
DPM1
SCYL3
Clorfl12
FGR
Accession
TSPANG6
TNMD
DPM1
SCYL3
Clorfl112
FGR
Accession
TSPANG6
TNMD
DPM1
SCYL3
Clorfl112
FGR
Accession
TSPANG6
TNMD
DPM1
SCYL3
Clorfl12
FGR

Comma separated files (.csv)

1)

.SRR1039508 Accession.SRR1039509
679 448

0 0

467 515

260 211

60 55

0 0
.SRR1039512 Accession.SRR1039513
873 408

0 0

621 365

263 164

40 35

2 0
.SRR1039516 Accession.SRR1039517
1138 1047

0 0

587 799

245 331

78 63

1 0
.SRR1039520 Accession.SRR1039521
770 572

0 0

417 508

233 229

76 60

0 0

In comma separated files the columns are separated by commas and the rows are separated

by new lines.

Bioinformatics Training and Education Program

E Lesson 4: Introduction to R Data Structures - Data Import

To read comma separated files, we can use the specific functions ?read.csv() and ?
read_csv().

Let's see this in action:

cexamp<-read.csv("./data/surveys datacarpentry.csv")
head (cexamp)

record_id month day year plot_id species_id sex hindfoot length we

1 1 7 16 1977 2 NL M 32
2 2 7 16 1977 3 NL M 33
3 3 7 16 1977 2 DM F 37
4 4 7 16 1977 7 DM M 36
5 5 7 16 1977 3 DM M 35
6 6 7 16 1977 1 PF M 14

The arguments are the same as read.delim().

Let's check out read_csv ():

cexamp2<-read csv("./data/surveys datacarpentry.csv")

Rows: 35549 Columns: 9
— Column specification
Delimiter: ", k"

chr (2): species_id, sex
dbl (7): record_id, month, day, year, plot_id, hindfoot length, weig

i Use “spec()” to retrieve the full column specification for this da
i Specify the column types or set “show col types = FALSE® to quiet

cexamp?2

A tibble: 35,549 x 9
record_id month day year plot id species_id sex hindfoot len;

<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <d
1 1 7 16 1977 2 NL M
2 2 7 16 1977 3 NL M
3 3 7 16 1977 2 DM F
4 4 7 16 1977 7 DM M
5 5 7 16 1977 3 DM M

Bioinformatics Training and Education Program

Lesson 4: Introduction to R Data Structures - Data Import

6 6 7 16 1977 1 PF M
7 7 7 16 1977 2 PE F
8 8 7 16 1977 1 DM M
9 9 7 16 1977 1 DM F
10 10 7 16 1977 6 PF F

i 35,539 more rows

Other file types

There are a number of other file types you may be interested in. For genomic specific formats,
you will likely need to install specific packages; check out Bioconductor (htips:/
bioconductor.org/) for packages relevant to bioinformatics.

For information on importing other files types (e.g., json, xml, google sheets), check out this
chapter (https.//jhudatascience.org/tidyversecourse/get-data.html) from Tidyverse Skills for
Data Science by Carrie Wright, Shannon E. Ellis, Stephanie C. Hicks and Roger D. Peng.

Data Export.

To export data to file, you will use similar functions
(write.table(),write.csv(),saveRDS (), etc.).

For example, let's save df to a csv file.

write csv(df,"./data/small_df_example.csv")

Acknowledgements

Some material from this lesson was either taken directly or adapted from /niro to R and RStudio
for Genomics (https://datacarpentry.github.io/genomics-r-intro/03-basics-factors-
dataframes.html) provided by datacarpentry.org. Other material from this lesson was inspired
by R4DS (https.//r4ds.had.co.nz/data-import.html) and Tidyverse Skills for Data Science (https.//
jhudatascience.org/tidyversecourse/). The survey data (https.//figshare.com/articles/dataset/
Portal_Project_Teaching_Database/1314459/10) loaded in this lesson was taken from
datacarpentry.org (https://datacarpentry.org/R-ecology-lesson/index.html).

Bioinformatics Training and Education Program

https://bioconductor.org/
https://bioconductor.org/
https://bioconductor.org/
https://bioconductor.org/
https://jhudatascience.org/tidyversecourse/get-data.html
https://jhudatascience.org/tidyversecourse/get-data.html
https://datacarpentry.github.io/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.github.io/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.github.io/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.github.io/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.github.io/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.github.io/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.github.io/genomics-r-intro/03-basics-factors-dataframes.html
https://r4ds.had.co.nz/data-import.html
https://r4ds.had.co.nz/data-import.html
https://jhudatascience.org/tidyversecourse/
https://jhudatascience.org/tidyversecourse/
https://jhudatascience.org/tidyversecourse/
https://jhudatascience.org/tidyversecourse/
https://figshare.com/articles/dataset/Portal_Project_Teaching_Database/1314459/10
https://figshare.com/articles/dataset/Portal_Project_Teaching_Database/1314459/10
https://figshare.com/articles/dataset/Portal_Project_Teaching_Database/1314459/10
https://figshare.com/articles/dataset/Portal_Project_Teaching_Database/1314459/10
https://datacarpentry.org/R-ecology-lesson/index.html
https://datacarpentry.org/R-ecology-lesson/index.html

E Lesson 5: R Data Structures - Data Frames

Lesson 5: R Data Structures - Data Frames

Learning Objectives

This is the last lesson in Part 1 of Introductory R for Novices: Getting Started with R. This lesson
will focus exclusively on working with data frames. Attendees will learn how to examine,
summarize, and access data in data frames.

Specific learning objectives include:

1. Review data import.

2. Learn how to view and summarize data in a data frame.
3. Learn how to use data accessors.

4. Learn the syntax for sub-setting a data frame.

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to
NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to
connect: https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/). Then follow the
instructions outlined here.

Load the libraries

This lesson will use some functions from the tidyverse.

library(tidyverse)

— Attaching core tidyverse packages tidyvel
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot2 3.5.2 v tibble 3.2.1

v lubridate 1.9.4 v tidyr 1.3.1

v purrr 1.0.4

— Conflicts tidyverse_col

® dplyr::filter() masks stats::filter ()
® dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-1lib.org/>) to for

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/

Lesson 5: R Data Structures - Data Frames

Examining and summarizing data frames

All of the objects we imported in the previous lesson, were data frames. In this lesson, we will
learn how to view and find out more information regarding the data stored in a data frame. Let's

use the R object, smeta as an example.

smeta<-read.delim("./data/airway_sampleinfo.txt")

head (smeta)

SampleName cell dex albut Run avglLength Experiment !
1 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS
2 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS!
3 GSM1275866 NO52611 untrt untrt SRR1039512 126 SRX384349 SRS!
4 GSM1275867 N052611 trt untrt SRR1039513 87 SRX384350 SRS!
5 GSM1275870 NO80611 untrt untrt SRR1039516 120 SRX384353 SRS!
6 GSM1275871 NO80611 trt untrt SRR1039517 126 SRX384354 SRS!
BioSample
1 SAMNO2422669
2 SAMNO2422675
3 SAMNO2422678
4 SAMNO2422670
5 SAMNG2422682
6 SAMNG2422673

We can view these data by clicking on the name of the object in the Environment pane or by

using View().

To understand more about the underlying structure of our data, we can use str () or a similar

function dplyr::glimpse.

str(smeta)

'data.frame': 8 obs. of 9 variables:

$ SampleName: chr "GSM1275862" "GSM1275863" "GSM1275866" "GSM12758
$ cell chr "N61311" "N61311" "NO52611" "NO52611"

$ dex chr "untrt" "trt" "untrt" "trt"

$ albut chr "untrt" "untrt" "untrt" "untrt"

$ Run chr "SRR1039508" "SRR1039509" "SRR1039512" "SRR10395
$ avglLength int 126 126 126 87 120 126 101 98

$ Experiment: chr "SRX384345" "SRX384346" "SRX384349" "SRX384350"

Bioinformatics Training and Education Program

Lesson 5: R Data Structures - Data Frames

$ Sample : chr
$ BioSample : chr

"SRS508568" "SRS508567" "SRS508571" "SRS508572"
"SAMNO2422669" "SAMNO2422675" "SAMNO2422678" "SAI

str () shows us that we are looking at a data frame object with 8 rows by 9 columns. The
column names are to the far left preceded by a $. This is a data frame accessor, and we will
see how this works later. We can also see the data types (e.g., character, integer, logical,
double) after the column name. This will help us understand how we can transform and
visualize the data in these columns.

We can also get an overview of summary statistics of this data frame using summary ().

summary (smeta)

SampleName
Length:8

Class :character
Mode :character

cell
Length:8
Class :character
Mode :character

dex
Length:8

Class :character
Mode :character

albut
Length:8
Class :cha
Mode :cha

Run avglength Experiment Sample
Length:8 Min. . 87.0 Length:8 Length:8
Class :character 1st Qu.:100.2 Class :character Class :charac
Mode :character Median :123.0 Mode :character Mode :charac

Mean :113.8
3rd Qu.:126.0
Max. :126.0
BioSample
Length:8

Class :character
Mode :character

Our data frame has 9 variables, so we get 9 fields that summarize the data. The only column
with numerical data is avgLength, for which we can see summary statistics on the min and
max values as well as mean, median, and interquartile ranges.

Using summary () with factors

summary () is also useful for obtaining quick information about a categorial (factor) variable, answering how many
groups and the sample size of each group.

smeta2 <- smeta %>% mutate(dex = as.factor(dex))
summary (smeta2)

Bioinformatics Training and Education Program

Lesson 5: R Data Structures - Data Frames

SampleName cell dex albut

Length:8 Length:8 trt :4 Length:8

Class :character Class :character untrt:4 Class :character

Mode :character Mode :character Mode :character
Run avglLength Experiment Sample

Length:8 Min. : 87.0 Length:8 Length:8

Class :character 1st Qu.:100.2 Class :character Class :character
Mode :character Median :123.0 Mode :character Mode :character
Mean :113.8
3rd Qu.:126.0
Max. :126.0
BioSample
Length:8
Class :character
Mode :character

What is the length of our data.frame? What are the dimensions?

Other attributes we may want to know regarding our data frame include the number of columns
(ncol (), length()) and the dimensions (dim()).

#length returns the number of columns
length(smeta)

[1] 9

#dimensions, returns the row and column numbers
dim(smeta)

[1] 8 9

Other useful functions for inspecting data frames

Size:
nrow () - number of rows
ncol () - number of columns

Bioinformatics Training and Education Program

Lesson 5: R Data Structures - Data Frames

Content:
head () - returns first 6 rows by default
tail() -returns last 6 rows by default

Names:
colnames () - returns column names
rownames () - returns row names

Section content from "Starting with Data", Introduction to data analysis with R and Bioconductor
(https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html).

Data frame coercion and accessors

Let's pretend that the sample IDs were numeric rather than of type character.

smeta$SampleID <- c(l:nrow(smeta))

smeta
SampleName cell dex albut Run avglLength Experiment !
1 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS!
2 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS!
3 GSM1275866 NO52611 untrt untrt SRR1039512 126 SRX384349 SRS!
4 GSM1275867 NO52611 trt untrt SRR1039513 87 SRX384350 SRS!
5 GSM1275870 NO80611 untrt untrt SRR1039516 120 SRX384353 SRS!
6 GSM1275871 NE80611 trt untrt SRR1039517 126 SRX384354 SRS!
7 GSM1275874 NO61011 untrt untrt SRR1039520 101 SRX384357 SRS!
8 GSM1275875 N0O61011 trt untrt SRR1039521 98 SRX384358 SRS!
BioSample SamplelID
1 SAMNO2422669 1
2 SAMNO2422675 2
3 SAMNO2422678 3
4 SAMNO2422670 4
5 SAMNG2422682 5
6 SAMNO2422673 6
7 SAMNO2422683 7
8 SAMNO2422677 8

Unless stated otherwise, "SamplelD" will be treated as numeric rather than as a character
vector. If we intend to work with this column and treat it as an ID, we will need to convert it or
coerce it to a character or factor vector.

We can access a column of our data frame using [1, [[1], or using the $ (htip://adv-
rhad.co.nz/Subsetting.html). These behave slightly differently, as we will see.

Bioinformatics Training and Education Program

https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html
https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html
https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html
https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html
https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html

Lesson 5: R Data Structures - Data Frames

Let's access "SamplelD" from smeta

#Using $
smeta$SamplelD

[1] 1 23 456738

#Using []
smeta["SampleID"]

SamplelID

0O N O U1 B W N B
00O N O U1 B W N B

#Using [[1]
smeta[["SampleID"]]

[11 123456738

Notice that $ and [[]] behave similarly. These return a vector, while []1 maintains the original
structure, in this case a data frame.
Let's convert the "SamplelD" column from an integer to a character vector. This is known as

coercion.

#We can see that sample is being treated as numeric
is.numeric(smeta$SamplelD)

[1] TRUE

#let's convert it to a character vector

Bioinformatics Training and Education Program

Lesson 5: R Data Structures - Data Frames

smeta$SamplelID<-as.character(smeta$SamplelD)
#check this
is.character(smeta$SamplelD)

[1] TRUE

#check this
is.numeric(smeta$SamplelD)

[1] FALSE

See other related functions (e.g., as. factor (),as.numeric()).

Be careful with data coercion. What happens if we change a character vector into a numeric?

#A warning is thrown and the entire column is filled with NA
head (as.numeric(smeta$Run))

Warning in head(as.numeric(smeta$Run)): NAs introduced by coercion

[1] NA NA NA NA NA NA

Some helpful things to remember

e \When you explicitly coerce one data type into another (this is known as
explicit coercion), be careful to check the result. Ideally, you should try to see
if it's possible to avoid steps in your analysis that force you to coerce.

¢ R will sometimes coerce without you asking for it. This is called
(appropriately) implicit coercion. For example [if you try] to create a vector
with multiple data types, R [will choose] one type through implicit coercion.

® Check the structure (str ()) of your data frames before working with them!
---datacarpentry.org (https.//datacarpentry.org/genomics-r-intro/05-dplyr/
index.html)

Using colnames () to rename columns

colnames () will return a vector of column names from our data frame. We can use this vector
and [] sub-setting to modify our column names.

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html

Lesson 5: R Data Structures - Data Frames

For example, let's rename the column "SamplelD" to "ID".

#lLet's rename "SampleID" to "ID"
colnames(smeta) [10] <- "ID"

#if unsure of the index of a column, you could use which()
which(colnames (smeta)=="1ID")

[1] 10

#or something like this
colnames(smeta) [colnames (smeta) ==
"ID"] <- "SampleID"

Subsetting data frames with base R

The tidyverse package dplyr makes it easy to subset data frames with select (), filter (),
and slice(); however, it is still worth knowing how to subset data frames using Base R
brackets.

Subsetting a data frame is similar to subsetting a vector; we can use bracket notation [1].
However, a data frame is two dimensional with both rows and columns, so we can specify either
one argument or two arguments (e.g., df [row,column]) depending. If you provide one
argument, columns will be assumed. This is because a data frame has characteristics of both a
list and a matrix.

For now, let's focus on providing two arguments to subset. (Note when a data frame structure is
returned)

smeta[2,4] #Returns the value in the 4th column and 2nd row
[1] "untrt"
smeta[2,] #Returns a df with row two

SampleName cell dex albut Run avglLength Experiment Sam
2 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS508!

Bioinformatics Training and Education Program

Lesson 5: R Data Structures - Data Frames

BioSample SamplelID
2 SAMNO2422675 2

smeta[-1,] #Returns a df without row 1

SampleName cell dex albut Run avglLength Experiment !
2 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS!
3 GSM1275866 NO@52611 untrt untrt SRR1039512 126 SRX384349 SRS!
4 GSM1275867 N052611 trt untrt SRR1039513 87 SRX384350 SRS!
5 GSM1275870 NO80611 untrt untrt SRR1039516 120 SRX384353 SRS!
6 GSM1275871 NO80611 trt untrt SRR1039517 126 SRX384354 SRS!
7 GSM1275874 NO61011 untrt untrt SRR1039520 101 SRX384357 SRS!
8 GSM1275875 N061011 trt untrt SRR1039521 98 SRX384358 SRS!
BioSample SamplelID
2 SAMNG2422675 2
3 SAMNO2422678 3
4 SAMNO2422670 4
5 SAMNO2422682 5
6 SAMNO2422673 6
7 SAMNO2422683 7
8 SAMNO2422677 8

smeta[l:4,1] #returns a vector of rows 1-4 of column 1

[1] "GSM1275862" "GSM1275863" "GSM1275866" "GSM1275867"

#call names of columns directly
smeta[l:5,c("Sample", "avglLength")]

Sample avglLength

1 SRS508568 126
2 SRS508567 126
3 SRS508571 126
4 SRS508572 87
5 SRS508575 120

#use comparison operators
smeta[smeta$SamplelID == "2",]

Bioinformatics Training and Education Program

SampleName cell dex albut Run avglLength Experiment Sam
2 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS508
BioSample SamplelD
2 SAMNO2422675 2
Subsetting Tibbles

Tibbles behave differently than data frames using base R accessors. See here (https.//tibble.tidyverse.org/
reference/subsetting.html) for more information.

What happens when we provide a single argument?

#notice the difference here
smetal[,2] #returns column two

[1] "N61311" "N61311" "NO52611" "NO52611" "NO80O611" "NO8O611" "NO6
[8] "NO610O11"

#treated similar to a matrix
#does not return a df if the output is a single column

smeta[2] #returns column two

cell
1 N61311
2 N61311
3 N052611
4 NO52611
5 N080611
6 NO80611
7 N061011
8 NO61011

#treated similar to a list; maintains the df structure.

Note

We can also use [[]1] or $ for selecting specific columns.

Lesson 5: R Data Structures - Data Frames

Bioinformatics Training and Education Program

https://tibble.tidyverse.org/reference/subsetting.html
https://tibble.tidyverse.org/reference/subsetting.html
https://tibble.tidyverse.org/reference/subsetting.html
https://tibble.tidyverse.org/reference/subsetting.html

Lesson 5: R Data Structures - Data Frames

Using %1n%

%in% "returns a logical vector indicating if there is a match or not for its left operand". This
logical vector can then be used to filter the data frame to only matched values.

Perhaps we only want to return a data frame with the following samples: "SRR1039508",
"SRR1039513", "SRR1039520".

Using == is a bit tedious.

smeta[smeta$Run == "SRR1039508" | smeta$Run == "SRR1039513" |
smeta$Run == "SRR1039520",]
SampleName cell dex albut Run avglLength Experiment !
1 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS!
4 GSM1275867 NO52611 trt untrt SRR1039513 87 SRX384350 SRS!
7 GSM1275874 NO61011 untrt untrt SRR1039520 101 SRX384357 SRS!
BioSample SamplelD
1 SAMNO2422669 1
4 SAMNO2422670 4
7 SAMNG2422683 7

Instead, we can create a vector of values to keep.

s_keep<- c("SRR1039508", "SRR1039513", "SRR1039520")
s _keep

[1] "SRR1039508" "SRR1039513" "SRR1039520"

We can then see where the values in our vector match values in our column smeta$Run.

smeta$Run %in% s_keep

[11] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

[1] FALSE FALSE FALSE FALSE FALSE FALSE

We can further use this logical vector to filter our data frame by true values.

Bioinformatics Training and Education Program

Lesson 5: R Data Structures - Data Frames

smeta[smeta$Run %in% s _keep,]

SampleName cell dex albut Run avglLength Experiment !
1 GSM1275862 N61311 untrt untrt SRR1039508 126 SRX384345 SRS!
4 GSM1275867 NO52611 trt untrt SRR1039513 87 SRX384350 SRS!
7 GSM1275874 NO61011 untrt untrt SRR1039520 101 SRX384357 SRS!
BioSample SamplelID
1 SAMNO2422669 1
4 SAMNO2422670 4
7 SAMNO2422683 7

%in% can also be used with dplyr::filter () and subset ().

Tips to remember for subsetting

e Typically provide two values separated by commas: data.frame[row, column]

¢ |[n cases where you are taking a continuous range of numbers use a colon
between the numbers (start:stop, inclusive)

e For a non continuous set of numbers, pass a vector using ¢()

¢ Index using the name of a column(s) by passing them as vectors using c¢()
---datacarpentry.org (https.//datacarpentry.org/genomics-r-intro/03-basics-
factors-dataframes/index.html)

Info

Subsetting including simplifying vs preserving can get confusing. Here (hitp://adv-rhad.co.nz/Subsetting.html) is a
great chapter - though, a bit more advanced - that may clear things up if you are confused.

Data Wrangling

Part 2 of this course will focus on Data Wrangling. Learn how to filter, modify, summarize, and
reshape your data. Check the BTEP calendar (https.//bioinformatics.ccr.cancer.gov/btep/) for
updates on upcoming classes / courses.

Acknowledgements

Material from this lesson was either taken directly or adapted from Intro to R and RStudio for
Genomics provided by datacarpentry.org (https.//datacarpentry.org/genomics-r-intro/aio.html).

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
https://bioinformatics.ccr.cancer.gov/btep/
https://bioinformatics.ccr.cancer.gov/btep/
https://datacarpentry.org/genomics-r-intro/aio.html
https://datacarpentry.org/genomics-r-intro/aio.html

Intro to Data Wrangling

Introduction to Data Wrangling

R programming

Introduction to Data Wrangling

This course is the second part of a larger 3-part course designed for novices.

Topics covered herein focus on wrangling data stored in data frames or tibbles and include
concepts such as reshaping, subsetting, summarizing, mutating, and joining data.

Lessons

1. June 17, 2025 - Introduction to Data Wrangling with R

2. June 24, 2025 - Introducing Tidyr for Reshaping and Formatting Data
3. July 1, 2025 - Subsetting Data with dplyr

4. July 8, 2025 - Summarizing Data with dplyr

5. July 15, 2025 - Joining and Transforming Data with dplyr

Prerequisites

This course is recommended for attendees familiar with the skills learned in Part 1: Getting
Started with R.

Course materials

This course will use R on Biowulf to avoid issues with R and package installations. To use R on
Biowulf, you must have a NIH HPC account.

If you do not have a NIH HPC (Biowulf) account, this course can be taken using a local R
installation. However, we will not be able to troubleshoot package installation issues during
class. Additionally, because we will use packages belonging to the tidyverse (htips./
www.tidyverse.org/), you will need to install these packages using
install.packages("tidyverse") prior to the first lesson if you are not using R on Biowulf.

Bioinformatics Training and Education Program

https://www.tidyverse.org/
https://www.tidyverse.org/
https://www.tidyverse.org/
https://www.tidyverse.org/

Introduction to Data Wrangling

Data Wrangling R Programming

Introduction to Data Wrangling

Bioinformatics Training and Education Program

Introducing Tidyr for Reshaping and Formatting Data

Introducing Tidyr for Reshaping and
Formatting Data

Lesson Objectives

1. Briefly review how to import data
2. Data reshape with tidyr: pivot_longer (), pivot_wider (), separate(), and
unite()

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to
NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to
connect: https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/). Then follow the
instructions outlined here (https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/
Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemana).

Load the tidyverse

We will use core packages from the tidyverse for our data wrangling needs. Data reshaping
primarily involves the tidyverse package, tidyr, but we will use additional packages as well,
such as tibble.

Packages must be loaded with each new R session.

library(tidyverse)

— Attaching core tidyverse packages tidyvel
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot2 3.5.2 v tibble 3.3.0

v lubridate 1.9.4 v tidyr 1.3.1

v purrr 1.0.4

— Conflicts tidyverse_ col

® dplyr::filter() masks stats::filter()
® dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-1lib.org/>) to for:

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand

Introducing Tidyr for Reshaping and Formatting Data

Importing data

Before we can do anything with our data, we need to first import it into R.

We can either use the data import from the RStudio drop-down menu (File > Import
Dataset), or we can use R functions for reading in data (Recommended). These functions
generally start with read. The Base R read functions are followed by a ., while the readr
functions are followed by an _. readr functions are from the readr package, which is a part of
the tidyverse. readr functions are typically faster, more reproducible and consistent, and are
better at recognizing certain types of data (e.g., dates). However, they also result in tibbles
rather than data frames, and are not row name friendly.

Info

Tibbles are like data frames with some small but apparent modifications. For example, they can have numbers for
column names, and the column types are immediately apparent when viewing. Additionally, when you call a tibble
by running the object name, the entire data frame does not print to the screen, rather the first ten rows along with
the columns that fit the screen are shown.

Some different import functions

Import Excel files:
-readxl::read_excel().-readxl::read x1ls().-readxl::read xlsx()

Import tab-delimited files (.tsv, .txt):

-read.delim()

-read.table().-readr::read _delim().-readr::read_tsv()
-readr::read_table()

Comma separated files (.csv):
-read.csv()
-readr::read_csv()

The most important argument of all of these functions is the file path.

File paths

A file path tells us the location of a file or folder (a.k.a., directory). Because it is a character string, it must be
surrounded by quotes. Each directory is separated by a /. It is best practice to work in R projects and use relative
file paths to make scripts more reproducible.

Genomic Data:
- For genomic specific formats, you will likely need to install specific packages; check out
Bioconductor (https://bioconductor.org/) for packages relevant to bioinformatics.

Bioinformatics Training and Education Program

https://bioconductor.org/
https://bioconductor.org/

Introducing Tidyr for Reshaping and Formatting Data

Other:

- For information on importing other files types (e.g., json, xml, google sheets), check out this
chapter (https.//jhudatascience.org/tidyversecourse/get-data.html) from Tidyverse Skills for
Data Science by Carrie Wright, Shannon E. Ellis, Stephanie C. Hicks and Roger D. Peng.

Load the lesson data

For today's lesson, we will work with data available from R (Base R and the tidyverse) as well as
an example RNA-Seq count matrix. The count matrix is currently in the format "genes x
samples", with the gene IDs, which are a combination of Ensembl IDs and gene symbols, as
row names.

Get the Data

To download the data used in this lesson and future lessons to your local computer, click here.
You can then move the downloaded directory to your working directory in R.

To use the data on Biowulf, open your Terminal in R and follow these steps:
change to your working directory
cd /data/$USER/Data_Wrangling with_R
use wget to grab the zipped directory
wget https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Intro -

unzip the data
unzip -d data data.zip

Alternatively, you can download the zip to local and upload to RStudio Server.

Load the Data

Let'suse read.delim to load the data.

aircount<-read.delim("./data/head50 airway nonnorm_count.txt",
row.names = 1)
head(aircount)

Accession.SRR1039508 Accession.SRR1039509

ENSGOOOOOOOO0O3 . TSPANG 679 448
ENSGOOOOOOOO0O5. TNMD 0 0
ENSGOOOOO000419.DPM1 467 515
ENSGOOOOO000457.SCYL3 260 211
ENSGOO000000460.Clorfll2 60 55
ENSGOOOOO00O938. FGR 0 0

Bioinformatics Training and Education Program

https://jhudatascience.org/tidyversecourse/get-data.html
https://jhudatascience.org/tidyversecourse/get-data.html

ENSGOOOOO000003.
ENSGOOOOO000005.
ENSGOOOOO000419.
ENSGOOOOO000457.
ENSGOOOOO000460.
ENSGOOOOO000938.

ENSGOOOOO000003.
ENSGOOOOO00000S5.
ENSGOOOOO000419.
ENSGOOOOO000457.
ENSGOOOOO000460.
ENSGOOOOO000938.

ENSGOOOOO000003.
ENSGOOOOO00000S5.
ENSGOOOOO000419.
ENSGOOOOO000457.
ENSGOOOOO000460.
ENSGOOOOO000938.

TSPANG6
TNMD
DPM1
SCYL3

FGR

TSPANG6
TNMD
DPM1
SCYL3

FGR
TSPANG6
TNMD
DPM1
SCYL3

FGR

Clorfl1l2

Clorfl12

Clorfl12

Introducing Tidyr for Reshaping and Formatting Data

Accession.SRR1039512 Accession.SRR1039513

Accession.SRR1039516

Accession.SRR1039520

873 408
0 0
621 365
263 164
40 35
2 0
Accession.SRR1039517
1138 1047
0 0
587 799
245 331
78 63
1 0
Accession.SRR1039521

770 572
0 0
417 508
233 229
76 60
0 0

The first thing we should do following data import is to examine the data. We need to know what
is included in this data frame. What are the dimensions? What types of data are stored in each
column?

How can we examine these data further?

str(aircount)

'data.frame':

$

A A A A A A A

Accession.
Accession.
Accession.
Accession.
Accession.
Accession.
Accession.
Accession.

50 obs.

SRR1039508:
SRR1039509:
SRR1039512:
SRR1039513:
SRR1039516:
SRR1039517:
SRR1039520:
SRR1039521:

glimpse(aircount)

of
int
int
int
int
int
int
int
int

8

variables:

679 0 467
448 0 515
873 0 621
408 0 365

260 60 0 3251 1433 519 394
211 55 0 3679 1062 380 236
263 40 2 6177 1733 595 464
164 35 0 4252 881 493 175

1138 0 587 245 78 1 6721 1424 820 658
1047 0 799 331 63 0 11027 1439 714 584

770 0 417
572 0 508

233 76 0 5176 1359 696 360
229 60 0 7995 1109 704 269

Bioinformatics Training and Education Program

Introducing Tidyr for Reshaping and Formatting Data

Rows: 50

Columns: 8

Accession.SRR1039508 <int> 679, 0, 467, 260, 60, 0, 3251, 1433, 51!
Accession.SRR1039509 <int> 448, 0, 515, 211, 55, 0, 3679, 1062, 38
Accession.SRR1039512 <int> 873, 0, 621, 263, 40, 2, 6177, 1733, 59!
Accession.SRR1039513 <int> 408, 0, 365, 164, 35, 0, 4252, 881, 493
Accession.SRR1039516 <int> 1138, 0, 587, 245, 78, 1, 6721, 1424, 8.
Accession.SRR1039517 <int> 1047, 0, 799, 331, 63, 0, 11027, 1439,
Accession.SRR1039520 <int> 770, 0, 417, 233, 76, 0, 5176, 1359, 69!
Accession.SRR1039521 <int> 572, 0, 508, 229, 60, 0, 7995, 1109, 70

A A A A A A A A

Data reshape

Now that we have some data to work with, let's learn how we can reshape it. Recall how we
defined tidy data.

Specifically, tidy data has 3 components:

1. Each column is a variable, a quantity, quality, or property that can be
collected or measured.
2. Each row is an observation, or set of values collected under similar
conditions.
3. Each cell is a value, or state of a variable when you measure it. --- r4ds
(https://r4ds.hadley.nz/data-
visualize.html#.~ text=A%20variable % 20is % 20a % 20quantity,change % 20from % 20measurements

We can organize data in many different ways. Some of these ways will be easier to work with,
generally the tidy way.

What do we mean by reshaping data?

Data reshaping is one aspect of tidying our data. The shape of our data is determined by how
values are organized across rows and columns. When reshaping data, we are most often
wrangling the data from wide to long format or vice versa. To tidy the data we will need to (1)
know the difference between observations and variables, and (2) potentially resolve cases in
which a single variable is spread across multiple columns or a single observation is spread
across multiple rows R4DS (https.//r4ds.had.co.nz/tidy-data.html).

It is difficult to provide a single definition for what is wide data vs long data, as both can take
different forms, and both can be considered tidy depending on the circumstance (e.g., analysis
goals).

Note

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/data-visualize.html#:~:text=A%20variable%20is%20a%20quantity,change%20from%20measurement%20to%20measurement
https://r4ds.hadley.nz/data-visualize.html#:~:text=A%20variable%20is%20a%20quantity,change%20from%20measurement%20to%20measurement
https://r4ds.hadley.nz/data-visualize.html#:~:text=A%20variable%20is%20a%20quantity,change%20from%20measurement%20to%20measurement
https://r4ds.hadley.nz/data-visualize.html#:~:text=A%20variable%20is%20a%20quantity,change%20from%20measurement%20to%20measurement
https://r4ds.hadley.nz/data-visualize.html#:~:text=A%20variable%20is%20a%20quantity,change%20from%20measurement%20to%20measurement
https://r4ds.hadley.nz/data-visualize.html#:~:text=A%20variable%20is%20a%20quantity,change%20from%20measurement%20to%20measurement
https://r4ds.had.co.nz/tidy-data.html
https://r4ds.had.co.nz/tidy-data.html

Introducing Tidyr for Reshaping and Formatting Data

While we are interested in getting data into a "tidy" format, your data should ultimately be wrangled into a format that

is going to work with downstream analyses.

In general, in wide data there is often a single metric spread across multiple columns. This type

of data often, but not always, takes on a matrix like appearance.

While in long data, each variable tends to have its own column.

See this example from R4DS

Long

Afghanistan
Afghanistan
Brazil
Brazil
China
China

1999
2000
1999
2000
1999
2000

Soounty | year | cases |

745 <=
2666 4=

377374

s—
—

\Vide

Ccounry 1999 2000

—
p— = Brazil

China

37737
212258

—_—

2666
80488
213766

However, these definitions depend on what you are ultimately considering a variable and what

you are considering an observation.

For example, which of the following data representations is the tidy option?

Wide format:

tibble(iris)

A tibble: 150 x 5

Sepal.Length Sepal.Width Petal.Length Petal.Width
<dbl>

<dbl>
.1

ul

.9
.7
6

O 00 N O U1l B W N B
EE G B S V2 B U, B S S
SN

w

N W ww w w w w

.5

o b b O O RN

<dbl>

1

[N S e e e

.4

b 4D v w b

<dbl>

(<]

[l ol oloMoo oMol
N NN W B N DNDNN

.2

Species
<fct>
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa

Bioinformatics Training and Education Program

E Introducing Tidyr for Reshaping and Formatting Data

10 4.9 3.1 1.5 0.1 setosa
i 140 more rows

Long format:

iris_long<-tibble(iris) %>%
rownames_to_column("Iris_id") %>%
pivot longer(2:5,names _to="Flower property",values to="Measurement

With the long format it is easier to summarize information about the properties of the flowers but
in the wide format it is easier to explore relationships between these properties.
For example, this code is simpler

iris_long %>%

group_ by (Species, Flower_ property) %>%
summarize(mean= mean(Measurement), sd = sd(Measurement))

“summarise () has grouped output by 'Species'. You can override usin
T.groups® argument.

A tibble: 12 x 4
Groups: Species [3]

Species Flower property mean sd

<fct> <chr> <dbl> <dbl>
1 setosa Petal.Length 1.46 0.174
2 setosa Petal.Width 0.246 0.105
3 setosa Sepal.Length 5.01 0.352
4 setosa Sepal.Width 3.43 0.379
5 versicolor Petal.Length 4.26 0.470
6 versicolor Petal.Width 1.33 0.198
7 versicolor Sepal.Length 5.94 0.516
8 versicolor Sepal.Width 2.77 0.314
9 virginica Petal.lLength 5.55 0.552
10 virginica Petal.Width 2.03 0.275
11 virginica Sepal.Length 6.59 0.636
12 virginica Sepal.Width 2.97 0.322

than this

Bioinformatics Training and Education Program

m Introducing Tidyr for Reshaping and Formatting Data

iris %>% group_by(Species) %>%
summarize (across (where(is.numeric),list(mean = mean, sd=sd)))

A tibble: 3 x 9
Species Sepal.Length _mean Sepal.Length sd Sepal.Width _mean Sepa

<fct> <dbl> <dbl> <dbl>
1 setosa 5.01 0.352 3.43
2 versicolor 5.94 0.516 2.77
3 virginica 6.59 0.636 2.97
i 4 more variables: Petal.Length mean <dbl>, Petal.lLength sd <dbl>
Petal.Width_mean <dbl>, Petal.Width_sd <dbl>

Regardless, you may want one format or the other depending on your analysis goals.
Many of the tidyverse tools (e.g., ggplot2) seem to work better with long format data, but
this again, will depend on your task.

The tools we use to go from wide to long and long to wide are from the package tidyr.
Because we already loaded the package tidyverse, we do not need to load tidyr, asitis a
core package.

pivot wider () and pivot_longer ()

pivot _wider() and pivot_longer() have replaced the functions gather () and
spread(). pivot_wider () converts long format data to wide, while pivot_longer ()
converts wide format data to long.

If you haven't guessed already, our count matrix is currently in wide format. If we wanted to
merge these data with sample metadata and plot various aspects of the data using ggplot2, we
would likely want these data in long format.

Pivot_longer

Let's check out the help documentation ?pivot_longer (). This function requires the data
and the columns we want to combine (cols). There are also a number of optional arguments
involving the name column and the value column.

For the cols argument, we can select columns using the same arguments we would use with
select (), including column names, indices, or the select helper functions, for example,

contains(),
starts_with(),
ends_with(),
etc.

Bioinformatics Training and Education Program

Introducing Tidyr for Reshaping and Formatting Data

Columns in the Tidyverse

In Base R, we often have to refer to data variables (columns) directly using an accessor like $. However, this is not
the case in the tidyverse. In the tidyverse, columns that exist generally do not need quotes, while columns that do
not yet exist do need quotes. This difference has important implications for creating for loops and functions. Learn
more about tidy evaluation here (https.//dplyr.tidyverse.org/articles/programming.html).

Let's pivot aircount.

1 _air<-pivot longer(aircount,l:length(aircount),names_to ="Sample",
values to= "Count")
head(1_air)

A tibble: 6 x 2

Sample Count

<chr> <int>
1 Accession.SRR1039508 679
2 Accession.SRR1039509 448
3 Accession.SRR1039512 873
4 Accession.SRR1039513 408
5 Accession.SRR1039516 1138
6 Accession.SRR1039517 1047

Notice that the row names were dropped. While we would want to keep row names if we were
working with this matrix as is, because we want a long data frame, we will need to first put the
row names into a column. For this, we will use rownames_to _column() from the tidyverse
package tibble.

#save row names as a column
aircount<-rownames_ to column(aircount,"Feature")
head(aircount["Feature"])

Feature
ENSGOOOOOO0O0O3.TSPANG
ENSGOOOOOOOO0OS5.TNMD
ENSGOOOOOO00419.DPM1
ENSGOOO00000457.5SCYL3
ENSGOOO00000460.Clorfll2
ENSGOOO0OO00938.FGR

O Ul W N

#pivot longer...again
1 air<-pivot_longer (aircount,starts with("Accession"),

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/articles/programming.html
https://dplyr.tidyverse.org/articles/programming.html

head (1 _air)

A tibble: 6 x 3

names_to

Introducing Tidyr for Reshaping and Formatting Data

=c("Sample"),values to= "Count")

Feature Sample Count

<chr> <chr> <int>
1 ENSGOOOOOOOOOO3.TSPAN6 Accession.SRR1039508 679
2 ENSGOOOOOOO0003.TSPAN6 Accession.SRR1039509 448
3 ENSGOOOOOOOOOO3.TSPAN6 Accession.SRR1039512 873
4 ENSGOOOOOOOOOO3.TSPAN6 Accession.SRR1039513 408
5 ENSGOOOOOOO0OO3.TSPAN6 Accession.SRR1039516 1138
6 ENSGOOOOOOO00O3.TSPAN6 Accession.SRR1039517 1047

Pivot_wider

How can we get this back to a wide format? We can use ?pivot_wider (). This requires two
additional arguments beyond the data argument: names_from and values_ from. The first,
names_from should be the name of the column containing the new column names for your
wide data. values_from is the column that contains the values to fill the rows of your wide
data columns. Because these columns already exist, we do not need to put them in
quotes.

Let's pivot the data from long to wide.

W_air<-pivot wider(l_air,names_ from =
values from =

Sample,
Count)
head(w_air)

A tibble: 6 x 9

Feature Accession.SRR1039508 Accession.SRR1039509 Accessio
<chr> <int> <int>

1 ENSGOOOO000000... 679 448

2 ENSGOO0O0000000.. 0 0

3 ENSGOOOO000041.. 467 515

4 ENSGOOOO000045... 260 211

5 ENSGOO00000046... 60 55

6 ENSGOOOO000093.. 0 0

i 5 more variables: Accession.SRR1039513 <int>, Accession.SRR10395

Accession.SRR1039517 <int>, Accession.SRR1039520 <int>,

Accession.SRR1039521 <int>

Note

Bioinformatics Training and Education Program

Introducing Tidyr for Reshaping and Formatting Data

There are many optional arguments for both of these functions. These are there to help you reshape seemingly
complicated data schemes. Don't get discouraged. The examples in the help documentation are extremely helpful.

Test our knowledge

What function would we use to transform table A to table B?
Table A:
A tibble: 19 x 12

fish Release I80_1 Lisbon Rstr Base TD BCE BCW BCE2 BCW2
<fct> <int> <int> <int> <int> <int> <int> <int> <int> <int> -

1 4842 1 1 1 1 1 1 1 1 1
2 4843 1 1 1 1 1 1 1 1 1
3 4844 1 1 1 1 1 1 1 1 1
4 4845 1 1 1 1 1 NA NA NA NA
5 4847 1 1 1 NA NA NA NA NA NA
6 4848 1 1 1 1 NA NA NA NA NA
7 4849 1 1 NA NA NA NA NA NA NA
8 4850 1 1 NA 1 1 1 1 NA NA
9 4851 1 1 NA NA NA NA NA NA NA
10 4854 1 1 NA NA NA NA NA NA NA
11 4855 1 1 1 1 1 NA NA NA NA
12 4857 1 1 1 1 1 1 1 1 1
13 4858 1 1 1 1 1
14 4859 1 1 1 1 1 NA NA NA NA
15 4861 1 1 1 1 1
16 4862 1 1 1 1 1 1 1 1 1
17 4863 1 1 NA NA NA NA NA NA NA
18 4864 1 1 NA NA NA NA NA NA NA
19 4865 1 1 1 NA NA NA NA NA NA
Table B:

A tibble: 114 x 3
fish station seen
<fct> <fct> <int>

1 4842 Release 1
2 4842 180 1 1
3 4842 Lisbon 1
4 4842 Rstr 1
5 4842 Base TD 1
6 4842 BCE 1
7 4842 BCW 1
8 4842 BCE2 1

Bioinformatics Training and Education Program

Introducing Tidyr for Reshaping and Formatting Data

9 4842 BCW?2 1
10 4842 MAE
i 104 more rows

Solution

pivot_longer

Unite and separate

There are two additional functions from Tidyr that are very useful for organizing data: unite ()
and separate (). These are used to split or combine columns.

Separate

For example, you may have noticed that our feature column from our example data is really two
types of information combined (an Ensembl id and a gene abbreviation). If we want to separate
this column into two, we could easily do this with the help of separate ().

Let's see this in action. We want to separate the column Feature at the first .. This requires the
data, the column we want to separate (col), and the names of the new variables to create
(into). The default
"[M:alnum:]1]1+". This is a regular expression that matches 1 or more non-alphanumeric

from the separated column separator to split the columns s

values (i.e., characters that are neither alphabetical (a-z) nor numerical(0-9)).

1 air2<-separate(l_air, Feature,
remove=TRUE)

into=c("Ensembl ID","gene abb"),

head (1l _air2)

A tibble: 6 x 4

Ensembl ID gene_abb Sample Count

<chr> <chr> <chr> <int>
1 ENSGOOOOOOOOOO3 TSPANG6 Accession.SRR1039508 679
2 ENSGOOOOOOOOOO3 TSPAN6 Accession.SRR1039509 448
3 ENSGOOOOOOOO003 TSPANG6 Accession.SRR1039512 873
4 ENSGOOOOOOO0OO3 TSPANG6 Accession.SRR1039513 408
5 ENSGOOOOO0OO0O3 TSPAN6 Accession.SRR1039516 1138
6 ENSGOOOOO0OO0O3 TSPANG6 Accession.SRR1039517 1047

separate_wider_position() and separate_wider_delim()

Bioinformatics Training and Education Program

Introducing Tidyr for Reshaping and Formatting Data
separate() has been superseded in favor of separate_wider_position(), separate_wider_delim(),
and separate_wider_regex (). "A superseded function has a known better alternative, but the function itself is
not going away." (https.//cran.r-project.org/web/packages/lifecycle/vignettes/stages.html)

separate_wider_delim() - splits by delimiter.
separate_wider_position() - splits at fixed widths.
separate_wider_regex () - splits with regular expression matches.

Unite

unite () is simply the opposing function to separate(). Let's use unite() to combine our
columns (Ensemble_ID and gene_abb) back together. This time we will use a _ between our
ensemblelD and gene abbreviations.

1 air3<-unite(l_air2,
head (1l _air3)

"Feature", c(Ensembl ID,gene_abb),sep="_")

A tibble: 6 x 3

Feature Sample Count

<chr> <chr> <int>
1 ENSGOOOOOOO0003 TSPAN6 Accession.SRR1039508 679
2 ENSGOOOOOOOOOO3 TSPAN6 Accession.SRR1039509 448
3 ENSGOOOOOO0OOO3 TSPAN6 Accession.SRR1039512 873
4 ENSGOOOOOOOOOO3 TSPAN6 Accession.SRR1039513 408
5 ENSGOOOOOOOOOO3 _TSPAN6 Accession.SRR1039516 1138
6 ENSGOOOOOOOOOO3 TSPAN6 Accession.SRR1039517 1047

A word about regular expressions

As you continue to work in R, at some point you will need to incorporate regular expressions into
your code. Regular expressions can be exceedingly complicated and like anything require time
and practice. We will not take a deep dive into regular expressions in this course. A great place
to start with regular expressions is Chapter 14: Strings (htips://rdds.had.co.nz/
strings.html#strings) from R4DS. You may also find this stringr vignette (https://cran.r-
project.org/web/packages/stringr/vignettes/reqular-expressions. html) helpful.

The Janitor package.

Check out the janitor (https./sfirke.github.io/janitor/index.html) package for additional
functions for exploring and cleaning messy data.

Bioinformatics Training and Education Program

https://cran.r-project.org/web/packages/lifecycle/vignettes/stages.html
https://cran.r-project.org/web/packages/lifecycle/vignettes/stages.html
https://cran.r-project.org/web/packages/lifecycle/vignettes/stages.html
https://r4ds.had.co.nz/strings.html#strings
https://r4ds.had.co.nz/strings.html#strings
https://r4ds.had.co.nz/strings.html#strings
https://r4ds.had.co.nz/strings.html#strings
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html
https://sfirke.github.io/janitor/index.html
https://sfirke.github.io/janitor/index.html
https://sfirke.github.io/janitor/index.html

E Introducing Tidyr for Reshaping and Formatting Data

Acknowledgements

Material from this lesson was inspired by R4DS (htips.//r4ds.had.co.nz/data-import.html) and
Tidyverse Skills for Data Science (https://jhudatascience.org/tidyversecoursey/).

Resources

readr / readxl cheatsheet (hitps.//rstudio.github.io/cheatsheets/himi/data-import. htmi?
_gl=1*1cexwpw*_ga*MTY 1MAXMTE4My4xNzUwNYSNzMy*_ga 2COWZ1JHGO*czESNTASBMDgwNjgkbzIkZ:
Tidyr cheatsheet (https.//rstudio.github.io/cheatsheets/htmi/tidyr. html?
_gl=1"4wx4lc*_ga*MTY 1MAXMTE4My4xNzUwWNjYSNzMy*_ga_2COWZ1JHGO*czESNTASMDgwN|jgkbzIkZzA}
Stringr / regex cheatsheet (https://rstudio.github.io/cheatsheets/html/strings. html?
_gl=1*1cexwpw*_ga*MTY 1MAXMTE4My4xNzUwNYSNzMy*_ga_2COWZ1JHGO*czESNTASBMDgwNjgkbzIkZ:

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-import.html
https://r4ds.had.co.nz/data-import.html
https://jhudatascience.org/tidyversecourse/
https://jhudatascience.org/tidyversecourse/
https://rstudio.github.io/cheatsheets/html/data-import.html?_gl=1*1cexwpw*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/data-import.html?_gl=1*1cexwpw*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/data-import.html?_gl=1*1cexwpw*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/data-import.html?_gl=1*1cexwpw*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/tidyr.html?_gl=1*4wx4lc*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/tidyr.html?_gl=1*4wx4lc*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/tidyr.html?_gl=1*4wx4lc*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/tidyr.html?_gl=1*4wx4lc*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/strings.html?_gl=1*1cexwpw*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/strings.html?_gl=1*1cexwpw*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/strings.html?_gl=1*1cexwpw*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw
https://rstudio.github.io/cheatsheets/html/strings.html?_gl=1*1cexwpw*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw

Subsetting Data with dplyr

Subsetting Data with dplyr

Objectives

Today we will begin to wrangle data using the tidyverse package, dplyr. To this end, you will
learn:

1. how to filter data frames using dplyr
2. how to employ the pipe (%>% or | >) operator to link functions

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to
NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to
connect: https://hpcondemand.nih.gov/ (https.//hpcondemand.nih.gov/). Then follow the
instructions outlined here (https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/
Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand).

What is dplyr?

dplyr is a grammar of data manipulation, providing a consistent set of verbs that
help you solve the most common data manipulation challenges:

mutate() adds new variables that are functions of existing variables

select() picks variables based on their names.

filter() picks cases based on their values.

summarise() reduces multiple values down to a single summary.

arrange() changes the ordering of the rows. - dplyrtidyverse.org (https://
adplyr.tidyverse.org/index.html)

dplyr is also used to combine data tables sharing common IDs and to manipulate data in data
backends.

Loading dplyr

We do not need to load the dplyr package separately, as it is a core tidyverse package. If
you need to install and load only dplyr, use install.packages("dplyr") and

library(dplyr).
library(tidyverse)
— Attaching core tidyverse packages tidyvel
v dplyr 1.1.4 v readr 2.1.5

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://dplyr.tidyverse.org/index.html
https://dplyr.tidyverse.org/index.html
https://dplyr.tidyverse.org/index.html
https://dplyr.tidyverse.org/index.html

E Subsetting Data with dplyr

v forcats 1.0.0 v stringr 1.5.1

v ggplot?2 3.5.2 v tibble 3.3.0

v lubridate 1.9.4 v tidyr 1.3.1

v purrr 1.0.4

— Conflicts tidyverse_col

® dplyr::filter() masks stats::filter ()
® dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-1lib.org/>) to for

Importing data

For this lesson, we will use sample metadata and differential expression results derived from the
airway RNA-Seq project. See here (htips.//bioinformatics.ccr.cancer.gov/docs/r_for_novices/
Intro_to_Data_Wrangling/LessonZ/#get-the-data) for instructions on accessing the data.

Let's begin by importing the data.

#sample information
smeta<-read delim("./data/airway_sampleinfo.txt")

Rows: 8 Columns: 9

— Column specification
Delimiter: "\t"

chr (8): SampleName, cell, dex, albut, Run, Experiment, Sample, BioS:
dbl (1): avglLength

i Use “spec()’ to retrieve the full column specification for this da
i Specify the column types or set “show col types = FALSE® to quiet

smeta

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Intro_to_Data_Wrangling/Lesson2/#get-the-data
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Intro_to_Data_Wrangling/Lesson2/#get-the-data
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Intro_to_Data_Wrangling/Lesson2/#get-the-data
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Intro_to_Data_Wrangling/Lesson2/#get-the-data

E Subsetting Data with dplyr

A tibble: 8 x 9

SampleName cell dex albut Run avglength Experiment Samp

<chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr
1 GSM1275862 N61311 untrt untrt SRR10395.. 126 SRX384345 SRSS5(
2 GSM1275863 N61311 trt untrt SRR10395.. 126 SRX384346 SRSS5(
3 GSM1275866 NO52611 untrt untrt SRR10395.. 126 SRX384349 SRSS5(
4 GSM1275867 NO52611 trt untrt SRR10395.. 87 SRX384350 SRS5(
5 GSM1275870 NO80611 untrt untrt SRR10395.. 120 SRX384353 SRSS5(
6 GSM1275871 NO80611 trt untrt SRR10395.. 126 SRX384354 SRSS5(
7 GSM1275874 NO61011 untrt untrt SRR10395.. 101 SRX384357 SRSS5(
8 GSM1275875 NO61011 trt untrt SRR10395.. 98 SRX384358 SRS5!

#let's use our differential expression results
dexp<-read_delim("./data/diffexp_results _edger_ airways.txt")

Rows: 15926 Columns: 10
— Column specification
Delimiter: "\t"

chr (4): feature, albut, transcript, ref_genome
dbl (5): logFC, 1ogCPM, F, PValue, FDR

1gl (1): .abundant

i Use “spec() to retrieve the full column specification for this da
i Specify the column types or set “show col types = FALSE" to quiet

dexp

A tibble: 15,926 x 10
feature albut transcript ref _genome .abundant logFC 1ogCPM

<chr> <chr> <chr> <chr> <lgl> <dbl> <dbl> <
1 ENSGOOO.. untrt TSPANG6 hg38 TRUE -0.390 5.06 32.¢
2 ENSGOOO.. untrt DPM1 hg38 TRUE 0.198 4.61 6.!
3 ENSGOOO.. untrt SCYL3 hg38 TRUE 0.0292 3.48 0.
4 ENSGOOO.. untrt Clorfl12 hg38 TRUE -0.124 1.47 0.:
5 ENSGOOO.. untrt CFH hg38 TRUE 0.417 8.09 29..
6 ENSGOOO.. untrt FUCA2 hg38 TRUE -0.250 5.91 14.¢
7 ENSGOOO.. untrt GCLC hg38 TRUE -0.0581 4.84 0.
8 ENSGOOO.. untrt NFYA hg38 TRUE -0.509 4.13 44!
9 ENSGOOO.. untrt STPG1 hg38 TRUE -0.136 3.12 1.¢
10 ENSGOOO.. untrt NIPAL3 hg38 TRUE -0.0500 7.04

Bioinformatics Training and Education Program

100 Subsetting Data with dplyr

i 15,916 more rows
i 1 more variable: FDR <dbl>

We can get an idea of the structure of these data by using str () or glimpse (). glimpse(),
from tidyverse, is similar to str () but provides somewhat cleaner output.

glimpse(smeta)

Rows: 8
Columns: 9

$ SampleName <chr> "GSM1275862", "GSM1275863", "GSM1275866", "GSM127!
$ cell <chr> "N61311", "N61311", "NO@52611", "NO52611", "NO8O61.
$ dex <chr> "untrt", "trt", "untrt", "trt", "untrt", "trt", "
$ albut <chr> "untrt", "untrt", "untrt", "untrt", "untrt", "unt
$ Run <chr> "SRR1039508", "SRR1039509", "SRR1039512", "SRR10O3!
$ avglLength <dbl> 126, 126, 126, 87, 120, 126, 101, 98

$ Experiment <chr> "SRX384345", "SRX384346", "SRX384349", "SRX384350
$ Sample <chr> "SRS508568", "SRS508567", "SRS508571", "SRS508572
$ BioSample <chr> "SAMNO2422669", "SAMNG2422675", "SAMNO2422678", "!
glimpse(dexp)

Rows: 15,926

Columns: 10

$ feature <chr> "ENSGOOOOOO00EO3", "ENSGOOOOOO00419", "ENSGOOOOOO
$ albut <chr> "untrt", "untrt", "untrt", "untrt", "untrt", "unt
$ transcript <chr> "TSPAN6", "DPM1", "SCYL3", "Clorfl112", "CFH", "FUI(
$ ref_genome <chr> "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "I
$.abundant <l1gl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TI
$ logFC <dbl> -0.390100222, 0.197802179, 0.029160865, -0.124382(
$ logCPM <dbl> 5.059704, 4.611483, 3.482462, 1.473375, 8.089146,
$ F <dbl> 3.284948e+01, 6.903534e+00, 9.685073e-02, 3.77213:
$ PValue <dbl> 0.0003117656, 0.0280616149, 0.7629129276, 0.55469!
$ FDR <dbl> 0.002831504, 0.077013489, 0.844247837, 0.68232661.

Always know how your data is structured.

Before you do anything with your data, always check out the structure of your data to avoid surprises.

Now that we have some data to work with, let's start subsetting.

Bioinformatics Training and Education Program

Subsetting Data with dplyr

Subsetting data in base R

If you remember back to "Getting Started with R" (https://bioinformatics.ccr.cancer.gov/docs/
r_for_novices/Getting_Started_with_R/L.essonb/), Base R uses bracket notation for subsetting.

For example, if we want to subset the data frame iris to include only the first 5 rows and the
first 3 columns, we could use

iris[1:5,1:3]

Sepal.Length Sepal.Width Petal.Length

1 5.1 3.5 1.4
2 4.9 3.0 1.4
3 4.7 3.2 1.3
4 4.6 3.1 1.5
5 5.0 3.6 1.4

While this type of subsetting is useful, it is not always the most readable or easy to employ,
especially for beginners. This is where dplyr comes in. The dplyr package in the tidyverse
world simplifies data wrangling with easy to employ and easy to understand functions specific
for data manipulation in data frames.

Subsetting with dplyr

How can we select only columns of interest and rows of interest? We can use select () and
filter () fromdplyr.

Subsetting by column (select())

To subset by column, we use the function select (). We can include and exclude columns,
reorder columns, and rename columns using select ().

Select a few columns from our differential expression results (dexp).

We can select the columns we are interested in by first calling the data frame object (dexp)
followed by the columns we want to select (transcript,logFC,FDR). All arguments are
separated by a comma. Just as in Base R subsetting, the order of the columns will determine
the order of the columns in the new data frame.

Let's select the transcript, logFC, and FDR corrected p-value columns:

#first argument is the df followed by columns to select

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson5/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson5/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson5/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson5/

102

, FDR)

exl<-select(dexp, transcript, logFC
exl
A tibble: 15,926 x 3
transcript logFC FDR
<chr> <db1l> <dbl>
1 TSPANG6 -0.390 0.00283
2 DPM1 0.198 0.0770
3 SCYL3 0.0292 0.844
4 Clorfll2 -0.124 0.682
5 CFH 0.417 0.00376
6 FUCA2 -0.250 0.0186
7 GCLC -0.0581 0.794
8 NFYA -0.509 0.00126
9 STPG1 -0.136 0.478
10 NIPAL3 -0.0500 0.695
i 15,916 more rows
We can rename while selecting.
The syntax to rename is new_name = old _name

#rename using the syntax new _name =
exl<-select(dexp, gene=transcript,

exl

A tibble:
gene
<chr>
TSPANG6
DPM1
SCYL3
Clorfl12
CFH
FUCA2
GCLC
NFYA
STPG1
NIPAL3

W 00 N O Ul B W IN B

[
(o]

i

15,926 x 3

logFoldChange FDRpvalue

<dbl>
-0.390
0.198
0.0292
.124
0.417
.250
.0581
.509
.136
.0500

15,916 more rows

(ol oo oMo oOMNOMOMOMNO

<dbl>

.00283
.0770
.844
.682
.00376
.0186
.794
.00126
.478
.695

old _name
logFoldChange

Bioinformatics Training and Education Program

Subsetting Data with dplyr

logFC,

FDRpvalue=

103 Subsetting Data with dplyr

new name old name

gene transcript

logFoldChange logFC

FDRpvalue FDR

Using rename () or rename_with()

If you want to retain all columns, you could also use rename () (https.//dplyr.tidyverse.org/reference/rename.html)
from dplyr to rename columns.
For example, let's rename only transcript to gene from dexp.

rename (dexp, gene=transcript)

A tibble: 15,926 x 10

feature albut gene ref genome .abundant logFC 1ogCPM

<chr> <chr> <chr> <chr> <lgl> <dbl> <dbl> <
1 ENSGOOO00000.. untrt TSPA.. hg38 TRUE -0.390 5.06 32.i
2 ENSGOOOO000O.. untrt DPM1 hg38 TRUE 0.198 4.61 6.
3 ENSGOOOO0000.. untrt SCYL3 hg38 TRUE 0.0292 3.48 0.
4 ENSGOOOO0000.. untrt Clor.. hg38 TRUE -0.124 1.47 0.:
5 ENSGOOO0O00O.. untrt CFH hg38 TRUE 0.417 8.09 29..
6 ENSGOOO00001.. untrt FUCA2 hg38 TRUE -0.250 5.91 14.!
7 ENSGOOOOOOOL.. untrt GCLC hg38 TRUE -0.0581 4.84 0.
8 ENSGOOO0000L.. untrt NFYA hg38 TRUE -0.509 4.13 44!
9 ENSGOOOO00O1.. untrt STPG1l hg38 TRUE -0.136 3.12 1.¢
10 ENSGOOOO00O1.. untrt NIPA.. hg38 TRUE -0.0500 7.04 0.

i 15,916 more rows
i 1 more variable: FDR <dbl>

Excluding columns

We can select all columns, leaving out ones that do not interest us using a - sign. This is helpful
if the columns to keep far outweigh those to exclude. We can similarly use the ! to negate a
selection

ex2<-select (dexp, -feature)
ex?2

A tibble: 15,926 x 9
albut transcript ref_genome .abundant logFC 1ogCPM F PV

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/reference/rename.html
https://dplyr.tidyverse.org/reference/rename.html
https://dplyr.tidyverse.org/reference/rename.html

104 Subsetting Data with dplyr

<chr> <chr> <chr> <lgl> <dbl> <dbl> <dbl1l> <(
1 untrt TSPANG6 hg38 TRUE -0.390 5.06 32.8 0.00
2 untrt DPM1 hg38 TRUE 0.198 4.61 6.90 0.02:
3 untrt SCYL3 hg38 TRUE 0.0292 3.48 0.0969 0.76.
4 untrt Clorfll2 hg38 TRUE -0.124 1.47 0.377 0.55!
5 untrt CFH hg38 TRUE 0.417 8.09 29.3 0.00
6 untrt FUCA2 hg38 TRUE -0.250 5.91 14.9 0.00-
7 untrt GCLC hg38 TRUE -0.0581 4.84 0.167 0.69.
8 untrt NFYA hg38 TRUE -0.509 4.13 44.9 0.00
9 untrt STPG1 hg38 TRUE -0.136 3.12 1.04 0.33!
10 untrt NIPAL3 hg38 TRUE -0.0500 7.04 0.350 0.56!

i 15,916 more rows

ex2<-select(dexp, !feature)
ex?2

A tibble: 15,926 x 9

albut transcript ref_genome .abundant logFC 1ogCPM F PV

<chr> <chr> <chr> <lgl> <dbl> <dbl> <dbl> <
1 untrt TSPANG6 hg38 TRUE -0.390 5.06 32.8 0.00
2 untrt DPM1 hg38 TRUE 0.198 4.61 6.90 0.02:
3 untrt SCYL3 hg38 TRUE 0.0292 3.48 0.0969 0.76!
4 untrt Clorfll2 hg38 TRUE -0.124 1.47 0.377 0.55!
5 untrt CFH hg38 TRUE 0.417 8.09 29.3 0.00
6 untrt FUCA2 hg38 TRUE -0.250 5.91 14.9 0.00:
7 untrt GCLC hg38 TRUE -0.0581 4.84 0.167 0.609.
8 untrt NFYA hg38 TRUE -0.509 4.13 44.9 0.00
9 untrt STPG1 hg38 TRUE -0.136 3.12 1.04 0.33
10 untrt NIPAL3 hg38 TRUE -0.0500 7.04 0.350 0.56!

i 15,916 more rows

We can reorder using select ().

For readability, let's move the transcript column to the front.

#you can reorder columns and call a range of columns using select().
ex3<-select(dexp, transcript:FDR,albut)
ex3

A tibble: 15,926 x 9
transcript ref _genome .abundant logFC 1ogCPM F PValue
<chr> <chr> <lgl> <dbl> <dbl> <dbl> <db1l>

Bioinformatics Training and Education Program

105 Subsetting Data with dplyr

1 TSPANG6 hg38 TRUE -0.390 5.06 32.8 0.000312 0
2 DPM1 hg38 TRUE 0.198 4.61 6.90 0.0281 0
3 SCYL3 hg38 TRUE 0.0292 3.48 0.0969 0.763 0
4 Clorfl12 hg38 TRUE -0.124 1.47 0.377 0.555 0
5 CFH hg38 TRUE 0.417 8.09 29.3 0.000463 0
6 FUCA2 hg38 TRUE -0.250 5.91 14.9 0.00405 0
7 GCLC hg38 TRUE -0.0581 4.84 0.167 0.692 0
8 NFYA hg38 TRUE -0.509 4.13 44.9 0.000100 0
9 STPG1 hg38 TRUE -0.136 3.12 1.04 0.335 0
10 NIPALS3 hg38 TRUE -0.0500 7.04 0.350 0.569 0

i 15,916 more rows

#Note: this also would have excluded the feature column

If we are interested in moving a column without selection, we can use relocate (). We should
include the columns we want to move and where we would like to put them.

relocate(dexp, transcript, .before=feature)

A tibble: 15,926 x 10
transcript feature albut ref genome .abundant logFC 1ogCPM

<chr> <chr> <chr> <chr> <lgl> <dbl> <dbl> <{
1 TSPANG6 ENSGOOO.. untrt hg38 TRUE -0.390 5.06 32.i
2 DPM1 ENSGOOO.. untrt hg38 TRUE 0.198 4.61 6.
3 SCYL3 ENSGOOO... untrt hg38 TRUE 0.0292 3.48 0.
4 Clorfl12 ENSGOOO... untrt hg38 TRUE -0.124 1.47 0.:
5 CFH ENSGOOO.. untrt hg38 TRUE 0.417 8.09 29..
6 FUCA2 ENSGEOO.. untrt hg38 TRUE -0.250 5.91 14.!
7 GCLC ENSGOOO.. untrt hg38 TRUE -0.0581 4.84 0.
8 NFYA ENSGOOO.. untrt hg38 TRUE -0.509 4.13 44!
9 STPG1 ENSGOOO... untrt hg38 TRUE -0.136 3.12 1.¢
10 NIPAL3 ENSGOOO... untrt hg38 TRUE -0.0500 7.04 0.

i 15,916 more rows
i 1 more variable: FDR <dbl>

Note

By default, relocate() will move columns to the left-hand side of the data frame.

Bioinformatics Training and Education Program

Selecting a range of columns

Notice that we can select a range of columns using the
columns or deselect a range of columns while adding a column back.

ex3
ex3

A tibble:

W 00 N O U1l B W N B

[N
(o]

i

<-select(dexp,

15,926
feature

<chr>
ENSGOOOOO000003
ENSGOOO00000419
ENSGOOO0O000457
ENSGOOO00000460
ENSGOOO00000971
ENSGOOO00001036
ENSGOOO00001084
ENSGOOO00001167
ENSGOO0O00001460
ENSGOOO00001461

-(albut:F),logFC)

(ol ol olololoMoMoMNoNo]

15,916 more rows

Helper functions

4
PValue
<dbl>

.000312
.0281
.763
.555
.000463
.00405
.692
.000100
.335
.569

[ol ol olololololololNo)

FDR
<dbl>

.00283
.0770
.844
.682
.00376
.0186
.794
.00126
.478
.695

logFC
<dbl>
.390
.198
.0292
.124
.417
.250
.0581
.509
.136
.0500

Subsetting Data with dplyr

;. We could also deselect a range of

We can also include helper functions such as starts with() and ends_with(), and

operators (!, &, |) for combining selections.

select (dexp,

transcript,

A tibble: 15,926 x 4
transcript logFC 1ogCPM
<chr> <dbl> <dbl>

1 TSPANG6 -0.390 5.06
2 DPM1 0.198 4.61
3 SCYL3 0.0292 3.48
4 Clorfll2 -0.124 1.47
5 CFH 0.417 8.09
6 FUCA2 -0.250 5.91
7 GCLC -0.0581 4.84
8 NFYA -0.509 4.13
9 STPG1 -0.136 3.12

[cl ol oNoNoNoMOMNOMNO)

FDR
<dbl>
.00283
.0770
.844
.682
.00376
.0186
.794
.00126
.478

starts with("log"),

FDR)

Bioinformatics Training and Education Program

107

10 NIPALS3
i

#or

select(dexp, transcript, starts with("log")

-0.0500

15,916 more rows

A tibble: 15,926 x 4
transcript logFC 1o
<chr> <dbl> <

1 TSPANG6 -0.390
2 DPM1 0.198
3 SCYL3 0.0292
4 Clorfl12 -0.124
5 CFH 0.417
6 FUCA2 -0.250
7 GCLC -0.0581
8 NFYA -0.509
9 STPG1 -0.136

10 NIPAL3 -0.0500

i 15,916 more rows

7.04 0.695

gCPM FDR
db1l> <dbl>
5.06 0.00283
4.61 0.0770
3.48 0.844
1.47 0.682
8.09 0.00376
5.91 0.0186
4.84 0.794
4.13 0.00126
3.12 0.478
7.04 0.695

Subsetting Data with dplyr

| ends _with("r"))

There are a number of other selection helpers. See the help documentation for select

(https.//dplyr.tidyverse.org/reference/select.html) for more information (?dplyr::select()) or

this reference (https.//tidyselect.r-lib.org/reference/language.html) from tidyselect.

Select columns of a particular type

There are many other ways to select multiple columns. You may commonly be interested in

selecting all numeric columns or all factors. The syntax below can be used for this purpose.

select(dexp, where(is.numeric)) #or

A tibble: 15,926 x 5
logFC 1ogCPM
<dbl> <dbl> <dbl
1 -0.390 5.06 32.8
2 0.198 4.61 6.90
3 0.0292 3.48 0.096
4 -0.124 1.47 0.377
5 0.417 8.09 29.3
6 -0.250 5.91 14.9
7 -0.0581 4.84 0.167

F PValue
> <dbl>
.000312
.0281
.763
.555
.000463
.00405
.692

9

[l ol oMoMoNOCM O

[l ol oo o oMol

FDR
<dbl>

.00283
.0770
.844
.682
.00376
.0186
.794

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/select.html
https://tidyselect.r-lib.org/reference/language.html
https://tidyselect.r-lib.org/reference/language.html

108 Subsetting Data with dplyr

8 -0.509 4.13 44.9 0.000100 0.00126
9 -0.136 3.12 1.04 0.335 0.478
10 -0.0500 7.04 0.350 0.569 0.695
i 15,916 more rows

Not recommended
select if(dexp, is.numeric) #scoped verbs are superseded

A tibble: 15,926 x 5
logFC 1ogCPM F PValue FDR
<dbl> <dbl> <dbl> <dbl> <dbl>

1 -0.390 5.06 32.8 0.000312 0.00283
2 0.198 4.61 6.90 0.0281 0.0770
3 0.0292 3.48 0.0969 0.763 0.844
4 -0.124 1.47 0.377 0.555 0.682
5 0.417 8.09 29.3 0.000463 0.00376
6 -0.250 5.91 14.9 0.00405 0.0186
7 -0.0581 4.84 0.167 0.692 0.794
8 -0.509 4.13 44.9 0.000100 0.00126
9 -0.136 3.12 1.04 0.335 0.478
10 -0.0500 7.04 0.350 0.569 0.695

i 15,916 more rows

Subsetting by row (filter ())

To subset by row, we use the function filter ().

filter() only includes rows where the condition is TRUE; it excludes both FALSE and
NA values. ---R4DS (https.//r4ds.had.co.nz/transform.html#filter-rows-with-filter)

Now let's filter the rows from smeta based on a condition. Let's look at only the treated samples
in dex (i.e., trt) using the function filter (). The first argument is the data frame (e.g.,
smeta) followed by the expression(s) to filter the data frame.

filter(smeta, dex == "trt") #we've seen == notation before

To complete these filter phrases you will often need to include comparison operators such as
the == above. These operators help us evaluate relations. For example, a == b is asking if a
and b are equivalent. It is a logical comparison that when evaluated will return TRUE or FALSE.
The filter function will then return rows that evaluate to TRUE.

Try the following:

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/transform.html#filter-rows-with-filter
https://r4ds.had.co.nz/transform.html#filter-rows-with-filter

109 Subsetting Data with dplyr

a <-1
<- 1
== |g

[1] TRUE

Keep these comparison operators in mind for filtering.

Comparison operators

Comparison Operator Description

> greater than
>= greater than or equal to
< less than
<= less than or equal to
I= Not equal
== equal

alb aorb

a&b aandb

We may want to combine filtering parameters using AND or OR phrasing and the operators &
and |.

For example, if we only wanted to return rows where dex == trt and cel1==N61311, we can
use:
filter(smeta, dex == "trt" & cell == "N61311")

A tibble: 1 x 9

SampleName cell dex albut Run avglLength Experiment Samp
<chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr:
1 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRS5I

A , is treated the same as & inthe case of filter ().

filter(smeta, dex == "trt", cell == "N61311")

Bioinformatics Training and Education Program

110 Subsetting Data with dplyr

A tibble: 1 x 9

SampleName cell dex albut Run avglength Experiment Samp’
<chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr:
1 GSM1275863 N61311 trt untrt SRR1039509 126 SRX384346 SRSS5(

We can also filter by one condition or another using the |.

filter(smeta,cell == "NO80611" | cell == "N61311")

A tibble: 4 x 9

SampleName cell dex albut Run avglength Experiment Samp
<chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr
1 GSM1275862 N61311 untrt untrt SRR10395.. 126 SRX384345 SRSS5(
2 GSM1275863 N61311 trt untrt SRR10395.. 126 SRX384346 SRSS5(
3 GSM1275870 NO80611 untrt untrt SRR10395.. 120 SRX384353 SRSS5(
4 GSM1275871 N0O8O611 trt untrt SRR10395.. 126 SRX384354 SRSS5(

The %1in% operator
Used to match elements of a vector.

%in% returns a logical vector indicating if there is a match or not for its left operand.
--- match R Documentation.

The returned logical vector will be the length of the vector to the left. Its basic usage:

smeta$SampleName %in% c("GSM1275871","GSM1275863")

[1] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE

c("GSM1275871","GSM1275863") %in% smeta$SampleName

[1] TRUE TRUE

We can combine the %1in% operator with filter ().

#filter for two cell lines
filter(smeta,cell %in% c("NO610O11", "NO52611"))

Bioinformatics Training and Education Program

111 Subsetting Data with dplyr

A tibble: 4 x 9

SampleName cell dex albut Run avglength Experiment Samp
<chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr
1 GSM1275866 NO52611 untrt untrt SRR10395.. 126 SRX384349 SRSS5(
2 GSM1275867 NO52611 trt untrt SRR10395.. 87 SRX384350 SRS5!
3 GSM1275874 NO61011 untrt untrt SRR10395.. 101 SRX384357 SRSS5(
4 GSM1275875 N0O61011 trt untrt SRR10395.. 98 SRX384358 SRS5!

Including multiple phrases

We can use multiple expressions in a single call to filter (). For example, let's filter dexp to
include only named transcripts (i.e.,no NAs), values of |log fold change| is greater than 2, and
either a p-value or FDR corrected p_value is less than or equal to 0.01.

#use | operator
#look at only results with named genes (not NAs)
#and those with a log fold change greater than 2
#and either a p-value or an FDR corrected p _value < or = to 0.01
#The comma acts as &
sig annot _transcripts<-
filter(dexp, !is.na(transcript),
abs(logFC) > 2, (PValue | FDR <= 0.01))
sig annot_transcripts

A tibble: 178 x 10

feature albut transcript ref _genome .abundant 1ogFC 1logCPM

<chr> <chr> <chr> <chr> <lgl> <dbl> <dbl> <«
1 ENSGOOOO0O.. untrt PDK4 hg38 TRUE 2.55 5.41 :
2 ENSGOOO000.. untrt SLC7A14 hg38 TRUE -2.89 3.54 2
3 ENSGOO0000.. untrt NPC1L1 hg38 TRUE -2.61 -0.0372 |
4 ENSGOOOOOO.. untrt CHDH hg38 TRUE -2.01 2.14 1
5 ENSGOOOOOO.. untrt HSD17B6 hg38 TRUE -2.03 3.02 .
6 ENSGOOOOO0O.. untrt POU2F2 hg38 TRUE -2.06 0.835 1
7 ENSGOOO00O.. untrt GPM6B hg38 TRUE 2.43 5.67 1
8 ENSGOOO0000.. untrt PER3 hg38 TRUE -2.21 3.22 {
9 ENSGOO0000.. untrt COL11A1 hg38 TRUE 2.41 4.06 4(
10 ENSGOOOO0O.. untrt FGFR2 hg38 TRUE -2.26 0.499 (

i 168 more rows
i 1 more variable: FDR <dbl>

Bioinformatics Training and Education Program

Subsetting Data with dplyr

Filtering across columns

Past versions of dplyr included powerful variants of filter, select, and other functions to help
perform tasks across columns. You may see functions such as filter_all, filter_if, and
filter_at. Functions like these can still be used but have been superseded by across
(https://dplyr.tidyverse.org/reference/across.html). However, across has been deprecated in
the case of filter and replaced by if_any () and if_all().

Both functions operate similarly to across() but go the extra mile of aggregating the
results to indicate if all the results are true when using if_all(), or if at least one is
true when using if_any() ---tidyverse.org (https.//www.tidyverse.org/blog/2021/02/
dplyr-1-0-4-if-any/)

Let's briefly see this in action. Let's return only rows with values of less than 0.05 in the columns
PValue and FDR.

f<-filter(dexp, if_all(PValue:FDR, ~ .x < 0.05))
f

A tibble: 4,967 x 10

feature albut transcript ref _genome .abundant 1logFC logCPM
<chr> <chr> <chr> <chr> <lgl> <dbl> <dbl> <
1 ENSGOOO000.. untrt TSPANG6 hg38 TRUE -0.390 5.06 3.
2 ENSGOOOOOO.. untrt CFH hg38 TRUE 0.417 8.09 2!
3 ENSGOO0000.. untrt FUCA2 hg38 TRUE -0.250 5.91 1.
4 ENSGOOOOO0O.. untrt NFYA hg38 TRUE -0.509 4.13 4.
5 ENSGOOOOOO.. untrt SEMA3F hg38 TRUE -0.259 4.81 1.
6 ENSGOOO000.. untrt ANKIB1 hg38 TRUE -0.236 6.38 1.
7 ENSGOOOOOO.. untrt RAD52 hg38 TRUE -0.319 3.13 !
8 ENSGOOOOO0.. untrt LASP1 hg38 TRUE 0.388 8.39 2.
9 ENSGOOOEO0.. untrt SNX11 hg38 TRUE 0.395 3.56 1t
10 ENSGOOOOOO.. untrt TMEM176A hg38 TRUE 0.357 4.65 1.

i 4,957 more rows
i 1 more variable: FDR <dbl>

Anonymous function

The code above includes an anonymous function. Read more here (https.//jennybc.github.io/purrr-tutorial/IsO3_majp-
function-syntax.htmi#anonymous_function,_formula). You may also find this Stack Overflow post (https./
stackoverflow.com/questions/56532119/dplyr-piping-data-difference-between-and-x) useful.

Therefore, the above line could have been written as follows: This function could be written like this:

my_func <- function(x) {
X < 0.05
}

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://www.tidyverse.org/blog/2021/02/dplyr-1-0-4-if-any/
https://www.tidyverse.org/blog/2021/02/dplyr-1-0-4-if-any/
https://www.tidyverse.org/blog/2021/02/dplyr-1-0-4-if-any/
https://www.tidyverse.org/blog/2021/02/dplyr-1-0-4-if-any/
https://jennybc.github.io/purrr-tutorial/ls03_map-function-syntax.html#anonymous_function,_formula
https://jennybc.github.io/purrr-tutorial/ls03_map-function-syntax.html#anonymous_function,_formula
https://jennybc.github.io/purrr-tutorial/ls03_map-function-syntax.html#anonymous_function,_formula
https://jennybc.github.io/purrr-tutorial/ls03_map-function-syntax.html#anonymous_function,_formula
https://stackoverflow.com/questions/56532119/dplyr-piping-data-difference-between-and-x
https://stackoverflow.com/questions/56532119/dplyr-piping-data-difference-between-and-x
https://stackoverflow.com/questions/56532119/dplyr-piping-data-difference-between-and-x
https://stackoverflow.com/questions/56532119/dplyr-piping-data-difference-between-and-x

113 Subsetting Data with dplyr

filter (dexp, if_all(PValue:FDR, my_ func))

A tibble: 4,967 x 10

feature albut transcript ref_genome .abundant 1logFC 1ogCPM F PValue

<chr> <chr> <chr> <chr> <lgl> <dbl> <dbl> <dbl> <dbl>
1 ENSGOOOOOO.. untrt TSPANG6 hg38 TRUE -0.390 5.06 32.8 3.12e-4
2 ENSGOOOOOO.. untrt CFH hg38 TRUE 0.417 8.09 29.3 4.63e-4
3 ENSGOOO00O.. untrt FUCA2 hg38 TRUE -0.250 5.91 14.9 4.05e-3
4 ENSGOOOO0O.. untrt NFYA hg38 TRUE -0.509 4.13 44.9 1.00e-4
5 ENSGOOOO0O.. untrt SEMA3F hg38 TRUE -0.259 4.81 12.3 6.98e-3
6 ENSGOOO000.. untrt ANKIB1 hg38 TRUE -0.236 6.38 14.5 4.41e-3
7 ENSGOO0OOO.. untrt RAD52 hg38 TRUE -0.319 3.13 9.03 1.53e-2
8 ENSGOOOOOO.. untrt LASP1 hg38 TRUE 0.388 8.39 22.7 1.1lle-3
9 ENSGOOO000.. untrt SNX11 hg38 TRUE 0.395 3.56 18.7 2.05e-3
10 ENSGOOOOOO.. untrt TMEM176A hg38 TRUE 0.357 4.65 12.1 7.30e-3

i 4,957 more rows
i 1 more variable: FDR <dbl>

Subsetting rows by position

There are times when you may want to subset your data by position, for example, the first or last
number of rows. There are a series of functions in the tidyverse that facilitate this type of
subsetting. The primary function is slice(), which has several commonly used helper
functions including slice_head (), slice_tail(), slice_min(), and slice_max(). See
the slice() (htips.//dplyr.tidyverse.org/reference/slice.html) documentation for more
information.

Introducing the pipe

Often we will apply multiple functions to wrangle a data frame into the state that we need it. For
example, maybe you want to select and filter. What are our options? We could run one step
after another, saving an object for each step, or we could nest a function within a function, but
these can affect code readability and clutter our work space, making it difficult to follow what we
or someone else did.

Step by Step

#Run one step at a time with intermediate objects.
#We've done this a few times above

#select gene, logFC, FDR

dexp s<-select(dexp, transcript, logFC, FDR)

#Now filter for only the genes "TSPAN6" and DPM1
#Note: we could have used %in%

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/slice.html

Subsetting Data with dplyr

tspanDpm<- filter (dexp_s, transcript == "TSPAN6" | transcript=="DPM1

Nesting Code

#Nested code example
tspanDpm<- filter(select(dexp, c(transcript, logFC, FDR)),
transcript == "TSPAN6" | transcript=="DPM1")

Using the pipe (%>%, | >)

Let's explore how piping streamlines this. Piping (using %>%) allows you to employ multiple
functions consecutively, while improving readability. The output of one function is passed
directly to another without storing the intermediate steps as objects. You can pipe from the
beginning (reading in the data) all the way to plotting without storing the data or intermediate
objects, if you want. You can use either the magrittr pipe (%>%), which loads with the
tidyverse, or the native R pipe (| >, R version +4.1).

Nlinfo %>% vs | > These pipes behave in largely the same way. However, %>% does have some
special behaviors. You can read more here (https.//www.tidyverse.org/blog/2023/04/base-vs-
magrittr-pipey/)

To pipe, we have to first call the data and then pipe it into a function. The output of each step is
then piped into the next step.

Let's see how this works

dexp %>% #call the data and pipe to select()
select(transcript, logFC, FDR) |> #select columns of interest
filter(transcript == "TSPAN6" | transcript=="DPM1") #filter

A tibble: 2 x 3

transcript 1logFC FDR
<chr> <dbl> <dbl>
1 TSPANG6 -0.390 0.00283
2 DPM1 0.198 0.0770

Notice that the data argument has been dropped from select() and filter (). This is
because the pipe passes the input from the left to the right. The %>% must be at the end of each
line.

Piping from the beginning:

Bioinformatics Training and Education Program

https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/

115 Subsetting Data with dplyr

read delim("./data/diffexp _results edger airways.txt") |> #read data
select(transcript, logFC, FDR) |> #select columns of interest
filter(transcript == "TSPAN6" | transcript=="DPM1") |> #filter
ggplot (aes(x=transcript,y=1logFC,fill=FDR)) + #plot
geom_bar (stat = "identity") +
theme classic() +
geom_hline(yintercept=0, linetype="dashed", color = "black")

Rows: 15926 Columns: 10
— Column specification
Delimiter: "\t"

chr (4): feature, albut, transcript, ref_genome
dbl (5): logFC, logCPM, F, PValue, FDR

1gl (1): .abundant

i Use “spec()” to retrieve the full column specification for this da
i Specify the column types or set “show col types = FALSE" to quiet

0.2

00T - - --- FDR
o 0.06
L
3 0.04

0.02
-0.2-
041
DPM1 TSPANG
transcript

Note

ggplot2 will be covered in Part 3 of this course.

Bioinformatics Training and Education Program

116 Subsetting Data with dplyr

The dplyr functions by themselves are somewhat simple, but by combining them
into linear workflows with the pipe, we can accomplish more complex manipulations
of data frames. ---datacarpentry.org (https:/datacarpentry.org/genomics-r-intro/05-
dplyr/index.html)

Acknowledgments

Some material from this lesson was either taken directly or adapted from the Intro to R and
RStudio for Genomics lesson provided by datacarpentry.org (https://datacarpentry.github.io/
genomics-r-intro/index.html). Additional content was inspired by Chapter 3, Wrangling Data in
the Tidyverse, (https.//jhudatascience.org/tidyversecourse/wrangle-data.html#filtering-data)
from Tidyverse Skills for Data Science and Suzan Baert's dplyr tutorials (https.://github.com/
suzanbaert/Dplyr_Tutorials/tree/master).

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.github.io/genomics-r-intro/index.html
https://datacarpentry.github.io/genomics-r-intro/index.html
https://datacarpentry.github.io/genomics-r-intro/index.html
https://datacarpentry.github.io/genomics-r-intro/index.html
https://jhudatascience.org/tidyversecourse/wrangle-data.html#filtering-data
https://jhudatascience.org/tidyversecourse/wrangle-data.html#filtering-data
https://jhudatascience.org/tidyversecourse/wrangle-data.html#filtering-data
https://github.com/suzanbaert/Dplyr_Tutorials/tree/master
https://github.com/suzanbaert/Dplyr_Tutorials/tree/master
https://github.com/suzanbaert/Dplyr_Tutorials/tree/master
https://github.com/suzanbaert/Dplyr_Tutorials/tree/master

117 Summarizing Data with dplyr

Summarizing Data with dplyr

Obijectives.

1. This lesson will introduce the "split-apply-combine" approach to data analysis and the key
players in the dplyr package used to implement this type of workflow:

e group_by ()
o summarize()

2. We will also learn about other useful dplyr functions including

carrange()
odistinct()

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to
NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to
connect: https://hpcondemand.nih.gov/ (https.//hpcondemand.nih.gov/). Then follow the
instructions outlined here (https.//bioinformatics.ccr.cancer.gov/docs/r_for_novices/
Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemana).

Load Tidyverse

In this lesson, we are continuing with the package dplyr. We do not need to load the dplyr
package separately, as it is a core tidyverse package. Again, if you need to install and load
only dplyr, use install.packages("dplyr") and library(dplyr).

Load the package:

library(tidyverse)

— Attaching core tidyverse packages tidyvel
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot?2 3.5.2 v tibble 3.3.0

v lubridate 1.9.4 v tidyr 1.3.1

v purrr 1.0.4

— Conflicts tidyverse_col

® dplyr::filter() masks stats::filter ()
® dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-1lib.org/>) to for

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand

118 Summarizing Data with dplyr
Load the data

Let's load in some data to work with. In this lesson, we will continue to use sample metadata,
raw count data, and differential expression results derived from the airway RNA-Seq project.

Get the sample metadata:

#sample information
smeta<-read delim("./data/airway sampleinfo.txt")

Rows: 8 Columns: 9

— Column specification
Delimiter: "\t"

chr (8): SampleName, cell, dex, albut, Run, Experiment, Sample, BioS:
dbl (1): avglLength

i Use “spec() to retrieve the full column specification for this da
i Specify the column types or set "show col types = FALSE to quiet

Get the raw counts:

#raw count data
acount<-read csv("./data/airway_ rawcount.csv") %>%
dplyr::rename("Feature" = "...1")

New names:
Rows: 64102 Columns: 9
— Column specification

Delimiter:
(1): ...1 dbl (8): SRR1039508, SRR1039509, SRR1039512, SRR16039513, SI
SRR1039. ..

i Use “spec() to retrieve the full column specification for this da

Specify the column types or set "show col_types = FALSE® to quiet th
e T > T 10

Here we used read_csv and rename to load the raw count data. Remember, rename allows
us to rename any column without selection.

Get the differential expression results:

#differential expression results

Bioinformatics Training and Education Program

Summarizing Data with dplyr

dexp<-read delim("./data/diffexp _results edger airways.txt")

Rows: 15926 Columns: 10
— Column specification
Delimiter: "\t"

chr (4): feature, albut, transcript, ref_genome
dbl (5): logFC, logCPM, F, PValue, FDR

lgl (1): .abundant

i Use “spec()” to retrieve the full column specification for this da
i Specify the column types or set “show _col types = FALSE" to quiet

Group_by and summarize

There is an approach to data analysis known as "split-apply-combine", in which the data are
split into smaller components, some type of analysis is applied to each component, and the
results are combined. The dplyr functions including group_by () and summarize() are key
players in this type of workflow.

Before diving into this further, let's create some more interesting data to work with by merging

our count matrix with our sample metadata.

acount smeta <- acount %>%
pivot longer (where(is.numeric), names_to ="Sample",
values to= "Count") %>% #reshape the data
left _join(smeta, by=c("Sample"="Run")) #join with meta data

acount_smeta

A tibble: 512,816 x 11

Feature Sample Count SampleName cell dex albut avglLengtl

<chr> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl:
1 ENSGO0OO0O000.. SRR10.. 679 GSM1275862 N613.. untrt untrt 121
2 ENSGOO00O00000.. SRR10.. 448 GSM1275863 N613.. trt untrt 121
3 ENSGOO0000000.. SRR10.. 873 GSM1275866 NO52.. untrt untrt 121
4 ENSGOOOOO0000.. SRR10.. 408 GSM1275867 NO52.. trt untrt 8
5 ENSGOOOOOOOO0.. SRR1O.. 1138 GSM1275870 NO8O.. untrt untrt 121
6 ENSGOOOO00000.. SRR10.. 1047 GSM1275871 NO8O.. trt untrt 121
7 ENSGOOOOO0000.. SRR10.. 770 GSM1275874 NO61.. untrt untrt 10
8 ENSGOO0000000.. SRR10.. 572 GSM1275875 NO61l.. trt untrt 9t
9 ENSGOO00O00000.. SRR10.. © GSM1275862 N613.. untrt untrt 121
10 ENSGOOO0O0000.. SRR10.. © GSM1275863 N613.. trt untrt 121

Bioinformatics Training and Education Program

120 Summarizing Data with dplyr

i 512,806 more rows
i 2 more variables: Sample.y <chr>, BioSample <chr>

#
#
left_join()

left_join() is a mutating join function from dplyr. We will learn more about this function in the next lesson.
Don't dwell on the code too much here.

Key Functions
Here we are interested in functions that allow us to summarize our data. These include.

® group_by () - group a data frame by a categorical variable so that a given operation can
be performed per group / category. The data frame will not be reorganized, but it will
have a grouping attribute, which will impact how tidyverse functions interact with it.

®* summarize () - computes summary statistics (1 or more) in a data frame. This function
creates a new data frame, returning one row for each combination of grouping variables.
If there are no grouping variables, the output will have a single row summarizing all
observations in the input. See ?summarize.

The syntax:
summarize(new_column = operations_on_existing_columns)

where new_column /s the name of the new column to appear in the resulting summary
table, and operations_on_existing_columns is where we apply summary functions
to an existing column to create what will go in new_column. This should return a single
value. To return more than one value per group, see ?reframe ().

summarize may include multiple new_column =
operations_on_existing_columns statements, with each statement separated by , .
We will see a similar syntax with mutate.

® count () - computes groupwise counts. This does not require group_by.

® ungroup () - removes the grouping criteria set by group_by (). This is useful for
performing additional operations that you do not want applied by group.

.by

summarize () can provide results by group without group_by using the . by argument.

For example,

Let's compute the median raw counts for each gene by treatment.

Bioinformatics Training and Education Program

121 Summarizing Data with dplyr

#Call the data

medcount<- acount_smeta %>%
group_by dex and Feature (Feature nested within treatment)
group_by (dex,Feature) %>%
#for each group calculate the median value of raw counts
summarize(median_counts=median(Count))

‘summarise () has grouped output by 'dex'. You can override using the
argument.

medcount

A tibble: 128,204 x 3
Groups: dex [2]

dex Feature median_counts
<chr> <chr> <db1l>
1 trt ENSGOOOOO000003 510
2 trt ENSGOOOOO00O005 0
3 trt ENSGOO000000419 512.
4 trt ENSGOOO00000457 220
5 trt ENSGOO000000460 57.5
6 trt ENSGOOO0O000938 0
7 trt ENSGO0O00000971 6124.
8 trt ENSGOOO00001036 1086.
9 trt ENSGOO000001084 598.
10 trt ENSGOOO00001167 252.

i 128,194 more rows

Using summarize (), by default the output is grouped by every grouping column except the
last (e.g., here, no longer grouped by "Feature"), which is helpful for performing additional
operations at higher levels of grouping (e.g., "dex").

Now, let's obtain the top five genes with the greatest median raw counts by treatment using
slice_max. Remember, medcount has grouped output by dex. This grouping is maintained
unless ungroup was applied.

medcount %>%
slice_max(n=5, order_by=median_counts) #notice use of slice_ max

Bioinformatics Training and Education Program

122 Summarizing Data with dplyr

A tibble: 10 x 3
Groups: dex [2]

dex Feature median_counts

<chr> <chr> <dbl>
1 trt ENSGO0000115414 322164
2 trt ENSGOOO00011465 263587
3 trt ENSGOOO00156508 239676.
4 trt ENSGOO000198804 230992
5 trt ENSGOO000116260 187288.
6 untrt ENSGOOOOO011465 336076
7 untrt ENSGOOOOO115414 302956.
8 untrt ENSGOOOOO156508 294097
9 untrt ENSGOO000164692 249846
10 untrt ENSGOO0OO198804 249206

Often we are interested in knowing more about sample sizes and including that information in
summary output. For example, how many rows per sample are in the acount_smeta data
frame? We can use count() or summarize() paired with other functions (e.g.,
n(),tally()).

acount smeta %>%
count (dex, Sample)

A tibble: 8 x 3

dex Sample n
<chr> <chr> <int>
trt SRR1039509 64102
trt SRR1039513 64102
trt SRR1039517 64102
trt SRR1039521 64102
untrt SRR1039508 64102
untrt SRR1039512 64102
untrt SRR1039516 64102
untrt SRR1039520 64102

0 N o Ul A W IN

acount smeta %>%
group_by (dex, Sample) %>%
summarize(n=n()) #there are multiple functions that can be used he

‘summarise () has grouped output by 'dex'. You can override using thi
argument.

Bioinformatics Training and Education Program

123 Summarizing Data with dplyr

A tibble: 8 x 3

Groups: dex [2]
dex Sample n
<chr> <chr> <int>

trt SRR1039509 64102
trt SRR1039513 64102
trt SRR1039517 64102
trt SRR1039521 64102
untrt SRR1039508 64102
untrt SRR1039512 64102
untrt SRR1039516 64102
untrt SRR1039520 64102

00 N O U1 A W IN P

This output makes sense, as there are 64,102 unique Ensembl ids
n_distinct(acount _smeta$Feature)).

na.rm

By default, all [built in] R functions operating on vectors that contain missing data will return NA. It's a
way to make sure that users know they have missing data, and make a conscious decision on how
to deal with it. When dealing with simple statistics like the mean, the easiest way to ignore NA (the
missing data) is to use narm = TRUE (rm stands for remove). ---datacarpentry.org (https:/
datacarpentry.org/genomics-r-intro/05-dplyr/index.html)

Let's see this in practice

#This is used to get the same result
#with a pseudorandom number generator like sample()
set.seed(138)

#make mock data frame
fun_df<-data.frame(genes=rep(c("A","B","C","D"), each=3),
counts=sample(1:500,12,TRUE)) %>%
#Assign NAs if the value is less than 100. This is arbitrary.
mutate (counts=replace(counts, counts<100, NA))

#let's view
fun_df

genes counts

1 A NA
2 A 214
3 A NA
4 B 352

(See

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html

5 B 256
6 B NA
7 C 400
8 C 381
9 C 250
10 D 278
11 D NA
12 D 169

#Summarize mean, and max
fun_df %>%
group_by(genes) %>%
summarize(
mean_count = mean(counts),

median_count = median(counts),

median, min,

Summarizing Data with dplyr

min_count = min(counts),
max_count = max(counts))
A tibble: 4 x 5
genes mean_count median_count min_count max_count
<chr> <db1> <int> <int> <int>
1A NA NA NA NA
2 B NA NA NA NA
3C 344 . 381 250 400
4 D NA NA NA NA
#use na.rm
fun_df %>%
group_by(genes) %>%
summarize(
mean_count = mean(counts, na.rm=TRUE),
median_count = median(counts, na.rm=TRUE),
min_count = min(counts, na.rm=TRUE),
max_count = max(counts, na.rm=TRUE))
A tibble: 4 x 5
genes mean_count median_count min_count max_count
<chr> <db1l> <dbl> <int> <int>
1A 214 214 214 214
2 B 304 304 256 352

Bioinformatics Training and Education Program

125 Summarizing Data with dplyr

344. 381 250 400
224. 224. 169 278

B~ w
o M

Lastly, similar to mutate, we can summarize across multiple columns at once using across ().
We will focus more heavily on across() next lesson. Let's get the mean of 1ogFC and
logCPM.

dexp %>%
summarize(across(starts with("Log"), mean))

A tibble: 1 x 2
logFC 1ogCPM
<dbl> <dbl>

1 -0.00859 3.71

Additional Examples

Let's use penguins for additional practice.
The penguins data contains

Data on adult penguins covering three species found on three islands in the Palmer
Archipelago, Antarctica, including their size (flipper length, body mass, bill
dimensions), and sex. - penguins docs

Let's summarize these data by finding the mean penguin body mass by penguin species.
Remember to include na.rm = TRUE to exclude missing values.

penguins %>%
group_by (species) %>%
summarize(mean_mass = mean(body mass, na.rm = TRUE))

A tibble: 3 x 2
species mean_mass

<fct> <db1>
1 Adelie 3701.
2 Chinstrap 3733.
3 Gentoo 5076.

What if we also want to include the standard deviation by species?

Bioinformatics Training and Education Program

126 Summarizing Data with dplyr

penguins %>%
group_by (species) %>%
summarize (mean_mass = mean(body mass, na.rm = TRUE),
sd_mass = sd(body mass, na.rm = TRUE))

A tibble: 3 x 3
species mean_mass sd_mass

<fct> <dbl> <dbl>
1 Adelie 3701. 459.
2 Chinstrap 3733. 384.
3 Gentoo 5076. 504.

Looking for more functions to use with summarize? Here (htips.//r4ds.had.co.nz/transform.html?
q=summar#summarise-funs) are some useful summary functions. However, the use of
summarize () is not limited to these suggestions.

Reordering rows with arrange()

In the tidyverse, reordering rows is largely done by arrange (). Arrange will reorder a variable
from smallest to largest, or in the case of characters, alphabetically, from a to z. This is in
ascending order.

arrange () will break ties using additionally supplied columns for ordering. It will also mostly
ignore grouping. To order by group, use .by group = TRUE.

Let's arrange the genes in dexp.

dexp %>% arrange(transcript)

A tibble: 15,926 x 10
feature albut transcript ref_genome .abundant logFC logCPM

<chr> <chr> <chr> <chr> <lgl> <dbl> <dbl> <«
1 ENSGOO00.. untrt A1BG-AS1 hg38 TRUE 0.513 1.02 9
2 ENSGOOOO.. untrt A2M hg38 TRUE 0.528 10.1 3
3 ENSGOOOO.. untrt A2M-AS1 hg38 TRUE -0.337 0.308 2
4 ENSGOQEOO.. untrt A4GALT hg38 TRUE 0.519 5.89 24
5 ENSGOOOO.. untrt AAAS hg38 TRUE -0.0254 5.12 0
6 ENSGOOOO.. untrt AACS hg38 TRUE -0.191 4.06 5
7 ENSGOOOO.. untrt AADAT hg38 TRUE -0.642 2.67 16
8 ENSGOOOO.. untrt AAGAB hg38 TRUE -0.165 5.08 5
9 ENSGOO0O.. untrt AAK1 hg38 TRUE -0.188 3.82 2
10 ENSGOOOO.. untrt AAMDC hg38 TRUE 0.447 2.42 8

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/transform.html?q=summar#summarise-funs
https://r4ds.had.co.nz/transform.html?q=summar#summarise-funs
https://r4ds.had.co.nz/transform.html?q=summar#summarise-funs
https://r4ds.had.co.nz/transform.html?q=summar#summarise-funs

127 Summarizing Data with dplyr
i 15,916 more rows
i 1 more variable: FDR <dbl>

Let's arrange 1ogFC from smallest to largest.

dexp %>% arrange(logFC)

A tibble: 15,926 x 10

feature albut transcript ref_genome .abundant logFC 1logCPM

<chr> <chr> <chr> <chr> <lgl> <dbl> <dbl> <
1 ENSGOOOO02.. untrt LINCOO906 hg38 TRUE -4.59 0.473 1.
2 ENSGOOOOO1.. untrt LRRTM2 hg38 TRUE -4.00 1.24 1
3 ENSGOO0OO1.. untrt VASH2 hg38 TRUE -3.95 0.0171 1!
4 ENSGOOOOOL.. untrt VCAM1 hg38 TRUE -3.66 4.60 51
5 ENSGOOOOOL.. untrt SLC14A1l hg38 TRUE -3.63 1.38 ‘
6 ENSGOOO002.. untrt FERLL6 hg38 TRUE -3.13 3.53 :
7 ENSGOOOOOL.. untrt SMTNL2 hg38 TRUE -3.12 1.46 1
8 ENSGOOOOOL.. untrt WNT2 hg38 TRUE -3.07 3.99 I
9 ENSGOOO0O01L.. untrt EGR2 hg38 TRUE -3.04 -0.141 .
10 ENSGOOOOO1.. untrt SLITRK6 hg38 TRUE -3.03 1.16 1.

i 15,916 more rows
i 1 more variable: FDR <dbl>

What if we want to arrange from largest to smallest (in descending order)? We can use desc ().

dexp %>% arrange(desc(logFC))

A tibble: 15,926 x 10
feature albut transcript ref_genome .abundant logFC 1logCPM

<chr> <chr> <chr> <chr> <lgl> <dbl> <dbl> <d
1 ENSGO0O0O.. untrt ALOX15B hg38 TRUE 10.1 1.62 5!
2 ENSGOO000.. untrt ZBTB16 hg38 TRUE 7.15 4.15 14.
3 ENSGOOOOO.. untrt <NA> <NA> TRUE 6.17 1.35 3t
4 ENSGOOOOO.. untrt ANGPTL7 hg38 TRUE 5.68 3.51 4
5 ENSGOOO0O.. untrt STEAP4 hg38 TRUE 5.22 3.66 4.
6 ENSGOOOOO.. untrt PRODH hg38 TRUE 4.85 1.29 2!
7 ENSGOOOOO.. untrt FAM107A hg38 TRUE 4.74 2.78 6!
8 ENSGO0000.. untrt LGI3 hg38 TRUE 4.68 -0.0503 1f
9 ENSGOOO0O.. untrt SPARCL1 hg38 TRUE 4.56 5.53 7.
10 ENSGOOOOO.. untrt KLF15 hg38 TRUE 4.48 4.69 4

i 15,916 more rows
i 1 more variable: FDR <dbl>

Bioinformatics Training and Education Program

Summarizing Data with dplyr

Note

If you include more than one column to order by descending values, each column needs to be wrapped with
desc().

Additional useful functions

® distinct () -return distinct combinations of values

acount smeta %>% distinct(Sample)

A tibble: 8 x 1
Sample
<chr>
SRR1039508
SRR1039509
SRR1039512
SRR1039513
SRR1039516
SRR1039517
SRR1039520
SRR1039521

00 N o U1l A W IN BE

®*n_distinct() - "counts the number of unique/distinct combinations in a set of one or
more vectors."

Acknowledgments

Some material from this lesson was either taken directly or adapted from the Intro to R and
RStudio for Genomics lesson provided by datacarpentry.org (htips://datacarpentry.org/
genomics-r-intro/01-introduction/index.html). Additional content was inspired by Suzan Baert's
dplyr tutorials (https://github.com/suzanbaert/Dplyr_Tutorials) and Allison Horst's tutorial
"Wrangling penguins: some basic data wrangling in R with dplyr" (https./
allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize).

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://github.com/suzanbaert/Dplyr_Tutorials
https://github.com/suzanbaert/Dplyr_Tutorials
https://allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize
https://allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize
https://allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize
https://allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize

129 Joining and Transforming Data with dplyr

Joining and Transforming Data with dplyr

Objectives

Today we will continue to wrangle data using the tidyverse package, dplyr. We will learn:

1. how to join data frames using dplyr
2. how to transform and create new variables using mutate ()

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to
NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to
connect: https://hpcondemand.nih.gov/ (https.//hpcondemand.nih.gov/). Then follow the
instructions outlined here (https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/
Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemana).

Loading Tidyverse

In this lesson, we are continuing with the package dplyr. We do not need to load the dplyr
package separately, as it is a core tidyverse package. Again, if you need to install and load
only dplyr,use install.packages("dplyr") and library(dplyr).

Load the package:

library(tidyverse)

— Attaching core tidyverse packages tidyvel
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot2 3.5.2 v tibble 3.3.0

v lubridate 1.9.4 v tidyr 1.3.1

v purrr 1.0.4

— Conflicts tidyverse_col

® dplyr::filter() masks stats::filter ()
® dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-1lib.org/>) to for:

Load the data

Let's load in some data to work with. In this lesson, we will continue to use sample metadata,
raw count data, and differential expression results derived from the airway RNA-Seq project.

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand

Joining and Transforming Data with dplyr

Get the sample metadata:

#sample information
smeta<-read delim("./data/airway_sampleinfo.txt")

Rows: 8 Columns: 9

— Column specification
Delimiter: "\t"

chr (8): SampleName, cell, dex, albut, Run, Experiment, Sample, BioS:
dbl (1): avglLength

i Use “spec() to retrieve the full column specification for this da
i Specify the column types or set “show col types = FALSE® to quiet

Get the raw counts:

#raw count data
acount<-read csv("./data/airway_rawcount.csv") %>%
dplyr::rename("Feature" = "...1")

New names:
Rows: 64102 Columns: 9
— Column specification

Delimiter:
(1): ...1 dbl (8): SRR1039508, SRR1039509, SRR1039512, SRR16039513, SI
SRR1039. ..

i Use “spec() to retrieve the full column specification for this da

Specify the column types or set “show col types = FALSE® to quiet th
L T

Get the differential expression results:

#differential expression results
dexp<-read_delim("./data/diffexp_results edger_ airways.txt")

Rows: 15926 Columns: 10
— Column specification
Delimiter: "\t"

chr (4): feature, albut, transcript, ref _genome
dbl (5): logFC, 1o0gCPM, F, PValue, FDR

1gl (1): .abundant

Bioinformatics Training and Education Program

131 Joining and Transforming Data with dplyr

i Use “spec() to retrieve the full column specification for this da
i Specify the column types or set “show col types = FALSE® to quiet

Joining data frames

Any given project will often include multiple sets of data from different sources. These related
data are generally stored across multiple data frames. In such cases, while each data frame
likely contains different types of data, an identifier column or key (e.g., "samplelD") can be used
to unite or combine aspects of the data, which is useful depending on your analysis goal(s).

There are a series of functions from dplyr devoted to the purpose of joining data frames. There
are two types of joins: mutating joins (https:/dplyr.tidyverse.org/reference/mutate-joins.htm)
and filtering joins (https://dplyr.tidyverse.org/reference/filter-joins.html).

Mutating joins

Imagine we have two data frames x and y. A mutating join will keep all columns from x and y
by adding columns from y to x.

left _join() - Output contains all rows from x

return all rows from x, and all columns from x and y. Rows in x with no match iny
will have NA values in the new columns. If there are multiple matches between x

and vy, all combinations of the matches are returned. --- R documentation, dplyr
(version 0.7.8) (https.//www.rdocumentation.org/packages/dplyr/versions/0.7.8/
topics/join)

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/filter-joins.html
https://dplyr.tidyverse.org/reference/filter-joins.html
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join

132 Joining and Transforming Data with dplyr

left_join(x, vy)

Animation from Tidyexplain, Garrick Aden-Buie (https.//github.com/gadenbuie/
tidyexplain)

right join() - Output contains all rows from y

return all rows fromy, and all columns from x and y. Rows in y with no match in x will
have NA values in the new columns. If there are multiple matches between x and v,
all combinations of the matches are returned. --- R documentation, dplyr (version
0.7.8) (https.//www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join).

Bioinformatics Training and Education Program

https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join

133 Joining and Transforming Data with dplyr

right_join(x, vy)

Animation from Tidyexplain, Garrick Aden-Buie (https.//github.com/gadenbuie/
tidyexplain)

inner_join() - Output contains matched rows from x

return all rows from x where there are matching values in y, and all columns from x
and vy. If there are multiple matches between x and vy, all combination of the
matches are returned. --- R documentation, dplyr (version 0.7.8) (https://
www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join)

Unmatched values from x and unmatched values from y will be dropped. So use caution, as it
is easy to lose observations with an inner join.

Bioinformatics Training and Education Program

https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join

134 Joining and Transforming Data with dplyr

inner_join(x, vy)

Animation from Tidyexplain, Garrick Aden-Buie (https.//github.com/gadenbuie/
tidyexplain)

full_join() - Output contains all rows from x and y

return all rows and all columns from both x and y. Where there are not matching
values, returns NA for the one missing. --- R documentation, dplyr (version 0.7.8)
(httos://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join).

Bioinformatics Training and Education Program

https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join

135 Joining and Transforming Data with dplyr

full_join(x, vy)

Animation from Tidyexplain, Garrick Aden-Buie (https.//github.com/gadenbuie/
tidyexplain)

Note

The R documentation for dplyr was updated with dplyr v1.0.9. However, these descriptions still stand and are
clearer (in my opinion) than the new documentation.

The most common type of joinis the left_join(). Let's see this in action

#reshape acount

acount smeta<-acount %>% pivot longer (where(is.numeric),names to ="S.
values to= "Count") %>% left join(smeta, by=c("S:

acount smeta

A tibble: 512,816 x 11

Feature Sample Count SampleName cell dex albut avglLengtl

<chr> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl:
1 ENSGOOO000000.. SRR10.. 679 GSM1275862 N613.. untrt untrt 121
2 ENSGOOOOO0000O.. SRR10.. 448 GSM1275863 N613.. trt untrt 121
3 ENSGOO0000000.. SRR10.. 873 GSM1275866 NO52.. untrt untrt 121
4 ENSGOOOOOOO00O.. SRR10.. 408 GSM1275867 NO52.. trt untrt 8
5 ENSGOOOOOOOO0.. SRR1O.. 1138 GSM1275870 NO8O.. untrt untrt 121
6 ENSGOOOO00000.. SRR10.. 1047 GSM1275871 NO8O.. trt untrt 121
7 ENSGOOOO00000.. SRR1O0.. 770 GSM1275874 NO61.. untrt untrt 10

Bioinformatics Training and Education Program

https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain

136 Joining and Transforming Data with dplyr

8 ENSGOOOOO0000.. SRR10.. 572 GSM1275875 NO61.. trt untrt 9
9 ENSGOOOOO0000.. SRR10.. © GSM1275862 N613.. untrt untrt 121
10 ENSGOOO00OO000.. SRR1O.. © GSM1275863 N613.. trt untrt 121

i 512,806 more rows
i 2 more variables: Sample.y <chr>, BioSample <chr>

Notice the use of by in left_join. The argument by requires the column or columns that we
want to join by. If the column we want to join by has a different name, we can use the notation
above, which says to match Sample from acount to Run from smeta.

Filtering joins

Filtering joins result in filtered x data based on matching or non-matching with y. These joins do
not add columns from y to x.

semi_join()

return all rows from x where there are matching values in y, keeping just columns
from x. --- R documentation, dplyr (version 0.7.8) (https://www.rdocumentation.org/
packages/dplyr/versions/0.7.8/topics/join)

semi_join(x, V)

Animation from Tidyexplain, Garrick Aden-Buie (https.//github.com/gadenbuie/
tidyexplain)

anti_join()

Bioinformatics Training and Education Program

https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain

137

Joining and Transforming Data with dplyr

return all rows from x where there are not matching values in y, keeping just
columns from x. --- R documentation, dplyr (version 0.7.8) (htips://
www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join)

anti_join(x, y)

Animation from Tidyexplain, Garrick Aden-Buie (https.//github.com/gadenbuie/
tidyexplain)

Let's see a brief example of semi-join:

#reshape acount
smeta f<-smeta %>% filter(Run %in% c("SRR1039512","SRR1039508"))

acount L<-acount %>% pivot longer (where(is.numeric),names_to ="Sampl«

values to= "Count")

semi_join(acount L,smeta f, by=c("Sample"="Run"))

A tibble: 128,204 x 3

Ul A W N B

Feature Sample Count
<chr> <chr> <dbl>
ENSGOOOOO0O0OO3 SRR1039508 679
ENSGOOOOO0O0OO3 SRR1039512 873
ENSGOOOOO0OOOO5 SRR1039508 0
ENSGOOOOO0O0OO5 SRR1039512 0
ENSGOOO00000419 SRR1039508 467

Bioinformatics Training and Education Program

https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain
https://github.com/gadenbuie/tidyexplain

138 Joining and Transforming Data with dplyr

ENSGOOO00000419 SRR1039512 621
ENSGOOOOO000457 SRR1039508 260
ENSGOOO0O000457 SRR1039512 263
ENSGOOOO0000460 SRR1039508 60
10 ENSGOOOO0000460 SRR1039512 40
i 128,194 more rows

O 00 N O

In this case, we could have used filter. However, it is easier to use a filtering join if we know we
want to save elements from another table. This saves us from having to determine the filtering
criteria for use with filter ().

Transforming variables

Data wrangling often involves transforming one variable to another. For example, we may be
interested in log transforming a variable or adding two variables to create a third. In dplyr this
can be done with mutate(). mutate() allows us to create a new variable from existing
variables.

mutate ()

mutate() creates new columns that are functions of existing variables. It can also
modify (if the name is the same as an existing column) and delete columns (by
setting their value to NULL). --- dplyrtidyverse.org (https./dplyr.tidyverse.org/
reference/mutate.html)

Let's create a column in our original differential expression data frame denoting significant
transcripts (those with an FDR corrected p-value less than 0.05 and a log fold change greater
than or equal to 2).

dexp_sigtrnsc<-dexp %>% mutate(Significant= FDR<0.05 & abs(logFC) >=:
head (dexp_sigtrnsc$Significant)

[1] FALSE FALSE FALSE FALSE FALSE FALSE

This creates a column named Significant that contains TRUE values where the expression
above was true (meaning significant in this case) and FALSE where the expression was FALSE.

.keep

You can control which columns from the data are included in your output using . keep.
-"all" - default - keep all columns.
- "used" - keeps the transformed columns and new columns.

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html

139 Joining and Transforming Data with dplyr

- "unused" - keeps only unused column and new columns
- "none" - keeps the new columns and grouping variables.

Recoding variables based on values

dplyr offers functions for recoding variables: if_else() and case_when().

if_else - uses two logical conditions

dexp_sigtrnsc2<- dexp %>%
mutate(Significant= if_else(FDR<O.05 & abs(logFC) >=2,
"Significant", "Not Significant"))

case_when - uses multiple logical conditions. Case_when uses a series of formulas (Syntax: logical_test ~
Value_if_True).

dexp_sigtrnsc3<- dexp %>%
mutate(Significant=
case when(FDR<0.05 & logFC >=2 ~ "Up",
FDR<0.05 & logFC <=-2 ~ "Down",
.default = "Not Significant")

Let's look at another example. This time let's log transform our FDR corrected p-values.

dexp %>% mutate(logFDR = 10glO(FDR), .keep="none")

A tibble: 15,926 x 1
logFDR
<dbl>
-2.55
-1.11
-0.0735
-0.166
-2.42
-1.73
-0.100
-2.90
-0.320
-0.158
i 15,916 more rows

© W oo N O Ul B WIN

H =

Here, .keep="none" resulted in retaining only a single column ('logFDR").

Bioinformatics Training and Education Program

Joining and Transforming Data with dplyr

Mutating several variables at once

What if we want to transform all of our counts spread across multiple columns in acount using
scale(), which applies a z-score transformation? In this case we use across () within
mutate(), which has replaced the scoped verbs (mutate_ ifmutate_at, and
mutate_all).

Let's see this in action.

acount %>% mutate(across(where(is.numeric),scale))

A tibble: 64,102 x 9

Feature SRR1039508[,1] SRR1039509[,1] SRR1039512[,1] SRRIf

<chr> <dbl> <dbl> <dbl>
1 ENSGOOOO0000003 0.103 0.0527 0.0991
2 ENSGOOOOO0O0005 -0.0929 -0.100 -0.0821
3 ENSGOO0OOO000419 0.0418 0.0756 0.0468
4 ENSGOOOOOOO0457 -0.0179 -0.0281 -0.0275
5 ENSGOOO00000460 -0.0756 -0.0814 -0.0738
6 ENSGOOOOOO00938 -0.0929 -0.100 -0.0817
7 ENSGOO000O00971 0.845 1.16 1.20
8 ENSGOO0O00001036 0.321 0.262 0.278
9 ENSGOO000001084 0.0568 0.0295 0.0414
10 ENSGOOO0O0001167 0.0208 -0.0196 0.0142

i 64,092 more rows
i 4 more variables: SRR1039516 <dbl[,1]>, SRR1039517 <dbl[,1]>,
SRR1039520 <dbl[,1]>, SRR1039521 <dbl[,1]>

For further information on across (hitps./dplyr.tidyverse.org/articles/colwise.html), check out
this great tutorial here (https://www.rebeccabarter.com/blog/2020-07-09-across/).

Coercing variables with mutate

Mutate can also be used to coerce variables. Again, we need to use across () and where ().

#convert character vectors to factors
ex_coerce<-acount smeta %>% mutate(across(where(is.character),as.fac
Using rowwise () and mutate ()

mutate () works across columns, and it is not as easy to apply operations across rows for
some functions (e.g., mean).

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/articles/colwise.html
https://dplyr.tidyverse.org/articles/colwise.html
https://dplyr.tidyverse.org/articles/colwise.html
https://www.rebeccabarter.com/blog/2020-07-09-across/
https://www.rebeccabarter.com/blog/2020-07-09-across/

Joining and Transforming Data with dplyr

What if we wanted a new column that stored the mean of each row in our data frame?

Let's create a small data frame, and use mutate () to get the mean (). What happens when we
use mean as is?

df<-data.frame(A=c(1,2,3),B=c(4,5,6),C=c(7,8,9))

df
ABC
1147
2258
33609

df %>% mutate(D= mean(c(A,B,C)))

w N

w N R >
[<2 TN E 2 BN~ v o)
W 00 N M
Ul U1 U1 O

df %>% mutate(D = (A+B+C)/3)

ABCD
11474
22585
33696

The first example simply gives us the mean of A, B, and C (not row wise). The second example
gave us what we wanted due to vectorization (Read more on vectorization in references listed
here (https://stackoverflow.com/questions/49967559/why-is-r-dplyrmutate-inconsistent-with-
custom-functions)).

For the first example to work as expected, we can first group by row using rowwise () and
thenuse mutate().

df %>% rowwise() %>% mutate (D= mean(c(A,B,C)))

Bioinformatics Training and Education Program

https://stackoverflow.com/questions/49967559/why-is-r-dplyrmutate-inconsistent-with-custom-functions
https://stackoverflow.com/questions/49967559/why-is-r-dplyrmutate-inconsistent-with-custom-functions
https://stackoverflow.com/questions/49967559/why-is-r-dplyrmutate-inconsistent-with-custom-functions
https://stackoverflow.com/questions/49967559/why-is-r-dplyrmutate-inconsistent-with-custom-functions

142 Joining and Transforming Data with dplyr

A tibble: 3 x 4

Rowwise:
A B C D
<dbl> <dbl> <dbl> <dbl>
1 1 4 7 4
2 2 5 8 5
3 3 6 9 6

See more uses of rowwise () operations here (hitps.//dplyr.tidyverse.org/articles/rowwise.html).

What's next?

Now that you know the basics of working with R and the key operations to wrangle your data, it
is time to learn how to visualize your data. Part 3 of this course will introduce data visualization
with ggplot2. Stay tuned for upcoming course dates.

Acknowledgments

Some material from this lesson was either taken directly or adapted from the Intro to R and
RStudio for Genomics lesson provided by datacarpentry.org (htips://datacarpentry.org/
genomics-r-intro/01-introduction/index.html). Additional content was inspired by Chapter 13,
Relational Data, (https.//r4ds.had.co.nz/relational-data.html) from R for Data Science and Suzan
Baert's dplyr tutorials (https.//github.com/suzanbaert/Dplyr_Tutorials).

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/articles/rowwise.html
https://dplyr.tidyverse.org/articles/rowwise.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://r4ds.had.co.nz/relational-data.html
https://r4ds.had.co.nz/relational-data.html
https://r4ds.had.co.nz/relational-data.html
https://github.com/suzanbaert/Dplyr_Tutorials
https://github.com/suzanbaert/Dplyr_Tutorials

Introduction to Data

Visualization

144 Introduction to Data Visualization

R programming

Introduction to Data Visualization

This course is the third and final part of a larger 3-part course designed for novices:

This course focuses on the basics of ggplot2, a tidyverse package for data visualization.
Attendees will learn the building blocks needed to create publishable figures as well as tips and
tricks to make plotting easier.

Lessons

1. January 6, 2026 - Introduction to ggplot2 for R Data Visualization

2. January 8, 2026 - Plot Customization with ggplot2

3. January 13, 2026 - From Data to Display: Crafting a Publishable Plot

4. January 15, 2026 - Recommendations and Tips for Creating Effective Plots with ggplot2

Prerequisites

This course is recommended for attendees familiar with the skills learned in Part 1: Getting
Started with R (https.//bioinformatics.ccr.cancer.gov/docs/r_for_novices/
Getting_Started_with_R/). Attendees will also benefit from skills learned in Part2: Introduction to
Data Wrangling (https://bioinformatics.ccr.cancer.gov/btep/courses/introductory-r-for-novices-
introduction-to-data-wrangling).

Course materials

We will use R on Biowulf for this course to avoid issues with R and package installations. To use
R on Biowulf, you must have a NIH HPC account. If you do not have a NIH HPC (Biowulf)
account, this course can be taken using a local R installation. However, we will not be able to
troubleshoot package installation issues during class. Additionally, because we will use
packages belonging to the tidyverse (https.//www.tidyverse.org/), you will need to install these
packages using install.packages("tidyverse") prior to the first lesson if you are not
using R on Biowulf.

Get the Data

The data used in this course can be downloaded here. To use these files, you should unzip
data.zip and add it to your working directory.

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/
https://bioinformatics.ccr.cancer.gov/btep/courses/introductory-r-for-novices-introduction-to-data-wrangling
https://bioinformatics.ccr.cancer.gov/btep/courses/introductory-r-for-novices-introduction-to-data-wrangling
https://bioinformatics.ccr.cancer.gov/btep/courses/introductory-r-for-novices-introduction-to-data-wrangling
https://bioinformatics.ccr.cancer.gov/btep/courses/introductory-r-for-novices-introduction-to-data-wrangling
https://bioinformatics.ccr.cancer.gov/btep/courses/introductory-r-for-novices-introduction-to-data-wrangling
https://www.tidyverse.org/
https://www.tidyverse.org/

145 Introduction to ggplot2 for R Data Visualization

Introduction to ggplot2 for R Data
Visualization

Learning Objectives

1. Identify and describe the core components of a ggplot2 plot, including data, aesthetics,
and geometric layers.

2. Learn the grammar of graphics for plot construction.

3. Construct basic plots in ggplot2 by mapping variables to aesthetics and adding simple
geometric layers.

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to
NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to
connect: https://hpcondemand.nih.gov/ (https.//hpcondemand.nih.gov/). Then follow the
instructions outlined here (https.//bioinformatics.ccr.cancer.gov/docs/r_for_novices/
Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemana).

Why use R for Data Visualization?

Learning R and associated plotting packages is a great way to generate publishable figures in
a reproducible fashion.

With R you can:

1. Create simple or complex figures.

2. Create high resolution figures.

3. Generate scripts that can be reused to create the same or similar plot.

Why not use Excel for data visualization?

Excel is a great program for managing data in a spreadsheet. However, it isn't great for working with "big data".
Large data sets are difficult to work with, and resulting plots are generally not publishable due to a low resolution.
Learning R and associated plotting packages is a great way to generate publishable figures in a reproducible
fashion. Using R will not only keep you from accidentally editing your data, but it will also allow you to generate
scripts that can be viewed later or reused to generate the same plot using different data. This will keep you from
having to rely on your memory when wondering what data was used or how a plot was generated.

ggplot2 is an R graphics package from the tidyverse collection. It allows the user to create
informative plots quickly by using a 'grammar of graphics' implementation, which is described
as "a coherent system for describing and building graphs" (R4DS). The power of this package is

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand
https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand

Introduction to ggplot2 for R Data Visualization

that plots are built in layers and few changes to the code result in very different outcomes. This
makes it easy to reuse parts of the code for very different figures.

Being a part of the tidyverse collection, ggplot2 works best with data frames (tidy data), which
you should already be accustomed to.

To begin plotting, let's load our tidyverse library.

#load libraries
library(tidyverse) # Tidyverse automatically loads ggplot2

-- Attaching core tidyverse packages ------------------------ tidyve
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot2 3.5.2 v tibble 3.3.0

v lubridate 1.9.4 v tidyr 1.3.1

vV purrr 1.0.4

-- Conflicts ----------------"-~----~-~--"-~“~-"-"-~"~“--~"~~-~-"-~-~--- tidyverse_co

x dplyr::filter () masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-1lib.org/>) to for«

Example Data

We also need some data to plot, so if you haven't already, let's load the data we will need for
this lesson.

Getting the Data

If you have not already done so, please download the data for this course from here and unzip it to your working
directory.

If you are using RStudio on Biowulf, you can use the following steps to download and unzip the data directly to your
working directory.

e Open the "Terminal" in RStudio (See the tab next to "Console").

® Make sure you are in your working directory. You can check this by typing pwd and hitting enter. If you are
not in your working directory, you can change to it using the cd command. For example, if your working
directory is /data/username/, you would type cd /data/username/ and hit enter.

® Download the data using the wget command:
wget https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Data Visualizat

® Unzip the data using the unzip command:

Bioinformatics Training and Education Program

Introduction to ggplot2 for R Data Visualization

unzip data.zip

Alternatively, you can download the data to your local machine and then upload it to your working directory in
RStudio using the "Upload" button in the "Files" tab.

#scaled_counts data
scaled counts<-
read _delim("./data/filtlowabund _scaledcounts airways.txt")

Rows: 127408 Columns: 18

-- Column specification ---------------"----- - .
Delimiter: "\t"

chr (11): feature, SampleName, cell, dex, albut, Run, Experiment, Sai
dbl (6): sample, counts, avgLength, TMM, multiplier, counts_scaled
1lgl (1): .abundant

i Use “spec() to retrieve the full column specification for this da
i Specify the column types or set “show col types = FALSE® to quiet -

dexp<-read _delim("./data/diffexp _results edger_ airways.txt")

Rows: 15926 Columns: 10

-- Column specification ------------------—“- - -
Delimiter: "\t"

chr (4): feature, albut, transcript, ref _genome

dbl (5): logFC, 1ogCPM, F, PValue, FDR

1gl (1): .abundant

i Use “spec() to retrieve the full column specification for this da
i Specify the column types or set “show col types = FALSE® to quiet -

The example data we will use for today's lesson were generated from data available in the
Bioconductor package airway (https./bioconductor.org/packages/release/data/experiment/
html/airway.html), which "provides a RangedSummarizedExperiment object of read counts in
genes for an RNA-Seq experiment on four human airway smooth muscle cell lines treated with
dexamethasone" (https://bioconductor.org/packages/release/data/experiment/html/airway.htmi)
and reported in Himes et al. (2014) (https.//oubmed.ncbi.nim.nih.gov/24926665/).

In this experiment, the authors compared transcriptomic differences in primary human airway
smooth muscle cell lines treated with dexamethasone, a common therapy for asthma. Each cell
line included a treated and untreated negative control resulting in a total sample size of 8.

Bioinformatics Training and Education Program

https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/

Introduction to ggplot2 for R Data Visualization

Practice Data

There are a number of built-in data sets available for practicing with ggplot2. Check these out
here (https.//ggplot2.tidyverse.org/reference/#data)

For example, mtcars is commonly used in ggplot2 documentation:

ggplot (mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth ()

“geom_smooth()" using method = 'loess' and formula = 'y ~ x'
40-

30-

hwy

20~

displ

Occasionally, | will pull in practice data to demonstrate specific aspects of ggplot?2.

The ggplot2 template

The following represents the basic ggplot2 template.

Bioinformatics Training and Education Program

https://ggplot2.tidyverse.org/reference/#data
https://ggplot2.tidyverse.org/reference/#data

149 Introduction to ggplot2 for R Data Visualization
ggplot(data = <DATA>) +
<GEOM_FUNCTION> (mapping = aes(<MAPPINGS>))
We need three basic components to create a plot:

e data we want to plot
e geom function(s)
* mapping aesthetics

Notice the + symbol following the ggplot () function. This symbol will precede each additional
layer of code for the plot, and it is important that it is placed at the end of the line. More on
geom functions and mapping aesthetics to come.

Let's see this template in practice.

We will examine the relationship between the total transcript sums per sample (total reads) and
the number of recovered transcripts per sample.

We can generate these data using

sCc <- scaled counts |> group by(dex, SampleName) |>
summarize (Num_transcripts=sum(counts>100),TotalCounts=sum(counts))

“summarise () has grouped output by 'dex'. You can override using th
argument.

SC

H*

A tibble: 8 x 4
Groups: dex [2]
dex SampleName Num_transcripts TotalCounts

<chr> <chr> <int> <dbl>
1 trt GSM1275863 10768 18783120
2 trt GSM1275867 10051 15144524
3 trt GSM1275871 11658 30776089
4 trt GSM1275875 10900 21135511
5 untrt GSM1275862 11177 20608402
6 untrt GSM1275866 11526 25311320
7 untrt GSM1275870 11425 24411867
8 untrt GSM1275874 11000 19094104

Let's plot

Bioinformatics Training and Education Program

150 Introduction to ggplot2 for R Data Visualization

ggplot (data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts))

3.0e+07 -
[]

2.5e+07 -
] °
C
>
[}
O
8
o
l—

[)
[]
2.0e+07 -
[]
[]
1.5e+07- ®
10000 10500 11000 11500

Num_transcripts

We can easily see that there is a relationship between the number of reads per sample and the
total transcripts recovered per sample. ggplot2 default parameters are great for exploratory
data analysis. But, with only a few tweaks, we can make some beautiful, publishable figures.

What did we do in the above code?

The first step to creating this plot was initializing the ggplot object using the function ggplot ().
Remember, we can look further for help using ?ggplot (). The function ggplot () takes data,
mapping, and further arguments. However, none of these need to actually be provided at the
initialization phase, which creates the coordinate system from which we build our plot. But,
typically, you should at least call the data at this point.

The data we called was from the data frame sc, which we created above. Next, we provided a
geom function (geom_point()), which created a scatter plot. This scatter plot required
mapping information, which we provided for the x and y axes. More on this in a moment.

Let's break down the individual components of the code.

Bioinformatics Training and Education Program

151 Introduction to ggplot2 for R Data Visualization

#What does running ggplot() do?
ggplot(data=sc)

#What about just running a geom function?
geom_point(data=sc,aes(x=Num_transcripts, y = TotalCounts))

mapping: x = ~Num_transcripts, y = ~TotalCounts
geom_point: na.rm = FALSE

stat_identity: na.rm = FALSE

position_identity

#what about this

ggplot() +
geom_point(data=sc,aes(x=Num_transcripts, y = TotalCounts))

Bioinformatics Training and Education Program

152 Introduction to ggplot2 for R Data Visualization

3.0e+07 -
[]
2.5e+07 -
[2] []
-
ey
>
[e]
)
S
(o]
[l
[]
[]
2.0e+07 -
[]
[]
1.5e+07- ®
10000 10500 11000 11500

Num_transcripts

Geom functions

A geom is the geometrical object that a plot uses to represent data. People often
describe plots by the type of geom that the plot uses. --- R4DS (htips./
r4ds.had.co.nz/data-visualisation. html#geometric-objects)

There are multiple geom functions that change the basic plot type or the plot representation.

® scatter plots (geom_point()),

® line plots (geom_1ine(),geom_path()),

® bar plots (geom_bar (), geom_col()),

® line modeled to fitted data (geom_smooth ()),

® heat maps (geom_tile()) (Tip: Use ComplexHeatmap or pheatmap),
® geographic maps (geom_polygon()), etc.

ggplot2 provides over 40 geoms, and extension packages provide even more (see
https://exts.ggplot2.tidyverse.org/gallery/ (https.//exts.ggplot2.tidyverse.org/
gallery/) for a sampling). The best way to get a comprehensive overview is the
ggplot2 cheatsheet, which you can find at https://posit.co/resources/cheatsheets/
(https.//posit.co/resources/cheatsheets/). --- RADS (https.//r4ds.had.co.nz/data-
visualisation.html)

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html

153 Introduction to ggplot2 for R Data Visualization

You can also see a number of options pop up when you type geom into the console, or you can
look up the ggplot2 documentation in the help tab. For more detailed reference pages and
examples, see the ggplot2 website reference pages (https://ggplot2.tidyverse.org/reference/
index.html).

Create a line plot

We can see how easy it is to change the way the data is plotted. Let's plot the same data using
geom_line().

ggplot(data=sc) +
geom_line(aes (x=Num_transcripts, y = TotalCounts))

3.0e+07 -

2.5e+07 -

TotalCounts

2.0e+07 -

1.5e+07 -

10000 10500 11000 11500
Num_transcripts

Create a box plot

Let's plot the same data using geom_boxplot (). A boxplot (hitps://www.data-to-viz.com/
caveal/boxplot.html) can be used to summarize the distribution of a numeric variable across
groups.

ggplot(data=sc) +

Bioinformatics Training and Education Program

https://ggplot2.tidyverse.org/reference/index.html
https://ggplot2.tidyverse.org/reference/index.html
https://ggplot2.tidyverse.org/reference/index.html
https://ggplot2.tidyverse.org/reference/index.html
https://www.data-to-viz.com/caveat/boxplot.html
https://www.data-to-viz.com/caveat/boxplot.html
https://www.data-to-viz.com/caveat/boxplot.html
https://www.data-to-viz.com/caveat/boxplot.html

154 Introduction to ggplot2 for R Data Visualization

geom_boxplot(aes(x=dex, y = TotalCounts))

3.0e+07 -

2.5e+07 -

TotalCounts

2.0e+07 -

1.5e+07 -

trt untrt
dex

Note

This time we also modified the x argument.

Mapping and aesthetics (aes())

The geom functions require a mapping argument. The mapping argument includes the aes ()
function, which "describes how variables in the data are mapped to visual properties
(aesthetics) of geoms" (ggplot2 R Documentation). If not included it will be inherited from the
ggplot () function.

An aesthetic is a visual property of the objects in your plot.---R4DS (htips://
r4ds.had.co.nz/data-visualisation.htm)

Mapping aesthetics include some of the following:
1. the x and y data arguments

2. shapes

3. color

4. Aill

5. size

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html

155 Introduction to ggplot2 for R Data Visualization

6. linetype
7. alpha

This is not an all encompassing list. You can add multiple aesthetics to a plot to represent
different variables.
Map a Color to a Variable

Let's return to our plot above. Is there a relationship between treatment ("dex") and the number
of transcripts or total counts?

#adding the color argument to our mapping aesthetic
ggplot(data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,color=dex))

3.06+07 -
[]
2.56+07 -
[72] []
€ dex
3
O e trt
(0]
° ® untrt
[t
[]
[]
2.0e+07 -
[]
o
1.5e+07- ¢
10000 10500 11000 11500

Num_transcripts

There is potentially a relationship. ASM cells treated with dexamethasone in general have lower
total numbers of transcripts and lower total counts.

Notice how we changed the color of our points to represent a variable, in this case. To do this,
we set color equal to 'dex' within the aes () function. This mapped our aesthetic, color, to a
variable we were interested in exploring ("dex"). Aesthetics that are not mapped to our

Bioinformatics Training and Education Program

156 Introduction to ggplot2 for R Data Visualization

variables are placed outside of the aes() function. These aesthetics are manually
assigned and do not undergo the same scaling process as those within aes ().

For example,

#map the shape aesthetic to the variable "dex"
#use the color purple across all points (NOT mapped to a variable)
ggplot(data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,shape=dex),
color="purple")

3.06+07 -
A
2.5e+07 -
[72) A
€ dex
3
&) o it
©
2 A untrt
=
[]
A
2.0e+07 -
A
[]
1.5e+07- ®
10000 10500 11000 11500

Num_transcripts

We can also see from this that 'dex' could be mapped to other aesthetics. In the above
example, we see it mapped to shape rather than color. By default, ggplot2 will only map six
shapes at a time, and if your number of categories goes beyond 6, the remaining groups
will go unmapped. This is by design because it is hard to discriminate between more than six
shapes at any given moment. This is a clue from ggplot2 that you should choose a different
aesthetic to map to your variable. However, if you choose to ignore this functionality, you can
manually assign more than six shapes (https.//r-graphics.org/RECIPE-SCATTER-
SHAPES.htmls).

We could have just as easily mapped it to alpha, which adds a gradient to the point visibility by
category.

Bioinformatics Training and Education Program

https://r-graphics.org/RECIPE-SCATTER-SHAPES.htmls
https://r-graphics.org/RECIPE-SCATTER-SHAPES.htmls
https://r-graphics.org/RECIPE-SCATTER-SHAPES.htmls
https://r-graphics.org/RECIPE-SCATTER-SHAPES.htmls

157 Introduction to ggplot2 for R Data Visualization

#map the alpha aesthetic to the variable "dex"
#use the color purple across all points (NOT mapped to a variable)
ggplot(data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,alpha=dex),
color="purple") #note the warning.

Warning: Using alpha for a discrete variable is not advised.

3.0e+07 -
[]

256407 -
[72] [)
< dex
3
O trt
g ® untrt
'—

[]
2.0e+07 -
[]
1.5e+07 -
10000 10500 11000 11500

Num_transcripts

Or we could map it to size. There are multiple options, so feel free to explore a little with your
plots.

Defaults

Notice that the assignment of color, shape, or alpha to our variable was automatic, with a unique aesthetic level
representing each category (i.e., 'Dexamethasone’, 'none') within our variable. Most of what we see on this plot is
auto generated with defaults (e.g., Assigned colors, legend, axis titles, plot background, tick marks and labels) and
we can change these defaults, for example, what colors are used, by adding additional layers to our code.

R objects can also store figures

As we have discussed, R objects are used to store things created in R to memory. This includes plots created with

ggplot2.

Bioinformatics Training and Education Program

158 Introduction to ggplot2 for R Data Visualization

scatter_plot<-ggplot(data=sc) +
geom_point (aes(x=Num_transcripts, y = TotalCounts,
color=dex))

scatter_plot

3.0e+07 -
[]
2.5e+07 -
[72] o
€ dex
3
&) o trt
"g ® untrt
l—
[]
[]
2.06+07 -
[]
[]
1.5e+07- ©
10000 10500 11000 11500

Num_transcripts

We can add additional layers directly to our object.

How can we modify colors?

Colors are assigned to the fill and color aesthetics in aes (). We can change the default colors
by providing an additional layer to our figure. To change the color, we use the scale_color

functions:

® scale _color_manual(),
® scale color_brewer () (https://r-graph-gallery.com/38-rcolorbrewers-palettes.html),

®*scale_color_grey(), etc.

Example:

ggplot(sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,

Bioinformatics Training and Education Program

https://r-graph-gallery.com/38-rcolorbrewers-palettes.html
https://r-graph-gallery.com/38-rcolorbrewers-palettes.html
https://r-graph-gallery.com/38-rcolorbrewers-palettes.html

159 Introduction to ggplot2 for R Data Visualization

color=dex)) +
scale color _manual(values=c("red","black"),
labels=c('treated', 'untreated'))

[]
3.06+07 -
[)
2.5e+07 -
[7)] []
< dex
3
8 ® treated
(]
° ® untreated
=
[]
[]
2.0e+07 -
[)
[]
1.5e+07- ©
10000 10500 11000 11500

Num_transcripts

Similarly, if we want to change the fill, we would use the scale_fill options. To modify

shapes, use scale_shape options.

Additional arguments

We can modify the behavior of any function by adding additional arguments (if available). Here we changed the
color labels in the legend using the 1abels argument. The labels must be in the correct order. You do not want to
mislabel the legend.

Order of Categorical Variables

By default, ggplot2 will alphabetize categorical variables. If you want to change the order of a categorical
variable, you can do so by converting the variable to a factor and specifying the levels in the order you want them to
appear. The package forcats has a number of functions to help you work with factors. See the forcats
documentation (https.//forcats.tidyverse.org/) for more information.

Bioinformatics Training and Education Program

https://forcats.tidyverse.org/
https://forcats.tidyverse.org/
https://forcats.tidyverse.org/

Introduction to ggplot2 for R Data Visualization

More on Colors

There are a number of ways to specify the color argument including by name, number, and hex
code. Here (https.//r-graph-gallery.com/ggplot2-color.html) is a great resource from the R Graph
Gallery (https.//www.r-graph-gallery.com/index.html) for assigning colors in R.

There are also a number of complementary packages in R that expand our color options.

® viridis (https://cran.r-project.org/web/packages/viridis/index.html) - provides colorblind
friendly palettes.

® randomcoloR (https://cran.r-project.org/web/packages/randomcoloR/index.html) -
generates large numbers of random colors.

® Paletteer (https://github.com/EmilHvitfeldt/paletteer) - contains a comprehensive set of
color palettes to load the palettes from multiple packages all at once.

library(viridis)
Loading required package: viridisLite

ggplot(sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,
color=dex)) +
scale color_viridis(discrete=TRUE, option="viridis")

Bioinformatics Training and Education Program

https://r-graph-gallery.com/ggplot2-color.html
https://r-graph-gallery.com/ggplot2-color.html
https://www.r-graph-gallery.com/index.html
https://www.r-graph-gallery.com/index.html
https://www.r-graph-gallery.com/index.html
https://cran.r-project.org/web/packages/viridis/index.html
https://cran.r-project.org/web/packages/viridis/index.html
https://cran.r-project.org/web/packages/viridis/index.html
https://cran.r-project.org/web/packages/randomcoloR/index.html
https://cran.r-project.org/web/packages/randomcoloR/index.html
https://cran.r-project.org/web/packages/randomcoloR/index.html
https://github.com/EmilHvitfeldt/paletteer
https://github.com/EmilHvitfeldt/paletteer
https://github.com/EmilHvitfeldt/paletteer

161 Introduction to ggplot2 for R Data Visualization

3.0e+07 -

2.5e+07 -
2
c dex
3
O ® ftrt
% untrt
[l

°
2.0e+07 -
°
1.5e+07- ®
10000 10500 11000 11500
Num_transcripts

A way to add variables to a plot beyond mapping them to an aesthetic is to use facets or
subplots. There are two primary functions to add facets, facet _wrap() and facet grid().
If faceting by a single variable, use facet _wrap (). If multiple variables, use facet _grid().
The first argument of either function is a formula, with variables separated by a ~ (See below).
Variables must be discrete (not continuous). In newer versions of ggplot2, you can additionally
use vars () to select variables for faceting. See ? facet_wrap () for more information.

Using ~ in ggplot2

The ~ is used in R formulas to split the dependent or response variable from the independent variable(s). For more
information, see this explanation here. (https.//medium.com/anu-perumalsamy/what-does-mean-in-
r-18cecd1b223f#:~text="~(tilde)' %20is % 20an % 20operator % 20that % 20splits % 20the % 20left, the % 20set % 2001 % 20feai

{target=_blank})

In facet_wrap() / facet_grid() the ~is used to generate a formula specifying rows by columns.

Let's return to the airway count data to see how facets are useful. Here, we are going to
compare scaled and unscaled count data using a density plot.

A density plot shows the distribution of a numeric variable. --- R Graph Gallery
(https://r-graph-gallery.com/density-plot.html)

Bioinformatics Training and Education Program

https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text='~(tilde)'%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.)%7Btarget=_blank%7D
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text='~(tilde)'%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.)%7Btarget=_blank%7D
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text='~(tilde)'%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.)%7Btarget=_blank%7D
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text='~(tilde)'%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.)%7Btarget=_blank%7D
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text='~(tilde)'%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.)%7Btarget=_blank%7D
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text='~(tilde)'%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.)%7Btarget=_blank%7D
https://r-graph-gallery.com/density-plot.html
https://r-graph-gallery.com/density-plot.html
https://r-graph-gallery.com/density-plot.html
https://r-graph-gallery.com/density-plot.html

162

Introduction to ggplot2 for R Data Visualization

In our example data, density data, the gene counts were scaled to account for technical
and composition differences using the trimmed mean of M values (TMM) from EdgeR (Robinson

and Oshlack 2010), but non-normalized values remained for comparison. Thus, we can
compare scaled vs unscaled counts by sample using faceting.

Let's import and examine the data with head ().

density data<-read.csv("./data/density data.csv",

head(density data)

O Ul W N O Ul W N

O Ul W N

feature sample
ENSGOOO0O000003
ENSGOOO00000003
ENSGOO0O0O000419
ENSGOO0O0000419
ENSGOO0O0000457
ENSGOO0O0000457

Experiment
SRX384345
SRX384345
SRX384345
SRX384345
SRX384345
SRX384345

multiplier

1.415149

1.415149

1.415149

1.415149

1.415149

1.415149

stringsAsFactors=TRUE)

SampleName

508
508
508
508
508
508

GSM1275862
GSM1275862
GSM1275862
GSM1275862
GSM1275862
GSM1275862

Sample
SRS508568
SRS508568
SRS508568
SRS508568
SRS508568
SRS508568

BioSample
SAMNO2422669
SAMNG2422669
SAMNG2422669
SAMNG2422669
SAMNG2422669
SAMNO2422669

source abundance

counts
counts_scaled
counts
counts scaled
counts
counts_scaled

679.
960.
467 .
660.
260.
367.

0000
8864
0000
8748
0000
9388

cell
N61311
N61311
N61311
N61311
N61311
N61311

dex
untrt
untrt
untrt
untrt
untrt
untrt

albut

Run avy

untrt
untrt
untrt
untrt
untrt
untrt

SRR1039508
SRR1039508
SRR1039508
SRR1039508
SRR1039508
SRR1039508

transcript ref_genome .abundant

TS
TS

PANG
PAN6
DPM1
DPM1

SCYL3
SCYL3

hg38
hg38
hg38
hg38
hg38
hg38

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

Notice the source column, which indicates whether the counts are scaled or unscaled. These
data are in long vs wide format. You may need to reshape the data to represent the information

in a specific way with ggplot2. Here, we can use this variable to facet our density plot.

#plot
ggplot (data= density data)+ #initialize ggplot
geom_density(aes(x=abundance, color=SampleName)) + #call density p
facet _wrap(~source) + #use facet wrap
scale x loglO()#scales the x axis using a base-10 log transformati«

Bioinformatics Training and Education Program

163 Introduction to ggplot2 for R Data Visualization

Warning in scale x 1oglO(): log-10 transformation introduced infinit

Warning: Removed 140 rows containing non-finite outside the scale rai
("stat_density()).

counts counts_scaled

SampleName

GSM1275862
GSM1275863
GSM1275866
GSM1275867
GSM1275870
GSM1275871
GSM1275874
GSM1275875

density

1e+01 16+03 16+05 1e+01 16+03 1e+05
abundance

The distributions of sample counts did not differ greatly between samples before scaling, but
regardless, we can see that the distributions are more similar after scaling.

Here, faceting allowed us to visualize multiple features of our data. We were able to see count
distributions by sample as well as normalized vs non-normalized counts.

Note the help options with ?facet_wrap (). How would we make our plot facets vertical rather
than horizontal?

ggplot (data= density data)+ #initialize ggplot
geom_density(aes(x=abundance,
color=SampleName)) + #call density plot geom
facet _grid(~source, ncol=1) + #use the ncol argument
scale x logl0O()

Bioinformatics Training and Education Program

164 Introduction to ggplot2 for R Data Visualization

Warning in scale x 1oglO(): log-10 transformation introduced infinit

Warning: Removed 140 rows containing non-finite outside the scale rai
("stat_density()).

04-
0.2- S_ampIeName
GSM1275862
GSM1275863
200" | esmi27586s
2]
S counts_scaled || GSM1275867
© GSM1275870
GSM1275871
0.4- GSM1275874
GSM1275875
02-
0.0-
1e+01 1e+03 1e+05
abundance

Building upon our template

This is the grammar of graphics. Adding layers to create unique figures.

ggplot(data = <DATA>) +
<GEOM_FUNCTION>(
mapping = aes (<MAPPINGS>),
) +
<FACET_FUNCTION>

Note that there are a lot of invisible (default) layers that often go into each ggplot2, and there
are ways to customize these layers. See this chapter (hiips://r4ds.had.co.nz/data-
visualisation.himl#the-layered-grammar-of-graphics) from R for Data Science for more
information on the grammar of graphics.

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html#the-layered-grammar-of-graphics
https://r4ds.had.co.nz/data-visualisation.html#the-layered-grammar-of-graphics
https://r4ds.had.co.nz/data-visualisation.html#the-layered-grammar-of-graphics
https://r4ds.had.co.nz/data-visualisation.html#the-layered-grammar-of-graphics

165 Introduction to ggplot2 for R Data Visualization
Labels, legends, scales, and themes

How do we ultimately get our figures to a publishable state? The bread and butter of pretty plots
really falls to the additional non-data layers of our ggplot2 code. These layers will include code
to label the axes, scale the axes, and customize the legends and theme (htips://
ggplot2.tidyverse.org/reference/theme.himl). We will be working with these additional plot
features in the weeks to come, so stay tuned.

Resource list

. ggplot2 cheatsheet (https.//ggplot2.tidyverse.org/index.html#cheatsheet)

. The R Graph Gallery (https.//www.r-graph-gallery.cormy)

. The R Graphics Cookbook (https.//r-graphics.org/recipe-quick-bar)

. ggplot2 extensions (https.//exts.ggplot2.tidyverse.org/gallery/)

. From Data to Viz (https.//www.data-to-viz.comy/)

. Other Resources (https.//ggplot2.tidyverse.org/index. htmi#learning-ggplot2)

. ggplot2: Elegant Graphics for Data Analysis (https.//ggplot2-book.org/index.html)

~N OO O A WD =

Acknowledgements

Material from this lesson was inspired by Chapter 3 of R for Data Science (htips./
r4ds.had.co.nz/data-visualisation.html) and from "Data Visualization", Introduction to data
analysis with R and Bioconductor (https://carpentries-incubator.github.io/bioc-intro/40-
visualization/index.html), which is part of the Carpentries Incubator.

Bioinformatics Training and Education Program

https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/index.html#cheatsheet
https://ggplot2.tidyverse.org/index.html#cheatsheet
https://www.r-graph-gallery.com/
https://www.r-graph-gallery.com/
https://r-graphics.org/recipe-quick-bar
https://r-graphics.org/recipe-quick-bar
https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://www.data-to-viz.com/
https://www.data-to-viz.com/
https://ggplot2.tidyverse.org/index.html#learning-ggplot2
https://ggplot2.tidyverse.org/index.html#learning-ggplot2
https://ggplot2-book.org/index.html
https://ggplot2-book.org/index.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html

166 Plot Customization with ggplot2

Plot Customization with ggplot2

Learning Objectives

1. Review the grammar of graphics template.

2. Understand the statistical transformations inherent to geoms.
3. Customize figures with labels, legends, scales, and themes.
4. Save plots with ggsave ().

Our grammar of graphics template

Last lesson we discussed the three basic components of creating a ggplot2 plot: the data,
one or more geoms, and aesthetic mappings.

ggplot(data = <DATA>) +
<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

But, we also learned of other features that greatly improve our figures (e.g., facets), and today
we will be expanding our ggplot2 template even further to include:
one or more datasets,

one or more geometric objects that serve as the visual representations of the
data, — for instance, points, lines, rectangles, contours,

descriptions of how the variables in the data are mapped to visual properties
(aesthetics) of the geometric objects, and an associated scale (e. g., linear,
logarithmic, rank),

a facet specification, i.e. the use of multiple similar subplots to look at
subsets of the same data,

one or more coordinate systems,

optional parameters that affect the layout and rendering, such text size,
font and alignment, legend positions.

statistical summarization rules

--—-(Holmes and Huber, 2021 (https.//web.stanford.edu/class/bios221/book/03-
chap.html#the-grammar-of-graphics))

Bioinformatics Training and Education Program

https://web.stanford.edu/class/bios221/book/03-chap.html#the-grammar-of-graphics
https://web.stanford.edu/class/bios221/book/03-chap.html#the-grammar-of-graphics
https://web.stanford.edu/class/bios221/book/03-chap.html#the-grammar-of-graphics
https://web.stanford.edu/class/bios221/book/03-chap.html#the-grammar-of-graphics

167 Plot Customization with ggplot2

ggplot(data = <DATA>) +
<GEOM_FUNCTION> (
mapping = aes(<MAPPINGS>),
stat = <STAT>
) +
<FACET_FUNCTION> +
<COORDINATE SYSTEM> +
<THEME>

Loading the libraries

To begin plotting, let's load our tidyverse library. This includes ggplot2, which we will be
using for plotting.

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyve
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.1 v stringr 1.5.2

v ggplot2 4.0.0 v tibble 3.3.0

v lubridate 1.9.4 v tidyr 1.3.1

vV purrr 1.1.0

== CONTLIICES ====cccccccccsccccscccoscccoscocoscocosasas tidyverse co

x dplyr::filter () masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to for«

Importing the data

We also need some data to plot, so if you haven't already, let's load the data we will need for
this lesson.

#scaled counts
scaled counts <-
read.delim("./data/filtlowabund_scaledcounts_ airways.txt",
as.is=TRUE)

#differential expression results

dexp <- read.delim("./data/diffexp results edger_ airways.txt",
as.i1s=TRUE)

Bioinformatics Training and Education Program

168 Plot Customization with ggplot2

#transcript counts greater than 100
SC <- read.csv("./data/sc.csv")

Using Multiple Geoms per Plot

In Lesson 1, we discovered that a geom, the geometrical representation of the plot, is required
to create a visualization with ggplot2. This is true, but keep in mind that we can use 1 or more

geoms to build our plot.

Because we build plots using layers in ggplot2. We can add multiple geoms to a plot to
represent the data in unique ways. Let's see how this works.

Let's combine a scatter plot with a line plot.
ggplot(data=sc) +

geom_point(aes(x=Num_transcripts, y = TotalCounts,color=dex)) +
geom_line(aes(x=Num_transcripts, y = TotalCounts,color=dex))

3.0e+07 -
2.5e+07 -
0
c dex
3
O -0 trt
[
° ~&— untrt
[t
2.0e+07 -
1.5e+07 -
10000 10500 11000 11500

Num_transcripts

As you can see, we simply add a new geom, geom_1line () to add a line plot.

Global vs local aesthetics

Bioinformatics Training and Education Program

Plot Customization with ggplot2

To make our code more effective, we can put shared aesthetics in the ggplot function (ggplot ()). Aesthetics in the
ggplot () function are global aesthetics, and will be applied to all geoms in the plot. Aesthetics in the geom
functions are local aesthetics, and will only be applied to that specific geom.

Setting global aesthetics

ggplot(data=sc, aes(x=Num_transcripts, y = TotalCounts,color=dex)) +
geom_point() +
geom_Lline()

3.0e+07 -

2.5e+07 -
0
c dex
3
O -0 trt
g o untrt
l—

2.0e+07 -

1.5e+07 -

10000 10500 11000 11500

Num_transcripts

Geoms can be added in many different ways to create unique representations. Remember, that
the layers are ordered, and the order matters for adding new geoms.

Setting local aesthetics

We can plot different aesthetics per geom.

ggplot (data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,
color=SampleName)) +

Bioinformatics Training and Education Program

170 Plot Customization with ggplot2

geom_line(aes(x=Num_transcripts, y = TotalCounts,color=dex))

3.0e+07 -

SampleName
® (GSM1275862
® (GSM1275863
2.5e+07 - ® GSM1275866
® GSM1275867
GSM1275870
® GSM1275871
® GSM1275874
® (GSM1275875

TotalCounts
[]

2.0e+07 -
— trt

— untrt

1.5e+07 -

10000 10500 11000 11500
Num_transcripts

Subsetting data per geom

We can represent only a subset of data in one geom and not the other.

ggplot(data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,
color=SampleName)) +
geom_line(data=filter(sc,dex=="trt"),
aes(x=Num_transcripts, y = TotalCounts,color=dex))

Bioinformatics Training and Education Program

171 Plot Customization with ggplot2

3.0e+07 -

SampleName

® GSM1275862
2.5e+07 - ® (GSM1275863
® (GSM1275866
® GSM1275867
® GSM1275870
® GSM1275871

® (GSM1275874

TotalCounts

2.0e+07 - ® GSM1275875

— trt

1.5e+07 -

10000 10500 11000 11500
Num_transcripts

To get multiple legends for the same aesthetic, check out the CRAN package ggnewscale
(https.//eliocamp. github.io/ggnewscale/). Whereas, legends for different aesthetics can easily
be controlled with the scale and guide functions.

Statistical transformations

Many graphs, like scatterplots, plot the raw values of your dataset. Other graphs,
like bar charts, calculate new values to plot:

e bar charts, histograms, and frequency polygons bin your data and then plot
bin counts, the number of points that fall in each bin.

e smoothers fit a model to your data and then plot predictions from the model.

® boxplots compute a robust summary of the distribution and then display a
specially formatted box. The algorithm used to calculate new values for a
graph is called a stat, short for statistical transformation. --- R4DS (htips.//
r4ds.had.co.nz/data-visualisation.html#statistical-transformations)

Let's plot a bar graph using the data (sc).

#returns an error message. What went wrong?
ggplot(data=sc) +

Bioinformatics Training and Education Program

https://eliocamp.github.io/ggnewscale/
https://eliocamp.github.io/ggnewscale/
https://eliocamp.github.io/ggnewscale/
https://eliocamp.github.io/ggnewscale/
https://eliocamp.github.io/ggnewscale/
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations

172 Plot Customization with ggplot2

geom_bar (aes(x=Num_transcripts, y = TotalCounts))

Error in “geom_bar() :

! Problem while computing stat.

i Error occurred in the 1st layer.

Caused by error in “setup_params() :

! “stat_count()" must only have an x or y aesthetic.

An error was returned. What's the difference between stat identity and stat count?

ggplot (data=sc) +
geom_bar (aes(x=Num_transcripts, y = TotalCounts), stat="identity"

3e+07 -

2e+07 -
1e+07- I I

0e+00 -

TotalCounts

10000 10500 11000 11500
Num_transcripts

As we can see, stat="1identity" returns the raw data, stat="count" "counts the number
of cases at each x position". You should be aware of the default statistic used by a geom.

Let's look at another example. Here, we are looking at 4 genes of interest from our scaled

counts.

#filter our data to include 4 transcripts of interest
keep t<-c("CPD","EXT1","MCL1","LASP1")

Bioinformatics Training and Education Program

173

Plot Customization with ggplot2
interesting trnsc<-scaled counts %>%
filter(transcript %in% keep_ t)

#the default here is “stat count() , which requires only an x aesthe:
ggplot(data = interesting trnsc) +

geom_bar (mapping = aes(x =

transcript, y=counts scaled))

Error in “geom bar() :
! Problem while computing stat.
Error occurred in the 1st layer.

Caused by error in “setup_params() :

! “stat_count()" must only have an x or y aesthetic.

.i

#remove the y aesthetic

ggplot(data = interesting trnsc) +
geom_bar (mapping =

= aes(x = transcript))

8

6-
g
34"
o
2-
0-

CPD EXTA LASP1 MCL1
transcript

This is not a very useful figure, and probably not worth plotting. We could have gotten this info

using str (), as we know we only have 8 samples. However, the point here is that there are
default statistical transformations occurring with many geoms, and you can specify alternatives.

Bioinformatics Training and Education Program

174 Plot Customization with ggplot2

Let's change the stat parameter to "identity", and set a fill aesthetic to SampleName. This will

plot the raw values of the normalized counts rather than how many rows are present for each
transcript.

Note

Setting the color aesthetic in a bar plot results in a colored outline around the bar.

#defaulted to a stacked barplot
ggplot(data = interesting trnsc) +
geom_bar (mapping = aes(x = transcript,y=counts scaled,
fill=SampleName),
stat="1identity",color="black") +
facet _wrap(~dex)

trt untrt

40000 -

20000- IIII IIII

CPD EXT1 LASP1 MCL1 CPD EXT1 LASP1 MCL1
transcript

SampleName

GSM1275862
GSM1275863
GSM1275866
GSM1275867
GSM1275870
GSM1275871
GSM1275874
GSM1275875

counts_scaled

Notice that the output is stacked. What if we wanted the columns side by side?
We can again refer to our function arguments. In this case, we can modify position and set to

"dodge" (position="dodge"). We can add facets to additionally view by treatment ("dex").

#introducing the position argument, position="dodge"
ggplot(data = interesting_trnsc) +

Bioinformatics Training and Education Program

175 Plot Customization with ggplot2

geom_bar (mapping = aes(x = transcript,y=counts scaled,
fill=SampleName),
stat="1identity",color="black",position="dodge") +
facet _wrap(~dex)

trt untrt

CPD EXT1 LASP1 MCL1 CPD EXT1 LASP1 MCL1
transcript

15000 -

SampleName

[esmiz7sse2
[esmiz7s863
GSM1275866
GSM1275867
GSM1275870
GSM1275871
GSM1275874
GSM1275875

10000 -

counts_scaled

5000 -

How do we know what the default stat is for geom_bar()? Well, we could read the
documentation, ?geom_bar (). This is true of multiple geoms. The statistical transformation can
often be customized, so if the default is not what you need, check out the documentation to
learn more about how to make modifications. For example, you could provide custom mapping
for a box plot. To do this, see the examples section of the geom_boxplot () documentation.

geom_col()

If we read the documentation for geom_bar (), we see that there is an alternative function for when we want
stat="1identity" instead of stat="count". That function is geom_col(). By using geom_col, instead of
geom_bar, we avoid many of the problems we saw above.

For example,

ggplot(data = interesting_trnsc) +
geom_col(mapping = aes(x = transcript,y=counts_scaled,
fill=SampleName),
color="black",position="dodge") +
facet_wrap(~dex)

Bioinformatics Training and Education Program

176 Plot Customization with ggplot2

trt untrt

CPD

EXT1 LASP1 MCL1 CPD EXT1 LASP1 MCL1
transcript

15000 -

SampleName

. GSM1275862
GSM1275863
GSM1275866
GSM1275867
GSM1275870
GSM1275871
GSM1275874
GSM1275875

10000 -

counts_scaled

5000 -

Coordinate systems

ggplot2 uses a default coordinate system (the Cartesian coordinate system). This isn't super
important until we want to do something like make a map (See coord_quickmap()) or create
a pie chart (See coord_polar()).

When will we have to think about coordinate systems? We likely won't have to modify from
default in too many cases (see those above). The most common circumstance in which we will
likely need to change the coordinate system is in the event that we want to switch the x and y
axes (?coord_flip()) or if we want to fix our aspect ratio (?coord_fixed()). Fixing the
aspect ratio is useful when we want to ensure that one unit on the x-axis is the same length as
one unit on the y-axis.

#let's return to our bar plot above
#get horizontal bars instead of vertical bars

ggplot(data = interesting trnsc) +
geom_bar (mapping = aes(x = transcript,y=counts_scaled,
fill=SampleName) ,
stat="1identity",color="black",position="dodge") +
facet_wrap(~dex) +

Bioinformatics Training and Education Program

177 Plot Customization with ggplot2

coord _flip()

trt untrt
o .
SampleName
. GSM1275862
LASP1 - GSM1275863
s GSM1275866
P
§ GSM1275867
g GSM1275870
EXT1 - GSM1275871
GSM1275874
GSM1275875
h -
)) 1 1 1 1 1 1
0 5000 10000 15000 0 5000 10000 15000
counts_scaled
Note

In the case of a bar plot, coord_f11ip is no longer required to get this effect. We could instead switch the x and y
arguments. You may, however, be interested in using coord_f11p with a different geom in the future, so it is nice to
be aware of.

Labels, legends, scales, and themes

How do we ultimately get our figures to a publishable state? The bread and butter of pretty plots
really falls to the additional non-data layers of our ggplot2 code. These layers will include code
to label the axes, scale the axes, and customize the legends and theme (htips:/
ggplot2.tidyverse.org/reference/theme.htmi).

The default axes and legend titles come from the ggplot2 code. Let's return back to our simple
data set, sc, to demonstrate.

Bioinformatics Training and Education Program

https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html

178 Plot Customization with ggplot2

ggplot (data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
shape=21,size=2) +

scale fill manual(values=c("purple", "yellow"))
®

3.0e+07 -

2.5e+07 - °©
2 o
c dex
3
S ® ftrt
2 o untrt
[

(]
o
2.0e+07 -
- o
1.5e+07- @
10000 10500 11000 11500

Num_transcripts

In the above plot, the y-axis label ("TotalCounts") is the variable name mapped to the y
aesthetic, while the x-axis label ("Num_transcripts") is the variable name named to the x
aesthetic. The fill aesthetic was set equal to "dex", and so this became the default title of the fill
legend. We can change these labels using ylab (), x1lab (), or 1abs (), and guide () for the
legend.

ggplot(data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
shape=21,size=2) +
scale fill manual(values=c("purple", "yellow"),
labels=c('treated', 'untreated'))+
labs(x ="Recovered transcripts per sample",
y="Total sequences per sample")#add x and y labels

Bioinformatics Training and Education Program

179 Plot Customization with ggplot2

3.0e+07 -

Q@
£
o
B 2.5e+07-
—
o
g dex
»
8 @ treated
c
g O untreated
o °
T‘g o
5 2.0e+07 -
= o
)
1.5e+07- @
10000 10500 11000 11500

Recovered transcripts per sample

titles and subtitles

labs () can also be used to assign a title, subtitle, tags, and caption. See options with ? 1abs ().

Let's change the legend title.

ggplot(data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
shape=21,size=2) +
scale fill manual(values=c("purple", "yellow"),
labels=c('treated', 'untreated'))+
labs(x ="Recovered transcripts per sample",
y="Total sequences per sample") +
guides(fill = guide legend(title="Treatment"))

Bioinformatics Training and Education Program

180 Plot Customization with ggplot2

3.0e+07 -

Q@
g
o
B 2.5e+07-
5 o
o Treatment
7]
8 @ treated
C
g O untreated
o o
T‘g o
S 2.0e+07 -
= o
°
15e+07- @
10000 10500 11000 11500

Recovered transcripts per sample

Legend titles can be modified with guides (), labs (), or within the scale function. For
example, we could have also modified the legend title in scale_fill_manual() using the
name argument.

We can modify the axes scales of continuous variables using scale_x_continuous() and
scale_y continuous(). Discrete (categorical variable) axes can be modified using
scale x discrete() and scale_y discrete().

ggplot(data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
shape=21,size=2) +

scale fill manual(values=c("purple", "yellow"),
labels=c('treated', 'untreated'))+

labs(x ="Recovered transcripts per sample",

y="Total sequences per sample") +

guides(fill = guide legend(title="Treatment")) + #label the legend

scale_y continuous(breaks=seq(l.0e7, 3.5e7, by = 2e6),
limits=c(1.0e7,3.5e7)) #change breaks and limit:

Bioinformatics Training and Education Program

181 Plot Customization with ggplot2

3.4e+07 -

3.2e+07 -

QD 2.8e+07-

N
[«
]
+
o
gl
1

2.4e+07 - © Treatment

@ treated
2.2e+07 -

) O untreated
2.0e+07 -

1.8e+07 -

Total sequences per samp

1.6e+07 -
()

1.4e+07 -
1.2e+07 -
1.0e+07 -

10000 10500 11000 11500
Recovered transcripts per sample

library(scales)

Check out the scales (htips://scales.r-lib.org/) package to make nice axes labels.

Perhaps we want to represent these data on a logarithmic scale.

ggplot(data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
shape=21,size=2) +
scale fill manual(values=c("purple", "yellow"),
labels=c('treated', 'untreated'))+
labs(x ="Recovered transcripts per sample",
y="Total sequences per sample") +
guides(fill = guide legend(title="Treatment")) + #label the legend
scale_y continuous(trans="10gl0") #use the trans argument

Bioinformatics Training and Education Program

https://scales.r-lib.org/
https://scales.r-lib.org/

182 Plot Customization with ggplot2

)
3.0e+07 -
2 25e+07- ©
£ o
©
(%2}
o}
o Treatment
[%2]
8 @ treated
c)
g o O untreated
B 2.0e+07 -
(%]
© o
° °
|_
15e+07- @
10000 10500 11000 11500
Recovered transcripts per sample
Note

You could manually transform the data without transforming the scales. The figures would be the same, excluding
the axes labels. When you use the transformed scale (e.g., scale_y continuous(trans="1ogl0") or
scale_y_logl0()), the axis labels remain in the original data space. When the data is transformed manually, the
labels will also be transformed.

Finally, we can change the overall look of non-data elements of our plot (titles, labels, fonts,
background, grid lines, and legends) by customizing ggplot2 themes. Check out ?
ggplot2::theme (). For a list of available parameters. ggplot2 provides 8 complete themes,
with theme_gray () as the default theme.

Bioinformatics Training and Education Program

183 Plot Customization with ggplot2

Themes
Theme functions change the appearance of your plot.

1504 theme_bw() theme_light()
White background Light axes and grid
‘g"w' with grid lines ¢ lines

N l
0= — —
T T T T T
c d e P r —
f

150 4 theme_classic()
— 100 Classic theme, 4
g axes but no grid g

s0- lines

__

w
; : .
p r _A—_

- theme_dark() I theme_minimal()

theme_linedraw()
Only black lines

theme_void()
Empty theme, only
geoms are visible

count

Dark background Minimal theme, no
. theme_gray()

Grey background
10 (default theme)

for contrast - background
You can also create your own custom theme and then apply it to all figures in a plot.

Create a custom theme to use with multiple figures.

#Setting a theme
my theme <-
theme bw() +
theme (
#Remove the border around the plot
panel.border = element blank(),
Add the axis lines back in
axis.line = element line(),
#resize the major and minor grid lines
panel.grid.major = element line(size = 0.2),

Bioinformatics Training and Education Program

184 Plot Customization with ggplot2

panel.grid.minor = element line(size = 0.1),

#set the text size

text = element text(size = 12),

#Move the legend to the bottom

legend.position = "bottom",

#Angle the x axis text

axis.text.x = element text(angle = 30, hjust = 1, vjust = 1)

Warning: The “size® argument of “element line() 1is deprecated
as of ggplot2 3.4.0.
i Please use the “linewidth® argument instead.

ggplot (data=sc) +
geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
shape=21,size=2) +
scale fill _manual(values=c("purple", "yellow"),
labels=c('treated', 'untreated'))+
labs(x ="Recovered transcripts per sample",
y="Total sequences per sample") +
guides(fill = guide legend(title="Treatment")) + #label the legend
scale_y continuous(trans="10gl0") + #use the trans argument
my_ theme

Bioinformatics Training and Education Program

185 Plot Customization with ggplot2

(]
3.0e+07 1
<@
o
£ 2.56+07 °
» (@]
g
(7]
(0]
2 °
(0] (o]
3 2.0e+07
2 . 0
S
o
|_
15e+07{ @
\ 0 \ Q
\000 \060 '\\00 '\\50

Recovered transcripts per sample

Treatment @ treated O untreated

Saving plots (ggsave())

Finally, we have a quality plot ready to publish. The next step is to save our plot to a file. The
easiest way to do this with ggplot2 is ggsave (). This function will save the last plot that you
displayed by default. Look at the function parameters using ?ggsave ().

ggsave ("Plotl.png",width=5.5,height=3.5,units="in",dpi=300)

Acknowledgements

Material from this lesson was inspired by Chapter 3 of R for Data Science (hiips./
r4ds.had.co.nz/data-visualisation.html) and from a 2021 workshop entitled Introduction to Tidy
Transciptomics (https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/
tidytranscriptomics.html) by Maria Doyle and Stefano Mangiola.

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html

186 From Data to Display: Crafting a Publishable Plot

From Data to Display: Crafting a Publishable
Plot

Learning Objectives

1. Integrate previously learned ggplot2skills including data mapping, geoms, labels,
scales, and themes to construct a complete visualization workflow.

2. Design and produce a polished, publication-ready plot from start to finish, making
informed choices about plot type, aesthetics, and formatting.

For this exercise, we are going to use the information we have learned to create a volcano plot
of our differential expression results.

Warning

This lesson requires audience participation.

Try not to cheat. Attempt to add the necessary code without referring to the
documentation. To help you with this, code blocks are collapsed to hide the code.

A volcano plot is a type of scatterplot that shows statistical significance (P-value)
versus magnitude of change (fold change). It enables quick visual identification of
genes with large fold changes that are also statistically significant. These may be
the most biologically significant genes. --- Maria Doyle, 2021 (https://
fraining.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-
viz-with-volcanoplot/tutorial. html)

To generate a volcano plot, we need to know which genes were differentially expressed.
Differential expression results can be obtained using a number of R packages (e.g., 1imma,
edgeR, DESeq2). For today's lesson, we are using output generated from edgeR and available
in the file, "./data/diffexp_results_edger_airways.txt".

Step 1: Load the required packages.
What package(s) do we need to create our plot?

Load the package(s)

library(tidyverse)

Bioinformatics Training and Education Program

https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html

187 From Data to Display: Crafting a Publishable Plot

Primarily, we need ggplot2, but other packages from the tidyverse are useful for handling
factors or wrangling the data as needed.

Step 2: Load and view the data.

For this lesson, we need to load the differential expression results. How can we load the data
and save to an object called dexp? The data is at "./data/diffexp_results_edger_airways.txt".

Load the data

dexp <- read delim("./data/diffexp_results edger airways.txt")

Rows: 15926 Columns: 10

-- Column specification ------------------ - -~ - - -
Delimiter: "\t"

chr (4): feature, albut, transcript, ref_genome

dbl (5): logFC, logCPM, F, PValue, FDR

lgl (1): .abundant

i Use "spec() to retrieve the full column specification for this da
i Specify the column types or set “show _col types = FALSE" to quiet

How can we further examine these data?

Examine the data

glimpse (dexp)
Rows: 15,926
Columns: 10
$ feature <chr> "ENSGOOOOOO00003", "ENSGOOOO0000419", "ENSGOOOOOO
$ albut <chr> "untrt", "untrt", "untrt", "untrt", "untrt", "unt
$ transcript <chr> "TSPAN6", "DPM1", "SCYL3", "Clorfl12", "CFH", "FU(
$ ref _genome <chr> "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "I
$.abundant <1gl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TI
$ logFC <dbl> -0.390100222, 0.197802179, 0.029160865, -0.124382(
$ logCPM <db1> 5.059704, 4.611483, 3.482462, 1.473375, 8.089146,
$ F <dbl> 3.284948e+01, 6.903534e+00, 9.685073e-02, 3.77213:
$ PValue <dbl> 0.0003117656, 0.0280616149, 0.7629129276, 0.55469
$ FDR <dbl> 0.002831504, 0.077013489, 0.844247837, 0.68232661.

Bioinformatics Training and Education Program

From Data to Display: Crafting a Publishable Plot

We can view the data using View (dexp) or select the data from the Global Environment pane.

To understand the structure of the data, use dplyr::glimpse() or str ().

Step 3: Define significance

The volcano plot helps us identify our significant genes. Generally, we are interested in
identifying genes above or below certain thresholds for significance and log fold change. These
thresholds can be fairly arbitrary. Here, we will define significance based on values with an FDR
less than 0.01 and an absolute value of logFC of 1. Of note, logFC here is represented by log2
transformed values, so logFC = 1 corresponds to a fold change of 2.

Create a new column in dexp called "Significant" that contains TRUE values where genes
were significantly differentially expressed based on the above thresholds and FALSE
where they were not significant. Order the data frame by FDR and logFC. Save these
transformed data to a new object called dexp_sigtrnsc. Unfamiliar with how to wrangling
the data? Check out Part 2 of this Series, Introduction to Data Wrangling.

Wrangle the data

dexp_sigtrnsc <- dexp %>%
mutate(Significant = FDR < 0.01 & abs(logFC) >= 1) %>% arrange(FDR, abs(logFC))
dexp_sigtrnsc[,-c(2,4,5)]

A tibble: 15,926 x 8

feature transcript logFC 1ogCPM F PValue FDR

<chr> <chr> <dbl> <dbl> <dbl> <db1l> <db1l>
1 ENSGO0O00165995 CACNB2 3.28 4.51 1575. 3.34 e-11 4.07e-7
2 ENSGOO000109906 ZBTB16 7.15 4.15 1429. 5.11 e-11 4.07e-7
3 ENSGOO000106976 DNM1 -1.76 5.38 646. 1.62 e- 9 2.57e-6
4 ENSGOO000162493 PDPN 1.88 5.68 768. 7.60 e-10 2.57e-6
5 ENSGO0OO00154930 ACSS1 1.89 4.96 657. 1.50 e- 9 2.57e-6
6 ENSGOO000157214 STEAP2 1.97 7.13 685. 1.25 e- 9 2.57e-6
7 ENSGOOO0OO146250 PRSS35 -2.76 3.91 807. 6.16 e-10 2.57e-6
8 ENSGOO000120129 DUSP1 2.94 7.31 694. 1.18 e- 9 2.57e-6
9 ENSGOO000152583 SPARCL1 4.56 5.53 721. 1.000e- 9 2.57e-6
10 ENSGOOO00168309 FAM1O7A 4.74 2.78 656. 1.51 e- 9 2.57e-6

i1 15,916 more rows

Because we arranged the data by significance, we can create an object with the top 6
significant genes to highlight these in our volcano plot. Save the names of these genes to
an object called topgenes.

Bioinformatics Training and Education Program

189 From Data to Display: Crafting a Publishable Plot

Get 6 top significant genes

topgenes<-dexp_sigtrnsc$transcript[1:6]
topgenes

[1] "CACNB2" "ZBTB16" "DNM1" "PDPN" "ACSS1" "STEAP2"

Step 4: Create the plot beginning with our 3 required
entities.

What are the 3 required components needed to create a plot?
1. Data
data - the data should include our differential expression results (dexp_sigtrnsc).
2.1 or more geoms

All data points are plotted using an x and y coordinate system. This requires
geom_point().

3. Mapping aesthetics

x-axis - represents the logarithm of the fold change between two conditions (https.//
en.wikipedia.org/wiki/Volcano_plot_(statistics)).

y-axis - represents the negative logarithm (base 10) of the p-value on the y-axis, ensuring
that data points with lower p-values—indicative of higher statistical significance—are
positioned toward the top of the plot (https.//en.wikipedia.org/wiki/
Volcano_plot_(statistics)).

color - use color to differentiate between "significant" and "non-significant" genes.

Begin the plot

ggplot (data=dexp_sigtrnsc,aes(x = logFC, y = -10glO(FDR))) +
geom_point(aes(color = Significant))

Bioinformatics Training and Education Program

https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Volcano_plot_(statistics)

190 From Data to Display: Crafting a Publishable Plot

[] []
6 -
© []
[]
[] o |
4- []
oDc Significant
L
= e FALSE
S
<3 ° s TRUE
-
2 -
0 -
1 L} 1 1
5 0 5 10

logFC

Step 5: Customize Our Figure

At this point, you have a relatively nice plot with just a couple of lines of code, but we really want
our figure to shine for publication. Think about what changes can be made to make the plot

nice but also effective!

Scale the Colors

How can we control the colors representing our TRUE / FALSE values? Assign "black" to
FALSE and "red" to TRUE.

Scale the Colors

ggplot (data=dexp_sigtrnsc,aes(x = logFC, y = -10glO(FDR))) +
geom_point(aes(color = Significant)) +
scale_color_manual(values = c("black","red"))

Bioinformatics Training and Education Program

191 From Data to Display: Crafting a Publishable Plot

[[]
6-
> °
[J
° & |
4- °
% Significant
T
S ® FALSE
3 . e TRUE
2-
0-
5 0 5 10
logFC
Note

There are many scale functions and scale_color functions.

Add Size and Alpha attributes to our Mapping Aesthetics

The red and black colors nicely discriminate between significant and non-significant genes.
However, we can make a few more changes to really highlight our "significant" genes. Two
things come to mind. We can make the non-significant points less visible with alpha and size.

If we want to represent differences in a variable using alpha and size, where should we
put these in our code?

Assign alpha and size aesthetics

ggplot (data=dexp_sigtrnsc,aes(x = logFC, y = -10glO(FDR))) +
geom_point(aes(color = Significant, alpha =Significant,
size = Significant)) +
scale_color_manual(values = c("black","red"))

Bioinformatics Training and Education Program

192

-log10(FDR)

Warning messages

logFC

You will likely see the following warning messages:

1: Using alpha for a discrete variable is not advised.
2: Using size for a discrete variable is not advised.

misleading the audience.

From Data to Display: Crafting a Publishable Plot

Significant

5 10

These are not errors, but you should consider what they mean for your plot. Make sure your choices are not

The size mapping results in very large points for "Significant = TRUE". How can we fix

this?

Scale the size aesthetic

geom_point(aes(color = Significant,
size = Significant)) +

scale size discrete(range=c(1,2))

Use scale_size discrete to set the range of sizes possible

ggplot (data=dexp_sigtrnsc,aes(x = logFC, y -1loglO(FDR))) +

alpha =Significant,

scale_color_manual(values = c("black","red")) +

Bioinformatics Training and Education Program

193 From Data to Display: Crafting a Publishable Plot

[[
6 -
o ®
°
°
[]
4-
% Significant
=
S FALSE
2
8 ® TRUE
1
2-
0..
5 0 5 10

logFC

Again, scale can be applied to the parameters in our mapping aesthetics including the x and y
axes.

Legends

If we want separate legends for each aesthetic, we can set this using arguments in the scale functions. For

example, see guide and name.

Fix the legend

The legend isn't great. It is neither informative nor visually appealing. How can we modify the
legend?

Fix the legend

ggplot (data=dexp_sigtrnsc,aes(x = logFC, y = -10glO(FDR))) +
geom_point(aes(color = Significant, alpha =Significant,
size = Significant)) +
scale_color_manual(values = c("black","red")) +
scale size discrete(range=c(1,2)) +
guides (color = guide_legend(
"Significance (logFC \u2265 |1|, FDR < 0.01)"), size = "none", alpha= "none")

Bioinformatics Training and Education Program

194 From Data to Display: Crafting a Publishable Plot

° °
6-
°
4-
g Significance (logFC = |1|, FDR < 0.01)
'éL; ® FALSE
E; e TRUE
2-
0-
5 0 5 10

logFC

There are multiple ways to modify the legend, including using guides () and theme.

Adding mathematical expressions

There are multiple ways to add mathematical expressions to ggplot2 figures.

Here are some useful resouces:

e From ggplot2 docs: https://ggplot2.tidyverse.org/articles/fag-axes.html#how-can-i-add-superscripts-and-
subscripts-to-axis-labels (https://ggplot2.tidyverse.org/articles/fag-axes.html#how-can-i-add-superscripts-

and-subscripts-to-axis-labels)
e Guide on special symbols: https://steffilazerte.ca/posts/ggplot-symbols/#table (https://steffilazerte.ca/posts/

ggplot-symbols/#table)
® Using expression(): https://library.virginia.edu/data/articles/mathematical-annotation-in-r (https://

library.virginia.edu/data/articles/mathematical-annotation-in-r)
® ?plotmath and demo(plotmath)

In this example, | used unicode, which is a universal character encoding standard assigning a unique number /
code to every character, symbol, etc. In R and ggplot2, unicode can be used to display special symbols (like
mathematical operators, Greek letters, or arrows) in plot labels, legends, and titles by using escape sequences
such as \u2265 for ">". However, it doesn't work with all graphic devices, so use caution.

As the references above suggest, we could have also used bquote () or expression(). For example, try the
following code instead: guides (color = guide_legend(bquote("Significance (logfFC " >= " |1],
FDR < ©0.01)")), size = "none", alpha= "none"). Or, make the x and y axis labels nicer:

labs (x=expression(paste(Log[2],"FC")),y=expression(paste(-Log[10],italic("P")))).

| would not necessarily memorize how to do this, but would look it up as needed.

Bioinformatics Training and Education Program

https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-subscripts-to-axis-labels
https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-subscripts-to-axis-labels
https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-subscripts-to-axis-labels
https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-subscripts-to-axis-labels
https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-subscripts-to-axis-labels
https://steffilazerte.ca/posts/ggplot-symbols/#table
https://steffilazerte.ca/posts/ggplot-symbols/#table
https://steffilazerte.ca/posts/ggplot-symbols/#table
https://steffilazerte.ca/posts/ggplot-symbols/#table
https://library.virginia.edu/data/articles/mathematical-annotation-in-r
https://library.virginia.edu/data/articles/mathematical-annotation-in-r
https://library.virginia.edu/data/articles/mathematical-annotation-in-r
https://library.virginia.edu/data/articles/mathematical-annotation-in-r

From Data to Display: Crafting a Publishable Plot

Clean it up with theme

Let's make this nicer by customizing the background, grid lines, legend position, and text. How

can we modify theme elements?

-log10(FDR)

N

N

Set theme elements

ggplot (data=dexp_sigtrnsc,aes(x = logFC, y = -10gl@(FDR))) +

geom_point(aes(color = Significant, alpha =Significant,
size = Significant)) +
scale _color_manual(values = c("black","red")) +
scale_size_discrete(range=c(1,2)) +
guides (color = guide_legend(
"Significance (logFC \u2265 |1|, FDR < 0.01)"), size = "none", alpha= "none")

theme_classic() +
theme(panel.grid.major = element_line(size = 0.2, color="grey"),

panel.grid.minor = element line(size = 0.1, color="grey"),

text = element_text(size = 12),
legend.position = "bottom")

logFC

Significance (logFC = |1|, FDR <0.01) e FALSE e TRUE

Bioinformatics Training and Education Program

From Data to Display: Crafting a Publishable Plot

You are free to customize your plot however you see fit. Here, | decided to use the complete
theme, theme classic(). | then made some additional changes from there. For example, |
added in major and minor grid lines, resized the text, and positioned the legend.

® Add major grid lines: panel.grid.major = element_line(size = 0.2,
color="grey")

® Add minor grid lines: panel.grid.minor = element _line(size = 0.1,
color="grey")

® Assign all text 12 point font: text = element_text(size = 12)

* Move the legend to the bottom of the plot: 1legend.position = "bottom"

Step 6: Label the most significant points.

How can we add text labels to some of our points?

To label our top significant genes, we can add an additional geom. In this case, geom_text ().

Note

Here, we only want to plot labels for our significant genes. We can call these directly by filtering the data.
Add text labels

ggplot (data=dexp_sigtrnsc,aes(x = logFC, y = -10gl@(FDR))) +
geom_point(aes(color = Significant, alpha =Significant,
size = Significant)) +
scale_color_manual(values = c("black","red")) +
scale_size_discrete(range=c(1,2)) +
guides (color = guide_legend(
"Significance (logFC \u2265 |1]|, FDR < 0.01)"),
size = "none", alpha= "none") +
geom_text (data=dexp_sigtrnsc %>%
filter(transcript %in% topgenes), #filter the data
aes(label=transcript)) +
theme_classic() +
theme (panel.grid.major element line(size = 0.2, color="grey"),
panel.grid.minor element_line(size 0.1, color="grey"),
text = element_text(size = 12),
legend.position = "bottom")

Bioinformatics Training and Education Program

197 From Data to Display: Crafting a Publishable Plot

CAGNB2 ZBMWB16
6.
L4 ... o ®
[]
(] []
o
o 3 g P
w
o
> °
o
2.
0.
5 0 5 10

logFC

Significance (logFC = [1|, FDR <0.01) e FALSE e TRUE

As we can see, geom_text results in overlapping labels. To avoid overlapping labels, we can
use check overlap = TRUE - feel free to try it. However, this will drop labels, and we want all
6 top genes to have labels.

To get around this, we can use a package called ggrepel (hiips:/ggrepel.slowkow.comy),
which keeps the labels from overlapping.

Use ggrepel to avoid overlapping labels

install the package with install.packages("ggrepel")
library(ggrepel)

ggplot (data=dexp_sigtrnsc,aes(x = logFC, y = -10glO(FDR))) +
geom_point(aes(color = Significant, alpha =Significant,
size = Significant)) +
scale_size discrete(range=c(1,2)) +
scale _color_manual(values = c("black","red")) +

guides (color = guide_legend(
"Significance (logFC \u2265 |1|, FDR < 0.01)"),
size = "none", alpha= "none") +
geom_text_repel(data=dexp_sigtrnsc %>%
filter(transcript %in% topgenes),
aes(label=transcript),
nudge y=0.1,nudge_x=0.2,direction="both",
segment.color="gray") +
theme classic() +

Bioinformatics Training and Education Program

https://ggrepel.slowkow.com/
https://ggrepel.slowkow.com/
https://ggrepel.slowkow.com/

From Data to Display: Crafting a Publishable Plot

theme(panel.grid.major = element_line(size = 0.2, color="grey"),
panel.grid.minor = element line(size = 0.1, color="grey"),
text = element text(size = 12),
legend.position = "bottom")
C‘ACNBZ Z.BTB16
o PDPN
ACSS1
e °
[J
° [J
~ 44 hd ()
o
(@]
.
o
Ao
(@] [J
i)
1
2.
0.
5 0 5 10

logFC

Significance (logFC = 1|, FDR <0.01) e FALSE e TRUE

Geom ordering

In ggplot2, the order in which you add layers (such as geom_point (), geom_text (), geom_line(), etc.)
directly affects how your plot is rendered:

Layers added later are drawn on top of earlier layers. For example, if you add geom_point () first and then
geom_text (), the text labels will appear on top of the points. If you reverse the order, the points may cover or
obscure the text.

Using an External Package.

There are many packages external to ggplot2 that can be used to create or enhance figures.
We will learn about some of these in the next lesson. Such packages can save us a lot of time
and energy. See the below example with EnhancedVolcano.

Note

Search for packages using a dedicated R search Engine (https://rseek.org)/).

Bioinformatics Training and Education Program

https://rseek.org/
https://rseek.org/

From Data to Display: Crafting a Publishable Plot

EnhancedVolcano

There is a dedicated Bioconductor package for creating volcano plots specifically called
EnhancedVolcano (https.//bioconductor.org/packages/release/bioc/html/
EnhancedVolcano.html). Plots created using this package can be customized using ggplot2
functions and syntax.

#The default cut-off for log2FC is >|2]

#the default cut-off for logl® p-value is 10e-6
library (EnhancedVolcano)

EnhancedVolcano(dexp sigtrnsc,

title = "Enhanced Volcano with Airways",
lab = dexp_sigtrnsc$transcript,

x = '"logFC',

y = "FDR")

Warning: Using “size’ aesthetic for lines was deprecated in ggplot2

i Please use "linewidth instead.

i The deprecated feature was likely used in the EnhancedVolcano pack:
Please report the issue to the authors.

Bioinformatics Training and Education Program

https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html

200 From Data to Display: Crafting a Publishable Plot

Enhanced Volcano with Airways

EnhancedVolcano

© NS © Logo,FC @© p-valueandlog, FC

| |
| |
| |
| |
| |
| |
| |
91 | |
| |
| |
| |
| |
Q | |
= 6 - : : CACNB2 ZBTB16
3 | | ARGLY
- 3 - __
| ()
(o]
5 10

Log, fold change
total = 15926 variables
This creates a very nice plot rather quickly.

Adding horizontal and vertical lines

The horizontal and vertical lines can be added to our ggplot2 figure using geom_hline() and geom_vline(),
respectively.

Acknowledgements

The volcano plot code in this lesson was adapted from a 2021 workshop entitled /ntroduction to
Tidy Transciptomics (https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/
tidytranscriptomics.html) by Maria Doyle and Stefano Mangiola.

Bioinformatics Training and Education Program

https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html

201 Recommendations and Tips for Creating Effective Plots with ggplot2

Recommendations and Tips for Creating
Effective Plots with ggplot2

Learning Objectives

1. Evaluate general principles and best practices for designing clear, publication-quality
figures in ggplot2.

2. Construct multi-panel figures using tools such as patchwork.

3. Identify and explore specialized R packages that support particular plot types.

4. Write simple R functions that wrap ggplot2 code to streamline the creation of repeatable
or customized plot templates.

In the previous lessons, we learned the basics of the grammar of graphics. In this lesson, we
will focus on miscellaneous topics that will help you in your plot making journey.

Included topics:

e recommendations for publishable figures

® additional packages that enhance ggplot2 functionality (e.g., patchwork,
gghighlight, ggthemes, ggrepel, scales)

e creating plotting functions

e resources for further learning

Recommendations for creating publishable figures

(Inspired by Visualizing Data in the Tidyverse, a Coursera lesson)
1. Consider whether the plot type you have chosen is the best way to convey your message
2. Make your plot visually appealing

o Careful color selection - color blind friendly if possible (e.g., library(viridis))
o Eliminate unnecessary white space
o Carefully choose themes including font types

3. Label all axes with concise and informative labels
o These labels should be straight forward and adequately describe the data
4. Ask yourself "Does the data make sense?"

o Does the data plotted address the question you are answering?

Bioinformatics Training and Education Program

202 Recommendations and Tips for Creating Effective Plots with ggplot2

5. Try not to mislead the audience

o Often this means starting the y-axis at O
o Keep axes consistent when arranging facets or multiple plots
o Keep colors consistent across plots

6. Do not try to convey too much information in the same plot

o Keep plots fairly simple

Complementary or Related Packages

There are many complementary R packages related to creating publishable figures using
ggplot2. Check out ggplot2 extensions with the ggplot2 extensions - gallery (https./
exts.ggplot2.tidyverse.org/gallery/). By default, these are listed by popularity.

Here is a sampling of data visualization packages you may be interested in:

Warning

These packages do not exclusively use ggplot2 for graphic generation.

Genomics

1. gggenomes (https.//thackl.github.io/gggenomes/) - extends the grammar of graphics for
comparative genomics.

2. GViz (https.//bioconductor.org/packages/release/bioc/vignettes/Gviz/inst/doc/Gviz.html) -
Plotting data and annotation information along genomic coordinates

3. ComplexHeatmap (https:.//bioconductor.org/packages/release/bioc/htmi/
ComplexHeatmap.html) - generate simple or complex heatmaps

4. EnhancedVolcano (https.//bioconductor.org/packages/release/bioc/vignettes/
EnhancedVolcano/inst/doc/EnhancedVolcano.html) - generate high quality, publication
ready volcano plots

5. pcaExplorer (https://www.bioconductor.org/packages/release/bioc/htmi/pcaExplorer.html)
- general-purpose interactive companion tool for RNA-seq analysis (uses a Shiny
application)

6. OmicsCircos (https.//www.cancer.gov/about-nci/organization/cbiit/training/library/
omnicircos) - generate high quality circular plots for omics data.

You may also search for plots using "plot" or ‘visualization" using Bioconductor: https://
bioconductor.org/packages/release/BiocViews.html#___ Software (https://bioconductor.org/
packages/release/BiocViews.html#___Software)

Can | add ggplot2 layers?

Bioinformatics Training and Education Program

https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://thackl.github.io/gggenomes/
https://thackl.github.io/gggenomes/
https://bioconductor.org/packages/release/bioc/vignettes/Gviz/inst/doc/Gviz.html
https://bioconductor.org/packages/release/bioc/vignettes/Gviz/inst/doc/Gviz.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html
https://www.bioconductor.org/packages/release/bioc/html/pcaExplorer.html
https://www.bioconductor.org/packages/release/bioc/html/pcaExplorer.html
https://www.cancer.gov/about-nci/organization/cbiit/training/library/omnicircos
https://www.cancer.gov/about-nci/organization/cbiit/training/library/omnicircos
https://www.cancer.gov/about-nci/organization/cbiit/training/library/omnicircos
https://www.cancer.gov/about-nci/organization/cbiit/training/library/omnicircos
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software

203 Recommendations and Tips for Creating Effective Plots with ggplot2

There are many -omics related packages that include data visualization wrappers (e.g., DESeq2, Seurat, etc.).
These are not visualization specific packages. Many of these functions can be customized by adding ggplot2
layers. How do we know if we can add ggplot layers? Try any / all of the following:

1. Check imports — does package depend on ggplot2? (e.g., packageDescription("package")
$Imports)

2. Check the source code. Does it use ggplot2: (e.g., DESeq2::plotPCA)

1. Call directly DESeq2: :plotPCA
2. showMethods(PlotPCA)
3. getMethod("plotPCA", "DESeqTransform")

3. Inspect the output object — class (x) includes "gg" or "ggplot"?

4. Try adding a layer — does + theme_minimal () work?
5. Read examples/vignettes — do they use + syntax?

Check out this BTEP tutorial (https.//bioinformatics.ccr.cancer.gov/docs/btep-coding-club/
CC2023/complex_heatmap_enhanced_volcano/) on EnhancedVolcano and
ComplexHeatmap.

Statistics integration

1. ggpubr (https://ggplot2.tidyverse.org/) - generate out-of-the-box publication quality plots.
Includes statistical integration.

» Coding Club tutorial: https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/

CC2024/ggpubr/Intro_to_ggpubr/ (https.//bioinformatics.ccr.cancer.gov/docs/btep-
coding-club/CC2024/ggpubr/Intro_to_ggpubr/)

2. ggfortify (https.//github.com/sinhrks/ggfortify) - easily visualize statistical results including
PCA.

3. factoextra (https://rpkgs.datanovia.com/factoextra/index.html) - visualize multivariate
statistics (e.g., PCA).

Combining plots

1. patchwork (https.//patchwork.data-imaginist.com/) - the go-to package for combining
plots.

Example:

library(tidyverse)

library(patchwork)

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2023/complex_heatmap_enhanced_volcano/
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2023/complex_heatmap_enhanced_volcano/
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2023/complex_heatmap_enhanced_volcano/
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2023/complex_heatmap_enhanced_volcano/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2024/ggpubr/Intro_to_ggpubr/
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2024/ggpubr/Intro_to_ggpubr/
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2024/ggpubr/Intro_to_ggpubr/
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2024/ggpubr/Intro_to_ggpubr/
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/CC2024/ggpubr/Intro_to_ggpubr/
https://github.com/sinhrks/ggfortify
https://github.com/sinhrks/ggfortify
https://rpkgs.datanovia.com/factoextra/index.html
https://rpkgs.datanovia.com/factoextra/index.html
https://patchwork.data-imaginist.com/
https://patchwork.data-imaginist.com/

204 Recommendations and Tips for Creating Effective Plots with ggplot2

SC <- read.csv("./data/sc.csv")

a <- ggplot(data=sc) +
geom_boxplot(aes(x=dex, y = TotalCounts))

b <- ggplot() +
geom_point(data=sc,aes(x=Num_transcripts, y = TotalCounts))

a+b
o
3.0e+07 - 3.0e+07 -
[]

2.5e+07 - 2.5e+07 -
2 @ ®
C [
> >
[e] [e)
) ®)
8 8
(o] o
[[

[]
[]
2.0e+07 - 2.0e+07 -
[)
[}
1.5e+07 - 1.5e+07- ®
trt untrt 10000 10500 11000 11500
dex Num_transcripts

2. cowplot (https.//wilkelab.org/cowplot/) - also includes nice themes and annotation
functions.

You may find this BTEP tutorial (https.//bioinformatics.ccr.cancer.gov/docs/data-visualization-
with-r/Lesson6_V2/) on combining R graphics useful.

Miscellaneous

1. gghighlight (https://yutannihilation.github.io/gghighlight/) - highlight specific points, lines,
etc. in a plot
2. scales (https://scales.r-lib.org/) - tools for working with ggplot2 scaling infrastructure

(funcitons involving scale).
3. ggthemes (https://jrnold.github.io/ggthemes/index.html) - extra geoms, scales, and

themes for ggplot2.

Bioinformatics Training and Education Program

https://wilkelab.org/cowplot/
https://wilkelab.org/cowplot/
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/Lesson6_V2/
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/Lesson6_V2/
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/Lesson6_V2/
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/Lesson6_V2/
https://yutannihilation.github.io/gghighlight/
https://yutannihilation.github.io/gghighlight/
https://scales.r-lib.org/
https://scales.r-lib.org/
https://jrnold.github.io/ggthemes/index.html
https://jrnold.github.io/ggthemes/index.html

205 Recommendations and Tips for Creating Effective Plots with ggplot2

4. ggrepel (https.//ggrepel.slowkow.com/) - repel overlapping text labels.
5. plotly (https.//plotly.com/ggplot2/) - create interactive plots (ggplotly to work with
ggplot2 plots).

Note

There are many more packages. Shop around, especially if you are interested in plotting a specific data type.

Using ggplot2 in a function

While we have learned how to use existing functions in R, we have not covered writing
functions.

The Syntax

The syntax for writing a function is as follows:

function(x) {
body # do something with x

where function is the function used to write the function,
X is one or more arguments,
and bodyis the code that performs the function task.

We would name the function by assigning it to an object using function_name <-.

Here is an example.

add5 <- function(x){
X+5

add5(5)

[1] 10

This function named add5 simply adds 5 to whatever number we include as an argument.

Note

Bioinformatics Training and Education Program

https://ggrepel.slowkow.com/
https://ggrepel.slowkow.com/
https://plotly.com/ggplot2/
https://plotly.com/ggplot2/

206 Recommendations and Tips for Creating Effective Plots with ggplot2

When you call a function in R, R evaluates all of the arguments before it passes them into the function body (unless
you've deliberately delayed evaluation with special tricks like tidy evaluation). This has important implications.

Functions that use ggplot2

Now that you know the basics, you may be interested in creating a function that will plot
different sets of data the same way using ggplot?2.

However, tidyverse functions use something called 'tidy evaluation to allow you to refer to the
names of variables inside your data frame without any special treatment" (https://r4ds.hadley.nz/
functions.html#data-frame-functions). While there are two types of tidy evaluation to be aware
of, data-masking and tidy-selection, these are generally beyond the scope of this lesson. You
can learn more about tidy evaluation here (htips.//dplyrtidyverse.org/articles/
programming.html).

What you really need to know is that when you pass expressions containing column names to a
function using tidyverse verbs, including aes (). you need to use {{}}. Let's see why.

Let's use our data sc to create a function that makes a boxplot.

my_boxplot<- function(data) {
ggplot(data,aes(x=dex, y = TotalCounts, fill=dex)) +
geom_boxplot() +
geom_point() +
scale fill manual(values=c("red", "purple"))+
theme bw() +
labs(x="Treatment",y="Total Counts")

my _boxplot(sc)

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/functions.html#data-frame-functions
https://r4ds.hadley.nz/functions.html#data-frame-functions
https://r4ds.hadley.nz/functions.html#data-frame-functions
https://r4ds.hadley.nz/functions.html#data-frame-functions
https://r4ds.hadley.nz/functions.html#data-frame-functions
https://dplyr.tidyverse.org/articles/programming.html
https://dplyr.tidyverse.org/articles/programming.html
https://dplyr.tidyverse.org/articles/programming.html
https://dplyr.tidyverse.org/articles/programming.html

207 Recommendations and Tips for Creating Effective Plots with ggplot2

3.0e+07 1

2.5e+07 1

Total Counts

2.0e+07 1

1.5e+07 A

trt untrt
Treatment

Here, we need to supply the data frame to use this function, and everything works fine.

But what if we intend to use this function on a data set where the x variable is not "dex". We want
to supply the column name as an argument.

For example,

my_boxplot x<- function(data,x) {
ggplot(data,aes(x=x, y = TotalCounts, fill=dex)) +
geom_boxplot() +
geom_point() +
scale fill manual(values=c("red", "purple"))+
theme bw() +
labs(x="Treatment",y="Total Counts")

my boxplot x(sc, dex)

Error in ~geom_boxplot() ":
! Problem while computing aesthetics.

Bioinformatics Training and Education Program

208 Recommendations and Tips for Creating Effective Plots with ggplot2

i Error occurred in the 1lst layer.
Caused by error:
! object 'dex' not found

We run into an error that says "object 'dex' not found". We know "dex" is in sc, so what is
happening?

When we run my_boxplot_x(sc, dex), R tries to find an object called dex in our global
environment, not in sc. Because dex is not in the global environment, an error is thrown. We
need to tell our function to hold off on evaluating the argument right now, rather, capture it as an
expression to be evaluated in the right context (inside aes ()).

How do we fix this. We use something called embracing. 'Embracing a variable means to wrap
it in braces so (e.g.) var becomes {{ var }}. Embracing a variable tells the [Tidyverse] verb
to use the value stored inside the argument, not the argument as the literal variable name."
(https.//r4ds.hadley.nz/functions. html#indirection-and-tidy-evaluation)

More on embracing {{}}

{{x}} is shorthand for aes(x = !!enquo(x)). enquo(x) captures the unevaluated argument as a quoted
expression (a quosure), while !'! is the unquote operator, which tells tidy evaluation to evaluate and insert that
captured expression into the surrounding code.

Let's try embracing the x argument.

my_boxplot_x<- function(data,x) {
ggplot(data,aes(x={{x}}, y = TotalCounts, fill=dex)) +
geom_boxplot() +
geom_point() +
scale fill _manual(values=c("red","purple"))+
theme bw() +
labs(x="Treatment",y="Total Counts")

}

my boxplot x(sc, dex)

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/functions.html#indirection-and-tidy-evaluation
https://r4ds.hadley.nz/functions.html#indirection-and-tidy-evaluation
https://r4ds.hadley.nz/functions.html#indirection-and-tidy-evaluation
https://r4ds.hadley.nz/functions.html#indirection-and-tidy-evaluation
https://r4ds.hadley.nz/functions.html#indirection-and-tidy-evaluation
https://r4ds.hadley.nz/functions.html#indirection-and-tidy-evaluation
https://r4ds.hadley.nz/functions.html#indirection-and-tidy-evaluation
https://r4ds.hadley.nz/functions.html#indirection-and-tidy-evaluation

209 Recommendations and Tips for Creating Effective Plots with ggplot2

3.0e+07 1

2.5e+07 1

Total Counts

2.0e+07 1

1.5e+07 A

trt untrt
Treatment

To learn more about writing plotting functions with ggplot2, see this chapter (hiips:/
r4ds.hadley.nz/functions.html#plot-functions) in R For Data Science and this vignette (https./
ggplot2.tidyverse.org/articles/ggplot2-in-packages.htmi).

Tips on Saving and Scaling

ggplot2 comes with its own function for simplified saving, ggsave (). When creating plots, we
tend to work interactively and save interactively. While you may create the perfect figure at a
width of 7 inches and height of 5 inches, this may not scale well (either smaller or larger). For
example, you may notice the text becomes very small when the size of your image is scaled up.
Text is set using an absolute point size. If you come across this issue, try the suggestions
outlined here (https://tidyverse.org/blog/2020/08/taking-control-of-plot-scaling/).

Tips for saving:

1. Use vector graphics (PDF, SVG) to save your figure. You can then scale the size of the
image outside of R and maintain proportions and crispness.

2. If you need to use raster graphics (PNG, TIFF, JPEG), which suffer from blurring when
resized, use the R package ragg for image resizing.

For example,

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/functions.html#plot-functions
https://r4ds.hadley.nz/functions.html#plot-functions
https://r4ds.hadley.nz/functions.html#plot-functions
https://r4ds.hadley.nz/functions.html#plot-functions
https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html
https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html
https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html
https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html
https://tidyverse.org/blog/2020/08/taking-control-of-plot-scaling/
https://tidyverse.org/blog/2020/08/taking-control-of-plot-scaling/

210 Recommendations and Tips for Creating Effective Plots with ggplot2

volcano <- readRDS("./data/Volcano.rds")

volcano
ggsave ("png_small.png",width=7,height=5, dpi=300,units="in")

ggsave("scale png.png", volcano,
device = ragg::agg_png,
width = 21, height = 15, units = "in", res = 300,
scaling = 3)

The arguments res and scaling are specific to ragg:agg png.

Vector vs Raster Graphics

What are vector and raster graphics and why does this matter?

Raster and vector graphics differ in how they represent visual information, and that distinction directly affects how
visualizations look and scale. In short, this means that the output format of a plot matters.

Raster graphics are made of a fixed grid of pixels, each storing a color value. Example formats include PNG, TIFF,
JPEG. This type of graphic is generally great for photos or heatmaps, but suffers from blurring when resized. Vector
graphics (e.g., PDF, SVG), in contrast, describe shapes, lines, and text mathematically, so they remain crisp at any
zoom level and produce smaller files for simple plots. This matters for data visualization because the choice
determines clarity and flexibility. Raster formats are better for complex, image-heavy displays or web use, while

vector formats are ideal for reports, publications, and presentations where sharp text and scalable detail are
essential.

Finding R packages for Beginners

1. Google Search

1. Rseek (https://rseek.org/) - A special Google-powered search engine that searches
R-related websites (CRAN, R-bloggers, Stack Overflow, GitHub, etc.).

2. Repository Search

1. CRAN (https://cran.r-project.org/web/packages/index.html) - try CRAN Task Views

2. Bioconductor (https://bioconductor.org/packages/release/
BiocViews.html#___Software) - repository for bioinformatics, genomics, and clinical
data analysis.

3. r-universe (https://r-universe.dev/search) - a modern R package ecosystem and
discovery platform built by the rOpenSci (htips.//ropensci.org/) team. Publish, explore,
and evaluate R packages (CRAN and other sources).

Bioinformatics Training and Education Program

https://rseek.org/
https://rseek.org/
https://cran.r-project.org/web/packages/index.html
https://cran.r-project.org/web/packages/index.html
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://r-universe.dev/search
https://r-universe.dev/search
https://ropensci.org/
https://ropensci.org/

211 Recommendations and Tips for Creating Effective Plots with ggplot2

4. Blogs

1. Posit (https://posit.co/blog/) - Highlights new Tidyverse and ecosystem tools.

2. R bloggers (https.//www.r-bloggers.com/) - aggregates posts from hundreds of R
users and developers.

3. R Weekly (https.//rweekly.org/) - A weekly digest of new packages, tutorials, and
news.

Resources for Further Learning

1. Official ggplot2 documentation - https://ggplot2.tidyverse.org/ (hitps.//
ggplot2.tidyverse.org/)

2. BTEP

1. Coding Club (https.//bioinformatics.ccr.cancer.gov/docs/btep-coding-club/)
2. Data Visualization with R (https.//bioinformatics.ccr.cancer.gov/docs/data-
visualization-with-r/index.html)

3. Online books / tutorials

4. A self-learning platform (e.g., Coursera)

Bioinformatics Training and Education Program

https://posit.co/blog/
https://posit.co/blog/
https://www.r-bloggers.com/
https://www.r-bloggers.com/
https://rweekly.org/
https://rweekly.org/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/
https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html

Practice Exercises

Part 1: Exercises

214

Exercise 1: Lesson2

Exercise 1: Lesson2

Q1. What is the value of each object? Run the code and print the values.

mass <- 47.5

age <- 122

mass <- mass * 2.0
age <- age - 20
mass_index <- mass / age

(Question taken from
index.html)

Q1: Solution

mass <- 47.5

mass

[1]1 47.5

age <- 122

age

[1] 122

mass <- mass * 2.0
mass

[1]1 95

age <- age - 20
age

[1] 102

mass_index <- mass / age

mass_index
[1] 0.9313725

#
#
#
#

mass?

age?

mass?

age?

mass_index?

https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r/

mass?

age?

mass?

age?

mas

s_index?

Q2. Create the following objects; give each object an appropriate name.

a. Create an object that has the value of the number of bones in the adult human body.

b. We can create a vector of values using c (). For example to create a vector of fruits, we

could use the following: fruit <- c("apples",

"bananas", "mango", "kiwi"). Use

this information to create an object containing the names of four different bones. (We will learn
more about vectors in Lesson 3.)

Q2: Solution

a.
bone_num<- 206
bone_num

Bioinformatics Training and Education Program

215 Exercise 1: Lesson?2

[1] 206

b.

bone_names<- c("talus","calcaneus","tibia","fibula")
bone_names

[1] "talus" "calcaneus" "tibia" "fibula"

Q3. What types of data are stored in the objects created in question 2.

Q3: Solution

typeof (bone_num)
[1] "double"
typeof (bone_names)
[1] "character"

Q4. Modify bone_num to contain the number of bones in an adult human hand.

Q4: Solution

bone_num <- 27
bone_num
[1] 27

Q5. Here is an object storing multiple values:

num_vec <- c(1:100)

What is the mean of this vector? How about the median? What functions can you use to find this
information?

Q5: Solution

mean (num_vec)

[1] 50.5
median(num_vec)
[1] 50.5

Q6. What does the function paste() do? How can you find out? Can you use it to collapse
bone_names into a string of length 17 Hint: Read the help documentation closely.

Q6: Solution

Bioinformatics Training and Education Program

216 Exercise 1: Lesson?2

To find help, use the ?
?paste

To collapse the vector to length 1, check the collapse argument
paste(bone_names, collapse=", ")

[1] "talus, calcaneus, tibia, fibula"

length (bone_names)

[1] 4

Bioinformatics Training and Education Program

217 Exercise 2: Lesson 3

Exercise 2: Lesson 3

Q1. Let's use some functions.

a. Use sum () to add the numbers from 1 to 10.

Q1a: Solution

sum(1:10)
[1] 55

b. Compute the base 10 logarithm of the elements in the following vector and save to an object
called 1logvec: c(1:10).

Q1b: Solution

logvec<- 10glO(c(1:10))

c. Combine the following vectors and compute the mean.

a <- c(45, 67, 34, 82)
b <- c(90, 45, 62, 56, 54)

Q1c: Solution

mean(c(a,b))
[1] 59.44444

d. What does the function identical () do? Use it to compare the following vectors.

C <- seq(2, 10, by=2)
d <- c(2, 4, 6, 8, 10)

Q1d: Solution

Bioinformatics Training and Education Program

Exercise 2: Lesson 3

#tells us whether the two vectors are the same
identical(c, d)
[1] TRUE

Q2. Vectors include data of a single type, so what happens if we mix different types? Use
typeof () to check the data type of the following objects.

num_char <- c(1, 2, 3, "a")
num_logical <- c(1, 2, 3, TRUE, FALSE)
char_logical <- c("a", "b", "c", TRUE)
tricky <- c(1, 2, 3, "4")

Q2: Solution

#These were coerced into a single data type
typeof (num_char)

[1] "character"
num_char

[11 "1 "2 "3t ora"
typeof (num_logical)

[1] "double"
num_logical

[1]1 1 2 310
typeof (char_logical)
[1] "character"
char_logical

[1] "a" "b" "c" "TRUE"
typeof (tricky)

[1l] "character"

tricky

[1] "1 "2v v g

(Question taken from https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.ntml
(https.//carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html))

Q3. fruit is a vector containing the common names of different types of fruit. Can you replace
"kiwi" with "mango".

fruit<-c("apples", "bananas", "oranges", "grapes","kiwi","kumquat")

Q3: Solution

Bioinformatics Training and Education Program

https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html
https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html
https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html
https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html

219 Exercise 2: Lesson 3

fruit[5] <- "mango"
fruit
[1] "apples" "bananas" "oranges" "grapes" "mango" "kumquat"

Q4. Given the following R code, return all values less than 678 in the vector "Total_subjects".

Total_subjects <- c(23, 4, 679, 3427, 12, 890, 654)

Q4: Solution

Total subjects[Total subjects < 678]
[1] 23 4 12 654

Q5. This question uses the vectors created in Q2. Using indexing, create a new vector named
combined that contains:

The 2nd and 3rd value of num_char.
The last value of char_logical.
The 1st value of tricky.

combined contains data of what type”?

Q5: Solution

combined <- c(num_char[2:3], char_logical[length(char_logical)l,
tricky[1])

typeof (combined)

[1l] "character"

combined

[1] "2" "3 "TRUE" "1"

Bioinformatics Training and Education Program

220 Exercise 3: Lesson 4

Exercise 3: Lesson 4

Loading data

The data used in this practice exercise can be found here.

Q1. Import data from the sheet "iris_data_long" from the excel workbook (file_path = "./data/
iris_data.xlsx"). Make sure the column names are unique and do not contain spaces. Save the
imported data to an object called iris_long.

Q1: Solution

iris_long<-readxl::read_excel("../data/iris_data.xlsx",sheet="1iris_data_long", .name
New names:

¢ “Iris ID" -> “Iris.ID’

¢ "Measurement location -> "Measurement.location’

iris_long

A tibble: 600 x 4

Iris.ID Species Measurement.location Measurement
Eizs <dbl> <chr> <chr> <dbl>
1 1 setosa Sepal.Length 5.1
2 1 setosa Sepal.Width 3.5
3 1 setosa Petal.Length 1.4
4 1 setosa Petal.Width 0.2
5 2 setosa Sepal.lLength 4.9
6 2 setosa Sepal.Width 3
##H 7 2 setosa Petal.lLength 1.4
8 2 setosa Petal.Width 0.2
9 3 setosa Sepal.lLength 4.7
10 3 setosa Sepal.Width 3.2

i 590 more rows

Q2. Import a tab delimited file (file_path= "./data/species_datacarpentry.txt'). Save the file to an
object named species. genus,species, and taxa should be converted to factors upon
import.

Q2: Solution

species<-readr::read_delim("../data/species_datacarpentry.txt",col_types="cfff")

species

A tibble: 54 x 4

species_id genus species taxa
<chr> <fct> <fct> <fct>
1 AB Amphispiza bilineata Bird
2 AH Ammospermophilus harrisi Rodent
3 AS Ammodramus savannarum Bird
4 BA Baiomys taylori Rodent

Bioinformatics Training and Education Program

221

5 CB Campylorhynchus

6 CM Calamospiza melanocorys
7 CQ Callipepla squamata

8 CS Crotalus scutalatus
9 CT Cnemidophorus tigris

10 CU Cnemidophorus uniparens
i 44 more rows

Exercise 3: Lesson 4

brunneicapillus Bird

Bird
Bird
Reptile
Reptile
Reptile

Q3. Load in a comma separated file with row names present (file_path= "./data/countB.csv")

and save to an object named countB.

Q3: Solution

countB<-read.csv("../data/countB.csv",row.names=1)
head(countB)
SampleA_1 SampleA_2 SampleA 3 SampleB_1 SampleB_2 SampleB_3
Tspané 703 567 867 71 970 242
TNMD 490 482 18 342 935 469
DPM1 921 797 622 661 8 500
SCYL3 335 216 222 774 979 793
FGR 574 574 515 584 941 344
CFH 577 792 672 104 192 936

Challenge data load

Q4. Load in a tab delimited file (file_path= "./data/WebexSession_report.txt") using

read_delim(). You will need to troubleshoot the error message and modify the function

arguments as needed.

tidyverse 2.0.0 —

Q4: Solution
library(tidyverse)
— Attaching core tidyverse packages
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.2 v tibble 3.2.1
v lubridate 1.9.4 v tidyr 1.3.1
v purrr 1.0.4
— Conflicts
® dplyr::filter() masks stats::filter ()

#i#t
#it

® dplyr::lag() masks stats::lag()

tidyverse conflicts() —

i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conf
read_delim("../data/WebexSession_report.txt",delim="\t",locale =

locale(encoding =

Rows: 10 Columns: 21

— Column specification

Delimiter: "\t"

chr (7): Name, Date, Invited, Registered, Duration, Network joined from:,

dbl (1): Participant

1gl (11): Audio Type, Email, Company, Title, Phone Number, Address 1, Addre...
time (2): Start time, End time

Bioinformatics Training and Education Program

222 Exercise 3: Lesson 4

it

i Use "spec() to retrieve the full column specification for this data.

i Specify the column types or set “show_col types = FALSE" to quiet this message
A tibble: 10 x 21

Participant “Audio Type ™ Name Email Date Invited Registered “Start time’
#i# <dbl> <1gl> <chr> <lgl> <chr> <chr> <chr> <time>
##t 1 1 NA Partici.. NA 6/8/.. No N/A 13:00
2 2 NA Partici.. NA 6/9/.. <NA> <NA> 13:00
3 3 NA Partici.. NA 6/10.. No N/A 12:57
##t 4 4 NA Partici.. NA 6/11.. <NA> <NA> 12:57
5 5 NA Partici.. NA 6/12.. No N/A 12:55
6 6 NA Partici.. NA 6/13.. <NA> <NA> 12:55
##t 7 7 NA Partici.. NA 6/14.. No N/A 12:32
8 8 NA Partici.. NA 6/15.. <NA> <NA> 12:32
9 9 NA Partici.. NA 6/16.. Yes N/A 12:42
10 NA NA <NA> NA <NA> <NA> <NA> NA
i 13 more variables: “End time® <time>, Duration <chr>, Company <lgl>,

#
Title <lgl>, "Phone Number® <lgl>, “Address 1° <lgl>, "Address 2° <lgl>,
#H# # City <lgl>, "State/Province’ <lgl>, “Zip/Postal Code" <lgl>,

“Country/region” <lgl>, "Network joined from: ™ <chr>,
#i# # "Internal Participant:® <chr>

Bioinformatics Training and Education Program

223 Exercise 4: Lesson 5

Exercise 4: Lesson 5

For this exercise we will use filtlowabund scaledcounts_airways.txt, which includes
normalized and non-normalized transcript count data from an RNAseq experiment. You can
read more about the experiment here (https.//oubmed.ncbi.nlim.nih.gov/24926665/). To obtain
this file, click here.

The following questions synthesize several of the skills you have learned thus far. It may not be
immediately apparent how you would go about answering these questions. Remember, the R
community is expansive, and there are a number of ways to get help including but not limited to
google search. These questions have multiple solutions, but you should try to stick to the tools
you have learned to use thus far.

Q1. Import filtlowabund_scaledcounts_airways.txt into R and save to an R object
named transcript_counts. Try not to use the drop-down menu for loading the data.

Q1 Solution

transcript_counts <-read.delim("../data/filtlowabund_scaledcounts_airways.txt")

Q2. What are the dimensions of transcript_counts?

Q2 Solution

dim(transcript_counts)
[1] 127408 18

Q3. What are the column names?

Q3 Solution

colnames (transcript_counts)

[1] "feature" "sample" "counts" "SampleName"
[5] "cell" "dex" "albut" "Run"

[9] "avglLength" "Experiment" "Sample" "BioSample"
[13] "transcript" "ref _genome" ".abundant" "TMM"

[17] "multiplier" "counts_scaled"

Q4. Is there a difference in the number of transcripts with greater than 0 normalized counts
(counts_scaled) per sample? What commands did you use to answer this question.

Bioinformatics Training and Education Program

https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/

224 Exercise 4: Lesson 5

Q4 Solution

#using table
table(transcript_counts[transcript_counts$counts_scaled>0,]$sample)
#it

#it 508 509 512 513 516 517 520 521

15921 15919 15923 15918 15913 15920 15914 15910

#alternative solution

summary (factor (transcript_counts[transcript_counts$counts_scaled>0,]$sample))
508 509 512 513 516 517 520 521

15921 15919 15923 15918 15913 15920 15914 15910

or using the tidyverse

library(dplyr)
transcript_counts %>% filter (counts_scaled>0) %>% count(sample)
#i# sample n
1 508 15921
##t 2 509 15919
3 512 15923
4 513 15918
5 516 15913
6 517 15920
#it 7 520 15914
8 521 15910

Q5. How many categories of transcripts are there? Think about what you know regarding
factors. Why is this number much smaller than the results of question 47

Q5 Solution

nlevels(factor (transcript_counts$transcript, exclude = NULL))
[1] 14576

Q6. Subset transcript_counts to only include the following columns: sample, cell, dex,
transcript, avgLength, counts_scaled. Save this new dataframe to a new object called
transc_df.

Q6 Solution

transc_df <- transcript_counts[c("sample","cell", "dex",
"transcript","avglLength",
"counts_scaled")]

Q7. Using your new data frame from question six (transc_df), rename the column "sample" to
"Sample".

Bioinformatics Training and Education Program

225 Exercise 4: Lesson 5

Q7 Solution

colnames(transc_df)[1]<-"Sample"

Q8. What is the mean and standard deviation of "avglLength" across the entire transc_df data
frame? Hint: Read the help documentation for mean () and sd ().

Q8 Solution

mean_avglength<- mean(transc_df$avglLength)
sd_avglength<- sd(transc_df$avglLength)

Q9. Make a data frame with the column names "Mean" and "Standard _Dev" that holds the
values from question 8. Hint: check out the function data. frame ().

Q9 Solution

data.frame(Mean=mean_avglLength, Standard_Dev=sd_avglLength)
Mean Standard_Dev
1 113.75 14.85561

Bioinformatics Training and Education Program

Part 2: Exercises

227 Data Reshape

Data Reshape

Q1. Import data from the sheet "iris_data_long" from the excel workbook (file_path = "./data/
iris_data.xlsx"). Make sure the column names are unique and do not contain spaces. Save the
imported data to an object called iris_long.

Q1 Solution
library(tidyverse)
— Attaching core tidyverse packages tidyverse 2.0.0 —
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.2 v tibble 3.3.0
v lubridate 1.9.4 v tidyr 1.3.1
v purrr 1.0.4
— Conflicts tidyverse conflicts() —

® dplyr::filter() masks stats::filter()

® dplyr::lag() masks stats::lag()

i Use the conflicted package (<http://conflicted.r-1lib.org/>) to force all conf
iris_long<-readxl::read_excel("./data/iris_data.xlsx",sheet="1iris_data_long", .name_
New names:

o "Iris ID° -> "Iris.ID’

o "Measurement location® -> "Measurement.location’

iris_long

A tibble: 600 x 4

Iris.ID Species Measurement.location Measurement
#i# <dbl> <chr> <chr> <dbl>
1 1 setosa Sepal.Length 5.1
##H 2 1 setosa Sepal.Width 3.5
3 1 setosa Petal.Length 1.4
##t 4 1 setosa Petal.Width 0.2
5 2 setosa Sepal.lLength 4.9
6 2 setosa Sepal.Width 3
#t 7 2 setosa Petal.lLength 1.4
8 2 setosa Petal.Width 0.2
9 3 setosa Sepal.lLength 4.7
10 3 setosa Sepal.Width 3.2

i 590 more rows

Q2. Reshape iris_long to a wide format. Your new column names will contain names from
Measurement.location. Your wide data should look as follows:

A tibble: 150 x 6
Iris.ID Species Sepal.Length Sepal.Width Petal.Length Petal.Width

<dbl> <chr> <db1l> <db1l> <dbl> <dbl>
1 1 setosa 5.1 3.5 1.4 0.2
2 2 setosa 4.9 3 1.4 0.2

Bioinformatics Training and Education Program

228 Data Reshape

3 3 setosa 4.7 3.2 1.3 0.2
4 4 setosa 4.6 3.1 1.5 0.2
5 5 setosa 5 3.6 1.4 0.2
6 6 setosa 5.4 3.9 1.7 0.4
7 7 setosa 4.6 3.4 1.4 0.3
8 8 setosa 5 3.4 1.5 0.2
9 9 setosa 4.4 2.9 1.4 0.2
10 10 setosa 4.9 3.1 1.5 0.1

i 140 more rows

Q2 Solution

tidyr::pivot_wider(iris_long, names_from = Measurement.location, values_from = Mea:
A tibble: 150 x 6
Iris.ID Species Sepal.Length Sepal.Width Petal.Length Petal.Width

i <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 setosa 5.1 3.5 1.4 0.2
##H 2 2 setosa 4.9 3 1.4 0.2
3 3 setosa 4.7 3.2 1.3 0.2
4 4 setosa 4.6 3.1 1.5 0.2
5 5 setosa 5 3.6 1.4 0.2
6 6 setosa 5.4 3.9 1.7 0.4
7 7 setosa 4.6 3.4 1.4 0.3
8 8 setosa 5 3.4 1.5 0.2
9 9 setosa 4.4 2.9 1.4 0.2
10 10 setosa 4.9 3.1 1.5 0.1

i 140 more rows

Q3. Let's use tableda from the tidyr package. Use pivot longer () to place the year
columns in a column named year and their values in a column named cases.

data(tableda)
table4da

A tibble: 3 x 3

country ©1999° "2000°
<chr> <dbl> <dbl>
1 Afghanistan 745 2666
2 Brazil 37737 80488
3 China 212258 213766

The resulting data frame should appear as follows:

Bioinformatics Training and Education Program

22

A tibble: 6

x 3

country year cases
<chr> <chr> <dbl>
1 Afghanistan 1999 745
2 Afghanistan 2000 2666
3 Brazil 1999 37737
4 Brazil 2000 80488
5 China 1999 212258
6 China 2000 213766
Q3 Solution
pivot_longer(tabled4a,2:3, names_to = "year",

A tibble: 6
#i# country
#it <chr>

1 Afghanistan
2 Afghanistan
3 Brazil
4 Brazil
5 China
6 China

x 3
year cases
<chr> <dbl>

1999 745
2000 2666
1999 37737
2000 80488

1999 212258
2000 213766

Data Reshape

values_to = "cases")

Q4. Separate the column rate from tidyr's table3 into two columns: cases and population

data(table3)
table3

A tibble: 6
country
<chr>
Afghanistan
Afghanistan
Brazil
Brazil
China

China

A Ul B~ W N

x 3
year rate
<dbl> <chr>

1999 745/19987071

2000 2666/20595360
1999 37737/172006362
2000 80488/174504898
1999 212258/1272915272
2000 213766/1280428583

The result should appear as follows:

A tibble: 6
country
<chr>

x 4
year cases
<dbl> <chr>

population
<chr>

Bioinformatics Training and Education Program

230

A
B
B
C
C

A U1 N W N

se
#H#
##
##
#H#
##
##
#H#
##
##

Afghanistan

fghanistan
razil
razil

hina

hina

Q4 Solution

parate(table3,
A tibble: 6
country
<chr>
Afghanistan
Afghanistan
Brazil
Brazil
China

China

A Ul BN W N

1999
2000
1999
2000
1999
2000

rate,
x 4

year
<db1l>
1999
2000
1999
2000
1999
2000

Reshape challenge

745
2666
37737
80488
21225
21376

into =

cases
<chr>
745
2666
37737
80488
212258
213766

19987071
20595360
172006362
174504898

8 1272915272
6 1280428583

c("cases",

population

<chr>

19987071
20595360
172006362
174504898
1272915272
1280428583

Data Reshape

"population"))

Q5 Use pivot_longer to reshape countB. You will need to import countB (file_path = "./data/
countB.csVv"). Your reshaped data should look the same as the data below.

A tibble: 27
Feature Replicate SampleA SampleB
<chr> <chr>

OW 00 N o L1 b W N

[EY
S

i

Tspan6t 1
Tspan6t 2
Tspan6 3
TNMD 1
TNMD 2
TNMD 3
DPM1 1
DPM1 2
DPM1 3
SCYL3 1

x 4

17 more rows

Q5 Solution

<1

nt>
703
567
867
490
482

18
921
797
622
335

countB_1<-pivot_longer(countB,

<int>
71
970
242
342
935
469
661
8
500
774

countB<-read.csv("../data/countB.csv",row.names=1) %>% rownames to column("Feature'

Bioinformatics Training and Education Program

231

Data Reshape

cols=2:1length(countB),
names_to = c(".value",
names_sep = "_")

tibble(countB_1)
A tibble: 27 x 4

"Replicate"),

#it Feature Replicate SampleA SampleB

<chr> <chr> <int>
1 Tspan6é 1 703
2 Tspant 2 567
3 Tspant 3 867
4 TNMD 1 490
5 TNMD 2 482
6 TNMD 3 18
7 DPM1 1 921
8 DPM1 2 797
9 DPM1 3 622
10 SCYL3 1 335

i 17 more rows

<int>
71
970
242
342
935
469
661
8
500
774

Bioinformatics Training and Education Program

232

Select and Filter

Select and Filter

All solutions use the pipe. Solutions have multiple possibilities.

Q1. Import the file "./data/filtlowabund_scaledcounts_airways.txt" and save to an object named

sc. Create a data frame from sc that only includes the columns sample, cell, dex,

transcript, and counts_scaled and only rows that include the treatment "untrt" and the
transcripts "ACTN1" and "ANAPC4"?

S[E
##
#H
##
##
#H
##
##
#H

Q1 Solution
library(tidyverse)
— Attaching core tidyverse packages tidyverse 2.0.0 —
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.2 v tibble 3.3.0
v lubridate 1.9.4 v tidyr 1.3.1
v purrr 1.0.4
— Conflicts tidyverse_conflicts() —
® dplyr::filter() masks stats::filter ()
® dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-1lib.org/>) to force all conf

<- read_delim("../data/filtlowabund scaledcounts_airways.txt")
Rows: 127408 Columns: 18
— Column specification
Delimiter: "\t"

chr (11): feature, SampleName, cell, dex, albut, Run, Experiment, Sample, Bi...
dbl (6): sample, counts, avgLength, TMM, multiplier, counts_scaled

1gl (1): .abundant

i Use “spec()” to retrieve the full column specification for this data.

i Specify the column types or set “show_col_ types = FALSE® to quiet this message
cnames <- c('sample', 'cell', 'dex', 'transcript', 'counts_scaled')

sc %>% select(all_of(cnames)) %>% filter(dex == "untrt" & (transcript %in% c("ACTN!
A tibble: 8 x 5

sample cell dex transcript counts_scaled

<dbl> <chr> <chr> <chr> <dbl>

1 508 N61311 untrt ANAPC4 777 .

2 508 N61311 untrt ACTN1 14410.

3 512 NO52611 untrt ANAPC4 786.

4 512 NO52611 untrt ACTN1 16644 .

5 516 NO80611 untrt ANAPC4 709.

6 516 NO80611 untrt ACTN1 15805.

7 520 NO61011 untrt ANAPC4 827.

8 520 NO61011 untrt ACTN1 16015.

Bioinformatics Training and Education Program

233 Select and Filter

Q2. Using dexp ("./data/diffexp_results_edger_airways.txt") create a data frame containing the
top 5 differentially expressed genes and save to an object named top5. Top genes in this case
will have the smallest FDR corrected p-value and an absolute value of the log fold change
greater than 2. See dplyr::slice().

Q2 Solution

dexp<-read delim("../data/diffexp_results edger_airways.txt")
Rows: 15926 Columns: 10
— Column specification
Delimiter: "\t"
chr (4): feature, albut, transcript, ref _genome
dbl (5): logFC, logCPM, F, PValue, FDR
1gl (1): .abundant
#it
i Use “spec() to retrieve the full column specification for this data.
i Specify the column types or set “show_col_types = FALSE" to quiet this message
top5<- dexp %>%

dplyr::filter(abs(logFC) > 2) %>%

slice min(n=5,order_ by=FDR, with_ ties=FALSE)

top5
A tibble: 5 x 10
#i# feature albut transcript ref genome .abundant logFC 1ogCPM F PValue
1t <chr> <chr> <chr> <chr> <lgl> <dbl> <dbl> <dbl> <dbl:
1 ENSGO0O00010.. untrt ZBTB16 hg38 TRUE 7.15 4.15 1429. 5.11e-11
2 ENSGOO00016.. untrt CACNB2 hg38 TRUE 3.28 4.51 1575. 3.34e-11
3 ENSGOO00012.. untrt DUSP1 hg38 TRUE 2.94 7.31 694. 1.18e- ¢
4 ENSGOO00O14.. untrt PRSS35 hg38 TRUE -2.76 3.91 807. 6.16e-1¢
5 ENSGOOOOO15.. untrt SPARCL1 hg38 TRUE 4.56 5.53 721. 1.00e- ¢
i 1 more variable: FDR <dbl>

Q3. Filter sc to contain only the top 5 differentially expressed genes.

Q3 Solution

sc %>% dplyr::filter(transcript %in% top5%transcript)
A tibble: 40 x 18
#i feature sample counts SampleName cell dex albut Run avglength Experiment
#i# <chr> <dbl> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <chr>
1 ENSGOO.. 508 4 GSM1275862 N613.. untrt untrt SRRI.. 126 SRX384345
2 ENSGOO.. 508 665 GSM1275862 N613.. untrt untrt SRRI.. 126 SRX384345
3 ENSGOO.. 508 330 GSM1275862 N613.. untrt untrt SRRI.. 126 SRX384345
4 ENSGOO.. 508 62 GSM1275862 N613.. untrt untrt SRRI.. 126 SRX384345
5 ENSGOO.. 508 80 GSM1275862 N613.. untrt untrt SRRI.. 126 SRX384345
6 ENSGOO.. 509 739 GSM1275863 N613.. trt untrt SRRI.. 126 SRX384346
7 ENSGOO.. 509 5020 GSM1275863 N613.. trt untrt SRRI.. 126 SRX384346
8 ENSGOO.. 509 41 GSM1275863 N613.. trt untrt SRRI.. 126 SRX384346
9 ENSGOO.. 509 2040 GSM1275863 N613.. trt untrt SRRI.. 126 SRX384346
10 ENSGOO.. 509 731 GSM1275863 N613.. trt untrt SRRI.. 126 SRX384346
i 30 more rows
i 8 more variables: Sample <chr>, BioSample <chr>, transcript <chr>,

Bioinformatics Training and Education Program

Select and Filter

#
##t #

ref_genome <chr>, .abundant <lgl>, TMM <dbl>, multiplier <dbl>,
counts_scaled <dbl>

Q4. Select only columns of type character from sc.

Q4 Solution
sc %>% select(where(is.character))
A tibble: 127,408 x 11
#it feature SampleName cell dex albut Run Experiment Sample BioSample
#i# <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 ENSGOOOO00000.. GSM1275862 N613.. untrt untrt SRR1.. SRX384345 SRS50.. SAMNO242.
2 ENSGOOOOOOO04.. GSM1275862 N613.. untrt untrt SRR1.. SRX384345 SRS50.. SAMNO242.
3 ENSGOOO000004.. GSM1275862 N613.. untrt untrt SRR1.. SRX384345 SRS50.. SAMNO242.
4 ENSGOOO000004.. GSM1275862 N613.. untrt untrt SRR1.. SRX384345 SRS50.. SAMNO242.
5 ENSGOOOOOOOO9.. GSM1275862 N613.. untrt untrt SRR1.. SRX384345 SRS50.. SAMNO242.
6 ENSGOO0000010.. GSM1275862 N613.. untrt untrt SRR1.. SRX384345 SRS50.. SAMNO242.
7 ENSGOO0O000010.. GSM1275862 N613.. untrt untrt SRR1.. SRX384345 SRS50.. SAMNO242.
8 ENSGOOOOOOO11.. GSM1275862 N613.. untrt untrt SRR1.. SRX384345 SRS50.. SAMNO242.
9 ENSGOO0000014.. GSM1275862 N613.. untrt untrt SRR1.. SRX384345 SRS50.. SAMNO242.
10 ENSGOOO000014.. GSM1275862 N613.. untrt untrt SRR1.. SRX384345 SRS50.. SAMNO242.
i 127,398 more rows
i 2 more variables: transcript <chr>, ref_genome <chr>

Q5. Select all columns from dexp except .abundant and PValue. Keep only rows with FDR
less than or equal to 0.01.

Q5 Solution
dexp %>% select(-c(.abundant,PValue)) %>% filter(FDR <= 0.01)
A tibble: 2,763 x 8
#it feature albut transcript ref_genome 1logFC logCPM F FDR
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ENSGOOOOOO00003 untrt TSPANG6 hg38 -0.390 5.06 32.8 0.00283
2 ENSGOOOOOOO0971 untrt CFH hg38 0.417 8.09 29.3 0.00376
3 ENSGOO000001167 untrt NFYA hg38 -0.509 4.13 44.9 0.00126
4 ENSGO0000002834 untrt LASP1 hg38 0.388 8.39 22.7 0.00722
5 ENSGOOOOOOO3096 untrt KLHL13 hg38 -0.949 4.16 84.8 0.000234
6 ENSGOO000003402 untrt CFLAR hg38 1.18 6.90 130. 0.0000800
7 ENSGOOOOOOO3987 untrt MTMR7 hg38 0.993 0.341 24.7 0.00585
8 ENSGOOOOOOO04059 untrt ARF5 hg38 0.358 5.84 30.9 0.00328
9 ENSGOO000004487 untrt KDM1A hg38 -0.308 5.86 23.5 0.00663
10 ENSGOOO0O004700 untrt RECQL hg38 0.360 5.60 22.7 0.00721
i 2,753 more rows

Q6. Import the file "./data/airway_rawcount.csv". Use the function rename () to rename the first
column. Use the pipe to import and rename successively without intermediate steps or function
nesting. Save to an object named acount.

Bioinformatics Training and Education Program

235 Select and Filter

Q6 Solution

acount<-read _csv("../data/airway_rawcount.csv") %>%
dplyr::rename(Feature = ...1)
New names:
Rows: 64102 Columns: 9
— Column specification
#it Delimiter: "," chr
(1): ...1 dbl (8): SRR1039508, SRR1039509, SRR1039512, SRR1039513, SRR1039516,
SRR1039...
i Use “spec()’

to retrieve the full column specification for this data. i

Specify the column types or set “show_col_types = FALSE" to quiet this message.
##H oo T > L1

acount

A tibble: 64,102 x 9

#i# Feature SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517
<chr> <db1l> <dbl> <dbl> <dbl> <dbl> <dbl:
1 ENSGO00000.. 679 448 873 408 1138 1047
2 ENSGO00000.. 0 0 0 0 0 ¢
3 ENSGO00000.. 467 515 621 365 587 79¢
4 ENSGO00000.. 260 211 263 164 245 331
5 ENSGO00000.. 60 55 40 35 78 6:
6 ENSGO00000.. 0 0 2 0 1 ¢
7 ENSGO00000.. 3251 3679 6177 4252 6721 11027
8 ENSGO00000.. 1433 1062 1733 881 1424 143¢
9 ENSG0O00000.. 519 380 595 493 820 71¢
10 ENSGO00000.. 394 236 464 175 658 58¢

i 64,092 more rows

i 2 more variables: SRR1039520 <dbl>, SRR1039521 <dbl>

Q7. Use filter on the object acount to keep only genes that had a count greater than 10 in at
least one sample.

Q7 Solution

acount %>%
filter (if_any(where(is.numeric), ~.> 10))

A tibble: 17,792 x 9
Feature SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR103951;
#it <chr> <db1l> <db1l> <dbl> <dbl> <dbl> <dbl:
1 ENSGO00000.. 679 448 873 408 1138 1045
2 ENSGO0000O.. 467 515 621 365 587 798
3 ENSGOO0000.. 260 211 263 164 245 331
4 ENSGO00000.. 60 55 40 35 78 6:
5 ENSGO00000.. 3251 3679 6177 4252 6721 11025
6 ENSGOO0000.. 1433 1062 1733 881 1424 143¢
7 ENSGO0000O.. 519 380 595 493 820 71¢
8 ENSGO00000.. 394 236 464 175 658 58¢
9 ENSGOO0000.. 172 168 264 118 241 21¢
10 ENSGO00000.. 2112 1867 5137 2657 2735 2751
i 17,782 more rows
i 2 more variables: SRR1039520 <dbl>, SRR1039521 <dbl>

Bioinformatics Training and Education Program

236 Select and Filter

Q8. Challenge Question: Filter genes from acount that had a total count less than ten across
all samples. Hint: Use column_to_rownames and look up rowSums (). For an alternative

solution, check out the docs from rowwise operations (htips./dplyr.tidyverse.org/articles/
rowwise.html).

Q8 Solution

f _acount<- acount %>% column_to_rownames("Feature") %>% filter(rowSums(.) > 10)

Alternatively

f_acount2<- acount %>% filter(rowSums(pick(where(is.numeric))) > 10)

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/articles/rowwise.html
https://dplyr.tidyverse.org/articles/rowwise.html
https://dplyr.tidyverse.org/articles/rowwise.html
https://dplyr.tidyverse.org/articles/rowwise.html

237 Group_by, Summarize, Arrange

Group_by, Summarize, Arrange

We will continue with penguins for this exercise. Questions and solutions (Q1-Q3) were taken
from https://allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize (https://
allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize).

First, let's convert penguins to a tibble.
penguins <- dplyr::as _tibble(penguins)

Q1: Use group_by() and summarize() to obtain the mean and standard deviation of
penguin bill length, grouped by penguin species and sex.

Q1: Solution

library(tidyverse)

— Attaching core tidyverse packages tidyverse 2.0.0 —
v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot2 3.5.2 v tibble 3.3.0

v lubridate 1.9.4 v tidyr 1.3.1

v purrr 1.0.4

— Conflicts tidyverse conflicts() —

® dplyr::filter() masks stats::filter ()
% dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-1lib.org/>) to force all conf
penguins %>%

group_by(species, sex) %>%

summarize(bill_length_mean = mean(bill_len, na.rm = TRUE),

bill_length_sd = sd(bill_len, na.rm = TRUE))

“summarise() has grouped output by 'species'. You can override using the
°~ .groups’ argument.
A tibble: 8 x 4
Groups: species [3]
species sex bill length mean bill length sd

<fct> <fct> <db1> <db1>
1 Adelie female 37.3 2.03
2 Adelie male 40.4 2.28
3 Adelie <NA> 37.8 2.80
4 Chinstrap female 46.6 3.11
5 Chinstrap male 51.1 1.56
6 Gentoo female 45.6 2.05
7 Gentoo male 49.5 2.72
8 Gentoo <NA> 45.6 1.37

Q2: Use group_by () and summarize () to prepare a summary table containing the maximum
and minimum flipper length for male Adelie penguins, grouped by island.

Bioinformatics Training and Education Program

https://allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize
https://allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize
https://allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize
https://allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize

238

Q2: Solution

penguins %>%

A tibble: 3 x 3

#t <fct>

1 Biscoe

2 Dream

3 Torgersen

length
length

<int>
203
208
210

filter(species == "Adelie", sex == "male") %>%
group_by(island) %>%
summarize (flip_max_

flip_min_

max(flipper_len),
min(flipper_len))

island flip_max_length flip_min_length

<int>
180
178
181

Group_by, Summarize, Arrange

Q3: Starting with penguins, create a summary table containing the maximum and minimum
length of flippers (call the columns "flip_max" and "flip_min") for chinstrap penguins, grouped by

island.

Q3: Solution

penguins %>%

summarize (flip_max
flip_min
A tibble: 1 x 3

island flip_max
<fct> <int>
1 Dream 212

filter(species == "Chinstrap") %>%
group_by(island) %>%

= max(flipper_len),
min(flipper_len))

flip_min
<int>
178

Q4. Create a data frame reordering penguins by year, island, and sex.

Bioinformatics Training and Education Program

239 Group_by, Summarize, Arrange

Q4: Solution

penguins %>% arrange(year, island, sex)
A tibble: 344 x 8

#it species island bill_len bill_dep flipper_len body mass sex year
<fct> <fct> <dbl> <db1l> <int> <int> <fct> <int>
1 Adelie Biscoe 37.8 18.3 174 3400 female 2007
2 Adelie Biscoe 35.9 19.2 189 3800 female 2007
3 Adelie Biscoe 35.3 18.9 187 3800 female 2007
4 Adelie Biscoe 40.5 17.9 187 3200 female 2007
5 Adelie Biscoe 37.9 18.6 172 3150 female 2007
6 Gentoo Biscoe 46.1 13.2 211 4500 female 2007
7 Gentoo Biscoe 48.7 14.1 210 4450 female 2007
8 Gentoo Biscoe 46.5 13.5 210 4550 female 2007
9 Gentoo Biscoe 45 .4 14.6 211 4800 female 2007
10 Gentoo Biscoe 43.3 13.4 209 4400 female 2007

i 334 more rows

Q5. Create a data frame containing male Adelie penguins reordered by body_mass in
descending order.

Q5: Solution

penguins %>%
filter(species == "Adelie", sex == "male") %>%
arrange (desc(body_mass))
A tibble: 73 x 8
species island bill_len bill_dep flipper_len body_mass sex year

<fct> <fct> <dbl> <dbl> <int> <int> <fct> <int>
1 Adelie Biscoe 43.2 19 197 4775 male 2009
2 Adelie Biscoe 41 20 203 4725 male 2009
3 Adelie Torgersen 42.9 17.6 196 4700 male 2008
4 Adelie Torgersen 39.2 19.6 195 4675 male 2007
5 Adelie Dream 39.8 19.1 184 4650 male 2007
6 Adelie Dream 39.6 18.8 190 4600 male 2007
7 Adelie Biscoe 45.6 20.3 191 4600 male 2009
8 Adelie Torgersen 42.5 20.7 197 4500 male 2007
9 Adelie Dream 37.5 18.5 199 4475 male 2009
10 Adelie Torgersen 41.8 19.4 198 4450 male 2008

i 63 more rows

Bioinformatics Training and Education Program

240 Mutate and Wrangle Challenge

Mutate and Wrangle Challenge

Let's grab some data to work with.

library(tidyverse)
acount_smeta<-read tsv("../data/countsANDmeta.txt")
acount_smeta

#raw count data

acount<-read csv("../data/airway_rawcount.csv") %>%
dplyr::rename("Feature" = "...1")

acount

#differential expression results
dexp<-read delim("../data/diffexp _results edger airways.txt")
dexp

Q1. Using mutate apply a base-10 logarithmic transformation to the numeric columns in
acount; add a pseudocount of 1 prior to this transformation. Save the resulting data frame to
an object called 1oglOcounts.

Q1: Solution

loglOcounts<- acount %>%
mutate(across(where(is.numeric),~1oglO(.x+1)))

loglOcounts

A tibble: 64,102 x 9

#it Feature SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR103951’
#i# <chr> <db1l> <db1> <db1> <db1> <db1> <db1:
1 ENSGO00000.. 2.83 2.65 2.94 2.61 3.06 3.0:2
2 ENSGO0000O.. 0 0 0 0 0 0
3 ENSGO0000O.. 2.67 2.71 2.79 2.56 2.77 2.9¢
4 ENSGO00000.. 2.42 2.33 2.42 2.22 2.39 2.5
5 ENSGOO000O.. 1.79 1.75 1.61 1.56 1.90 1.81
6 ENSGO00000.. 0 0 0.477 0 0.301 0
7 ENSGO0000O.. 3.51 3.57 3.79 3.63 3.83 4.0¢
8 ENSGO0000O.. 3.16 3.03 3.24 2.95 3.15 3. 1¢
9 ENSGO0000O.. 2.72 2.58 2.78 2.69 2.91 2.8!
10 ENSGO00000.. 2.60 2.37 2.67 2.25 2.82 2.7%

i 64,092 more rows
i 2 more variables: SRR1039520 <dbl>, SRR1039521 <dbl>

Bioinformatics Training and Education Program

241

Mutate and Wrangle Challenge

Q2. Create a column in dexp called Expression. This column should say "Down-regulated” if

logFC is less than -1 or "Up-regulated" if 1ogFC is greater than 1. All other values should say

"None".

Q2: Solution

dexp_new<-dexp %>%

Challenge question:

mutate (Expression=case_when(logFC < -1 ~ "Down-regulated",

logFC > 1 ~ "Up-regulated",
.default = "None")

Q3. Calculate the mean raw counts for each gene ('Feature") by treatment ("dex") in

acount_smeta. Combine these results with the differential expression results. Your resulting

data frame should resemble the following:
A tibble: 15,926 x 12
Feature Mean_ Counts_trt Mean Counts untrt albut transcrip
<chr> <dbl> <dbl> <chr> <chr>

1 ENSGO00O00000003 619. 865 untrt TSPAN6

2 ENSGOO000000419 547. 523 untrt DPM1

3 ENSGOO000000457 234. 250. untrt SCYL3

4 ENSGOOOO0000460 53.2 63.5 untrt Clorfll2

5 ENSGOOO00000971 6738. 5331. untrt CFH

6 ENSGOO000001036 1123. 1487. untrt FUCA2

7 ENSGOO00O0001084 573. 658. untrt GCLC

8 ENSGOO000001167 316 469 untrt NFYA

9 ENSGOO000001460 168. 208 untrt STPG1

10 ENSGOO000001461 2545 3113. untrt NIPALS3
i 15,916 more rows
i 6 more variables: .abundant <1gl>, logFC <dbl>, 1ogCPM <dbl>, F
PValue <dbl>, FDR <dbl>

Rows: 15,926
Columns: 12

$ Feature <chr> "ENSGOOOO0000003", "ENSGOOOOO000419", "ENSI
$ Mean_Counts_trt <dbl> 618.75, 546.75, 233.75, 53.25, 6738.25, 11.
$ Mean Counts_untrt <dbl> 865.00, 523.00, 250.25, 63.50, 5331.25, 14
$ albut <chr> "untrt", "untrt", "untrt", "untrt", "untrt
$ transcript <chr> "TSPAN6", "DPM1", "SCYL3", "Clorfl12", "CFI
$ ref_genome <chr> "hg38", "hg38", "hg38", "hg338", "hg38", "hi
$.abundant <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, -~

Bioinformatics Training and Education Program

242 Mutate and Wrangle Challenge

$ logFC <dbl> -0.390100222, 0.197802179, 0.029160865, -0
$ logCPM <dbl> 5.059704, 4.611483, 3.482462, 1.473375, 8.
$ F <dbl> 3.284948e+01, 6.903534e+00, 9.685073e-02,
$ PValue <dbl> 0.0003117656, 0.0280616149, 0.7629129276, |
$ FDR <dbl> 0.002831504, 0.077013489, 0.844247837, 0.6
Q3: Solution

a<-acount_smeta %>%
group_by(dex, Feature) %>%
summarise(mean_count = mean(Count)) %>%
pivot_wider (names_from=dex,values_from=mean_count,
names_prefix="Mean_Counts_") %>%
right join(dexp, by=c("Feature" = "feature"))

“summarise() has grouped output by 'dex'. You can override using the " .groups’
argument.

Q4. If you are interested in practicing data wrangling further, try this wrangling challenge
(https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/Lesson8/#wrangling-a-
realistic-dataset).

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/Lesson8/#wrangling-a-realistic-dataset
https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/Lesson8/#wrangling-a-realistic-dataset
https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/Lesson8/#wrangling-a-realistic-dataset
https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/Lesson8/#wrangling-a-realistic-dataset
https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/Lesson8/#wrangling-a-realistic-dataset
https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/Lesson8/#wrangling-a-realistic-dataset

Part 3: Exercises

244 Lesson 1 Exercise Questions: ggplot2 basics

Lesson 1 Exercise Questions: ggplot2
basics

These exercise questions should be attempted after completing Lesson 1: Introduction to
ggplot2 for R Data Visualization.

Q1: What geoms would you use to draw each of the following named plots?

a. Scatterplot
b. Line chart
c. Histogram
d. Bar chart
e. Pie chart

(Question taken from https://ggplot2-book.org/individual-geoms.html (https.//ggplot2-book.org/
individual-geoms.html).)

Q1: Solution

a. geom_point

b. geom_line

c. geom_histogram

d. geom_bar

c. geom_bar with coord_polar

Q2. We will use the mpg data set for the remainder of the questions. Use ?mpg to learn
more about these data. Visualize highway miles per gallon (hwy) by the class of car using a
box plot.

Q2: Solution

library(ggplot2)

ggplot(mpg)+
geom_boxplot(aes(class,hwy))

Bioinformatics Training and Education Program

https://ggplot2-book.org/individual-geoms.html
https://ggplot2-book.org/individual-geoms.html
https://ggplot2-book.org/individual-geoms.html
https://ggplot2-book.org/individual-geoms.html

245 Lesson 1 Exercise Questions: ggplot2 basics

° °
°
40-
°
°
30-
>
3
= °
°
°
°
l .
°
I
20-
°
I
° °
2seater compact midsize minivan pickup subcompact suv
class

Q3. Using the plot from Q2, fill each box with color by class.

Q3: Solution

ggplot(mpg)+
geom_boxplot(aes(class,hwy,fill=class))

Bioinformatics Training and Education Program

246 Lesson 1 Exercise Questions: ggplot2 basics

°)
°
40-
°
¢ class
' 2seater
0 . compact
; ' midsize
Z -
°
°
_ ° ' subcompact
1 o s
20~
°
° °
2seater compact midsize minivan pickup subcompact suv
class

Q4. Challenge Question: Using the plot from Q3, reorder the boxes by the median of hwy. Hint:
See fct_reorder () from forcats.

Q4: Solution

library(forcats)

ggplot (mpg)+
geom_boxplot(aes(fct_reorder(factor(class),hwy,median), hwy,fill=class))

Bioinformatics Training and Education Program

247 Lesson 1 Exercise Questions: ggplot2 basics

°)
°
40-
°
T class
' 2seater
compact
0. =
. midsize
3 -
< Y minivan
°
° pickup
°
° subcompact
°
suv
20~
°
° °
pickup suv minivan 2seater subcompact compact midsize

fct_reorder(factor(class), hwy, median)

Q5. Visualize highway miles per gallon (hwy) by the class of car using a violin plot.

Q5: Solution

ggplot(mpg)+
geom_violin(aes(class,hwy))

Bioinformatics Training and Education Program

248 Lesson 1 Exercise Questions: ggplot2 basics

40 -

hwy

__/

20~

1 1) 1 1 1
2seater compact midsize minivan pickup subcompact suv
class

Q6. Visualize a cars engine size in liters (disp1) versus fuel efficiency on the hwy (hwy) using a
scatter plot.

Q6: Solution

ggplot(mpg) +
geom_point(aes(displ,hwy))

Bioinformatics Training and Education Program

249 Lesson 1 Exercise Questions: ggplot2 basics

°
°
40 -
°
°
°
°
o o
° °
° o0
30- o o °
- e o6 o o oo °
= ° ° o o)
<~ e o oo e o o °
e o o oo o oo oo o o ° °
° ° o oo ° ° ° °
oo o0 o ° ° °
° ° e o o ° °
° ° ° ° °
° °
20 - []) (X)
° ° ° o0 °
° e o o e oo
(X)) oo o o0 e o o ° ° °
(X} o o
° o0 (XX e o
° °
°
2 3 4 5 6 7
displ

Q7. Using the plot generated in Q86, fit a smooth line (loess) to the data. Color the points by car
class.

Q7: Solution

ggplot(mpg) +
geom_point(aes(displ,hwy,color=class))+
geom_smooth(aes(displ,hwy))

“geom _smooth() wusing method = 'loess' and formula = 'y ~ x'

Bioinformatics Training and Education Program

250 Lesson 1 Exercise Questions: ggplot2 basics

40-

class

® 2seater

® compact
30-
® midsize

hwy

® minivan
® pickup
® subcompact

® suv
20-

2 3 4 5 6 7
displ

Q8. Visualize a histogram of hwy and facet by year. What is bindwidith (See ?
geom_histogram)? Explore the binwidth and color the bars red with a black outline.

Q8: Solution

ggplot(mpg)+
geom_histogram(aes(hwy),fill="red",color="black", binwidth=5) +
facet_wrap(~year)

Bioinformatics Training and Education Program

251

Lesson 1 Exercise Questions: ggplot2 basics

1999 2008

40-

30~

count

20-

10-

10 20 30 40

hwy

Bioinformatics Training and Education Program

252 Lesson 2 Exercise Questions: ggplot2 Plot Customization

Lesson 2 Exercise Questions: ggplot2 Plot
Customization

This document contains practice questions on plot customization using ggplot2.
All questions use datasets available in base R or in ggplot2. Suggested workflow for students:

1. Attempt each question in your own script or console.
2. Only then consult the provided solution code.

Note

While one solution is provided per answer, multiple solutions are possible.

Start by loading ggplot?2.

if (!requireNamespace("ggplot2", quietly = TRUE)) install.packages ("

library(ggplot2)

Q1. Using the mtcars dataset, create the following scatter plot:

® Set the x-axis to hp and the y-axis to mpg.
®* Map cy1 to color and am to shape.
e Increase point size and add a smoothed line (loess) in a different color, without a
confidence band.
e Customize the following:
o Make axes labels more informative (e.g., “Horsepower (HP)”).
o Add a plot title (e.g., "Fuel Efficiency vs Horsepower in Motor Cars").
o Set a minimal theme with a customized base font size = 14.

Q1: Solution

ggplot(mtcars, aes(x = hp, y = mpg)) +
geom_point(aes(color = factor(cyl),
shape = factor(am)), size = 3) +

geom_smooth(se = FALSE, method = "loess", color = "black") +
labs (

X = "Horsepower (HP)",

y = "Fuel efficiency (mpg)",

color = "Cylinders",

shape = "Transmission (0 = auto, 1 = manual)",

title = "Fuel Efficiency vs Horsepower in Motor Cars",

Bioinformatics Training and Education Program

253 Lesson 2 Exercise Questions: ggplot2 Plot Customization

) +

theme_minimal (base_size = 14)

Fuel Efficiency vs Horsepower in Motor Cars

35
A
A
30
. Cylinders
(@)
o ® 4
E 5 ®
) ® 3
C
Q0
O
= .
o 20 Transmission (0 = auto, 1 = manual)
:;f ® 0
A 1
15
10 e

100 200 300
Horsepower (HP)

Q2: Using diamonds from ggplot2:

* Create a scatter plot of carat (x-axis) and price (y-axis); set the general transparency
of the points to 0.3.

e Apply a log10 transformation to the y-axis, maintaining the original units on the axis (See
?scale_y logl0()).

e | imit the x-axis to carats between 0.2 and 2.5.

e Clean up the labels and add a title.

Q2: Solution

ggplot (diamonds, aes(x = carat, y = price)) +
geom_point(alpha = 0.3) +
scale_y loglo() +
scale_x_continuous(limits = c(0.2, 2.5))+

labs (
title = "Diamond price vs carat",
x = "Carat",

Bioinformatics Training and Education Program

254 Lesson 2 Exercise Questions: ggplot2 Plot Customization

y = "Price (logl@® scale)"

Diamond price vs carat

10000 -

3000 -

Price (log10 scale)

0.5 1.0 15 2.0 2.5
Carat

Q3: Using ggplot2: :mpg, create a scatterplot of displ on the x-axis and hwy on the y-axis.

® Color points by class.

® Facet the plot by drv (front, rear, 4-wheel drive).

® Customize the facet labels using a 1abeller to replace drv values with more
descriptive labels (e.g., "Four-wheel drive", "Front-wheel drive", and "Rear-wheel drive").

¢ Arrange the facets in a single row.

¢ Rotate the x-axis text by 45 degrees and right-align it.

Q3: Solution

drv_labels <- c(

"4" = "Four-wheel drive",
"f" = "Front-wheel drive",
" = "Rear-wheel drive"

ggplot (mpg, aes(x = displ, y = hwy, color = class)) +
geom_point(alpha = 0.7) +
facet_wrap(~ drv, nrow = 1,

Bioinformatics Training and Education Program

255 Lesson 2 Exercise Questions: ggplot2 Plot Customization

labeller = labeller(drv = drv_labels)) +
theme (
axis.text.x = element text(angle = 45, hjust = 1)

Four-wheel drive Front-wheel drive Rear-wheel drive
{]
[}
40 -
[J
°
° class
L]
oo © 2seater
e o
°o® ® compact
30- % o
> s o ® midsize
= ° oo eooo
<) o0 o000 © minivan
[N I J o ®e® @ @0 (BN
e eoo () ° ° ° © pickup
o0 (X I] o []
o ° e oo ° ° © subcompact
[X] o o []
o e © suv
20 - ° °)
000 ® o
0000 ® °
® @0 ®eo0 0 [] [] [] o000
®e °
o ® 0000 [}
[] [

Q4. Using ToothGrowth:

® Convert dose to a factor.
® Plot 1en (tooth length) vs dose, with:
o dose on the x-axis.
> Points colored by supp and shape also mapped to supp.
e Customize the plot:
oUse scale_color_manual() and scale_shape_manual () to assign specific
colors and shapes to each supplement type.
o Combine color and shape into a single legend with a custom title “Supplement
type”.
o Remove the legend background and legend key borders.

Q4: Solution

ToothGrowth$dose <- factor(ToothGrowth$dose)

Bioinformatics Training and Education Program

256

Tooth length

Lesson 2 Exercise Questions: ggplot2 Plot Customization

ggplot (ToothGrowth,
aes(x = dose, y = len,
color = supp, shape = supp)) +
geom_point(size = 3, position = position_jitter(width = 0.05, height = 0)) +
scale_color_manual (

name = "Supplement type",
values = c("0J" = "#1b%e77", "VC" = "#d95f02")
) +
scale_shape_manual (
name = "Supplement type",
values = c("0J" = 16, "VC" = 17)
) +
labs (
title = "Tooth length by dose and supplement type",
x = "Dose (mg)",
y = "Tooth length"
) +
theme minimal(base size = 13) +
theme (

legend.background = element_blank(),
legend.key = element_blank(),
legend.position = "right"

Tooth length by dose and supplement type

A
A
o
30 é
i
g [Supplement type
20 0@
A A ® 0OJ
4 oy A v
s £
A
10 "]
2
A
A
0.5 1 2

Dose (mg)

Bioinformatics Training and Education Program

257 Lesson 2 Exercise Questions: ggplot2 Plot Customization

Q5: Using ggplot2: :economics:

® Create a line plot of date on the x-axis and unemploy (number unemployed) on the y-
axis.
e Add:
> A vertical line at a chosen date (lubrdiate::as_date("2000-01-01"))
using geom_vline().
> A text annotation near that line describing the event (See annotate()).
e Customize the plot:
> Change the line color and size (within geom_1line()).
o Use a clean theme.
o Adjust x-axis date breaks and labels (e.g., show ticks every 5 years).

Q5: Solution

library(lubridate)
marker_date <- lubridate::as _date("2000-01-01")

ggplot (economics, aes(x = date, y = unemploy)) +
geom_line(color = "steelblue", linewidth = 1) +
geom_vline(xintercept = marker_date,

linetype = "dashed",
color = "red") +
annotate("text",
X marker_date,

y = max(economics$unemploy) * 0.7,
label = "Marker date",
color = "red",
angle = 90,
vjust = -0.5) +
scale x date(date_breaks = "5 years", date_labels = "%Y") +
labs (
title = "US Unemployment Over Time",
x = "Year",
y = "Number unemployed"
) +

theme_minimal (base_size = 13)

Bioinformatics Training and Education Program

258 Lesson 2 Exercise Questions: ggplot2 Plot Customization

US Unemployment Over Time

12000

| Markerdate |

8000

Number unemployed

4000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Year

Q6. Using any plot you created above (for example, the mtcars plot from Question 1):

® Save the plot object to a variable, e.g., p.

® Use ggsave () to:
o Export the plot as a PNG file.
o Specify a custom width and height in inches.
o Set a suitable DPI (e.g., 300).

Q6: Solution

Create the plot and assign to p
p <- ggplot(mtcars, aes(x = hp, y = mpg)) +
geom_point(aes(color = factor(cyl),
shape = factor(am)), size = 3) +

geom_smooth(se = FALSE, method = "loess", color = "black") +
labs (

x = "Horsepower (HP)",

y = "Fuel efficiency (mpg)",

color = "Cylinders",

shape = "Transmission (0 = auto, 1 = manual)",

title = "Fuel Efficiency vs Horsepower in Motor Cars",
) +

theme_minimal (base_size = 14)

Bioinformatics Training and Education Program

2512)

Save as high-resolution PNG

filename = "mtcars_mpg_hp.png",

ggsave (
plot = p,
width = 6,
height = 4,
dpi = 300

)

Lesson 2 Exercise Questions: ggplot2 Plot Customization

Bioinformatics Training and Education Program

260 Lesson 3 Exercise Questions: Building a Publication Quality Plot

Lesson 3 Exercise Questions: Building a
Publication Quality Plot

Putting what we have learned to the test:

The following questions synthesize several of the skills you have learned thus far. It may not be
immediately apparent how you would go about answering these questions. Remember, the R
community is expansive, and there are a number of ways to get help including but not limited to
google search. These questions have multiple solutions, but you should try to stick to the tools
you have learned to use thus far.

Your mission is to make a publishable figure.
We will use the iris data set for this.

Start by loading ggplot2.

if (!requireNamespace("ggplot2", quietly = TRUE)) install.packages ("

library(ggplot2)

Q1. Start by creating a scatter plot of iris with Petal.Length on the x-axis and
Petal.Width on the y-axis. Color the points by Species.

Q1: Solution

ggplot(iris)+
geom_point(aes(Petal.Length,Petal.Width,color=Species))

Bioinformatics Training and Education Program

261 Lesson 3 Exercise Questions: Building a Publication Quality Plot

25- e oo
° °
o000 e 0 o []
[BN] []
(Y Y Y I °
20- (XYY e o
e0 o °
o0 o e o 0 o

[] []

o 0 ° ° .
£15- o eee oo Species
g ° o eoo ° ® setosa
= ° (YYYYYY)

Io -~ 5 o o ® versicolor
& L oo ® virginica
1.0- e o 0 oo
[]
0.5- °
o 000 o
oo o
o e00000 o
o oo
0.0-

2 4 6
Petal.Length

Q2. Fix the axes so that the dimensions on the x-axis and the y-axis are equal (See ?

coord_fixed). Both axes should start at 0. Label the axis breaks every 0.5 units on the y-axis
and every 1.0 units on the x-axis.

Q2: Solution

ggplot(iris)+
geom_point(aes(Petal.Length,Petal.Width,color=Species))+
coord_fixed(ratio=1,ylim=c(0,2.75),x1lim=c(0,7)) +
scale_y continuous(breaks=seq(0,2.5, by=0.5)) +
scale_x _continuous (breaks=0:7)

Bioinformatics Training and Education Program

262 Lesson 3 Exercise Questions: Building a Publication Quality Plot

2.5~ ° ®o oo
o000 o 0 o °
0000 © ..
c 20~ *32% — T Species
= o %%° 00 o
= d 2 ons o ® setosa
3_ 1.5 o ® o%88e°°° °
= 000 .
© e o ® versicolor
-— []
[1.0- o 00 o0 N
o ® virginica
°
0.5~ ° 008 ©
o 0
°,° ° o
0.0-
0 1 2 3 4 5 6 7

Petal.Length

Q3. Assign a color blind friendly palette to the color of the points, and change the legend title to

"Iris Species". Label the x and y axes to make the variable names visually appealing; include
unit information.

Q3: Solution

#multiple ways to find color blind friendly palettes.
#using color brewer scales

RColorBrewer::display.brewer.all(colorblindFriendly=TRUE)

Bioinformatics Training and Education Program

263

o T
I

0 5LCS
O S LT TR R oS

®
c2esn

Set2 M s —

Lesson 3 Exercise Questions: Building a Publication Quality Plot

%?"- — — — — —
AT 2 S S S 1 e —

|| T
I I —

I B
I —
I S —

RE@ U ————

ggplot(iris)+

geom_point(aes(Petal.Length,Petal.Width,color=Species))+
coord_fixed(ratio=1,ylim=c(0,2.75),xlim=c(0,7)) +
scale_y_continuous(breaks=seq(0,2.5, by=0.5)) +

scale_x_continuous(breaks=0:7) +

scale color_brewer (palette = "Dark2",name="Iris Species") +
labs(x="Petal Length (cm)", y= "Petal Width (cm)")

Bioinformatics Training and Education Program

264 Lesson 3 Exercise Questions: Building a Publication Quality Plot

N
(&)}
1
[]
[]
]

e o
Scee "0 0 0 o®
g2 0- esee *°%° ° o % ; ;
S 00®S ® 00 0 o° o Iris Species
°
% 15- o« %o .g...: — S ® setosa
< e % ® versicolor
= ° °
< 1.0- o0 o oo o
= ® virginica
©
o)
0.5- ° 008 ©
I x 3
0.0- <
0 1 2 3 4 5 6 7

Petal Length (cm)

Q4. Play with the theme to make your plot nicer and more publishable. Change font style to
"Times". Change all font sizes to 12 pt font. Bold the legend title and the axes titles. Increase the

size of the points on the plot to 2. Bonus: fill the points with color and have a black outline
around each point.

Q4: Solution

ggplot(iris)+

geom _point(aes(Petal.Length,Petal.Width,fill=Species),size=2,shape=21)+

coord_fixed(ratio=1,ylim=c(0,2.75),x1lim=c(0,7)) +

scale_y continuous(breaks=seq(0,2.5, by=0.5)) +

scale_x _continuous(breaks=0:7) +

scale_fill_brewer(palette = "Dark2",name="Iris Species") +

labs(x="Petal Length (cm)", y= "Petal Width (cm)") +

theme bw()+

theme (axis.text=element_text(family="Times",6 size=12),
axis.title=element_ text(family="Times", face="bold",6size=12),
legend.text=element text(family="Times",size=12),
legend.title = (element_text(family="Times",6 face="bold",size=12))
)

Bioinformatics Training and Education Program

265

Lesson 3 Exercise Questions: Building a Publication Quality Plot

2.54 o @
_ &o:.;:.oo °®
€00 A '. o %
; o0 e@oeo o
g 1.51 o % o8 °
= 1.0 ® 00 0% °
5
5]
m().5- *.
5)
0.0- T I. T T T T T T
0 1 2 3 4 5 6 7
Petal Length (cm)

Q5. Save your plot using ggsave.

Q5: Solution

ggsave("iris.tiff",

width=5.5, height=3.5,units="1in")

Iris Species
@ setosa
@ versicolor
@ virginica

Bioinformatics Training and Education Program

266 Lesson 4 Exercise Questions: ggplot2

Lesson 4 Exercise Questions: ggplot2

This exercise questions are meant to test your learning following Lesson 4: Recommendations
and Tips for Creating Effective Plots with ggplot2. To approach these questions, you will need to
understand how to find help.

Start by loading ggplot2 and patchwork.

if (!requireNamespace("ggplot2", quietly = TRUE)) install.packages ("
if (!requireNamespace("patchwork", quietly TRUE)) install.packages

library(ggplot2)
library(patchwork)

Q1. Write a function plot_mpg_by cyl(df) that plots a box plot of mpg vs cyl colored by
gear. Testonmtcars.

Q1: Solution

plot mpg by cyl <- function(df) {
ggplot(df) +
geom_boxplot(aes(x = factor(cyl), y = mpg, fill
labs(x = "cyl", y = "mpg", color = "gear") +
theme_minimal ()

factor(gear))) +

}

plot_mpg by cyl(mtcars)

Bioinformatics Training and Education Program

267

35

30

25

mpg

20

15

10

Lesson 4 Exercise Questions: ggplot2

factor(gear)

cyl

Q2. Write scatter_plot(df, x, y, color) that creates a scatter plot using column

names for x, y, and color. Teston iris with Sepal.Length, Petal.Length, Species.

Q2: Solution

scatter_plot <- function(df, x, y, color) {
ggplot(df) +
geom_point(aes(x = {{x}}, v = {{y}}, color = {{color}})) +
theme minimal ()

scatter plot(iris, Sepal.Length, Petal.Length, Species)

Bioinformatics Training and Education Program

268 Lesson 4 Exercise Questions: ggplot2

{]
°
[]
[]
[]
[[] (]
6 {] ° ..
[] [] []
e o
e oo H
[N J []
(] (]
[]
[] []
[X BN] [[] (]
{] ® {3 [
° e o °
oo _ o °
S ° oo * .
< ° o 00 ® e o Species
g [N] [] ° ® t
°
34 5 .:os oo selosa
I S ® versicolor
© ° ®e
® virginica
o ° o g
°
2 [] []
[] [] []
oo s
° e0000e0 °
e o o000 e ®
[N J [] [[N J
[] []
[]
{]
5 6 7 8

Sepal.Length

Q3. Write facet _histogram(df, variable, facet by, bins = 30) that draws a
histogram of a numeric variable and facet _wraps by facet by. The function should also
accept a bins argument. Test on diamonds with price by cut.

Q3: Solution

facet_histogram <- function(df, variable, facet_by, bins = 30) {
ggplot (df) +
geom_histogram(aes(x = {{variable}}), bins = bins,
color = "white") +
facet _wrap(vars({{facet_by}})) +
labs(x= stringr::str_to_sentence(rlang::englue("{{variable}}")),
y = "Count") +
theme_minimal()

facet _histogram(ggplot2::diamonds, price, cut, bins = 40)

Bioinformatics Training and Education Program

269 Lesson 4 Exercise Questions: ggplot2

Fair Good Very Good
6000

4000

2000

0 R |I|l|l|l|l- _____ I‘IIIIIIII'IIII-.

. 0 5000 10000 15000 200C
Premium Ideal

Count

6000

4000

2000

0 | |III|IIIII|III-.-..... ____________ |“‘|IIIIII|I|III|||.... ___________ B

0 5000 10000 15000 2000® 5000 10000 15000 20000
Price

Q4. Challenge Question: Define a function plot_relationship(df, x, y, method =
"point") that:

® yses geom_point () when method = "point",
® yses geom_point () and geom_smooth () when method = "smooth",
® includes a custom theme_minimal () andtitle using rlang: :englue().

Test on mpg with both methods to compare relationships between displ and hwy.

Q4: Solution

plot_relationship <- function(df, x, y, method = "point") {
label <- rlang::englue("Relationship: {{x}} vs {{y}}")
base <- ggplot(df, aes(x = {{x}}, y = {{y}})) +
geom_point(alpha = 0.8) +
labs(title = label) +
theme_minimal (base_size = 12)

if (method == "point") {
base
} else if (method == "smooth") {
base + geom_smooth(se = TRUE)
} else {

Bioinformatics Training and Education Program

270 Lesson 4 Exercise Questions: ggplot2

stop("method must be 'point' or 'smooth'")

Examples using mpg
p4 point <- plot relationship(mpg, displ, hwy, method = "point")
p4_smooth <- plot_relationship(mpg, displ, hwy, method = "smooth")

Method = "point":

Relationship: displ vs hwy

°
°
40
°
°
°
°
e o
° °
° oo
30 e o °
> e o o o oo o
=) ° e o °
e e o oo e o 0 o
e o 0o 00 o oo oo o o o °
° e o oo e o o °
e o0 o o ° °
e o e o o o o
e o o ° °
° °
20 ° ° (X
e o o (X °
e o o o o oo
o0 o0 o e o o o o o °
(X) e o
° oo eee o o
o °
°
2 3 4 5 6 7
displ

Method = "smooth":

Bioinformatics Training and Education Program

271
Relationship: displ vs hwy
[]
[]
40
30
>
2
<
20

Lesson 4 Exercise Questions: ggplot2

Q5. Using mpg, build two scatter plots:

®*pl-plotdispl onthe x-axis and hwy on the y-axis
® p2 - plot cty on the x-axis and hwy on the y-axis

Include the complete theme, theme_minimal (). Stack the plots vertically and horizontally

using patchwork.

Q5: Solution
pl <- ggplot(mpg) +
geom_point(aes(displ, hwy)) + theme_minimal()

p2 <- ggplot(mpg) +
geom_point(aes(cty, hwy)) + theme_minimal()

#vertically
pl / p2

#horizontally
pl | p2

Bioinformatics Training and Education Program

272 Lesson 4 Exercise Questions: ggplot2

Vertical:
[]
40 L
.
;30 o $ ' ° " s ‘
S R N N L
[] [] []
20 L) '0
0::0‘3°;;o!’°30 °
[J ' o o
o []
2 3 4 5 6 7
displ
[] []
40 e
ST
> 30 b B | f o *
: 1L
. j ¢
[]
i t i !
[
10 15 20 25 30 35
cty
Horizontal:

Bioinformatics Training and Education Program

273

40
°
°
°
.
[X)
° °
o o
30 oo o
> (YYYXY) °
= o o o0 o
< eee® ooo0 o
000 000 oo e o
° oo oo ° °
weo o ° °
o0 oo o °
eeoee0 o °
° °
20 ° [[
eee o o
® o0 oo
@ eeo woco o0 o
o oo
o e emw oo
° °
°
2 3 4 5 6 7
displ

hwy

40

30

20

10

Lesson 4 Exercise Questions: ggplot2

15 20 25 30 35
cty

Q6. With the built-in data set economics, make 3 line plots using geom line() and

theme minimal():

®* pl - plot date on the x-axis and unemploy on the y-axis. Include a plot title (title =

"Unemployment").

® p2 - plot date on the x-axis and psavert on the y-axis. Include a plot title (title =

"Personal Saving Rate").

® p3 - plot date on the x-axis and pop on the y-axis. Include a plot title (title =

"Population").

Arrange the plots using patchwork. p1 should be on the top (row 1), and p2 and p3 should be

oriented horizontally on the bottom (row 2).

Q6: Solution
pl <- ggplot(economics) +
geom_line(aes(date,

p2 <- ggplot(economics) +
geom_line(aes(date,

p3 <- ggplot(economics) +
geom_line(aes(date,

unemploy)) + labs(title = "Unemployment") + theme minimal()

psavert)) + labs(title = "Personal Saving Rate") + theme min-

pop)) + labs(title = "Population") + theme minimal()

Bioinformatics Training and Education Program

274 Lesson 4 Exercise Questions: ggplot2

(pl / (p2 | p3))

Unemployment

-, 12000
)
Q.
£
@ 8000
c
=}
4000
1970 1980 1990 2000 2010
date
Personal Saving Rate Population
325000

15 300000
T 275000
o o)
% 10 o
» Q- 250000
Q.

5 225000

200000
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010
date date

Q7. Using mtcars, create two plots:

® a - a scatter plot with hp on the x-axis and mpg on the y-axis
® b - a smooth plot with hp on the x-axis and mpg on the y-axis.

Combine the plots in a horizontal orientation (1 row, 2 columns) using patchwork. Use
plot_annotation() toinclude a shared title.

Q7: Solution
a <- ggplot(mtcars) +
geom_point(aes(hp, mpg)) + theme minimal()

b <- ggplot(mtcars) +
geom_smooth (aes (hp, mpg),se = TRUE) + theme_minimal()

(a | b) + plot_annotation(title = "MPG vs HP: Two Views")

Bioinformatics Training and Education Program

275 Lesson 4 Exercise Questions: ggplot2

MPG vs HP: Two Views

35
°
°
0 ® °
30
.
°
25
°
o o
a o
1S o3 IS
20 - 20
. °
°
® .
°
° °
8 o
15 *
e
°
10
10 LA
100 200 300 100 200 300
hp hp

Q8. Write a function, compare_two_vars(df, x, vy, group) that makes two plots
combined with patchwork.

® pl - create a scatter plot taking two arguments, x and y, and color set to group,
® p2 makes a boxplot of y by group, - combines them side-by-side with patchwork.

Teston iris with Sepal.Width (x), Petal.Width (y), grouped by Species.

Q8: Solution

compare_two_vars <- function(df, x, y, group) {
pl <- ggplot(df) +
geom_point(aes(x = {{x}}, y = {{y}}, color = {{group}})) +
theme_minimal() +
theme(legend.position = "none")

p2 <- ggplot(df) +

geom_boxplot(aes(x = {{group}}, y = {{y}}, fill = {{group}})) +
theme_minimal()

pl | p2
}

Bioinformatics Training and Education Program

Petal.Width

Lesson 4 Exercise Questions: ggplot2

compare_two_vars(iris, Sepal.Width, Petal.Width, Species)

2.5 o o 2.5
o [] °
[] 00 o
o o [J
o 00 o
2.0 o o o o ® 2.0
o oo
(IR YYYYYS
) °
e o oo
15 e o oeeee £15
o00000O 2
o o oooe E
eee o I
oo o
1.0 o eee oo 1.0
®
0.5 ° 0.5
[J 00 []
°) e o
0000000000 o0 o
[X] [] []
0.0 0.0
2.0 2.5 3.0 3.5 4.0 4.5

Sepal. Width

setosa

Species

versicolor virginica
Species

Bioinformatics Training and Education Program

277 Additional Resources

Additional Resources

Books and / or Book Chapters of Interest

—

. R for Data Science (https://r4ds.hadley.nz/)

2. Hands-on Programming with R (https.//rstudio-education.github.io/hopr/)

. Statistical Inference via Data Science: A ModernDive into R and the Tidyverse (https.//
moderndive.com/vZ/preface. html#about-the-bookl)

. The R Graphics Cookbook (https.//r-graphics.org/index.html)

. ggplot2: Elegant Graphics for Data Analysis (https.//ggplot2-book.org/index.html)

. Advanced R (https://adv-r.hadley.nz/)

. YaRrr! The Pirate’s Guide to R (https.//bookdown.org/ndphillips/YaRrr/)

w

~N O O M~

R Cheat Sheets

Cheat sheets can be accessed directly using the Help tab within RStudio (Help > Cheat Sheets
> Browse Cheat Sheets).

Help

R Help [/ 7" Import Dataset + % S4MiB v
Search R Help "} Global Environment ~

About RStudio
Check for Updates

Accessibility

RStudio Docs

RStudio Community Forum

Cheat Sheets RStudio IDE Cheat Sheet

Data Transformation with |4 ©
Keyboard Shortcuts Help . - .
. Data Visualization with ggplot2
Markdown Quick Reference) . . .
! List manipulation with purrr
Roxygen Quick Reference .
Package Development with devtools

Diagnostics Web Applications with shiny

isp){target=_blank}. N Interfacing Spark with sparklyr
R Markdown Cheat Sheet
and-rstudio/){target=_blank} for information R Markdown Reference Guide

Browse Cheat Sheets...

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/
https://r4ds.hadley.nz/
https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/
https://moderndive.com/v2/preface.html#about-the-bookl
https://moderndive.com/v2/preface.html#about-the-bookl
https://moderndive.com/v2/preface.html#about-the-bookl
https://moderndive.com/v2/preface.html#about-the-bookl
https://r-graphics.org/index.html
https://r-graphics.org/index.html
https://ggplot2-book.org/index.html
https://ggplot2-book.org/index.html
https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
https://bookdown.org/ndphillips/YaRrr/
https://bookdown.org/ndphillips/YaRrr/

278

Additional Resources

Other Resources

a M~ W N =

»

. The R Graph Gallery (https.//www.r-graph-gallery.com/)

. From Data to Viz (https.//www.data-to-viz.comy/)

. RMarkdown from RStudio (https.//rmarkdown.rstudio.com/lesson-1.html)

. Quarto for R (https.//quarto.org/docs/computations/r.html)

. Ten simple rules for teaching yourself R, Lawlor et al. 2022, PLoS Comput Biol (https.//

www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/)

. Learn R (https://www.learn-r.org/)
. Dplyr Learn R tutorial (https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome)

Bioinformatics Training and Education Program

https://www.r-graph-gallery.com/
https://www.r-graph-gallery.com/
https://www.data-to-viz.com/
https://www.data-to-viz.com/
https://rmarkdown.rstudio.com/lesson-1.html
https://rmarkdown.rstudio.com/lesson-1.html
https://quarto.org/docs/computations/r.html
https://quarto.org/docs/computations/r.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.learn-r.org/
https://www.learn-r.org/
https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome
https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome

	Introductory R for Novices
	Table of Contents
	Welcome
	Getting Started with R
	Getting Started with R
	Lesson 1: Introduction to R and RStudio IDE
	Lesson 2: Basics of R Programming: R Objects and Data Types
	Lesson 3: Basics of R Programming: Vectors
	Lesson 4: Introduction to R Data Structures - Data Import
	Lesson 5: R Data Structures - Data Frames

	Intro to Data Wrangling
	Introduction to Data Wrangling
	Introduction to Data Wrangling
	Introducing Tidyr for Reshaping and Formatting Data
	Subsetting Data with dplyr
	Summarizing Data with dplyr
	Joining and Transforming Data with dplyr

	Introduction to Data Visualization
	Introduction to Data Visualization
	Introduction to ggplot2 for R Data Visualization
	Plot Customization with ggplot2
	From Data to Display: Crafting a Publishable Plot
	Recommendations and Tips for Creating Effective Plots with ggplot2

	Practice Exercises
	Part 1: Exercises
	Exercise 1: Lesson2
	Exercise 2: Lesson 3
	Exercise 3: Lesson 4
	Exercise 4: Lesson 5
	Part 2: Exercises
	Exercise 1: Lesson 2
	Exercise 2: Lesson 3
	Exercise 3: Lesson 4
	Exercise 4: Lesson 5
	Part 3: Exercises
	Lesson 1 Exercise Questions: ggplot2 basics
	Lesson 2 Exercise Questions: ggplot2 Plot Customization
	Lesson 3 Exercise Questions: Building a Publication Quality Plot
	Lesson 4 Exercise Questions: ggplot2

	Additional Resources

	Introductory R for Novices
	Course Description
	Course Materials

	Getting Started with R
	Getting Started with R
	Lessons
	Required Course Materials

	Lesson 1: Introduction to R and RStudio IDE
	Learning Objectives
	What is R?
	Why R?
	Where do we get R packages?
	Ways to run R
	What is RStudio?

	Getting Started with R and R Studio
	Connect to RStudio on NIH HPC Open OnDemand
	Creating an R project
	Why renv?

	Creating an R script
	Introduction to the RStudio layout
	When to use Source vs Console?

	Uploading and exporting files from RStudio Server
	Data Management
	Saving your R environment (.Rdata)
	What is a function?
	What is a path?

	Getting help
	Additional Sources for help
	Acknowledgments

	Lesson 2: Basics of R Programming: R Objects and Data Types
	Objectives
	R objects
	Creating and deleting objects
	Naming conventions and reproducibility
	Reassigning objects
	Deleting objects
	Object data types
	Special null-able values

	Mathematical operations
	A function is an object.
	The pipe (|>, %>%).

	Pre-defined objects
	Acknowledgments

	Lesson 3: Basics of R Programming: Vectors
	Objectives
	Vectors
	Creating vectors
	Creating, modifying, sub-setting exporting
	Vector sub-setting

	Logical subsetting
	Other ways to handle missing data
	Using objects to store thresholds

	Using the %in% operator.
	Saving and loading objects
	Acknowledgments

	Lesson 4: Introduction to R Data Structures - Data Import
	Learning Objectives
	Installing and Loading Packages
	Where do we get R packages?

	Data Structures
	What are factors?
	Important functions

	Lists
	Important functions
	Example

	Data Matrices
	Data Frames: Working with Tabular Data
	Best Practices for organizing genomic data

	Example Data
	Obtaining the data

	Importing Data
	What is a tibble?
	Reasons to use readr functions
	Excel files (.xls, .xlsx)
	Tab-delimited files (.tsv, .txt)
	Comma separated files (.csv)
	Other file types

	Data Export.
	Acknowledgements

	Lesson 5: R Data Structures - Data Frames
	Learning Objectives
	Load the libraries
	Examining and summarizing data frames
	What is the length of our data.frame? What are the dimensions?
	Other useful functions for inspecting data frames

	Data frame coercion and accessors
	Using colnames() to rename columns

	Subsetting data frames with base R
	Using %in%
	Tips to remember for subsetting

	Data Wrangling
	Acknowledgements

	Intro to Data Wrangling
	Introduction to Data Wrangling
	Lessons
	Prerequisites
	Course materials

	Introduction to Data Wrangling
	Introducing Tidyr for Reshaping and Formatting Data
	Lesson Objectives
	Load the tidyverse
	Importing data
	Some different import functions
	Load the lesson data
	Get the Data
	Load the Data

	Data reshape
	What do we mean by reshaping data?
	pivot_wider() and pivot_longer()
	Pivot_longer
	Pivot_wider

	Test our knowledge

	Unite and separate
	Separate
	Unite
	A word about regular expressions

	The Janitor package.
	Acknowledgements
	Resources

	Subsetting Data with dplyr
	Objectives
	What is dplyr?
	Loading dplyr
	Importing data

	Subsetting data in base R
	Subsetting with dplyr
	Subsetting by column (select())
	We can rename while selecting.
	Excluding columns
	We can reorder using select().
	Selecting a range of columns
	Helper functions
	Select columns of a particular type

	Subsetting by row (filter())
	Comparison operators
	The %in% operator
	Including multiple phrases
	Filtering across columns

	Subsetting rows by position

	Introducing the pipe
	Step by Step
	Nesting Code
	Using the pipe (%>%,|>)

	Acknowledgments

	Summarizing Data with dplyr
	Objectives.
	Load Tidyverse
	Load the data
	Group_by and summarize
	Key Functions
	Additional Examples

	Reordering rows with arrange()
	Additional useful functions
	Acknowledgments

	Joining and Transforming Data with dplyr
	Objectives
	Loading Tidyverse
	Load the data
	Joining data frames
	Mutating joins
	Filtering joins

	Transforming variables
	mutate()
	Mutating several variables at once
	Coercing variables with mutate
	Using rowwise() and mutate()

	What's next?
	Acknowledgments

	Introduction to Data Visualization
	Introduction to Data Visualization
	Lessons
	Prerequisites
	Course materials
	Get the Data

	Introduction to ggplot2 for R Data Visualization
	Learning Objectives
	Why use R for Data Visualization?
	Example Data
	Practice Data

	The ggplot2 template
	Geom functions
	Create a line plot
	Create a box plot

	Mapping and aesthetics (aes())
	Map a Color to a Variable

	How can we modify colors?
	More on Colors

	Facets
	Building upon our template
	Labels, legends, scales, and themes
	Resource list
	Acknowledgements

	Plot Customization with ggplot2
	Learning Objectives
	Our grammar of graphics template
	Loading the libraries
	Importing the data

	Using Multiple Geoms per Plot
	Setting global aesthetics
	Setting local aesthetics
	Subsetting data per geom

	Statistical transformations
	Coordinate systems
	Labels, legends, scales, and themes
	Create a custom theme to use with multiple figures.

	Saving plots (ggsave())
	Acknowledgements

	From Data to Display: Crafting a Publishable Plot
	Learning Objectives
	Step 1: Load the required packages.
	Step 2: Load and view the data.
	Step 3: Define significance
	Step 4: Create the plot beginning with our 3 required entities.
	Step 5: Customize Our Figure
	Scale the Colors
	Add Size and Alpha attributes to our Mapping Aesthetics
	Fix the legend
	Clean it up with theme

	Step 6: Label the most significant points.
	Using an External Package.
	EnhancedVolcano

	Acknowledgements

	Recommendations and Tips for Creating Effective Plots with ggplot2
	Learning Objectives
	Recommendations for creating publishable figures
	Complementary or Related Packages
	Genomics
	Statistics integration
	Combining plots
	Miscellaneous

	Using ggplot2 in a function
	The Syntax
	Functions that use ggplot2

	Tips on Saving and Scaling
	Finding R packages for Beginners
	Resources for Further Learning

	Practice Exercises
	Part 1: Exercises
	Exercise 1: Lesson2
	Exercise 2: Lesson 3
	Exercise 3: Lesson 4
	Loading data
	Challenge data load

	Exercise 4: Lesson 5
	Part 2: Exercises
	Data Reshape
	Reshape challenge

	Select and Filter
	Group_by, Summarize, Arrange
	Mutate and Wrangle Challenge
	Part 3: Exercises
	Lesson 1 Exercise Questions: ggplot2 basics
	Lesson 2 Exercise Questions: ggplot2 Plot Customization
	Lesson 3 Exercise Questions: Building a Publication Quality Plot
	Lesson 4 Exercise Questions: ggplot2
	Additional Resources
	Books and / or Book Chapters of Interest
	R Cheat Sheets
	Other Resources

