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Introductory R for Novices

Course Description

This course, designed for novices, will introduce the foundational skills necessary to begin to

analyze and visualize data in R. The content for this course is similar to past introductory R

courses, but the pace of the course will be much slower to benefit novices. 

Why  learn  R?  R  is  a  great  resource  for  statistical  analysis,  data  visualization,  and  report

generation. R also provides packages and functions specific to the analysis of  -omics data

through efforts like Bioconductor.

This course includes 3-parts: 

Part 1: Getting Started with R

Topics covered in Part 1 will focus on the basics of R Programming including getting

started with R and RStudio, creating and manipulating R objects, and understanding and

manipulating vectors and other data structures. 

Part 2: Introduction to Data Wrangling

Now that you have an understanding of the basics, Part 2 will show you how to work with

tabular data. Topics covered include filtering, transforming, summarizing, and reshaping

data using the Tidyverse suite of packages. 

Part 3: Introduction to Data Visualization

In Part 3, you will learn to visualize your data. Though multiple R graphics systems will be

introduced, Part 3 will focus exclusively on visualizing data using ggplot2. 

Course Materials

This course will be taught using R and RStudio on Biowulf. To use R on Biowulf, you must have

an NIH HPC account (https://hpc.nih.gov/docs/accounts.html). If you do not have Biowulf, this

course can be taken using a local R installation. 

• 

• 

• 

R Installation Instructions

Macbook: Follow these instructions (https://posit.co/download/rstudio-desktop/). 

Windows: R and RStudio installation on Windows requires administrative privileges. NCI researchers can

request installation from service.cancer.gov (https://service.cancer.gov/ncisp). 

This is not required if you have a Biowulf account.

• 

• 
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Lesson Recordings

Video  recordings  of  BTEP  Coding  Club  events  can  be  found  in  the  BTEP  Video  Archive (https://

bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/) 24-48 hours following any given event. 
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R programming

Getting Started with R

This course is the first part of a larger 3-part course designed for novices. 

Material covered in Part 1 focuses on the basics of R Programming including getting started

with R and RStudio, creating and manipulating R objects, and understanding and manipulating

vectors and other data structures.

Lessons

April 22, 2025 - Introduction to R and RStudio

April 24, 2025 - Basics of R Programming: R Objects and Data Types

April 29, 2025 - Basics of R Programming: Vectors

May 1, 2025 - Introduction to R Data Structures: Data Import

May 6, 2025 - R Data Structures: Data Frames

Required Course Materials

This course will use R on Biowulf. To use R on Biowulf, you must have an NIH HPC account.

However, if you do not have Biowulf, this course can be taken using a local R installation. 

1. 

2. 

3. 

4. 

5. 
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Lesson 1: Introduction to R and RStudio IDE

Learning Objectives

To understand:

1. the difference between R and RStudioIDE.

2. how to work within the RStudio environment including: 

creating an Rproject and Rscript 

navigating between directories 

using functions 

obtaining help 

By the end of this section, you should be able to easily navigate and explore your RStudio

environment.

What is R?

R is both a computational language and environment for statistical computing and graphics. It is

open-source and widely used by scientists and non-scientists, not just bioinformaticians. Base

packages of R are built into your initial installation, but R functionality is greatly improved by

installing  other  packages.  R  as  a  programming  language  is  based  on  the  S  language,

developed by Bell laboratories. R is maintained by a network of collaborators from around the

world, and core contributors are known as the R Core team (Term used for citations). However,

R is also a resource for and by scientists, and R functionality makes it easy to develop and

share  packages  on  any  topic.  Check  out  more  about  R  on  The  R  Project  for  Statistical

Computing (https://www.r-project.org/about.html) website. 

Why R?

R is a particularly great resource for statistical analyses, plotting, and report generating. The

fact  that  it  is  widely  used means that  users do not  need to reinvent  the wheel.  There is  a

package available for most types of analyses, and if users need help, it is only a Google search

away. As of now, CRAN houses +22,000 available packages. There are also many field specific

packages, including those useful in the -omics (genomics, transcriptomics, metabolomics, etc.).

For example, the latest version of Bioconductor (v 3.20) includes 2,289 software packages, 431

experiment data packages, 928 annotation packages, 30 workflows, and 5 books. 

Where do we get R packages?

To  take  full  advantage  of  R,  you  need  to  install  R  packages.  R  packages  are  loadable

extensions that contain code, data, documentation, and tests in a standardized, easy to share

• 

• 

• 

• 
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format that can easily be installed by R users. The primary repository for R packages is the

Comprehensive  R  Archive  Network  (CRAN).  CRAN (https://cran.r-project.org/

#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.) is

a global network of servers that store identical versions of R code, packages, documentation,

etc  (cran.r-project.org).  To  install  a  CRAN  package,  use

install.packages("packageName").  Github is another common source used to store R

packages; though, these packages do not necessarily meet CRAN standards so approach with

caution.  To  install  a  Github  packages  use  library(devtools) followed  by

install_github().  Many  genomics  and other  packages  useful  to  biologists  /  molecular

biologists  can be found on  Bioconductor (https://www.bioconductor.org/).  Bioconductor  and

Bioconductor  packages  use  BiocManager  for  installation;  see  here (https://

www.bioconductor.org/install/). 

METACRAN (https://www.r-pkg.org/) is a useful database that allows you to search and browse

CRAN/R packages.

Ways to run R

R is a programming language and it "comes with an environment or console that can read and

execute  your  code" (https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-

rstudio/). R can be used via command line interactively,  command line using a script (https://

support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-

line),  or  interactively  through an environment.  This  course will  demonstrate  the utility  of  the

RStudio integrated development environment (IDE). 

What is RStudio?

RStudio (https://posit.co/products/open-source/rstudio/) is  an  integrated  development

environment for R, and now python. RStudio includes a console, editor, and tools for plotting,

history,  debugging,  and  work  space  management.  It  provides  a  graphic  user  interface  for

working  with  R,  thereby  making  R  more  user  friendly.  RStudio  is  open-source  and can  be

installed  locally  or  used  through  a  browser  (RStudio  Server  or  Posit  Cloud).  We  will  be

showcasing  RStudio Server on Biowulf (https://hpc.nih.gov/apps/RStudio.html) via  HPC Open

OnDemand (https://hpc.nih.gov/ondemand/index.html), but we highly encourage new users to

install R and RStudio locally to their PC or macbook. 

What is Posit?

Posit (https://posit.co/) is a company that creates and maintains a variety of software products (some free and

others proprietary) including the RStudio IDE. 

Installing R and RStudio

Macbook: Follow these instructions (https://posit.co/download/rstudio-desktop/).

Windows: Request installation from service.cancer.gov (https://service.cancer.gov/ncisp). 
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There is also an RStudio User Guide (https://docs.posit.co/ide/user/).

Getting Started with R and R Studio

This  tutorial  closely  follows  the  "Intro  to  R  and  RStudio  for  Genomics"  lesson  provided  by

datacarpentry.org (https://datacarpentry.github.io/genomics-r-intro/index.html). 

Connect to RStudio on NIH HPC Open OnDemand

NIH  HPC  Open  OnDemand (https://hpc.nih.gov/ondemand/index.html) provides  an  online

dashboard  for  users  to  easily  access  command  line  interactive  sessions,  graphical  linux

desktop environments, and interactive applications including RStudio, MATLAB, IGV, iDEP, VS

Code, and Jupyter Notebook. To use NIH HPC Open OnDemand, you must have an NIH HPC

account (https://hpc.nih.gov/docs/accounts.html). If you are interested in bioinformatics, an NIH

HPC account is highly recommended. These accounts are available for a nominal fee of $40

per month. 

To  connect  to  Open OnDemand make sure  you are  on the  NIH Network  and click  on the

following link: https://hpcondemand.nih.gov (https://hpcondemand.nih.gov). This will take you to

the HPC Open OnDemand dashboard. 

From there you will need to: 

Select RStudio Server. 

Step 1: Select RStudio Server from the selection of pinned applications. 

Select parameters for your RStudio session including the version of R you want to use. 

Click "Launch" to start the session. 

Check out  this  blog (https://www.r-bloggers.com/2022/01/how-to-install-and-update-r-and-rstudio/) for  information

related to updating R and RStudio. 

1. 

2. 

3. 
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Step 2, 3: Alter any job parameters as you see fit and launch the session. 

Your session will be queued, and it may take a few minutes to shift to "Running". 

Session is queued. 

When the session switches to "Running", click "Connect to RStudio Server". 4. 
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Step 4: Connect to RStudio Server. 

Congratulations! You are now connected. 

Creating an R project

If  you intend to use R for upcoming analysis projects, you will  want to create R projects. R

projects automatically set your working directory to the directory specified for a given project. R

projects are beneficial because they  "keep all the files associated with a given project (input

RStudio Server on Biowulf

Using RStudio Server on Biowulf will allow you to 1. interact with your files on Biowulf, 2. use HPC resources (CPUs,

RAM, etc.), and 3. also interact with local files. 
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data, R scripts, analytical results, and figures) together in one directory" (https://r4ds.hadley.nz/

workflow-scripts.html#rstudio-projects). 

Creating  an  R  project (https://docs.posit.co/ide/user/ide/guide/code/projects.html) for  each

project you are working on facilitates organization and scientific reproducibility. 

An RStudio project allows you to more easily: 

Save data, files, variables, packages, etc. related to a specific analysis

project 

Restart work where you left off 

Collaborate, especially if you are using version control such as git. --- 

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-introduction/

index.html)

R projects simplify data reproducibility by allowing us to use relative file paths that will translate

well when sharing the project. 

To start a new R project, select  File >  New Project... or use the R project button (See

image below). 

A New project wizard will appear. Click  New Directory and New Project. Choose a new

directory name....perhaps "Getting_Started_with_R"? 

While we will  not select  renv today, this option will  make a project more reproducible.  See

below. To make your project more reproducible, consider clicking the option box for renv. 

The R project file ends in .Rproj. "This file contains various project options and can also be used

as a shortcut for opening the project directly from the filesystem." (https://docs.posit.co/ide/user/

ide/guide/code/projects.html)

Why renv?

R projects  allow us to  easily  share data,  code,  and other  related information,  but  this  only

scratches the surface of what is required for true data analysis reproducibility. 

Too often an R script will  fail  simply due to a clash in package dependencies. Versions are

important.  R  versions  change  over  time;  Bioconductor  versions  evolve,  and  R  packages

change.  While  we  can  include  session  info  using  the  sessionInfo() function  (more  on

functions later) at the end of a script or markdown file, this in no way facilitates our ability to truly

• 

• 

• 
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replicate the infrastructure surrounding our code. Thankfully, there are R packages available

that help us do just that. 

"The renv package helps you create reproducible environments for your R projects" (https://

rstudio.github.io/renv/index.html), primarily by tracking and managing package dependencies.

Read more about renv here (https://rstudio.github.io/renv/articles/renv.html). 

Creating an R script

As we learn more about R and start learning our first commands, we will keep a record of our

commands using an R script. Remember, good annotation is key to reproducible data analysis.

An R script can also be generated to run on its own without user interaction, from R console

using source() and from linux command line using Rscript. 

To create an R script,  click  File >  New File >  R Script.  You can save your script by

clicking  on  the  floppy  disk  icon.  You  can  name  your  script  whatever  you  want,  perhaps

"Lesson_1". R scripts end in .R. Save your R script to your working directory, which will be the

default location on RStudio Server. 

Introduction to the RStudio layout

Let's look a bit into our RStudio layout. 

Reproducibility

There is even more that can be done to make projects reproducible beyond R Projects and renv. For example, you

can use version control (git), R packages, and containerization (e.g., Singularity, Docker). 
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Source: This pane is where you will write/view R scripts. Some outputs (such as if

you view a dataset using View()) will appear as a tab here.

Console/Terminal/Jobs:  This  is  actually  where  you  see  the  execution  of

commands. This is the same display you would see if  you were using R at the

command line without RStudio. You can work interactively (i.e. enter R commands

here), but for the most part we will run a script (or lines in a script) in the source

pane  and  watch  their  execution  and  output  here.  The  “Terminal”  tab  give  you

access to the BASH terminal (the Linux operating system, unrelated to R). RStudio

also allows you to run jobs (analyses) in the background. This is useful if  some

analysis  will  take  a  while  to  run.  You  can  see  the  status  of  those  jobs  in  the

background.

Environment/History:  Here,  RStudio  will  show  you  what  datasets  and  objects

(variables) you have created and which are defined in memory. You can also see

some  properties  of  objects/datasets  such  as  their  type  and  dimensions.  The

“History” tab contains a history of the R commands you’ve executed.

Files/Plots/Packages/Help/Viewer:  This  multi-purpose  pane  will  show  you  the

contents  of  directories  on  your  computer.  You  can  also  use  the  “Files”  tab  to

navigate and set the working directory. The “Plots” tab will show the output of any

plots generated. In “Packages” you will see what packages are actively loaded, or

you can attach installed packages. “Help” will display help files for R functions and

packages. “Viewer” will allow you to view local web content (e.g. HTML outputs).

---datacarpentry.org (https://datacarpentry.github.io/genomics-r-intro/00-

introduction.html)

Additional panes may show up depending on what you are doing in RStudio. For example, you

may notice a  Render tab in the Console/Terminal/Jobs pane when working with Rmarkdown

(.Rmd) or Quarto (.qmd) files. 

Also, you can change your RStudio layout. See this blog (https://www.r-bloggers.com/2018/05/

a-perfect-rstudio-layout/) if  you  are  interested.  For  simplicity,  please do NOT change the

layout during this course.

When to use Source vs Console?

We will use the Source pane to keep a record of the code that we run. However, at times, we

may want to do quick testing without keeping a record. This is the scenario in which you would

use the Console. 

Look under the files tab

You can already see our R project and R script file in our project directory under the Files tab. If you chose to use

renv you will also see some files and directories related to that. 
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Uploading and exporting files from RStudio Server

RStudio Server works via a web browser, and so you see this additional Upload option in the

Files pane. If  you select this option, you can upload files from your local computer into the

server environment. If you select More, you will also see an Export option. You can use this to

export files to your local computer. 

Data Management

Data organization  is  extremely  important  to  reproducible  science.  Consider  organizing your

project directory in a way that facilitates reproducibility. All inputs and outputs (where possible)

should be contained within the project directory, and a consistent directory structure should be

created. For example, you may want directories for data, docs, outputs, figures, and scripts.

See  additional  details  here (https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-

biowulf/L3_PackageManagement/).  How  you  organize  project  directories  is  up  to  you,  but

consistency is fairly important for reproducibility.  We will  discuss more on this subject when

introducing data frames. 

Saving your R environment (.Rdata)

When exiting RStudio, you will be prompted to save your R workspace or .RData. The .RData

file saves the objects generated in your R environment. You can also save the .RData at any

time using the floppy disk icon just  below the Environment tab. You may also save your R

workspace  from  the  console  using  save.image().  RData  files  are  often  not  visible  in  a

directory.  You  can  see  them using  ls -a from the  terminal.  RData  files  within  a  working

directory  associated with  a  given project  will  launch automatically  under  the  default  option

Restore .RData into workspace at startup. You may also load .Rdata by using load(). 

Use relative file paths

Do not use absolute file paths in scripts. These will cause the script to fail unexpectedly for other users. 
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Another file to be aware of is the .Rhistory file. The R history file contains a list of commands

from your previous R sessions. 

What is a function?

Now we are ready to work with some of our first R commands. In R, commands are generally

called functions. 

A function in R (or any computing language) is a short program that takes some

input and returns some output.

An R function has three key properties:

Functions have a name (e.g. dir, getwd); note that functions are case

sensitive! 

Following the name, functions have a pair of () 

Inside the parentheses, a function may take 0 or more arguments --- 

datacarpentry.org (https://datacarpentry.github.io/genomics-r-intro/00-

introduction.html#using-functions-in-r-without-needing-to-master-them). 

There are thousands of available functions to use in R, and if there isn't a function available for a

specific task, you can write your own. We will be using many more functions, so there will

be many more opportunities to learn the syntax.

We are going to run commands directly from our R script rather than typing into the R console. 

Our  first  function  will  be  getwd().  This  simply  prints  your  working  directory  and  is  the  R

equivalent of pwd (if you know Unix coding). 

To run this function, we have a number of options. First, you can use the Run button above. This

will run highlighted or selected code. You may also use the source button to run your entire

script.  My preferred method is to use keyboard shortcuts. Move your cursor to the code of

interest and use command + return for macs or control + enter for PCs. If a command is

taking a long time to run and you need to cancel it, use control + c from the command line or

escape in RStudio. Once you run the command, you will see the command print to the console

Restoring your R environment

If you are working with significantly large datasets, you may not want to automatically save and restore .RData. To

turn this off,  go to Tools -> Global Options -> deselect "Restore .RData into workspace at startup" and choose

"Never" for "Save workspace to .RData on exit". It is usually recommended not to restore the .RData file (https://

r4ds.hadley.nz/workflow-scripts.html#what-is-the-source-of-truth) at the beginning of a session. 

• 

• 

• 

#print our working directory
getwd()
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in blue followed by the output. 

It is good practice to annotate your code using a comment. We can denote comments with #. 

We designated or set our working directory when we created our R project, but if  for some

reason we needed to set our working directory, we can do this with setwd(). There is no need

to run currently. However, if you were to run it, you would use the following notation: 

setwd("path_to_your_directory")

The path should be in quotes. You can use tab completion to fill in the path. 

What is a path?

According to Wikipedia, a path is "a string of characters used to uniquely identify a location in a

directory structure." 

Therefore, a file path simply tells us where a file or files are located. You will need to direct R to

the location of files that you want to work with or output that you create.

The working directory is the location in your file system that you are currently working in. In other

words, it is the default location that R will look for input files and write output files. 

Getting help

Now we know a bit about using functions, but what if I had no idea what the function setwd()

was used for or what arguments to provide? 

Getting help in R is fairly easy. In the pane to the bottom right, you should see a Help tab. You

can search for help regarding a specific topic using the search field (look for the magnifying

glass).

[1] "/vf/users/emmonsal/Getting_Started_with_R"

Note

R uses Unix formatting for directories, so regardless of whether you have a Windows computer or a mac, the way

you enter  the directory  information will  be the same.  You can use tab completion to  help  you fill  in  directory

information. 
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Alternatively, you can search directly for help in the console using ?setwd() or  ??setwd(). 

help.search() or ?? can be used to search for a function using a keyword and will also work

for unloaded packages; for example, you may try help.search("anova"). 

R help pages provide a lot of information. The description and argument sections are likely

where you will want to start. If you are still  unsure how to use the function, scroll down and

check out the examples section of the documentation. Consider testing some of the examples

yourself and applying to your own data. 

Many R packages also include more detailed help documentation known as a vignette. To see a

package  vignette,  use  browseVignettes() (e.g.,

browseVignettes(package="dplyr")). 

To see a function's arguments, you can use args().

Because  setwd(dir) is used to set the working directory to  dir,  it  requires only a single

argument (dir). 

args(setwd)

function (dir) 
NULL

Note

R arguments can be specified by name with `argument_name= ____", by position, or by partial name. More on this

later. 
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Additional Sources for help

Try googling your problem or using some other search engine. rseek (https://rseek.org/) is an

R specific search engine that searches several R related sites. If using Google or other major

search engine directly, make sure you use R to tag your search. 

Stack Overflow is a particularly great resource for finding help. If you post a question, you will

need to make a reproducible example (reprex) and be as descriptive as possible regarding the

problem. For this purpose, you may find the  reprex (https://reprex.tidyverse.org/) package

particularly useful. 

To provide details about your R session, use 
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Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-

introduction/index.html). Material was also inspired by content from Introduction to data analysis

with R and Bioconductor (https://carpentries-incubator.github.io/bioc-intro/), which is part of the

sessionInfo()

R version 4.5.0 (2025-04-11)
Platform: aarch64-apple-darwin20
Running under: macOS Sequoia 15.4

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.1

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] compiler_4.5.0    fastmap_1.2.0     cli_3.6.4         tools_4.5.0      
 [5] htmltools_0.5.8.1 rstudioapi_0.17.1 yaml_2.3.10       rmarkdown_2.29   
 [9] knitr_1.50        jsonlite_2.0.0    xfun_0.52         digest_0.6.37    
[13] rlang_1.1.6       evaluate_1.0.3   
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Carpentries  Incubator (https://github.com/carpentries-incubator/proposals/#the-carpentries-

incubator). 
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R programming

Lesson 2: Basics of R Programming: R

Objects and Data Types

Objectives

To understand some of the most basic features of the R language including: 

Creating and manipulating R objects. 

Understanding object types and classes. 

Using mathematical operations. 

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to

NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to

connect:  https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/).  Then  follow  the

instructions outlined here. 

R objects

Objects (and functions) are key to understanding and using R programming. 

Everything assigned a value in  R is  technically  an object.  Mostly  we think of  R objects  as

something in which a method (or function) can act on; however, R functions, too, are R objects.

R objects are what gets assigned to memory in R and are of a specific type or class. Objects

include  things  like  vectors,  lists,  matrices,  arrays,  factors,  and  data  frames.  Don't  get  too

bogged down by terminology. Many of these terms will become clear as we begin to use them

in our code. In order to be assigned to memory, an r object must be created. 

Creating and deleting objects

To create an R object, you need a name, a value, and an assignment operator (e.g., <- or =)

(https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html).  R  is

case sensitive, so an object with the name "FOO" is not the same as "foo". 

• 

• 

• 

Note

You can use alt + - on a PC to generate the -> or option + - on a mac. 

Using = for assignment?
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Let's create a simple object and run our code. There are a few methods to run code: 

The run button 

Key shortcuts (Windows: ctrl+Enter, Mac: Command+Return) 

Type directly into the console. 

Use comments (#) to annotate your code for better reproducibility. 

In this example, "a" is the name of the object, 1 is the value, and <- is the assignment operator. 

Now, if we use a in our code, R will replace it with its value during execution. Try the following: 

To improve the readability of your code, you should use the -> operator to assign values to objects rather than =. =

has other purposes. For example, setting function arguments. 

• 

• 

• 

#Create an object called "a" assigned to a value of 1.  
a <- 1  

#Simply call the name of the object to print the value to the screen
a 

[1] 1

a + 5

[1] 6

5 - a

[1] 4

a^2

[1] 1

a + a
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Naming conventions and reproducibility

There are rules regarding the naming of objects. 

Avoid spaces or special characters EXCEPT '_' and '.' 

No numbers or underscores at the beginning of an object name. 

For example:

In contrast:

What do you think would have happened if we didn't put 'apples' in quotes? 

[1] 2

1. 

2. 

1a<-"apples" # this will throw and error
1a

Error in parse(text = input): <text>:1:2: unexpected symbol
1: 1a
    ^

Note

It is generally a good habit to not begin sample names with a number. 

a<-"apples" #this works fine
a

[1] "apples"

Strings

R recognizes different types of data (See below). We have used numbers above, but we can also use

characters or strings. A string is a sequence of characters. It can contain letters, numbers, symbols and

spaces,  but  to  be recognized as a string it  must  be wrapped in  quotes (either  single or  double).  If  a

sequence of characters are not wrapped in quotes, R will try to interpret it as something other than a string

like an R object. 


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Avoid common names with special meanings (See ?Reserved) or assigned to existing

functions (These will auto complete). 

See the  tidyverse style guide (https://style.tidyverse.org/syntax.html) for  more information on

naming conventions.

Object names should be short but informative. If you use  a,  b,  c, you will likely forget

what  those  object  names  represent.  However,  something  like

This_is_my_scientific_data_from_blah_experiment is far too long. Strike a nice

balance.

Reassigning objects

To reassign an object, simply overwrite the object.

Deleting objects

3. 

How do I know what objects have been created?

To view a list of the objects you have created, use `ls()' or look at your global environment pane. 

#Create an object with gene named 'tp53'
gene_name<-"tp53"
gene_name

[1] "tp53"

#Re-assign gene_name to a different gene
gene_name<-"GH1"
gene_name

[1] "GH1"

Warning

R will not warn you when objects are being overwritten, so use caution. 

# delete the object 'gene_name'
rm(gene_name)
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Object data types

Data  types  are  familiar  in  many  programming  languages,  but  also  in  natural

language  where  we  refer  to  them  as  the  parts  of  speech,  e.g.  nouns,  verbs,

adverbs, etc. Once you know if a word - perhaps an unfamiliar one - is a noun, you

can probably guess you can count it and make it plural if there is more than one

(e.g. 1 Tuatara, or 2 Tuataras). If something is a adjective, you can usually change it

into an adverb by adding “-ly” (e.g. jejune vs. jejunely). Depending on the context,

you may need to decide if a word is in one category or another (e.g “cut” may be a

noun when it’s on your finger, or a verb when you are preparing vegetables). These

concepts have important analogies when working with R objects.

---  datacarpentry.org (https://datacarpentry.org/genomics-r-intro/02-r-basics/

index.html)

The type and class of an R object affects how that object can be used or will behave. Examples

of base R data types include double, integer, complex, character, and logical. 

R objects can also have certain assigned attributes like class (e.g., data frame, factor, date),

and these attributes will  be important for how they interact with certain methods / functions.

Ultimately, understanding the type and class of an object will be important for how an object

can be used in R. When the type (mode) of an object is changed, we call this "coercion". You

may see a coercion warning pop up when working with objects in the future. 

The type of an object can be examined using typeof(), while the class of an object can be

viewed using class().  typeof() returns the storage mode of any object. Here, I am using

mode and type interchangeably but they do differ. To find out more check out the help docs: ?

mode() or ?typeof. 

We now know what data types are, but what is a class? 

'class' is a property assigned to an object that determines how generic functions

operate  with  it.  It  is  not  a  mutually  exclusive  classification.  If  an  object  has  no

specific class assigned to it, such as a simple numeric vector, it's class is usually

the  same  as  its  mode,  by  convention.  ---stackexchange (https://

stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-

objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.)

#the object no longer exists, so calling it will result in an error
gene_name

Error: object 'gene_name' not found
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It is often most useful to use class() and typeof() to find out more about an object or

str() (more on this function later).

Let's create some objects and determine their types and classes.

There  are  also  functions  that  can  gauge  types  directly,  for  example,  is.numeric(), 

is.character(),  is.logical().  And,  there are  functions for  explicit  coercion from one

type to another: as.double(), as.integer(), as.factor(), as.character(), etc. 

If an object has a class attribute, there is likely an associated "constructor function", or function

used to  build  an object  of  that  class.  For  example,  ?data.frame(),  ?factor().  We will

discuss both data frames and factors in a later lesson. 

chromosome_name <- 'chr02'
typeof(chromosome_name)
## [1] "character"
class(chromosome_name)
## [1] "character"

od_600_value <- 0.47
typeof(od_600_value)
## [1] "double"
class(od_600_value)
## [1] "numeric"

df<-head(iris)
typeof(df)
## [1] "list"
class(df)
## [1] "data.frame"

chr_position <- '1001701bp'
typeof(chr_position)
## [1] "character"
class(chr_position)
## [1] "character"

spock <- TRUE
typeof(spock)
## [1] "logical"
class(spock)
## [1] "logical"
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Special null-able values

There are also special use, null-able values that you should be aware of. Read more to learn

about  NULL, NA, NaN, and Inf (https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-

inf/). 

Mathematical operations

As mentioned, an object's type/mode can be used to understand the methods that can be

applied  to  it.  Objects  of  mode  numeric  can  be  treated  as  such,  meaning  mathematical

operators can be used directly with those objects. 

This  chart  from  datacarpentry.org (https://datacarpentry.org/genomics-r-intro/02-r-basics/

index.html) shows many of the mathematical operators used in R.

() are additionally used to establish the order of operations. 

Let's see this in practice.

#create an object storing the number of human chromosomes (haploid)
human_chr_number<-23
#let's check the type of this object
typeof(human_chr_number)

[1] "double"

#Now, lets get the total number of human chromosomes (diploid)
human_chr_number * 2 #The output is 46! 
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Moreover, we do not need an object to perform mathematical computations. R can be used like

a calculator. 

For example, 

A function is an object.

R functions are saved as objects, and if we type the name of the function, we can see the value

of the object (i.e., the code underlying the function). Functions are important to R programming,

as anything that happens in R is due to the use of a function. 

We have used some R functions  in  Lesson 1  (e.g.  getwd() and  setwd())!  Let's  look  at

another example using the round() function. 

round() "rounds the values in its first argument to the specified number of decimal places

(default 0)" --- R help. 

Consider

[1] 46

(1 + (5 ** 0.5))/2

[1] 1.618034

Looking up Compiled Code

When  looking  at  R  source  code,  sometimes  calls  to  one  of  the  following  functions  show

up: .C(), .Call(), .Fortran(), .External(), or .Internal() and .Primitive(). These functions are calling entry

points in compiled code such as shared objects, static libraries or dynamic link libraries. Therefore, it

is necessary to look into the sources of the compiled code, if complete understanding of the code is

required. --- RNews 2006 (https://cran.r-project.org/doc/Rnews/Rnews_2006-4.pdf)



round(5.65) #can provide a single number

[1] 6

round(c(5.65,7.68,8.23)) #can provide a vector
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In this example, we only provided the required argument in this case, which was any numeric or

complex vector. We can see that two arguments can be included by the context prompt while

typing (See below image). The optional second argument (i.e., digits) indicates the number of

decimal places to round to. Contextual help is generally provided as you type the name of a

function in RStudio. 

At times a function may be masked by another function. This can happen if two functions are

named the same (e.g., dplyr::filter() vs plyr::filter()). We can get around this by

explicitly  calling  a  function  from  the  correct  package  using  the  following  syntax:

package::function(). 

The pipe (|>, %>%).

Functions can be chained together using a pipe (|>, %>%). The pipe improves the readability of

the code by minimizing nesting. 

For example, 

We will talk about the pipe more in part 2 and 3 of this series. For now, it is helpful to know that it

exists and what it is doing. 

[1] 6 8 8

#provide an additional argument rounding to the tenths place
round(5.65,digits=1) 

[1] 5.7

ex<- -5.679

ex |> round() |> abs()

[1] 6

Differences between |> and %>%

There are some crucial differences between the native pipe |> and the maggitr pipe (%>%). Check out this blog

(https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/) for details. 
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Pre-defined objects

Base R comes with a number of built-in functions, vectors, data frames, and other objects. You

can view all using the function, builtins(). If you are interested in built-in datasets, check out

help(package="datasets"). 
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Lesson 3: Basics of R Programming: Vectors

Objectives

To understand some of the most basic features of the R language including creating, modifying,

sub-setting, and exporting vectors. 

As with previous lessons, to get started with this lesson, you will first need to connect to RStudio

on Biowulf. To connect to NIH HPC Open OnDemand, you must be on the NIH network. Use the

following  website  to  connect:  https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/).

Then follow the instructions outlined here. 

Vectors

Vectors  are  probably  the  most  commonly  used object  type in  R.  A vector  is  a

collection of values that are all of the same type (numbers, characters, etc.). The

columns that make up a data frame are vectors. One of the most common ways to

create a vector is to use the c() function - the “concatenate” or “combine” function.

Inside the function you may enter one or more values; for multiple values, separate

each  value  with  a  comma.  ---  datacarpentry.org (https://datacarpentry.github.io/

genomics-r-intro/01-r-basics.html).

Creating vectors

Let's check out the type of data within the vector. What do you think?

Another property of vectors worth exploring is their length. Try length()

#create a vector of gene names
transcript_names <- c("TSPAN6", "TNMD", "SCYL3", "GCLC")
transcript_names

[1] "TSPAN6" "TNMD"   "SCYL3"  "GCLC"  

typeof(transcript_names)  

[1] "character"
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In addition, you can assess the underlying structure of the object (vector in this case) by using

str().  str() will be invaluable for understanding more complicated data structures such as

matrices and data frames, which will be discussed later.

Here, the length and type of data in the vector are returned, as well as a summary of the data. 

Vectors can also have a names attribute. 

length(transcript_names)

[1] 4

# this will return properties of the object's underlying structure
# in this case, the length and type
str(transcript_names) 

 chr [1:4] "TSPAN6" "TNMD" "SCYL3" "GCLC"

#We know this is a vector from the length but you could always check  
is.vector(transcript_names)

[1] TRUE

counts<-c("TSPAN6"= 679, "TNMD" = 0, "SCYL3" = 467)
counts

TSPAN6   TNMD  SCYL3 
   679      0    467 

names(counts)

[1] "TSPAN6" "TNMD"   "SCYL3" 

41 Lesson 3: Basics of R Programming: Vectors

Bioinformatics Training and Education Program



Creating, modifying, sub-setting exporting

Let's  learn how to further  work with vectors,  including creating,  sub-setting,  modifying,  and

saving. First, we will create a few vectors. Again, the c() vector is necessary for this task. 

#Some possible RNASeq data
cell_line<- c("N052611", "N061011", "N080611", "N61311" )
sample_id <- c("SRR1039508", "SRR1039509", "SRR1039512", 
               "SRR1039513", "SRR1039516", "SRR1039517", 
               "SRR1039520", "SRR1039521")
transcript_counts <- c(679, 0, 467, 260,  60,   0)

Creating vectors with functions

Vectors can also be created with different functions. Some common functions used to create vectors include seq()

and rep(). 



Vector operations

If our vectors are numeric, we can apply mathematic operations and arithmetic expressions.



# Apply some basic math
transcript_counts + 10

[1] 689  10 477 270  70  10

transcript_counts^2 +100

[1] 461141    100 218189  67700   3700    100

# Transform the data using a log 10 transformation
log10(transcript_counts + 1)

[1] 2.832509 0.000000 2.670246 2.416641 1.785330 0.000000

# Add two vectors together
transcript_counts + rep(2,times=6)
## [1] 681   2 469 262  62   2

#Add different sized vectors
transcript_counts + c(0,1)
## [1] 679   1 467 261  60   1

42 Lesson 3: Basics of R Programming: Vectors

Bioinformatics Training and Education Program



Vector sub-setting

There may be moments where you want to retrieve a specific value or values from a vector. To

do this, we use bracket notation sub-setting ([]).In bracket notation, you call the name of the

vector followed by brackets. The brackets contain an index for the value that we want. The

index  is  the  numerical  position  of  the  value  in  the  vector.  For  example,  take  a  look  at

cell_line. 

The first position [1] is held by "N052611". The next position is 2 followed by 3, etc. 

Index positions in cell_line. 

With numerical indexing, we can access a given value from the vector using  name[index],

where name is the name of the vector, and index is the numerical position within the vector. 

Let's get the second value from cell_types. 

Some things to note here: 

With vectors of the same length, we can add, subtract, multiply, etc., but operations are performed on

elements in the same position of each vector. 

With vectors of different lengths, the shorter vector will be recyled (https://www.geeksforgeeks.org/vector-

recycling-in-r/) until the operation is complete. If the larger vector is not a multiple of the shorter vector, a

warning will be thrown. 

transcript_counts + c(0,1,0,1)
## Warning in transcript_counts + c(0, 1, 0, 1): longer object length is not a
## multiple of shorter object length
## [1] 679   1 467 261  60   1

1. 

2. 

cell_line

[1] "N052611" "N061011" "N080611" "N61311" 

cell_line[2]

[1] "N061011"
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In R vector indices start with 1 and end with length(vector). This is important and can

differ based on programming language.

For example: 

Programming languages like Fortran,  MATLAB, Julia,  and R start  counting at  1,

because  that’s  what  human  beings  typically  do.  Languages  in  the  C  family

(including C++, Java, Perl,  and Python) count from 0 because that’s simpler for

computers  to  do.---bioc-intro (https://carpentries-incubator.github.io/bioc-intro/23-

starting-with-r.html). 

So to extract the last element in a vector, you could use the following annotation:

This is the same as:

You may also want to subset a range of values. In R, use a colon (:) to represent a range. 

#retrieve the last element in the sample_id vector
sample_id[length(sample_id)] 

[1] "SRR1039521"

#retrieve the last element in the sample_id vector
sample_id[8] 

[1] "SRR1039521"

#Retrieve the 2nd and 3rd value from cell_line
cell_line[2:3] 

[1] "N061011" "N080611"

#Retrieve the 1st, 4th, 5th, and 6th values from transcript_counts
transcript_counts[c(1,4:6)]

[1] 679 260  60   0
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The combine function  c() can also be used to add 1 or more elements to a vector. To be

overwritten the object has to be reassigned. 

Subtraction can be used to remove a value. 

We can rename a value by

We can use the names attribute to query or subset a vector. 

We can also call a value directly; More on this below. 

#Lets add two genes to transcript_names
transcript_names <- c(transcript_names, "ANAPC10P1", "ABCD1") 
transcript_names
## [1] "TSPAN6"    "TNMD"      "SCYL3"     "GCLC"      "ANAPC10P1" "ABCD1"

#Let's remove "SCYL3"
transcript_names <- transcript_names[-3]
transcript_names

[1] "TSPAN6"    "TNMD"      "GCLC"      "ANAPC10P1" "ABCD1"    

#Let's rename "GCLC"
transcript_names[3] <- "NNAME"
transcript_names

[1] "TSPAN6"    "TNMD"      "NNAME"     "ANAPC10P1" "ABCD1"    

counts["SCYL3"]

SCYL3 
  467 

#Rename "ABCD1" to "NEW"
transcript_names[transcript_names == "ABCD1"]  <- "NEW" 
transcript_names
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Logical subsetting

It is also possible to subset in R using logical evaluation or numerical comparison. To do this, we

use comparison operators,  as we did in the last  example. See the table below for a list  of

operators. 

Comparison Operator Description

> greater than

>= greater than or equal to

< less than

<= less than or equal to

!= Not equal

== equal

a | b a or b

a & b a and b

So if, for example, we wanted a subset of all transcript counts greater than 260, we could use

indexing combined with a comparison operator:

Why does this work? Let's break down the code.

This returns a logical vector. We can see that positions 1 and 3 are TRUE, meaning they are

greater than 260. Therefore, the initial sub-setting above is asking for a subset based on TRUE

values. Here is the equivalent:

[1] "TSPAN6"    "TNMD"      "NNAME"     "ANAPC10P1" "NEW"      

transcript_counts[transcript_counts > 260]

[1] 679 467

transcript_counts > 260

[1]  TRUE FALSE  TRUE FALSE FALSE FALSE

transcript_counts[c( TRUE, FALSE, TRUE, FALSE, FALSE, FALSE)]
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You can also use this functionality to do a kind of find and replace. Perhaps we want to find

zero values and replace them with NAs. We could use:

Now, if we want to return only values that aren't NAs, we can use

Other ways to handle missing data

Other  functions  you  may  find  useful  when  working  with  NAs  inclue  na.omit() and

complete.cases(). 

na.omit() removes the NAs from a vector. 

[1] 679 467

transcript_counts[transcript_counts==0]<-NA

Note

if you instead ran  transcript_counts[transcript_counts==0]<-"NA", you would coerce this vector to a

character vector. 

transcript_counts[!is.na(transcript_counts)] #values that aren't NAs

[1] 679 467 260  60

is.na(transcript_counts) #if you simply want to know if there are NAs

[1] FALSE  TRUE FALSE FALSE FALSE  TRUE

which(is.na(transcript_counts)) #if you want the indices of those NAs

[1] 2 6

na.omit(transcript_counts)
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complete.cases() creates a logical vector that you can use for subs-etting based on the

absence of NAs. 

Many functions will also have an na.rm argument. For example, see ?mean. 

Using objects to store thresholds

To make scripting reproducible, you could avoid calling a specific number directly and use

objects in logical evaluations like those above. If we use an object, the value itself could easily

be replaced with whatever value is needed. For example: 

Using the %in% operator.

There may be a time you want to know whether there are specific values in your vector. To do

this, we can use the %in% operator (?match()). This operator returns TRUE for any value that

is in your vector and can be used for sub-setting. It makes more sense to use this with data

frames but we can see how this works here.

[1] 679 467 260  60
attr(,"na.action")
[1] 2 6
attr(,"class")
[1] "omit"

transcript_counts[complete.cases(transcript_counts)]

[1] 679 467 260  60

trnsc_cutoff <- 260
#note: this will also include NAs in the output
transcript_counts[transcript_counts>trnsc_cutoff] 

[1] 679  NA 467  NA

#if we want to exclude possible NAs, something like this will work
transcript_counts[!is.na(transcript_counts) & transcript_counts>trnsc_cutoff] 

[1] 679 467
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For example: 

Saving and loading objects

We discussed saving the R workspace (.RData), but what if we simply want to save a single

object. In such a case, we can use saveRDS(). 

Let's save our transcript_counts vector to our working directory.

Check the Files pane for your newly created file. Make sure you are viewing the contents of

your working directory (getwd()). 

# have a look at transcript_names
transcript_names

[1] "TSPAN6"    "TNMD"      "NNAME"     "ANAPC10P1" "NEW"      

# test to see if "NNAME" and "ANAPC10P1" are in this vector
# if you are looking for more than one value, you must pass this as a vector

c("NNAME","ANAPC10P1") %in% transcript_names

[1] TRUE TRUE

#We could also save the search vector to an object and search that way.
find_transcripts<-c("NNAME","ANAPC10P1")
find_transcripts %in% transcript_names

[1] TRUE TRUE

#to use this for subetting the vector lengths should match
transcript_names[transcript_names %in% find_transcripts]

[1] "NNAME"     "ANAPC10P1"

saveRDS(transcript_counts,"transcript_counts.rds")
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To load the object back into your R workspace, use readRDS(). 
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Lesson 4: Introduction to R Data Structures -

Data Import

Learning Objectives

Learn about data structures including factors, lists, matrices, and data frames. 

Learn how to import data in a tabular format (data frames) 

Learn to write out (export) data from the R environment 

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to

NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to

connect:  https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/).  Then  follow  the

instructions outlined here. 

Installing and Loading Packages

In this lesson, we will learn how to import data with different file extensions, including Excel files.

We will make use of Base R functions for data import as well as popular functions from readr

(https://readr.tidyverse.org/) and readxl (https://readxl.tidyverse.org/). 

So far we have only worked with objects that we created in RStudio. We have not installed or

loaded any packages. R packages extend the use of R programming beyond base R. 

Where do we get R packages?

As a reminder, R packages are loadable extensions that contain code, data, documentation,

and tests  in  a  standardized shareable  format  that  can easily  be installed by  R users.  The

primary repository for R packages is the  Comprehensive R Archive Network (CRAN) (https://

cran.r-project.org/index.html). CRAN is a global network of servers that store identical versions

of R code, packages, documentation, etc (cran.r-project.org). To install a CRAN package, use

install.packages(). 

Github is another common source used to store R packages; though, these packages do not

necessarily meet CRAN standards so approach with caution. To install a Github package, use

library(devtools) followed by  install_github().  devtools is  a CRAN package. If

you  have  not  installed  it,  you  may  use  install.packages("devtools") prior  to  the

previous steps. 

Many genomics and other packages useful to biologists / molecular biologists can be found on

Bioconductor. To install a Bioconductor package, you will first need to install BiocManager, a

CRAN package (install.packages("BiocManager")). You can then use  BiocManager

1. 

2. 

3. 
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to  install  the  Bioconductor  core  packages  or  any  specific  package  (e.g.,

BiocManager::install("DESeq2")). 

Packages are installed into your file system at a given location denoted by .libPaths(). This

is your R library, a directory of installed R packages. To use one or more packages, you have

to load it within your R session. This has to be done with each new R session.

Key functions: 

install.packages() install packages from CRAN. 

library() load packages in R session. 

Load the libraries: 

Data Structures

Data structures are objects that store data. 

Previously,  we  learned  that  vectors are  collections  of  values  of  the  same  type (https://

datacarpentry.org/genomics-r-intro/01-r-basics.html#vectors). A vector is also one of the most

basic data structures. 

Other common data structures in R include: 

factors

lists

data frames

matrices

What are factors?

Factors are an important data structure in statistical computing. They are specialized vectors

(ordered or unordered) for the storage of categorical data (data with fixed values). While they

appear  to  be character  vectors,  data  in  factors  are  stored as integers.  These integers  are

associated with pre-defined levels, which represent the different groups or categories in the

vector. 

• 

• 

library(readxl)
library(readr)

Tip

It is good practice to load libraries needed for a script at the beginning of the script. 

• 

• 

• 

• 
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Important functions

factor() - to create a factor and reorder levels 

as.factor() - to coerce to a factor 

levels() - view and / or rename the levels of a factor 

nlevels() - return the number of levels 

For example: 

Check out the package  forcats (https://forcats.tidyverse.org/) for managing and reordering

factors. 

See more about working with factors here (https://r4ds.had.co.nz/factors.html#factors). 

Lists

Unlike an atomic vector, a list can contain multiple elements of different types, (e.g., character

vector, numeric vector, list, data frame, matrix). Lists are not the focus of this lesson, but you

should be aware of them, as you will likely come across them at some point, as many functions,

including those specific to bioinformatics, may output data in the form of a list. 

Important functions

list() - create a list 

Reference level

Generally for statistical models, the reference or control level is set to level 1. You can reorder the levels using

factor() or forcats::relevel(). 

• 

• 

• 

• 

sex <- factor(c("M","F","F","M","M","M"))
levels(sex)

[1] "F" "M"

Note

R will organize factor levels alphabetically by default. This will be especially noticeable when plotting. 

Warning

Pay attention when coercing from a factor to a numeric. To do this, you should first convert to a character vector.

Otherwise, the numbers that you want to be numeric (the factor level names) will be returned as integers. 

• 
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names() - create named elements (Also useful for vectors) 

lapply(), sapply() - for looping over elements of the list 

Example

• 

• 

#Create a list
My_exp <- list(c("N052611", "N061011", "N080611", "N61311" ), 
               c("SRR1039508", "SRR1039509", "SRR1039512",
                 "SRR1039513", "SRR1039516", "SRR1039517",
                 "SRR1039520", "SRR1039521"),c(100,200,300,400))

#Look at the structure
str(My_exp)

List of 3
 $ : chr [1:4] "N052611" "N061011" "N080611" "N61311"
 $ : chr [1:8] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" ...
 $ : num [1:4] 100 200 300 400

#Name the elements of the list 
names(My_exp)<-c("cell_lines","sample_id","counts")
#See how the structure changes
str(My_exp)

List of 3
 $ cell_lines: chr [1:4] "N052611" "N061011" "N080611" "N61311"
 $ sample_id : chr [1:8] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" ...
 $ counts    : num [1:4] 100 200 300 400

#Subset the list
My_exp[[1]][2]

[1] "N061011"

My_exp$cell_lines[2]

[1] "N061011"
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We are not going to spend a lot of time on lists, but you should consider learning more about

them in the future, as you may receive output at some point in the form of a list. For a brief

introduction to lists, see the following resources: 

R4DS (https://r4ds.had.co.nz/vectors.html#lists)

UVA list tutorial (https://bioconnector.github.io/workshops/r-lists.html)

Steve’s Data Tips and Tricks (https://www.spsanderson.com/steveondata/posts/

2024-10-29/)

Data Matrices

Another important data structure in R is the data matrix. Data frames and data matrices are

similar in that both are tabular in nature and are defined by dimensions (i.e.,  rows (m) and

columns (n), commonly denoted m x n). However, a matrix contains only values of a single type

(i.e., numeric, character, logical, etc.). 

Elements in a matrix and a data frame can be referenced by using their row and column indices

(for example, a[1,1] references the element in row 1 and column 1). 

Below, we create the object a1, a 3-row by 4-column matrix.

#Apply a function (remove the first index from each vector)
lapply(My_exp,function(x){x[-1]})

$cell_lines
[1] "N061011" "N080611" "N61311" 

$sample_id
[1] "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516" "SRR1039517"
[6] "SRR1039520" "SRR1039521"

$counts
[1] 200 300 400

• 

• 

• 

Note

A vector can be viewed as a 1 dimensional matrix. 

a1 <- matrix(c(3,4,2,4,6,3,8,1,7,5,3,2), ncol=4)
a1
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Using the typeof() and class() command, we see that the elements in a1 are double and a1 a

matrix, respectively.

Similar to lists, we aren't going to focus much on matrices. 

Data Frames: Working with Tabular Data

In genomics, we work with a lot of tabular data - data organized in rows and columns. The data

structure that stores this type of data is a data frame. Data frames are collections of vectors of

the same length but can be of different types. Because we often have data of multiple types, it

is natural to examine that data in a data frame.

You may be tempted to open and manually work with these data in excel. However, there are a

number of reasons why this can be to your detriment. First, it is very easy to make mistakes

when working with large amounts of tabular data in excel. Have you ever mistakenly left out a

column or row while sorting data? Second, many of the files that we work with are so large (big

data) that excel and your local machine do not have the bandwidth to handle them. Third, you

will likely need to apply analyses that are unavailable in excel. Lastly, it is difficult to keep track

of any data manipulation steps or analyses in a point and click environment like excel. 

R, on the other hand, can make analyzing tabular data more efficient and reproducible. But

before  getting  into  working  with  this  data  in  R,  let's  review  some  best  practices  for  data

management. 

     [,1] [,2] [,3] [,4]
[1,]    3    4    8    5
[2,]    4    6    1    3
[3,]    2    3    7    2

typeof(a1)

[1] "double"

class(a1)

[1] "matrix" "array" 
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Best Practices for organizing genomic data

"Keep raw data separate from analyzed data" -- datacarpentry.org (https://

datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html)

For  large  genomic  data  sets,  you  may  want  to  include  a  project  folder  with  two  main

subdirectories  (i.e.,  raw_data  and  data_analysis).  You  may  even  consider  changing  the

permissions (check out the unix command chmod (https://www.howtogeek.com/437958/how-to-

use-the-chmod-command-on-linux/))  in  your  raw  directory  to  make  those  files  read  only.

Keeping raw data separate is not a problem in R, as one must explicitly import and export data.

"Keep spreadsheet data Tidy" -- datacarpentry.org (https://datacarpentry.org/

genomics-r-intro/03-basics-factors-dataframes.html)

Data organization can be frustrating,  and many scientists  devote  a  great  deal  of  time and

energy toward this task. Keeping data tidy, can make data science more efficient, effective, and

reproducible. There is a collection of packages in R that embrace the philosophy of tidy data

and  facilitate  working  with  data  frames.  That  collection  is  known  as  the  tidyverse (https://

www.tidyverse.org/). 

"Trust but verify" -- datacarpentry.org (https://datacarpentry.org/genomics-r-

intro/03-basics-factors-dataframes.html)

R makes data analysis more reproducible and can eliminate some mistakes from human error.

However, you should approach data analysis with a plan, and make sure you understand what

a function is doing before applying it to your data. Often using small subsets of data can be

used as a form of data debugging to make sure the expected result materialized. 

Some functions for creating practice data include: data.frame(),  rep(),  seq(),  rnorm(), 

sample() and  others.  See  some  examples  here (https://ademos.people.uic.edu/

Chapter7.html#32_b_using_the_rep_function_to_create_data_frames). 

Let's use some of these to create a data frame. 

1. 

1. 

1. 

df<-data.frame(Samples=c(1:10),Counts=sample(1:5000, size=10, replace = TRUE),Treatment=rep(c("control", "treated"), each=5))
df

   Samples Counts Treatment
1        1   4939   control
2        2    191   control
3        3   3697   control
4        4   4933   control
5        5   2938   control
6        6   1721   treated
7        7    214   treated
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Example Data

There are data sets available in R to practice with or showcase different packages; for example,

library(help = "datasets"). For the next two lessons, we will use data derived from the

Bioconductor  package  airway (https://bioconductor.org/packages/release/data/experiment/

html/airway.html) as well as data internal to or derived from Base R and packages within the

tidyverse. Check out the Acknowledgements section for additional data sources. 

Obtaining the data

To download the data used in this lesson to your local computer, click here. You can then

move the downloaded directory to your working directory in R. 

To use the data on Biowulf, open your Terminal in R and follow these steps: 

Importing Data

Before we can do anything with our data, we need to first import it into R. There are several

ways to do this.

First, the RStudio IDE has a drop down menu for data import. Simply go to  File >  Import

Dataset and select one of the options and follow the prompts. 

Pay close attention to the import functions and their arguments. Using the import arguments

correctly can save you from a headache later down the road. You will notice two types of import

functions  under  Import Dataset "from text":  base  R  import  functions  and  readr import

functions. We will use both in this course. 

8        8   2999   treated
9        9   2084   treated
10      10   2196   treated

• 

• 

cd /data/$USER/Getting_Started_with_R
wget https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Getting_Started_with_R/data.zip
unzip data.zip  

Note

"Getting_Started_with_R" is the name of the project directory I created in Lesson 1. If you do not have this directory,

make sure you change directories to your working directory in R. 

Row names
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What is a tibble?

When loading tabular data with readr, the default object created will be a tibble. Tibbles are

like  data  frames  with  some small  but  apparent  modifications.  For  example,  they  can  have

numbers for column names, and the column types are immediately apparent when viewing.

Additionally, when you call a tibble by running the object name, the entire data frame does not

print to the screen, rather the first ten rows along with the columns that fit the screen are shown.

Reasons to use readr functions

Compared to the corresponding base functions, readr functions:

Use  a  consistent  naming  scheme  for  the  parameters  (e.g.  col_names  and

col_types not header and colClasses).

Are generally much faster (up to 10x-100x) depending on the dataset.

Leave strings as is by default, and automatically parse common date/time formats.

Have a helpful progress bar if loading is going to take a while.

All  functions  work  exactly  the  same  way  regardless  of  the  current  locale.  To

override  the  US-centric  defaults,  use  locale().  -  readr.tidyverse.org (https://

readr.tidyverse.org/#base-r). 

Excel files (.xls, .xlsx)

Excel files are the primary means by which many people save spreadsheet data. .xls or .xlsx

files store workbooks composed of one or more spreadsheets.

Importing excel files requires the R package readxl. While this is a tidyverse package, it is not

core and must be loaded separately. We loaded this above. 

The functions to import excel files are read_excel(), read_xls(), and read_xlsx(). The

latter two are more specific based on file format, whereas the first will guess which format (.xls

or .xlsx) we are working with. 

Let's look at its basic usage using an example data set from the readxl package. To access

the example data we use readxl_example().

Tidyverse packages are generally  against  assigning  rownames and instead prefer  that  all  column data are

treated the same, but there are times when this is beneficial and will  be required for genomics data (e.g., See

SummarizedExperiment (https://bioconductor.org/packages/devel/bioc/vignettes/SummarizedExperiment/inst/

doc/SummarizedExperiment.html) from Bioconductor). 

#makes example data accessible by storing the path 
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Now, let's read in the data. The only required argument is a path to the file to be imported. 

Notice that the resulting imported data is a tibble. This is a feature specific to tidyverse. Now,

let's check out some of the additional arguments. We can view the help information using  ?

read_excel(). 

The arguments likely to be most pertinent to you are: 

sheet - the name or numeric position of the excel sheet to read.

col_names -  default  TRUE uses the first  read in row for  the column names. You can also

provide a vector of names to name the columns.

skip - will allow us to skip rows that we do not wish to read in.

.name_repair - automatically set to "unique", which makes sure that the column names are

not empty and are all  unique.  read_excel() and  readr functions will  not correct column

names  to  make  them  syntactic.  If  you  want  corrected  names,  use  .name_repair  =

"universal". 

Let's check out another example: 

ex_xl<-readxl_example("datasets.xlsx")  
ex_xl  

[1] "/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/readxl/extdata/datasets.xlsx"

irisdata<-read_excel(ex_xl)
irisdata

# A tibble: 32 × 11
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
 2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
 3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
 4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
 5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
 6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
 7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
 8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
 9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
# ℹ 22 more rows
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Upon importing these data, we can immediately see that something is wrong with the column

names. 

There are some extra rows of information at the beginning of the data frame that should be

excluded.  We  can  take  advantage  of  additional  arguments  to  load  only  the  data  we  are

interested in. We are also going to tell  read_excel() that we want the names repaired to

eliminate spaces. 

sum_air<-read_excel("./data/RNASeq_totalcounts_vs_totaltrans.xlsx")

New names:
• `` -> `...2`
• `` -> `...3`
• `` -> `...4`

sum_air

# A tibble: 11 × 4
   `Uses Airway Data`               ...2          ...3                  ...4    
   <chr>                            <chr>         <chr>                 <chr>   
 1 Some RNA-Seq summary information <NA>          <NA>                  <NA>    
 2 <NA>                             <NA>          <NA>                  <NA>    
 3 Sample Name                      Treatment     Number of Transcripts Total C…
 4 GSM1275863                       Dexamethasone 10768                 18783120
 5 GSM1275867                       Dexamethasone 10051                 15144524
 6 GSM1275871                       Dexamethasone 11658                 30776089
 7 GSM1275875                       Dexamethasone 10900                 21135511
 8 GSM1275862                       None          11177                 20608402
 9 GSM1275866                       None          11526                 25311320
10 GSM1275870                       None          11425                 24411867
11 GSM1275874                       None          11000                 19094104

colnames(sum_air)

[1] "Uses Airway Data" "...2"             "...3"             "...4"            

sum_air<-read_excel("./data/RNASeq_totalcounts_vs_totaltrans.xlsx",
                    skip=3,.name_repair = "universal")
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Tab-delimited files (.tsv, .txt)

In tab delimited files, data columns are separated by tabs.

To import  tab-delimited files there are several  options.  There are base R functions such as

read.delim() and  read.table() as  well  as  the  readr functions  read_delim(), 

read_tsv(), and read_table(). 

Let's take a look at ?read.delim() and ?read_delim(), which are most appropriate if you

are working with tab delimited data stored in a .txt file. 

For read.delim(), you will notice that the default separator (sep) is white space, which can

be one or more spaces, tabs, newlines. However, you could use this function to load a comma

separated  file  as  well;  you  simply  need  to  use  sep  =  ",".  The  same  is  true  of

read_delim(), except the argument is delim rather than sep. 

Let's  load  sample  information  from  the  RNA-Seq  project  airway (https://

bioconductor.org/packages/release/data/experiment/html/airway.html). We will refer back to

some of these data frequently throughout our lessons. The airway data is from  Himes et al.

(2014) (https://pubmed.ncbi.nlm.nih.gov/24926665/). These data, which are available in R as a

RangedSummarizedExperiment object,  are  from  a  bulk  RNA-Seq  experiment.  In  the

experiment, the authors "characterized transcriptomic changes in four primary human ASM cell

lines  that  were  treated  with  dexamethasone,"  a  common  therapy  for  asthma.  The  airway

New names:
• `Sample Name` -> `Sample.Name`
• `Number of Transcripts` -> `Number.of.Transcripts`
• `Total Counts` -> `Total.Counts`

sum_air

# A tibble: 8 × 4
  Sample.Name Treatment     Number.of.Transcripts Total.Counts
  <chr>       <chr>                         <dbl>        <dbl>
1 GSM1275863  Dexamethasone                 10768     18783120
2 GSM1275867  Dexamethasone                 10051     15144524
3 GSM1275871  Dexamethasone                 11658     30776089
4 GSM1275875  Dexamethasone                 10900     21135511
5 GSM1275862  None                          11177     20608402
6 GSM1275866  None                          11526     25311320
7 GSM1275870  None                          11425     24411867
8 GSM1275874  None                          11000     19094104
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package includes RNAseq count data from 8 airway smooth muscle cell samples. Each cell line

includes a treated and untreated negative control. 

Using read.delim(): 

Some other arguments of interest for read.delim():

row.names - used to specify row names.

col.names - use to specify column names if header = FALSE.

skip - Similar to  read_excel(), used to skip a number of lines preceding the data we are

interested in importing.

check.names - makes names syntactically valid and unique.

Using read_delim():

smeta<-read.delim("./data/airway_sampleinfo.txt")
head(smeta)

  SampleName    cell   dex albut        Run avgLength Experiment    Sample
1 GSM1275862  N61311 untrt untrt SRR1039508       126  SRX384345 SRS508568
2 GSM1275863  N61311   trt untrt SRR1039509       126  SRX384346 SRS508567
3 GSM1275866 N052611 untrt untrt SRR1039512       126  SRX384349 SRS508571
4 GSM1275867 N052611   trt untrt SRR1039513        87  SRX384350 SRS508572
5 GSM1275870 N080611 untrt untrt SRR1039516       120  SRX384353 SRS508575
6 GSM1275871 N080611   trt untrt SRR1039517       126  SRX384354 SRS508576
     BioSample
1 SAMN02422669
2 SAMN02422675
3 SAMN02422678
4 SAMN02422670
5 SAMN02422682
6 SAMN02422673

smeta2<-read_delim("./data/airway_sampleinfo.txt")

Rows: 8 Columns: 9
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr (8): SampleName, cell, dex, albut, Run, Experiment, Sample, BioSample
dbl (1): avgLength

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
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What if we want to retain row names?

Let's load in a count matrix from airway. 

smeta2

# A tibble: 8 × 9
  SampleName cell    dex   albut Run       avgLength Experiment Sample BioSample
  <chr>      <chr>   <chr> <chr> <chr>         <dbl> <chr>      <chr>  <chr>    
1 GSM1275862 N61311  untrt untrt SRR10395…       126 SRX384345  SRS50… SAMN0242…
2 GSM1275863 N61311  trt   untrt SRR10395…       126 SRX384346  SRS50… SAMN0242…
3 GSM1275866 N052611 untrt untrt SRR10395…       126 SRX384349  SRS50… SAMN0242…
4 GSM1275867 N052611 trt   untrt SRR10395…        87 SRX384350  SRS50… SAMN0242…
5 GSM1275870 N080611 untrt untrt SRR10395…       120 SRX384353  SRS50… SAMN0242…
6 GSM1275871 N080611 trt   untrt SRR10395…       126 SRX384354  SRS50… SAMN0242…
7 GSM1275874 N061011 untrt untrt SRR10395…       101 SRX384357  SRS50… SAMN0242…
8 GSM1275875 N061011 trt   untrt SRR10395…        98 SRX384358  SRS50… SAMN0242…

aircount<-read.delim("./data/head50_airway_nonnorm_count.txt")  
head(aircount)

                         X Accession.SRR1039508 Accession.SRR1039509
1   ENSG00000000003.TSPAN6                  679                  448
2     ENSG00000000005.TNMD                    0                    0
3     ENSG00000000419.DPM1                  467                  515
4    ENSG00000000457.SCYL3                  260                  211
5 ENSG00000000460.C1orf112                   60                   55
6      ENSG00000000938.FGR                    0                    0
  Accession.SRR1039512 Accession.SRR1039513 Accession.SRR1039516
1                  873                  408                 1138
2                    0                    0                    0
3                  621                  365                  587
4                  263                  164                  245
5                   40                   35                   78
6                    2                    0                    1
  Accession.SRR1039517 Accession.SRR1039520 Accession.SRR1039521
1                 1047                  770                  572
2                    0                    0                    0
3                  799                  417                  508
4                  331                  233                  229
5                   63                   76                   60
6                    0                    0                    0
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Because this is a count matrix, we want to save column 'X', which was automatically named, as

row names rather than a column. Remember, readr is a part of the tidyverse and does not play

well with row names. Therefore, we will use read.delim() withe the argument row.names. 

Let's reload and overwrite the previous object:

Comma separated files (.csv)

In comma separated files the columns are separated by commas and the rows are separated

by new lines. 

aircount<-read.delim("./data/head50_airway_nonnorm_count.txt",
                     row.names = 1)  
head(aircount)

                         Accession.SRR1039508 Accession.SRR1039509
ENSG00000000003.TSPAN6                    679                  448
ENSG00000000005.TNMD                        0                    0
ENSG00000000419.DPM1                      467                  515
ENSG00000000457.SCYL3                     260                  211
ENSG00000000460.C1orf112                   60                   55
ENSG00000000938.FGR                         0                    0
                         Accession.SRR1039512 Accession.SRR1039513
ENSG00000000003.TSPAN6                    873                  408
ENSG00000000005.TNMD                        0                    0
ENSG00000000419.DPM1                      621                  365
ENSG00000000457.SCYL3                     263                  164
ENSG00000000460.C1orf112                   40                   35
ENSG00000000938.FGR                         2                    0
                         Accession.SRR1039516 Accession.SRR1039517
ENSG00000000003.TSPAN6                   1138                 1047
ENSG00000000005.TNMD                        0                    0
ENSG00000000419.DPM1                      587                  799
ENSG00000000457.SCYL3                     245                  331
ENSG00000000460.C1orf112                   78                   63
ENSG00000000938.FGR                         1                    0
                         Accession.SRR1039520 Accession.SRR1039521
ENSG00000000003.TSPAN6                    770                  572
ENSG00000000005.TNMD                        0                    0
ENSG00000000419.DPM1                      417                  508
ENSG00000000457.SCYL3                     233                  229
ENSG00000000460.C1orf112                   76                   60
ENSG00000000938.FGR                         0                    0
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To  read  comma  separated  files,  we  can  use  the  specific  functions  ?read.csv() and  ?

read_csv(). 

Let's see this in action: 

The arguments are the same as read.delim(). 

Let's check out read_csv(): 

cexamp<-read.csv("./data/surveys_datacarpentry.csv")
head(cexamp)

  record_id month day year plot_id species_id sex hindfoot_length weight
1         1     7  16 1977       2         NL   M              32     NA
2         2     7  16 1977       3         NL   M              33     NA
3         3     7  16 1977       2         DM   F              37     NA
4         4     7  16 1977       7         DM   M              36     NA
5         5     7  16 1977       3         DM   M              35     NA
6         6     7  16 1977       1         PF   M              14     NA

cexamp2<-read_csv("./data/surveys_datacarpentry.csv")

Rows: 35549 Columns: 9
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (2): species_id, sex
dbl (7): record_id, month, day, year, plot_id, hindfoot_length, weight

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

cexamp2

# A tibble: 35,549 × 9
   record_id month   day  year plot_id species_id sex   hindfoot_length weight
       <dbl> <dbl> <dbl> <dbl>   <dbl> <chr>      <chr>           <dbl>  <dbl>
 1         1     7    16  1977       2 NL         M                  32     NA
 2         2     7    16  1977       3 NL         M                  33     NA
 3         3     7    16  1977       2 DM         F                  37     NA
 4         4     7    16  1977       7 DM         M                  36     NA
 5         5     7    16  1977       3 DM         M                  35     NA
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Other file types

There are a number of other file types you may be interested in. For genomic specific formats,

you  will  likely  need  to  install  specific  packages;  check  out  Bioconductor (https://

bioconductor.org/) for packages relevant to bioinformatics. 

For information on importing other files types (e.g., json, xml, google sheets), check out this

chapter (https://jhudatascience.org/tidyversecourse/get-data.html) from  Tidyverse  Skills  for

Data Science by Carrie Wright, Shannon E. Ellis, Stephanie C. Hicks and Roger D. Peng. 

Data Export.

To  export  data  to  file,  you  will  use  similar  functions

(write.table(),write.csv(),saveRDS(), etc.). 

For example, let's save df to a csv file. 
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 6         6     7    16  1977       1 PF         M                  14     NA
 7         7     7    16  1977       2 PE         F                  NA     NA
 8         8     7    16  1977       1 DM         M                  37     NA
 9         9     7    16  1977       1 DM         F                  34     NA
10        10     7    16  1977       6 PF         F                  20     NA
# ℹ 35,539 more rows

write_csv(df,"./data/small_df_example.csv")
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Lesson 5: R Data Structures - Data Frames

Learning Objectives

This is the last lesson in Part 1 of Introductory R for Novices: Getting Started with R. This lesson

will  focus  exclusively  on  working  with  data  frames.  Attendees  will  learn  how  to  examine,

summarize, and access data in data frames. 

Specific learning objectives include: 

Review data import. 

Learn how to view and summarize data in a data frame. 

Learn how to use data accessors. 

Learn the syntax for sub-setting a data frame. 

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to

NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to

connect:  https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/).  Then  follow  the

instructions outlined here. 

Load the libraries

This lesson will use some functions from the tidyverse. 

1. 

2. 

3. 

4. 

library(tidyverse)

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

68 Lesson 5: R Data Structures - Data Frames

Bioinformatics Training and Education Program

https://hpcondemand.nih.gov/
https://hpcondemand.nih.gov/


Examining and summarizing data frames

All of the objects we imported in the previous lesson, were data frames. In this lesson, we will

learn how to view and find out more information regarding the data stored in a data frame. Let's

use the R object, smeta as an example. 

We can view these data by clicking on the name of the object in the Environment pane or by

using View(). 

To understand more about the underlying structure of our data, we can use str() or a similar

function dplyr::glimpse. 

smeta<-read.delim("./data/airway_sampleinfo.txt")
head(smeta)

  SampleName    cell   dex albut        Run avgLength Experiment    Sample
1 GSM1275862  N61311 untrt untrt SRR1039508       126  SRX384345 SRS508568
2 GSM1275863  N61311   trt untrt SRR1039509       126  SRX384346 SRS508567
3 GSM1275866 N052611 untrt untrt SRR1039512       126  SRX384349 SRS508571
4 GSM1275867 N052611   trt untrt SRR1039513        87  SRX384350 SRS508572
5 GSM1275870 N080611 untrt untrt SRR1039516       120  SRX384353 SRS508575
6 GSM1275871 N080611   trt untrt SRR1039517       126  SRX384354 SRS508576
     BioSample
1 SAMN02422669
2 SAMN02422675
3 SAMN02422678
4 SAMN02422670
5 SAMN02422682
6 SAMN02422673

str(smeta)

'data.frame':   8 obs. of  9 variables:
 $ SampleName: chr  "GSM1275862" "GSM1275863" "GSM1275866" "GSM1275867" ...
 $ cell      : chr  "N61311" "N61311" "N052611" "N052611" ...
 $ dex       : chr  "untrt" "trt" "untrt" "trt" ...
 $ albut     : chr  "untrt" "untrt" "untrt" "untrt" ...
 $ Run       : chr  "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" ...
 $ avgLength : int  126 126 126 87 120 126 101 98
 $ Experiment: chr  "SRX384345" "SRX384346" "SRX384349" "SRX384350" ...
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str() shows us that we are looking at a data frame object with 8 rows by 9 columns. The

column names are to the far left preceded by a $. This is a data frame accessor, and we will

see how this  works later.  We can also see the data types (e.g.,  character,  integer,  logical,

double)  after  the  column  name.  This  will  help  us  understand  how  we  can  transform  and

visualize the data in these columns. 

We can also get an overview of summary statistics of this data frame using summary().

Our data frame has 9 variables, so we get 9 fields that summarize the data. The only column

with numerical data is  avgLength, for which we can see summary statistics on the min and

max values as well as mean, median, and interquartile ranges. 

 $ Sample    : chr  "SRS508568" "SRS508567" "SRS508571" "SRS508572" ...
 $ BioSample : chr  "SAMN02422669" "SAMN02422675" "SAMN02422678" "SAMN02422670" ...

summary(smeta)

  SampleName            cell               dex               albut          
 Length:8           Length:8           Length:8           Length:8          
 Class :character   Class :character   Class :character   Class :character  
 Mode  :character   Mode  :character   Mode  :character   Mode  :character  

     Run              avgLength      Experiment           Sample         
 Length:8           Min.   : 87.0   Length:8           Length:8          
 Class :character   1st Qu.:100.2   Class :character   Class :character  
 Mode  :character   Median :123.0   Mode  :character   Mode  :character  
                    Mean   :113.8                                        
                    3rd Qu.:126.0                                        
                    Max.   :126.0                                        
  BioSample        
 Length:8          
 Class :character  
 Mode  :character  

Using summary() with factors

summary() is also useful for obtaining quick information about a categorial (factor) variable, answering how many

groups and the sample size of each group. 



smeta2 <- smeta %>% mutate(dex = as.factor(dex))
summary(smeta2)
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What is the length of our data.frame? What are the dimensions?

Other attributes we may want to know regarding our data frame include the number of columns

(ncol(), length()) and the dimensions (dim()). 

Other useful functions for inspecting data frames

Size:

nrow() - number of rows

ncol() - number of columns 

  SampleName            cell              dex       albut          
  Length:8           Length:8           trt  :4   Length:8          
  Class :character   Class :character   untrt:4   Class :character  
  Mode  :character   Mode  :character             Mode  :character  

      Run              avgLength      Experiment           Sample         
  Length:8           Min.   : 87.0   Length:8           Length:8          
  Class :character   1st Qu.:100.2   Class :character   Class :character  
  Mode  :character   Median :123.0   Mode  :character   Mode  :character  
                    Mean   :113.8                                        
                    3rd Qu.:126.0                                        
                    Max.   :126.0                                        
  BioSample        
  Length:8          
  Class :character  
  Mode  :character  

#length returns the number of columns
length(smeta)

[1] 9

#dimensions, returns the row and column numbers
dim(smeta)  

[1] 8 9
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Content:

head() - returns first 6 rows by default

tail() - returns last 6 rows by default 

Names:

colnames() - returns column names 

rownames() - returns row names 

Section content from "Starting with Data", Introduction to data analysis with R and Bioconductor

(https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html). 

Data frame coercion and accessors

Let's pretend that the sample IDs were numeric rather than of type character. 

Unless  stated otherwise,  "SampleID"  will  be  treated as  numeric  rather  than  as  a  character

vector. If we intend to work with this column and treat it as an ID, we will need to convert it or

coerce it to a character or factor vector. 

We  can  access  a  column  of  our  data  frame  using  [],  [[]],  or  using  the  $ (http://adv-

r.had.co.nz/Subsetting.html). These behave slightly differently, as we will see. 

smeta$SampleID <- c(1:nrow(smeta))
smeta

  SampleName    cell   dex albut        Run avgLength Experiment    Sample
1 GSM1275862  N61311 untrt untrt SRR1039508       126  SRX384345 SRS508568
2 GSM1275863  N61311   trt untrt SRR1039509       126  SRX384346 SRS508567
3 GSM1275866 N052611 untrt untrt SRR1039512       126  SRX384349 SRS508571
4 GSM1275867 N052611   trt untrt SRR1039513        87  SRX384350 SRS508572
5 GSM1275870 N080611 untrt untrt SRR1039516       120  SRX384353 SRS508575
6 GSM1275871 N080611   trt untrt SRR1039517       126  SRX384354 SRS508576
7 GSM1275874 N061011 untrt untrt SRR1039520       101  SRX384357 SRS508579
8 GSM1275875 N061011   trt untrt SRR1039521        98  SRX384358 SRS508580
     BioSample SampleID
1 SAMN02422669        1
2 SAMN02422675        2
3 SAMN02422678        3
4 SAMN02422670        4
5 SAMN02422682        5
6 SAMN02422673        6
7 SAMN02422683        7
8 SAMN02422677        8
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Let's access "SampleID" from smeta. 

Notice that $ and [[]] behave similarly. These return a vector, while [] maintains the original

structure, in this case a data frame. 

Let's convert the "SampleID" column from an integer to a character vector. This is known as

coercion. 

#Using $
smeta$SampleID

[1] 1 2 3 4 5 6 7 8

#Using []  
smeta["SampleID"]

  SampleID
1        1
2        2
3        3
4        4
5        5
6        6
7        7
8        8

#Using [[]]  
smeta[["SampleID"]]

[1] 1 2 3 4 5 6 7 8

#We can see that sample is being treated as numeric
is.numeric(smeta$SampleID) 

[1] TRUE

#let's convert it to a character vector
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See other related functions (e.g., as.factor(),as.numeric()). 

Be careful with data coercion. What happens if we change a character vector into a numeric? 

Some helpful things to remember 

When you explicitly coerce one data type into another (this is known as

explicit coercion), be careful to check the result. Ideally, you should try to see

if it's possible to avoid steps in your analysis that force you to coerce. 

R will sometimes coerce without you asking for it. This is called

(appropriately) implicit coercion. For example [if you try] to create a vector

with multiple data types, R [will choose] one type through implicit coercion. 

Check the structure (str()) of your data frames before working with them!

---datacarpentry.org (https://datacarpentry.org/genomics-r-intro/05-dplyr/

index.html)

Using colnames() to rename columns

colnames() will return a vector of column names from our data frame. We can use this vector

and [] sub-setting to modify our column names. 

smeta$SampleID<-as.character(smeta$SampleID)
#check this
is.character(smeta$SampleID) 

[1] TRUE

#check this
is.numeric(smeta$SampleID) 

[1] FALSE

#A warning is thrown and the entire column is filled with NA
head(as.numeric(smeta$Run)) 

Warning in head(as.numeric(smeta$Run)): NAs introduced by coercion

[1] NA NA NA NA NA NA

• 

• 

• 
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For example, let's rename the column "SampleID" to "ID". 

Subsetting data frames with base R

The tidyverse package dplyr makes it easy to subset data frames with select(), filter(),

and  slice();  however,  it  is  still  worth  knowing how to  subset  data  frames using  Base R

brackets. 

Subsetting a data frame is similar to subsetting a vector;  we can use bracket notation  [].

However, a data frame is two dimensional with both rows and columns, so we can specify either

one  argument  or  two  arguments  (e.g.,  df[row,column])  depending.  If  you  provide  one

argument, columns will be assumed. This is because a data frame has characteristics of both a

list and a matrix. 

For now, let's focus on providing two arguments to subset. (Note when a data frame structure is

returned)

#Let's rename "SampleID" to "ID"
 colnames(smeta)[10] <- "ID" 

#if unsure of the index of a column, you could use which()
which(colnames(smeta)=="ID") 

[1] 10

#or something like this
colnames(smeta)[colnames(smeta) == 
                          "ID"] <- "SampleID"

smeta[2,4] #Returns the value in the 4th column and 2nd row

[1] "untrt"

smeta[2, ] #Returns a df with row two

  SampleName   cell dex albut        Run avgLength Experiment    Sample
2 GSM1275863 N61311 trt untrt SRR1039509       126  SRX384346 SRS508567
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     BioSample SampleID
2 SAMN02422675        2

smeta[-1, ] #Returns a df without row 1

  SampleName    cell   dex albut        Run avgLength Experiment    Sample
2 GSM1275863  N61311   trt untrt SRR1039509       126  SRX384346 SRS508567
3 GSM1275866 N052611 untrt untrt SRR1039512       126  SRX384349 SRS508571
4 GSM1275867 N052611   trt untrt SRR1039513        87  SRX384350 SRS508572
5 GSM1275870 N080611 untrt untrt SRR1039516       120  SRX384353 SRS508575
6 GSM1275871 N080611   trt untrt SRR1039517       126  SRX384354 SRS508576
7 GSM1275874 N061011 untrt untrt SRR1039520       101  SRX384357 SRS508579
8 GSM1275875 N061011   trt untrt SRR1039521        98  SRX384358 SRS508580
     BioSample SampleID
2 SAMN02422675        2
3 SAMN02422678        3
4 SAMN02422670        4
5 SAMN02422682        5
6 SAMN02422673        6
7 SAMN02422683        7
8 SAMN02422677        8

smeta[1:4,1] #returns a vector of rows 1-4 of column 1

[1] "GSM1275862" "GSM1275863" "GSM1275866" "GSM1275867"

#call names of columns directly
smeta[1:5,c("Sample","avgLength")]

     Sample avgLength
1 SRS508568       126
2 SRS508567       126
3 SRS508571       126
4 SRS508572        87
5 SRS508575       120

#use comparison operators
smeta[smeta$SampleID == "2",]

76 Lesson 5: R Data Structures - Data Frames

Bioinformatics Training and Education Program



What happens when we provide a single argument? 

  SampleName   cell dex albut        Run avgLength Experiment    Sample
2 GSM1275863 N61311 trt untrt SRR1039509       126  SRX384346 SRS508567
     BioSample SampleID
2 SAMN02422675        2

Subsetting Tibbles

Tibbles  behave  differently  than  data  frames  using  base  R  accessors.  See  here (https://tibble.tidyverse.org/

reference/subsetting.html) for more information. 

#notice the difference here
smeta[,2] #returns column two

[1] "N61311"  "N61311"  "N052611" "N052611" "N080611" "N080611" "N061011"
[8] "N061011"

#treated similar to a matrix
#does not return a df if the output is a single column

smeta[2] #returns column two

     cell
1  N61311
2  N61311
3 N052611
4 N052611
5 N080611
6 N080611
7 N061011
8 N061011

#treated similar to a list; maintains the df structure. 

Note

We can also use [[]] or $ for selecting specific columns. 
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Using %in%

%in% "returns a logical vector indicating if  there is a match or not for its left  operand". This

logical vector can then be used to filter the data frame to only matched values. 

Perhaps  we  only  want  to  return  a  data  frame  with  the  following  samples:  "SRR1039508",

"SRR1039513", "SRR1039520".

Using == is a bit tedious. 

Instead, we can create a vector of values to keep. 

We can then see where the values in our vector match values in our column smeta$Run. 

We can further use this logical vector to filter our data frame by true values.

smeta[smeta$Run == "SRR1039508" | smeta$Run == "SRR1039513" | 
        smeta$Run == "SRR1039520",]

  SampleName    cell   dex albut        Run avgLength Experiment    Sample
1 GSM1275862  N61311 untrt untrt SRR1039508       126  SRX384345 SRS508568
4 GSM1275867 N052611   trt untrt SRR1039513        87  SRX384350 SRS508572
7 GSM1275874 N061011 untrt untrt SRR1039520       101  SRX384357 SRS508579
     BioSample SampleID
1 SAMN02422669        1
4 SAMN02422670        4
7 SAMN02422683        7

s_keep<- c("SRR1039508", "SRR1039513", "SRR1039520")
s_keep

[1] "SRR1039508" "SRR1039513" "SRR1039520"

smeta$Run %in% s_keep

[1]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE

[1] FALSE FALSE FALSE FALSE FALSE FALSE
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%in% can also be used with dplyr::filter() and subset(). 

Tips to remember for subsetting

Typically provide two values separated by commas: data.frame[row, column] 

In cases where you are taking a continuous range of numbers use a colon

between the numbers (start:stop, inclusive) 

For a non continuous set of numbers, pass a vector using c() 

Index using the name of a column(s) by passing them as vectors using c()

---datacarpentry.org (https://datacarpentry.org/genomics-r-intro/03-basics-

factors-dataframes/index.html)

Data Wrangling

Part 2 of this course will focus on Data Wrangling. Learn how to filter, modify, summarize, and

reshape your data. Check the  BTEP calendar (https://bioinformatics.ccr.cancer.gov/btep/) for

updates on upcoming classes / courses. 

Acknowledgements

Material from this lesson was either taken directly or adapted from Intro to R and RStudio for

Genomics provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/aio.html). 

smeta[smeta$Run %in% s_keep, ]

  SampleName    cell   dex albut        Run avgLength Experiment    Sample
1 GSM1275862  N61311 untrt untrt SRR1039508       126  SRX384345 SRS508568
4 GSM1275867 N052611   trt untrt SRR1039513        87  SRX384350 SRS508572
7 GSM1275874 N061011 untrt untrt SRR1039520       101  SRX384357 SRS508579
     BioSample SampleID
1 SAMN02422669        1
4 SAMN02422670        4
7 SAMN02422683        7

• 

• 

• 

• 

Info

Subsetting including simplifying vs preserving can get confusing. Here (http://adv-r.had.co.nz/Subsetting.html) is a

great chapter - though, a bit more advanced - that may clear things up if you are confused. 
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R programming

Introduction to Data Wrangling

This course is the second part of a larger 3-part course designed for novices. 

Topics covered herein focus on wrangling data stored in data frames or tibbles and include

concepts such as reshaping, subsetting, summarizing, mutating, and joining data. 

Lessons

June 17, 2025 - Introduction to Data Wrangling with R

June 24, 2025 - Introducing Tidyr for Reshaping and Formatting Data

July 1, 2025 - Subsetting Data with dplyr

July 8, 2025 - Summarizing Data with dplyr

July 15, 2025 - Joining and Transforming Data with dplyr

Prerequisites

This course is recommended for attendees familiar with the skills learned in  Part  1:  Getting

Started with R. 

Course materials

This course will use R on Biowulf to avoid issues with R and package installations. To use R on

Biowulf, you must have a NIH HPC account. 

If  you do not have a NIH HPC (Biowulf) account, this course can be taken using a local R

installation.  However,  we will  not  be able to troubleshoot  package installation issues during

class.  Additionally,  because  we  will  use  packages  belonging  to  the  tidyverse (https://

www.tidyverse.org/),  you  will  need  to  install  these  packages  using

install.packages("tidyverse") prior to the first lesson if you are not using R on Biowulf. 

1. 

2. 

3. 

4. 

5. 
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Introducing Tidyr for Reshaping and

Formatting Data

Lesson Objectives

Briefly review how to import data 

Data reshape with tidyr: pivot_longer(), pivot_wider(), separate(), and 

unite()

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to

NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to

connect:  https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/).  Then  follow  the

instructions  outlined  here (https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/

Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand). 

Load the tidyverse

We will use core packages from the tidyverse for our data wrangling needs. Data reshaping

primarily involves the tidyverse package, tidyr, but we will use additional packages as well,

such as tibble. 

Packages must be loaded with each new R session. 

1. 

2. 

library(tidyverse)

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.3.0
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
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Importing data

Before we can do anything with our data, we need to first import it into R. 

We  can  either  use  the  data  import  from  the  RStudio  drop-down  menu  (File >  Import

Dataset),  or we can use R functions for reading in data (Recommended). These functions

generally start with  read.  The Base R read functions are followed by a  .,  while the  readr

functions are followed by an _. readr functions are from the readr package, which is a part of

the tidyverse.  readr functions are typically faster, more reproducible and consistent, and are

better at recognizing certain types of data (e.g., dates). However, they also result in tibbles

rather than data frames, and are not row name friendly. 

Some different import functions

Import Excel files:

- readxl::read_excel(). - readxl::read_xls(). - readxl::read_xlsx()

Import tab-delimited files (.tsv, .txt): 

- read.delim()

- read.table(). - readr::read_delim(). - readr::read_tsv()

- readr::read_table()

Comma separated files (.csv): 

- read.csv()

- readr::read_csv()

The most important argument of all of these functions is the file path. 

Genomic Data:

-  For  genomic specific formats,  you will  likely  need to install  specific packages;  check out

Bioconductor (https://bioconductor.org/) for packages relevant to bioinformatics. 

Info

Tibbles are like data frames with some small but apparent modifications. For example, they can have numbers for

column names, and the column types are immediately apparent when viewing. Additionally, when you call a tibble

by running the object name, the entire data frame does not print to the screen, rather the first ten rows along with

the columns that fit the screen are shown. 

File paths

A file path tells us the location of a file or folder (a.k.a., directory). Because it  is a character string, it  must be

surrounded by quotes. Each directory is separated by a /. It is best practice to work in R projects and use relative

file paths to make scripts more reproducible. 
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Other:

- For information on importing other files types (e.g., json, xml, google sheets), check out this

chapter (https://jhudatascience.org/tidyversecourse/get-data.html) from  Tidyverse  Skills  for

Data Science by Carrie Wright, Shannon E. Ellis, Stephanie C. Hicks and Roger D. Peng. 

Load the lesson data

For today's lesson, we will work with data available from R (Base R and the tidyverse) as well as

an  example  RNA-Seq  count  matrix.  The  count  matrix  is  currently  in  the  format  "genes  x

samples", with the gene IDs, which are a combination of Ensembl IDs and gene symbols, as

row names. 

Get the Data

To download the data used in this lesson and future lessons to your local computer, click here.

You can then move the downloaded directory to your working directory in R. 

To use the data on Biowulf, open your Terminal in R and follow these steps:

Alternatively, you can download the zip to local and upload to RStudio Server. 

Load the Data

Let's use read.delim to load the data. 

# change to your working directory
cd /data/$USER/Data_Wrangling_with_R
# use wget to grab the zipped directory
wget https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Intro_to_Data_Wrangling/data.zip
# unzip the data
unzip -d data data.zip

aircount<-read.delim("./data/head50_airway_nonnorm_count.txt",
                     row.names = 1)  
head(aircount)

                         Accession.SRR1039508 Accession.SRR1039509
ENSG00000000003.TSPAN6                    679                  448
ENSG00000000005.TNMD                        0                    0
ENSG00000000419.DPM1                      467                  515
ENSG00000000457.SCYL3                     260                  211
ENSG00000000460.C1orf112                   60                   55
ENSG00000000938.FGR                         0                    0
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The first thing we should do following data import is to examine the data. We need to know what

is included in this data frame. What are the dimensions? What types of data are stored in each

column? 

How can we examine these data further? 

                         Accession.SRR1039512 Accession.SRR1039513
ENSG00000000003.TSPAN6                    873                  408
ENSG00000000005.TNMD                        0                    0
ENSG00000000419.DPM1                      621                  365
ENSG00000000457.SCYL3                     263                  164
ENSG00000000460.C1orf112                   40                   35
ENSG00000000938.FGR                         2                    0
                         Accession.SRR1039516 Accession.SRR1039517
ENSG00000000003.TSPAN6                   1138                 1047
ENSG00000000005.TNMD                        0                    0
ENSG00000000419.DPM1                      587                  799
ENSG00000000457.SCYL3                     245                  331
ENSG00000000460.C1orf112                   78                   63
ENSG00000000938.FGR                         1                    0
                         Accession.SRR1039520 Accession.SRR1039521
ENSG00000000003.TSPAN6                    770                  572
ENSG00000000005.TNMD                        0                    0
ENSG00000000419.DPM1                      417                  508
ENSG00000000457.SCYL3                     233                  229
ENSG00000000460.C1orf112                   76                   60
ENSG00000000938.FGR                         0                    0

str(aircount)

'data.frame':   50 obs. of  8 variables:
 $ Accession.SRR1039508: int  679 0 467 260 60 0 3251 1433 519 394 ...
 $ Accession.SRR1039509: int  448 0 515 211 55 0 3679 1062 380 236 ...
 $ Accession.SRR1039512: int  873 0 621 263 40 2 6177 1733 595 464 ...
 $ Accession.SRR1039513: int  408 0 365 164 35 0 4252 881 493 175 ...
 $ Accession.SRR1039516: int  1138 0 587 245 78 1 6721 1424 820 658 ...
 $ Accession.SRR1039517: int  1047 0 799 331 63 0 11027 1439 714 584 ...
 $ Accession.SRR1039520: int  770 0 417 233 76 0 5176 1359 696 360 ...
 $ Accession.SRR1039521: int  572 0 508 229 60 0 7995 1109 704 269 ...

glimpse(aircount)
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Data reshape

Now that we have some data to work with, let's learn how we can reshape it. Recall how we

defined tidy data. 

Specifically, tidy data has 3 components: 

Each column is a variable, a quantity, quality, or property that can be

collected or measured. 

Each row is an observation, or set of values collected under similar

conditions. 

Each cell is a value, or state of a variable when you measure it. --- r4ds

(https://r4ds.hadley.nz/data-

visualize.html#:~:text=A%20variable%20is%20a%20quantity,change%20from%20measurement%20to%20measurement)

We can organize data in many different ways. Some of these ways will be easier to work with,

generally the tidy way. 

What do we mean by reshaping data?

Data reshaping is one aspect of tidying our data. The shape of our data is determined by how

values  are  organized across  rows and columns.  When reshaping  data,  we  are  most  often

wrangling the data from wide to long format or vice versa. To tidy the data we will need to (1)

know the difference between observations and variables, and (2) potentially resolve cases in

which a single variable is spread across multiple columns or a single observation is spread

across multiple rows R4DS (https://r4ds.had.co.nz/tidy-data.html). 

It is difficult to provide a single definition for what is wide data vs long data, as both can take

different forms, and both can be considered tidy depending on the circumstance (e.g., analysis

goals). 

Rows: 50
Columns: 8
$ Accession.SRR1039508 <int> 679, 0, 467, 260, 60, 0, 3251, 1433, 519, 394, 17…
$ Accession.SRR1039509 <int> 448, 0, 515, 211, 55, 0, 3679, 1062, 380, 236, 16…
$ Accession.SRR1039512 <int> 873, 0, 621, 263, 40, 2, 6177, 1733, 595, 464, 26…
$ Accession.SRR1039513 <int> 408, 0, 365, 164, 35, 0, 4252, 881, 493, 175, 118…
$ Accession.SRR1039516 <int> 1138, 0, 587, 245, 78, 1, 6721, 1424, 820, 658, 2…
$ Accession.SRR1039517 <int> 1047, 0, 799, 331, 63, 0, 11027, 1439, 714, 584, …
$ Accession.SRR1039520 <int> 770, 0, 417, 233, 76, 0, 5176, 1359, 696, 360, 15…
$ Accession.SRR1039521 <int> 572, 0, 508, 229, 60, 0, 7995, 1109, 704, 269, 17…

1. 

2. 

3. 

Note
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In general, in wide data there is often a single metric spread across multiple columns. This type

of data often, but not always, takes on a matrix like appearance. 

While in long data, each variable tends to have its own column. 

See this example from R4DS:

However, these definitions depend on what you are ultimately considering a variable and what

you are considering an observation. 

For example, which of the following data representations is the tidy option?

Wide format: 

While we are interested in getting data into a "tidy" format, your data should ultimately be wrangled into a format that

is going to work with downstream analyses. 

tibble(iris)

# A tibble: 150 × 5
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>       <dbl>        <dbl>       <dbl> <fct>  
 1          5.1         3.5          1.4         0.2 setosa 
 2          4.9         3            1.4         0.2 setosa 
 3          4.7         3.2          1.3         0.2 setosa 
 4          4.6         3.1          1.5         0.2 setosa 
 5          5           3.6          1.4         0.2 setosa 
 6          5.4         3.9          1.7         0.4 setosa 
 7          4.6         3.4          1.4         0.3 setosa 
 8          5           3.4          1.5         0.2 setosa 
 9          4.4         2.9          1.4         0.2 setosa 
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Long format: 

With the long format it is easier to summarize information about the properties of the flowers but

in the wide format it is easier to explore relationships between these properties. 

For example, this code is simpler

than this

10          4.9         3.1          1.5         0.1 setosa 
# ℹ 140 more rows

iris_long<-tibble(iris) %>% 
  rownames_to_column("Iris_id") %>%
  pivot_longer(2:5,names_to="Flower_property",values_to="Measurement")

iris_long %>% 
  group_by(Species, Flower_property) %>%
  summarize(mean= mean(Measurement), sd = sd(Measurement))

`summarise()` has grouped output by 'Species'. You can override using the
`.groups` argument.

# A tibble: 12 × 4
# Groups:   Species [3]
   Species    Flower_property  mean    sd
   <fct>      <chr>           <dbl> <dbl>
 1 setosa     Petal.Length    1.46  0.174
 2 setosa     Petal.Width     0.246 0.105
 3 setosa     Sepal.Length    5.01  0.352
 4 setosa     Sepal.Width     3.43  0.379
 5 versicolor Petal.Length    4.26  0.470
 6 versicolor Petal.Width     1.33  0.198
 7 versicolor Sepal.Length    5.94  0.516
 8 versicolor Sepal.Width     2.77  0.314
 9 virginica  Petal.Length    5.55  0.552
10 virginica  Petal.Width     2.03  0.275
11 virginica  Sepal.Length    6.59  0.636
12 virginica  Sepal.Width     2.97  0.322
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Regardless, you may want one format or the other depending on your analysis goals.

Many of the tidyverse tools (e.g., ggplot2) seem to work better with long format data, but

this again, will depend on your task.

The tools we use to go from wide to long and long to wide are from the package  tidyr.

Because we already loaded the package tidyverse, we do not need to load tidyr, as it is a

core package.

pivot_wider() and pivot_longer()

pivot_wider() and  pivot_longer() have  replaced  the  functions  gather() and

spread().  pivot_wider() converts  long  format  data  to  wide,  while  pivot_longer()

converts wide format data to long. 

If you haven't guessed already, our count matrix is currently in wide format. If we wanted to

merge these data with sample metadata and plot various aspects of the data using ggplot2, we

would likely want these data in long format. 

Pivot_longer

Let's check out the help documentation  ?pivot_longer(). This function requires the  data

and the columns we want to combine (cols). There are also a number of optional arguments

involving the name column and the value column. 

For the cols argument, we can select columns using the same arguments we would use with

select(), including column names, indices, or the select helper functions, for example, 

contains(),

starts_with(),

ends_with(),

etc. 

iris %>% group_by(Species) %>%
  summarize(across(where(is.numeric),list(mean = mean, sd=sd))) 

# A tibble: 3 × 9
  Species    Sepal.Length_mean Sepal.Length_sd Sepal.Width_mean Sepal.Width_sd
  <fct>                  <dbl>           <dbl>            <dbl>          <dbl>
1 setosa                  5.01           0.352             3.43          0.379
2 versicolor              5.94           0.516             2.77          0.314
3 virginica               6.59           0.636             2.97          0.322
# ℹ 4 more variables: Petal.Length_mean <dbl>, Petal.Length_sd <dbl>,

#   Petal.Width_mean <dbl>, Petal.Width_sd <dbl>
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Let's pivot aircount. 

Notice that the row names were dropped. While we would want to keep row names if we were

working with this matrix as is, because we want a long data frame, we will need to first put the

row names into a column. For this, we will use  rownames_to_column() from the tidyverse

package tibble. 

Columns in the Tidyverse

In Base R, we often have to refer to data variables (columns) directly using an accessor like $. However, this is not

the case in the tidyverse. In the tidyverse, columns that exist generally do not need quotes, while columns that do

not yet exist do need quotes. This difference has important implications for creating for loops and functions. Learn

more about tidy evaluation here (https://dplyr.tidyverse.org/articles/programming.html). 

l_air<-pivot_longer(aircount,1:length(aircount),names_to ="Sample",
                    values_to= "Count")
head(l_air)

# A tibble: 6 × 2
  Sample               Count
  <chr>                <int>
1 Accession.SRR1039508   679
2 Accession.SRR1039509   448
3 Accession.SRR1039512   873
4 Accession.SRR1039513   408
5 Accession.SRR1039516  1138
6 Accession.SRR1039517  1047

#save row names as a column
aircount<-rownames_to_column(aircount,"Feature") 
head(aircount["Feature"])

                   Feature
1   ENSG00000000003.TSPAN6
2     ENSG00000000005.TNMD
3     ENSG00000000419.DPM1
4    ENSG00000000457.SCYL3
5 ENSG00000000460.C1orf112
6      ENSG00000000938.FGR

#pivot longer...again
l_air<-pivot_longer(aircount,starts_with("Accession"),
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Pivot_wider

How can we get this back to a wide format? We can use ?pivot_wider(). This requires two

additional arguments beyond the data argument:  names_from and  values_from. The first,

names_from should be the name of the column containing the new column names for your

wide data.  values_from is the column that contains the values to fill the rows of your wide

data  columns.  Because  these  columns  already  exist,  we  do  not  need  to  put  them in

quotes.

Let's pivot the data from long to wide. 

                    names_to =c("Sample"),values_to= "Count")
head(l_air)

# A tibble: 6 × 3
  Feature                Sample               Count
  <chr>                  <chr>                <int>
1 ENSG00000000003.TSPAN6 Accession.SRR1039508   679
2 ENSG00000000003.TSPAN6 Accession.SRR1039509   448
3 ENSG00000000003.TSPAN6 Accession.SRR1039512   873
4 ENSG00000000003.TSPAN6 Accession.SRR1039513   408
5 ENSG00000000003.TSPAN6 Accession.SRR1039516  1138
6 ENSG00000000003.TSPAN6 Accession.SRR1039517  1047

w_air<-pivot_wider(l_air,names_from = Sample, 
                          values_from = Count)
head(w_air)

# A tibble: 6 × 9
  Feature         Accession.SRR1039508 Accession.SRR1039509 Accession.SRR1039512
  <chr>                          <int>                <int>                <int>
1 ENSG0000000000…                  679                  448                  873
2 ENSG0000000000…                    0                    0                    0
3 ENSG0000000041…                  467                  515                  621
4 ENSG0000000045…                  260                  211                  263
5 ENSG0000000046…                   60                   55                   40
6 ENSG0000000093…                    0                    0                    2
# ℹ 5 more variables: Accession.SRR1039513 <int>, Accession.SRR1039516 <int>,

#   Accession.SRR1039517 <int>, Accession.SRR1039520 <int>,
#   Accession.SRR1039521 <int>

Note
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Test our knowledge

What function would we use to transform table A to table B?

Table A:

Table B:

There are many optional arguments for both of these functions. These are there to help you reshape seemingly

complicated data schemes. Don't get discouraged. The examples in the help documentation are extremely helpful.

# A tibble: 19 × 12
   fish  Release I80_1 Lisbon  Rstr Base_TD   BCE   BCW  BCE2  BCW2   MAE   MAW
   <fct>   <int> <int>  <int> <int>   <int> <int> <int> <int> <int> <int> <int>
 1 4842        1     1      1     1       1     1     1     1     1     1     1
 2 4843        1     1      1     1       1     1     1     1     1     1     1
 3 4844        1     1      1     1       1     1     1     1     1     1     1
 4 4845        1     1      1     1       1    NA    NA    NA    NA    NA    NA
 5 4847        1     1      1    NA      NA    NA    NA    NA    NA    NA    NA
 6 4848        1     1      1     1      NA    NA    NA    NA    NA    NA    NA
 7 4849        1     1     NA    NA      NA    NA    NA    NA    NA    NA    NA
 8 4850        1     1     NA     1       1     1     1    NA    NA    NA    NA
 9 4851        1     1     NA    NA      NA    NA    NA    NA    NA    NA    NA
10 4854        1     1     NA    NA      NA    NA    NA    NA    NA    NA    NA
11 4855        1     1      1     1       1    NA    NA    NA    NA    NA    NA
12 4857        1     1      1     1       1     1     1     1     1    NA    NA
13 4858        1     1      1     1       1     1     1     1     1     1     1
14 4859        1     1      1     1       1    NA    NA    NA    NA    NA    NA
15 4861        1     1      1     1       1     1     1     1     1     1     1
16 4862        1     1      1     1       1     1     1     1     1    NA    NA
17 4863        1     1     NA    NA      NA    NA    NA    NA    NA    NA    NA
18 4864        1     1     NA    NA      NA    NA    NA    NA    NA    NA    NA
19 4865        1     1      1    NA      NA    NA    NA    NA    NA    NA    NA

# A tibble: 114 × 3
   fish  station  seen
   <fct> <fct>   <int>
 1 4842  Release     1
 2 4842  I80_1       1
 3 4842  Lisbon      1
 4 4842  Rstr        1
 5 4842  Base_TD     1
 6 4842  BCE         1
 7 4842  BCW         1
 8 4842  BCE2        1
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Unite and separate

There are two additional functions from Tidyr that are very useful for organizing data: unite()

and separate(). These are used to split or combine columns. 

Separate

For example, you may have noticed that our feature column from our example data is really two

types of information combined (an Ensembl id and a gene abbreviation). If we want to separate

this column into two, we could easily do this with the help of separate(). 

Let's see this in action. We want to separate the column Feature at the first .. This requires the

data, the column we want to separate (col), and the names of the new variables to create

from  the  separated  column  (into).  The  default  separator  to  split  the  columns  is

"[^[:alnum:]]+".  This is a regular expression that matches 1 or more non-alphanumeric

values (i.e., characters that are neither alphabetical (a-z) nor numerical(0-9)). 

 9 4842  BCW2        1
10 4842  MAE         1
# ℹ 104 more rows

Solution

pivot_longer 



l_air2<-separate(l_air, Feature, into=c("Ensembl_ID","gene_abb"),
                 remove=TRUE)
head(l_air2)

# A tibble: 6 × 4
  Ensembl_ID      gene_abb Sample               Count
  <chr>           <chr>    <chr>                <int>
1 ENSG00000000003 TSPAN6   Accession.SRR1039508   679
2 ENSG00000000003 TSPAN6   Accession.SRR1039509   448
3 ENSG00000000003 TSPAN6   Accession.SRR1039512   873
4 ENSG00000000003 TSPAN6   Accession.SRR1039513   408
5 ENSG00000000003 TSPAN6   Accession.SRR1039516  1138
6 ENSG00000000003 TSPAN6   Accession.SRR1039517  1047

separate_wider_position() and separate_wider_delim()
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Unite

unite() is simply the opposing function to separate(). Let's use unite() to combine our

columns (Ensemble_ID and gene_abb) back together. This time we will use a _ between our

ensembleID and gene abbreviations. 

A word about regular expressions

As you continue to work in R, at some point you will need to incorporate regular expressions into

your code. Regular expressions can be exceedingly complicated and like anything require time

and practice. We will not take a deep dive into regular expressions in this course. A great place

to  start  with  regular  expressions  is  Chapter  14:  Strings (https://r4ds.had.co.nz/

strings.html#strings) from  R4DS.  You  may  also  find  this  stringr  vignette (https://cran.r-

project.org/web/packages/stringr/vignettes/regular-expressions.html) helpful. 

The Janitor package.

Check  out  the  janitor (https://sfirke.github.io/janitor/index.html) package  for  additional

functions for exploring and cleaning messy data. 

separate() has been superseded in favor  of  separate_wider_position(),  separate_wider_delim(),

and separate_wider_regex(). "A superseded function has a known better alternative, but the function itself is

not going away." (https://cran.r-project.org/web/packages/lifecycle/vignettes/stages.html)

separate_wider_delim() - splits by delimiter.

separate_wider_position() - splits at fixed widths.

separate_wider_regex() - splits with regular expression matches. 

l_air3<-unite(l_air2, "Feature", c(Ensembl_ID,gene_abb),sep="_")
head(l_air3)

# A tibble: 6 × 3
  Feature                Sample               Count
  <chr>                  <chr>                <int>
1 ENSG00000000003_TSPAN6 Accession.SRR1039508   679
2 ENSG00000000003_TSPAN6 Accession.SRR1039509   448
3 ENSG00000000003_TSPAN6 Accession.SRR1039512   873
4 ENSG00000000003_TSPAN6 Accession.SRR1039513   408
5 ENSG00000000003_TSPAN6 Accession.SRR1039516  1138
6 ENSG00000000003_TSPAN6 Accession.SRR1039517  1047
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readr  /  readxl  cheatsheet (https://rstudio.github.io/cheatsheets/html/data-import.html?

_gl=1*1cexwpw*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw)

Tidyr  cheatsheet (https://rstudio.github.io/cheatsheets/html/tidyr.html?

_gl=1*4wx4lc*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw)

Stringr  /  regex  cheatsheet (https://rstudio.github.io/cheatsheets/html/strings.html?

_gl=1*1cexwpw*_ga*MTY1MjAxMTE4My4xNzUwNjY5NzMy*_ga_2C0WZ1JHG0*czE3NTA3MDgwNjgkbzIkZzAkdDE3NTA3MDgwNjgkajYwJGwwJGgw)
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Subsetting Data with dplyr

Objectives

Today we will begin to wrangle data using the tidyverse package, dplyr. To this end, you will

learn: 

how to filter data frames using dplyr

how to employ the pipe (%>% or |>) operator to link functions 

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to

NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to

connect:  https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/).  Then  follow  the

instructions  outlined  here (https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/

Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand). 

What is dplyr?

dplyr is a grammar of data manipulation, providing a consistent set of verbs that

help you solve the most common data manipulation challenges: 

mutate() adds new variables that are functions of existing variables

select() picks variables based on their names.

filter() picks cases based on their values.

summarise() reduces multiple values down to a single summary.

arrange()  changes  the  ordering  of  the  rows.  -  dplyr.tidyverse.org (https://

dplyr.tidyverse.org/index.html)

dplyr is also used to combine data tables sharing common IDs and to manipulate data in data

backends. 

Loading dplyr

We do not need to load the dplyr package separately, as it is a core tidyverse package. If

you  need  to  install  and  load  only  dplyr,  use  install.packages("dplyr") and

library(dplyr). 

1. 

2. 

library(tidyverse)

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
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Importing data

For this lesson, we will use sample metadata and differential expression results derived from the

airway RNA-Seq project.  See  here (https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/

Intro_to_Data_Wrangling/Lesson2/#get-the-data) for instructions on accessing the data. 

Let's begin by importing the data. 

✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.3.0
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

#sample information  
smeta<-read_delim("./data/airway_sampleinfo.txt")

Rows: 8 Columns: 9
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr (8): SampleName, cell, dex, albut, Run, Experiment, Sample, BioSample
dbl (1): avgLength

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

smeta
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# A tibble: 8 × 9
  SampleName cell    dex   albut Run       avgLength Experiment Sample BioSample
  <chr>      <chr>   <chr> <chr> <chr>         <dbl> <chr>      <chr>  <chr>    
1 GSM1275862 N61311  untrt untrt SRR10395…       126 SRX384345  SRS50… SAMN0242…
2 GSM1275863 N61311  trt   untrt SRR10395…       126 SRX384346  SRS50… SAMN0242…
3 GSM1275866 N052611 untrt untrt SRR10395…       126 SRX384349  SRS50… SAMN0242…
4 GSM1275867 N052611 trt   untrt SRR10395…        87 SRX384350  SRS50… SAMN0242…
5 GSM1275870 N080611 untrt untrt SRR10395…       120 SRX384353  SRS50… SAMN0242…
6 GSM1275871 N080611 trt   untrt SRR10395…       126 SRX384354  SRS50… SAMN0242…
7 GSM1275874 N061011 untrt untrt SRR10395…       101 SRX384357  SRS50… SAMN0242…
8 GSM1275875 N061011 trt   untrt SRR10395…        98 SRX384358  SRS50… SAMN0242…

#let's use our differential expression results
dexp<-read_delim("./data/diffexp_results_edger_airways.txt")

Rows: 15926 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr (4): feature, albut, transcript, ref_genome
dbl (5): logFC, logCPM, F, PValue, FDR
lgl (1): .abundant

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

dexp

# A tibble: 15,926 × 10
   feature  albut transcript ref_genome .abundant   logFC logCPM       F  PValue
   <chr>    <chr> <chr>      <chr>      <lgl>       <dbl>  <dbl>   <dbl>   <dbl>
 1 ENSG000… untrt TSPAN6     hg38       TRUE      -0.390    5.06 32.8    3.12e-4
 2 ENSG000… untrt DPM1       hg38       TRUE       0.198    4.61  6.90   2.81e-2
 3 ENSG000… untrt SCYL3      hg38       TRUE       0.0292   3.48  0.0969 7.63e-1
 4 ENSG000… untrt C1orf112   hg38       TRUE      -0.124    1.47  0.377  5.55e-1
 5 ENSG000… untrt CFH        hg38       TRUE       0.417    8.09 29.3    4.63e-4
 6 ENSG000… untrt FUCA2      hg38       TRUE      -0.250    5.91 14.9    4.05e-3
 7 ENSG000… untrt GCLC       hg38       TRUE      -0.0581   4.84  0.167  6.92e-1
 8 ENSG000… untrt NFYA       hg38       TRUE      -0.509    4.13 44.9    1.00e-4
 9 ENSG000… untrt STPG1      hg38       TRUE      -0.136    3.12  1.04   3.35e-1
10 ENSG000… untrt NIPAL3     hg38       TRUE      -0.0500   7.04  0.350  5.69e-1
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We can get an idea of the structure of these data by using str() or glimpse(). glimpse(),

from tidyverse, is similar to str() but provides somewhat cleaner output.

Now that we have some data to work with, let's start subsetting. 

# ℹ 15,916 more rows

# ℹ 1 more variable: FDR <dbl>

glimpse(smeta)  

Rows: 8
Columns: 9
$ SampleName <chr> "GSM1275862", "GSM1275863", "GSM1275866", "GSM1275867", "GS…
$ cell       <chr> "N61311", "N61311", "N052611", "N052611", "N080611", "N0806…
$ dex        <chr> "untrt", "trt", "untrt", "trt", "untrt", "trt", "untrt", "t…
$ albut      <chr> "untrt", "untrt", "untrt", "untrt", "untrt", "untrt", "untr…
$ Run        <chr> "SRR1039508", "SRR1039509", "SRR1039512", "SRR1039513", "SR…
$ avgLength  <dbl> 126, 126, 126, 87, 120, 126, 101, 98
$ Experiment <chr> "SRX384345", "SRX384346", "SRX384349", "SRX384350", "SRX384…
$ Sample     <chr> "SRS508568", "SRS508567", "SRS508571", "SRS508572", "SRS508…
$ BioSample  <chr> "SAMN02422669", "SAMN02422675", "SAMN02422678", "SAMN024226…

glimpse(dexp)

Rows: 15,926
Columns: 10
$ feature    <chr> "ENSG00000000003", "ENSG00000000419", "ENSG00000000457", "E…
$ albut      <chr> "untrt", "untrt", "untrt", "untrt", "untrt", "untrt", "untr…
$ transcript <chr> "TSPAN6", "DPM1", "SCYL3", "C1orf112", "CFH", "FUCA2", "GCL…
$ ref_genome <chr> "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "hg…
$ .abundant  <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,…
$ logFC      <dbl> -0.390100222, 0.197802179, 0.029160865, -0.124382022, 0.417…
$ logCPM     <dbl> 5.059704, 4.611483, 3.482462, 1.473375, 8.089146, 5.909668,…
$ F          <dbl> 3.284948e+01, 6.903534e+00, 9.685073e-02, 3.772134e-01, 2.9…
$ PValue     <dbl> 0.0003117656, 0.0280616149, 0.7629129276, 0.5546956332, 0.0…
$ FDR        <dbl> 0.002831504, 0.077013489, 0.844247837, 0.682326613, 0.00376…

Always know how your data is structured.

Before you do anything with your data, always check out the structure of your data to avoid surprises. 
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Subsetting data in base R

If  you remember back to  "Getting Started with R" (https://bioinformatics.ccr.cancer.gov/docs/

r_for_novices/Getting_Started_with_R/Lesson5/), Base R uses bracket notation for subsetting. 

For example, if we want to subset the data frame iris to include only the first 5 rows and the

first 3 columns, we could use 

While this type of subsetting is useful, it is not always the most readable or easy to employ,

especially for beginners. This is where dplyr comes in. The dplyr package in the tidyverse

world simplifies data wrangling with easy to employ and easy to understand functions specific

for data manipulation in data frames.

Subsetting with dplyr

How can we select only columns of interest and rows of interest? We can use select() and

filter() from dplyr.

Subsetting by column (select())

To subset by column, we use the function  select(). We can include and exclude columns,

reorder columns, and rename columns using select(). 

Select a few columns from our differential expression results (dexp).

We can select the columns we are interested in by first calling the data frame object (dexp)

followed  by  the  columns  we  want  to  select  (transcript,logFC,FDR).  All  arguments  are

separated by a comma. Just as in Base R subsetting, the order of the columns will determine

the order of the columns in the new data frame. 

Let's select the transcript, logFC, and FDR corrected p-value columns: 

iris[1:5,1:3]

  Sepal.Length Sepal.Width Petal.Length
1          5.1         3.5          1.4
2          4.9         3.0          1.4
3          4.7         3.2          1.3
4          4.6         3.1          1.5
5          5.0         3.6          1.4

#first argument is the df followed by columns to select
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We can rename while selecting.

The syntax to rename is new_name = old_name. 

ex1<-select(dexp, transcript, logFC, FDR) 
ex1

# A tibble: 15,926 × 3
   transcript   logFC     FDR
   <chr>        <dbl>   <dbl>
 1 TSPAN6     -0.390  0.00283
 2 DPM1        0.198  0.0770 
 3 SCYL3       0.0292 0.844  
 4 C1orf112   -0.124  0.682  
 5 CFH         0.417  0.00376
 6 FUCA2      -0.250  0.0186 
 7 GCLC       -0.0581 0.794  
 8 NFYA       -0.509  0.00126
 9 STPG1      -0.136  0.478  
10 NIPAL3     -0.0500 0.695  
# ℹ 15,916 more rows

#rename using the syntax new_name = old_name
ex1<-select(dexp, gene=transcript, logFoldChange = logFC, FDRpvalue=FDR)
ex1

# A tibble: 15,926 × 3
   gene     logFoldChange FDRpvalue
   <chr>            <dbl>     <dbl>
 1 TSPAN6         -0.390    0.00283
 2 DPM1            0.198    0.0770 
 3 SCYL3           0.0292   0.844  
 4 C1orf112       -0.124    0.682  
 5 CFH             0.417    0.00376
 6 FUCA2          -0.250    0.0186 
 7 GCLC           -0.0581   0.794  
 8 NFYA           -0.509    0.00126
 9 STPG1          -0.136    0.478  
10 NIPAL3         -0.0500   0.695  
# ℹ 15,916 more rows
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new name old name

gene transcript

logFoldChange logFC

FDRpvalue FDR

Excluding columns

We can select all columns, leaving out ones that do not interest us using a - sign. This is helpful

if the columns to keep far outweigh those to exclude. We can similarly use the ! to negate a

selection.

Using rename() or rename_with()

If you want to retain all columns, you could also use rename() (https://dplyr.tidyverse.org/reference/rename.html)

from dplyr to rename columns.

For example, let's rename only transcript to gene from dexp. 

rename(dexp, gene=transcript)

# A tibble: 15,926 × 10
   feature       albut gene  ref_genome .abundant   logFC logCPM       F  PValue
   <chr>         <chr> <chr> <chr>      <lgl>       <dbl>  <dbl>   <dbl>   <dbl>
 1 ENSG00000000… untrt TSPA… hg38       TRUE      -0.390    5.06 32.8    3.12e-4
 2 ENSG00000000… untrt DPM1  hg38       TRUE       0.198    4.61  6.90   2.81e-2
 3 ENSG00000000… untrt SCYL3 hg38       TRUE       0.0292   3.48  0.0969 7.63e-1
 4 ENSG00000000… untrt C1or… hg38       TRUE      -0.124    1.47  0.377  5.55e-1
 5 ENSG00000000… untrt CFH   hg38       TRUE       0.417    8.09 29.3    4.63e-4
 6 ENSG00000001… untrt FUCA2 hg38       TRUE      -0.250    5.91 14.9    4.05e-3
 7 ENSG00000001… untrt GCLC  hg38       TRUE      -0.0581   4.84  0.167  6.92e-1
 8 ENSG00000001… untrt NFYA  hg38       TRUE      -0.509    4.13 44.9    1.00e-4
 9 ENSG00000001… untrt STPG1 hg38       TRUE      -0.136    3.12  1.04   3.35e-1
10 ENSG00000001… untrt NIPA… hg38       TRUE      -0.0500   7.04  0.350  5.69e-1
# ℹ 15,916 more rows

# ℹ 1 more variable: FDR <dbl>

ex2<-select(dexp, -feature) 
ex2

# A tibble: 15,926 × 9
   albut transcript ref_genome .abundant   logFC logCPM       F   PValue     FDR
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We can reorder using select().

For readability, let's move the transcript column to the front.

   <chr> <chr>      <chr>      <lgl>       <dbl>  <dbl>   <dbl>    <dbl>   <dbl>
 1 untrt TSPAN6     hg38       TRUE      -0.390    5.06 32.8    0.000312 0.00283
 2 untrt DPM1       hg38       TRUE       0.198    4.61  6.90   0.0281   0.0770 
 3 untrt SCYL3      hg38       TRUE       0.0292   3.48  0.0969 0.763    0.844  
 4 untrt C1orf112   hg38       TRUE      -0.124    1.47  0.377  0.555    0.682  
 5 untrt CFH        hg38       TRUE       0.417    8.09 29.3    0.000463 0.00376
 6 untrt FUCA2      hg38       TRUE      -0.250    5.91 14.9    0.00405  0.0186 
 7 untrt GCLC       hg38       TRUE      -0.0581   4.84  0.167  0.692    0.794  
 8 untrt NFYA       hg38       TRUE      -0.509    4.13 44.9    0.000100 0.00126
 9 untrt STPG1      hg38       TRUE      -0.136    3.12  1.04   0.335    0.478  
10 untrt NIPAL3     hg38       TRUE      -0.0500   7.04  0.350  0.569    0.695  
# ℹ 15,916 more rows

ex2<-select(dexp, !feature) 
ex2

# A tibble: 15,926 × 9
   albut transcript ref_genome .abundant   logFC logCPM       F   PValue     FDR
   <chr> <chr>      <chr>      <lgl>       <dbl>  <dbl>   <dbl>    <dbl>   <dbl>
 1 untrt TSPAN6     hg38       TRUE      -0.390    5.06 32.8    0.000312 0.00283
 2 untrt DPM1       hg38       TRUE       0.198    4.61  6.90   0.0281   0.0770 
 3 untrt SCYL3      hg38       TRUE       0.0292   3.48  0.0969 0.763    0.844  
 4 untrt C1orf112   hg38       TRUE      -0.124    1.47  0.377  0.555    0.682  
 5 untrt CFH        hg38       TRUE       0.417    8.09 29.3    0.000463 0.00376
 6 untrt FUCA2      hg38       TRUE      -0.250    5.91 14.9    0.00405  0.0186 
 7 untrt GCLC       hg38       TRUE      -0.0581   4.84  0.167  0.692    0.794  
 8 untrt NFYA       hg38       TRUE      -0.509    4.13 44.9    0.000100 0.00126
 9 untrt STPG1      hg38       TRUE      -0.136    3.12  1.04   0.335    0.478  
10 untrt NIPAL3     hg38       TRUE      -0.0500   7.04  0.350  0.569    0.695  
# ℹ 15,916 more rows

#you can reorder columns and call a range of columns using select().
ex3<-select(dexp, transcript:FDR,albut)  
ex3

# A tibble: 15,926 × 9
   transcript ref_genome .abundant   logFC logCPM       F   PValue     FDR albut
   <chr>      <chr>      <lgl>       <dbl>  <dbl>   <dbl>    <dbl>   <dbl> <chr>
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If we are interested in moving a column without selection, we can use relocate(). We should

include the columns we want to move and where we would like to put them. 

 1 TSPAN6     hg38       TRUE      -0.390    5.06 32.8    0.000312 0.00283 untrt
 2 DPM1       hg38       TRUE       0.198    4.61  6.90   0.0281   0.0770  untrt
 3 SCYL3      hg38       TRUE       0.0292   3.48  0.0969 0.763    0.844   untrt
 4 C1orf112   hg38       TRUE      -0.124    1.47  0.377  0.555    0.682   untrt
 5 CFH        hg38       TRUE       0.417    8.09 29.3    0.000463 0.00376 untrt
 6 FUCA2      hg38       TRUE      -0.250    5.91 14.9    0.00405  0.0186  untrt
 7 GCLC       hg38       TRUE      -0.0581   4.84  0.167  0.692    0.794   untrt
 8 NFYA       hg38       TRUE      -0.509    4.13 44.9    0.000100 0.00126 untrt
 9 STPG1      hg38       TRUE      -0.136    3.12  1.04   0.335    0.478   untrt
10 NIPAL3     hg38       TRUE      -0.0500   7.04  0.350  0.569    0.695   untrt
# ℹ 15,916 more rows

#Note: this also would have excluded the feature column 

relocate(dexp, transcript, .before=feature)

# A tibble: 15,926 × 10
   transcript feature  albut ref_genome .abundant   logFC logCPM       F  PValue
   <chr>      <chr>    <chr> <chr>      <lgl>       <dbl>  <dbl>   <dbl>   <dbl>
 1 TSPAN6     ENSG000… untrt hg38       TRUE      -0.390    5.06 32.8    3.12e-4
 2 DPM1       ENSG000… untrt hg38       TRUE       0.198    4.61  6.90   2.81e-2
 3 SCYL3      ENSG000… untrt hg38       TRUE       0.0292   3.48  0.0969 7.63e-1
 4 C1orf112   ENSG000… untrt hg38       TRUE      -0.124    1.47  0.377  5.55e-1
 5 CFH        ENSG000… untrt hg38       TRUE       0.417    8.09 29.3    4.63e-4
 6 FUCA2      ENSG000… untrt hg38       TRUE      -0.250    5.91 14.9    4.05e-3
 7 GCLC       ENSG000… untrt hg38       TRUE      -0.0581   4.84  0.167  6.92e-1
 8 NFYA       ENSG000… untrt hg38       TRUE      -0.509    4.13 44.9    1.00e-4
 9 STPG1      ENSG000… untrt hg38       TRUE      -0.136    3.12  1.04   3.35e-1
10 NIPAL3     ENSG000… untrt hg38       TRUE      -0.0500   7.04  0.350  5.69e-1
# ℹ 15,916 more rows

# ℹ 1 more variable: FDR <dbl>

Note

By default, relocate() will move columns to the left-hand side of the data frame. 
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Selecting a range of columns

Notice that we can select a range of columns using the :. We could also deselect a range of

columns or deselect a range of columns while adding a column back. 

Helper functions

We  can  also  include  helper  functions  such  as  starts_with() and  ends_with(),  and

operators (!, &, |) for combining selections. 

ex3<-select(dexp, -(albut:F),logFC)
ex3

# A tibble: 15,926 × 4
   feature           PValue     FDR   logFC
   <chr>              <dbl>   <dbl>   <dbl>
 1 ENSG00000000003 0.000312 0.00283 -0.390 
 2 ENSG00000000419 0.0281   0.0770   0.198 
 3 ENSG00000000457 0.763    0.844    0.0292
 4 ENSG00000000460 0.555    0.682   -0.124 
 5 ENSG00000000971 0.000463 0.00376  0.417 
 6 ENSG00000001036 0.00405  0.0186  -0.250 
 7 ENSG00000001084 0.692    0.794   -0.0581
 8 ENSG00000001167 0.000100 0.00126 -0.509 
 9 ENSG00000001460 0.335    0.478   -0.136 
10 ENSG00000001461 0.569    0.695   -0.0500
# ℹ 15,916 more rows

select(dexp, transcript, starts_with("log"), FDR)

# A tibble: 15,926 × 4
   transcript   logFC logCPM     FDR
   <chr>        <dbl>  <dbl>   <dbl>
 1 TSPAN6     -0.390    5.06 0.00283
 2 DPM1        0.198    4.61 0.0770 
 3 SCYL3       0.0292   3.48 0.844  
 4 C1orf112   -0.124    1.47 0.682  
 5 CFH         0.417    8.09 0.00376
 6 FUCA2      -0.250    5.91 0.0186 
 7 GCLC       -0.0581   4.84 0.794  
 8 NFYA       -0.509    4.13 0.00126
 9 STPG1      -0.136    3.12 0.478  
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There  are  a  number  of  other  selection  helpers.  See  the  help  documentation  for  select

(https://dplyr.tidyverse.org/reference/select.html) for more information (?dplyr::select()) or

this reference (https://tidyselect.r-lib.org/reference/language.html) from tidyselect. 

Select columns of a particular type

There are many other ways to select multiple columns. You may commonly be interested in

selecting all numeric columns or all factors. The syntax below can be used for this purpose. 

10 NIPAL3     -0.0500   7.04 0.695  
# ℹ 15,916 more rows

#or 
select(dexp, transcript, starts_with("log") | ends_with("r"))

# A tibble: 15,926 × 4
   transcript   logFC logCPM     FDR
   <chr>        <dbl>  <dbl>   <dbl>
 1 TSPAN6     -0.390    5.06 0.00283
 2 DPM1        0.198    4.61 0.0770 
 3 SCYL3       0.0292   3.48 0.844  
 4 C1orf112   -0.124    1.47 0.682  
 5 CFH         0.417    8.09 0.00376
 6 FUCA2      -0.250    5.91 0.0186 
 7 GCLC       -0.0581   4.84 0.794  
 8 NFYA       -0.509    4.13 0.00126
 9 STPG1      -0.136    3.12 0.478  
10 NIPAL3     -0.0500   7.04 0.695  
# ℹ 15,916 more rows

select(dexp, where(is.numeric)) #or

# A tibble: 15,926 × 5
     logFC logCPM       F   PValue     FDR
     <dbl>  <dbl>   <dbl>    <dbl>   <dbl>
 1 -0.390    5.06 32.8    0.000312 0.00283
 2  0.198    4.61  6.90   0.0281   0.0770 
 3  0.0292   3.48  0.0969 0.763    0.844  
 4 -0.124    1.47  0.377  0.555    0.682  
 5  0.417    8.09 29.3    0.000463 0.00376
 6 -0.250    5.91 14.9    0.00405  0.0186 
 7 -0.0581   4.84  0.167  0.692    0.794  
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Subsetting by row (filter())

To subset by row, we use the function filter(). 

filter() only includes rows where the condition is TRUE; it excludes both FALSE and

NA values. ---R4DS (https://r4ds.had.co.nz/transform.html#filter-rows-with-filter)

Now let's filter the rows from smeta based on a condition. Let's look at only the treated samples

in  dex (i.e.,  trt)  using the function  filter().  The first  argument is  the data frame (e.g.,

smeta) followed by the expression(s) to filter the data frame. 

To complete these filter phrases you will often need to include comparison operators such as

the == above. These operators help us evaluate relations. For example, a == b is asking if a

and b are equivalent. It is a logical comparison that when evaluated will return TRUE or FALSE.

The filter function will then return rows that evaluate to TRUE. 

Try the following:

 8 -0.509    4.13 44.9    0.000100 0.00126
 9 -0.136    3.12  1.04   0.335    0.478  
10 -0.0500   7.04  0.350  0.569    0.695  
# ℹ 15,916 more rows

# Not recommended
select_if(dexp, is.numeric) #scoped verbs are superseded  

# A tibble: 15,926 × 5
     logFC logCPM       F   PValue     FDR
     <dbl>  <dbl>   <dbl>    <dbl>   <dbl>
 1 -0.390    5.06 32.8    0.000312 0.00283
 2  0.198    4.61  6.90   0.0281   0.0770 
 3  0.0292   3.48  0.0969 0.763    0.844  
 4 -0.124    1.47  0.377  0.555    0.682  
 5  0.417    8.09 29.3    0.000463 0.00376
 6 -0.250    5.91 14.9    0.00405  0.0186 
 7 -0.0581   4.84  0.167  0.692    0.794  
 8 -0.509    4.13 44.9    0.000100 0.00126
 9 -0.136    3.12  1.04   0.335    0.478  
10 -0.0500   7.04  0.350  0.569    0.695  
# ℹ 15,916 more rows

filter(smeta, dex == "trt") #we've seen == notation before
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Keep these comparison operators in mind for filtering. 

Comparison operators

Comparison Operator Description

> greater than

>= greater than or equal to

< less than

<= less than or equal to

!= Not equal

== equal

a | b a or b

a & b a and b

We may want to combine filtering parameters using AND or OR phrasing and the operators &

and |. 

For example, if we only wanted to return rows where dex == trt and cell==N61311, we can

use: 

A , is treated the same as & in the case of filter(). 

a <- 1
b <- 1
a == b

[1] TRUE

filter(smeta, dex == "trt" & cell == "N61311")

# A tibble: 1 × 9
  SampleName cell   dex   albut Run        avgLength Experiment Sample BioSample
  <chr>      <chr>  <chr> <chr> <chr>          <dbl> <chr>      <chr>  <chr>    
1 GSM1275863 N61311 trt   untrt SRR1039509       126 SRX384346  SRS50… SAMN0242…

filter(smeta, dex == "trt", cell == "N61311")
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We can also filter by one condition or another using the |. 

The %in% operator

Used to match elements of a vector. 

%in% returns a logical vector indicating if there is a match or not for its left operand.

--- match R Documentation. 

The returned logical vector will be the length of the vector to the left. Its basic usage: 

We can combine the %in% operator with filter(). 

# A tibble: 1 × 9
  SampleName cell   dex   albut Run        avgLength Experiment Sample BioSample
  <chr>      <chr>  <chr> <chr> <chr>          <dbl> <chr>      <chr>  <chr>    
1 GSM1275863 N61311 trt   untrt SRR1039509       126 SRX384346  SRS50… SAMN0242…

filter(smeta,cell == "N080611" | cell == "N61311")

# A tibble: 4 × 9
  SampleName cell    dex   albut Run       avgLength Experiment Sample BioSample
  <chr>      <chr>   <chr> <chr> <chr>         <dbl> <chr>      <chr>  <chr>    
1 GSM1275862 N61311  untrt untrt SRR10395…       126 SRX384345  SRS50… SAMN0242…
2 GSM1275863 N61311  trt   untrt SRR10395…       126 SRX384346  SRS50… SAMN0242…
3 GSM1275870 N080611 untrt untrt SRR10395…       120 SRX384353  SRS50… SAMN0242…
4 GSM1275871 N080611 trt   untrt SRR10395…       126 SRX384354  SRS50… SAMN0242…

smeta$SampleName %in% c("GSM1275871","GSM1275863")  

[1] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE

c("GSM1275871","GSM1275863") %in% smeta$SampleName 

[1] TRUE TRUE

#filter for two cell lines
filter(smeta,cell %in% c("N061011", "N052611"))
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Including multiple phrases

We can use multiple expressions in a single call to filter(). For example, let's filter dexp to

include only named transcripts (i.e.,no NAs), values of |log fold change| is greater than 2, and

either a p-value or FDR corrected p_value is less than or equal to 0.01. 

# A tibble: 4 × 9
  SampleName cell    dex   albut Run       avgLength Experiment Sample BioSample
  <chr>      <chr>   <chr> <chr> <chr>         <dbl> <chr>      <chr>  <chr>    
1 GSM1275866 N052611 untrt untrt SRR10395…       126 SRX384349  SRS50… SAMN0242…
2 GSM1275867 N052611 trt   untrt SRR10395…        87 SRX384350  SRS50… SAMN0242…
3 GSM1275874 N061011 untrt untrt SRR10395…       101 SRX384357  SRS50… SAMN0242…
4 GSM1275875 N061011 trt   untrt SRR10395…        98 SRX384358  SRS50… SAMN0242…

#use `|` operator 
#look at only results with named genes (not NAs) 
#and those with a log fold change greater than 2 
#and either a p-value or an FDR corrected p_value < or = to 0.01
#The comma acts as &
sig_annot_transcripts<-
  filter(dexp, !is.na(transcript),
         abs(logFC) > 2, (PValue | FDR <= 0.01))
sig_annot_transcripts

# A tibble: 178 × 10
   feature     albut transcript ref_genome .abundant logFC  logCPM     F  PValue
   <chr>       <chr> <chr>      <chr>      <lgl>     <dbl>   <dbl> <dbl>   <dbl>
 1 ENSG000000… untrt PDK4       hg38       TRUE       2.55  5.41    37.5 1.94e-4
 2 ENSG000000… untrt SLC7A14    hg38       TRUE      -2.89  3.54   277.  6.13e-8
 3 ENSG000000… untrt NPC1L1     hg38       TRUE      -2.61 -0.0372  63.6 2.65e-5
 4 ENSG000000… untrt CHDH       hg38       TRUE      -2.01  2.14   112.  2.77e-6
 5 ENSG000000… untrt HSD17B6    hg38       TRUE      -2.03  3.02    98.6 4.60e-6
 6 ENSG000000… untrt POU2F2     hg38       TRUE      -2.06  0.835  104.  3.65e-6
 7 ENSG000000… untrt GPM6B      hg38       TRUE       2.43  5.67   177.  4.08e-7
 8 ENSG000000… untrt PER3       hg38       TRUE      -2.21  3.22    80.5 1.04e-5
 9 ENSG000000… untrt COL11A1    hg38       TRUE       2.41  4.06   404.  1.23e-8
10 ENSG000000… untrt FGFR2      hg38       TRUE      -2.26  0.499   60.0 3.31e-5
# ℹ 168 more rows

# ℹ 1 more variable: FDR <dbl>
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Filtering across columns

Past versions of dplyr included powerful variants of filter, select, and other functions to help

perform tasks across columns. You may see functions such as filter_all, filter_if, and

filter_at.  Functions like these can still  be used but  have been superseded by  across

(https://dplyr.tidyverse.org/reference/across.html).  However,  across has been deprecated in

the case of filter and replaced by if_any() and if_all(). 

Both functions operate similarly to across() but go the extra mile of aggregating the

results to indicate if all the results are true when using if_all(), or if at least one is

true  when  using  if_any()  ---tidyverse.org (https://www.tidyverse.org/blog/2021/02/

dplyr-1-0-4-if-any/)

Let's briefly see this in action. Let's return only rows with values of less than 0.05 in the columns

PValue and FDR. 

f<-filter(dexp, if_all(PValue:FDR, ~ .x < 0.05))
f

# A tibble: 4,967 × 10
   feature     albut transcript ref_genome .abundant  logFC logCPM     F  PValue
   <chr>       <chr> <chr>      <chr>      <lgl>      <dbl>  <dbl> <dbl>   <dbl>
 1 ENSG000000… untrt TSPAN6     hg38       TRUE      -0.390   5.06 32.8  3.12e-4
 2 ENSG000000… untrt CFH        hg38       TRUE       0.417   8.09 29.3  4.63e-4
 3 ENSG000000… untrt FUCA2      hg38       TRUE      -0.250   5.91 14.9  4.05e-3
 4 ENSG000000… untrt NFYA       hg38       TRUE      -0.509   4.13 44.9  1.00e-4
 5 ENSG000000… untrt SEMA3F     hg38       TRUE      -0.259   4.81 12.3  6.98e-3
 6 ENSG000000… untrt ANKIB1     hg38       TRUE      -0.236   6.38 14.5  4.41e-3
 7 ENSG000000… untrt RAD52      hg38       TRUE      -0.319   3.13  9.03 1.53e-2
 8 ENSG000000… untrt LASP1      hg38       TRUE       0.388   8.39 22.7  1.11e-3
 9 ENSG000000… untrt SNX11      hg38       TRUE       0.395   3.56 18.7  2.05e-3
10 ENSG000000… untrt TMEM176A   hg38       TRUE       0.357   4.65 12.1  7.30e-3
# ℹ 4,957 more rows

# ℹ 1 more variable: FDR <dbl>

Anonymous function

The code above includes an anonymous function. Read more here (https://jennybc.github.io/purrr-tutorial/ls03_map-

function-syntax.html#anonymous_function,_formula).  You  may  also  find  this  Stack  Overflow  post (https://

stackoverflow.com/questions/56532119/dplyr-piping-data-difference-between-and-x) useful. 

Therefore, the above line could have been written as follows: This function could be written like this:

my_func <- function(x) {
  x < 0.05
}
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Subsetting rows by position

There are times when you may want to subset your data by position, for example, the first or last

number  of  rows.  There  are  a  series  of  functions  in  the  tidyverse  that  facilitate  this  type of

subsetting.  The  primary  function  is  slice(),  which  has  several  commonly  used  helper

functions including slice_head(),  slice_tail(),  slice_min(), and slice_max(). See

the  slice() (https://dplyr.tidyverse.org/reference/slice.html) documentation  for  more

information. 

Introducing the pipe

Often we will apply multiple functions to wrangle a data frame into the state that we need it. For

example, maybe you want to select and filter. What are our options? We could run one step

after another, saving an object for each step, or we could nest a function within a function, but

these can affect code readability and clutter our work space, making it difficult to follow what we

or someone else did.

Step by Step

filter(dexp, if_all(PValue:FDR, my_func))

# A tibble: 4,967 × 10
  feature     albut transcript ref_genome .abundant  logFC logCPM     F  PValue
  <chr>       <chr> <chr>      <chr>      <lgl>      <dbl>  <dbl> <dbl>   <dbl>
1 ENSG000000… untrt TSPAN6     hg38       TRUE      -0.390   5.06 32.8  3.12e-4
2 ENSG000000… untrt CFH        hg38       TRUE       0.417   8.09 29.3  4.63e-4
3 ENSG000000… untrt FUCA2      hg38       TRUE      -0.250   5.91 14.9  4.05e-3
4 ENSG000000… untrt NFYA       hg38       TRUE      -0.509   4.13 44.9  1.00e-4
5 ENSG000000… untrt SEMA3F     hg38       TRUE      -0.259   4.81 12.3  6.98e-3
6 ENSG000000… untrt ANKIB1     hg38       TRUE      -0.236   6.38 14.5  4.41e-3
7 ENSG000000… untrt RAD52      hg38       TRUE      -0.319   3.13  9.03 1.53e-2
8 ENSG000000… untrt LASP1      hg38       TRUE       0.388   8.39 22.7  1.11e-3
9 ENSG000000… untrt SNX11      hg38       TRUE       0.395   3.56 18.7  2.05e-3
10 ENSG000000… untrt TMEM176A   hg38       TRUE       0.357   4.65 12.1  7.30e-3
# ℹ 4,957 more rows

# ℹ 1 more variable: FDR <dbl>

#Run one step at a time with intermediate objects. 
#We've done this a few times above
#select gene, logFC, FDR
dexp_s<-select(dexp, transcript, logFC, FDR)

#Now filter for only the genes "TSPAN6" and DPM1
#Note: we could have used %in%
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Nesting Code

Using the pipe (%>%,|>)

Let's explore how piping streamlines this.  Piping (using  %>%)  allows you to employ multiple

functions  consecutively,  while  improving  readability.  The  output  of  one  function  is  passed

directly to another without storing the intermediate steps as objects. You can pipe from the

beginning (reading in the data) all the way to plotting without storing the data or intermediate

objects,  if  you  want.  You  can  use  either  the  magrittr pipe  (%>%),  which  loads  with  the

tidyverse, or the native R pipe (|>, R version +4.1). 

!!! info %>% vs |> These pipes behave in largely the same way. However, %>% does have some

special  behaviors.  You can read more  here (https://www.tidyverse.org/blog/2023/04/base-vs-

magrittr-pipe/)

To pipe, we have to first call the data and then pipe it into a function. The output of each step is

then piped into the next step. 

Let's see how this works

Notice  that  the  data  argument  has  been dropped from  select() and  filter().  This  is

because the pipe passes the input from the left to the right. The %>% must be at the end of each

line. 

Piping from the beginning:

tspanDpm<- filter(dexp_s, transcript == "TSPAN6" | transcript=="DPM1") 

#Nested code example
tspanDpm<- filter(select(dexp, c(transcript, logFC, FDR)), 
                  transcript == "TSPAN6" | transcript=="DPM1" )

 dexp %>% #call the data and pipe to select()
  select(transcript, logFC, FDR) |> #select columns of interest 
  filter(transcript == "TSPAN6" | transcript=="DPM1" ) #filter 

# A tibble: 2 × 3
  transcript  logFC     FDR
  <chr>       <dbl>   <dbl>
1 TSPAN6     -0.390 0.00283
2 DPM1        0.198 0.0770 
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read_delim("./data/diffexp_results_edger_airways.txt") |> #read data
  select(transcript, logFC, FDR) |> #select columns of interest 
  filter(transcript == "TSPAN6" | transcript=="DPM1" ) |> #filter 
  ggplot(aes(x=transcript,y=logFC,fill=FDR)) + #plot
  geom_bar(stat = "identity") +
  theme_classic() + 
  geom_hline(yintercept=0, linetype="dashed", color = "black")

Rows: 15926 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr (4): feature, albut, transcript, ref_genome
dbl (5): logFC, logCPM, F, PValue, FDR
lgl (1): .abundant

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Note

ggplot2 will be covered in Part 3 of this course. 
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The dplyr functions by themselves are somewhat simple, but by combining them

into linear workflows with the pipe, we can accomplish more complex manipulations

of data frames. ---datacarpentry.org (https://datacarpentry.org/genomics-r-intro/05-

dplyr/index.html)
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Some material from this lesson was either taken directly or adapted from the Intro to R and

RStudio  for  Genomics  lesson  provided by  datacarpentry.org (https://datacarpentry.github.io/
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the  Tidyverse, (https://jhudatascience.org/tidyversecourse/wrangle-data.html#filtering-data)

from  Tidyverse Skills  for  Data Science and Suzan Baert's  dplyr  tutorials (https://github.com/
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Summarizing Data with dplyr

Objectives.

This lesson will introduce the "split-apply-combine" approach to data analysis and the key

players in the dplyr package used to implement this type of workflow: 

group_by()

summarize()

We will also learn about other useful dplyr functions including 

arrange()

distinct()

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to

NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to

connect:  https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/).  Then  follow  the

instructions  outlined  here (https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/

Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand). 

Load Tidyverse

In this lesson, we are continuing with the package dplyr. We do not need to load the dplyr

package separately, as it is a core tidyverse package. Again, if you need to install and load

only dplyr, use install.packages("dplyr") and library(dplyr). 

Load the package: 

1. 

◦ 

◦ 

2. 

◦ 

◦ 

library(tidyverse)

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.3.0
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
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Load the data

Let's load in some data to work with. In this lesson, we will continue to use sample metadata,

raw count data, and differential expression results derived from the airway RNA-Seq project.

Get the sample metadata:

Get the raw counts:

Here we used read_csv and rename to load the raw count data. Remember, rename allows

us to rename any column without selection. 

Get the differential expression results:

#sample information  
smeta<-read_delim("./data/airway_sampleinfo.txt")

Rows: 8 Columns: 9
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr (8): SampleName, cell, dex, albut, Run, Experiment, Sample, BioSample
dbl (1): avgLength

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

#raw count data
acount<-read_csv("./data/airway_rawcount.csv") %>%
  dplyr::rename("Feature" = "...1")

New names:
Rows: 64102 Columns: 9
── Column specification
──────────────────────────────────────────────────────── Delimiter: "," chr
(1): ...1 dbl (8): SRR1039508, SRR1039509, SRR1039512, SRR1039513, SRR1039516,
SRR1039...
ℹ Use `spec()` to retrieve the full column specification for this data. ℹ

Specify the column types or set `show_col_types = FALSE` to quiet this message.
• `` -> `...1`

#differential expression results
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Group_by and summarize

There is an approach to data analysis known as "split-apply-combine", in which the data are

split into smaller components, some type of analysis is applied to each component, and the

results are combined. The dplyr functions including group_by() and summarize() are key

players in this type of workflow. 

Before diving into this further, let's create some more interesting data to work with by merging

our count matrix with our sample metadata. 

dexp<-read_delim("./data/diffexp_results_edger_airways.txt")

Rows: 15926 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr (4): feature, albut, transcript, ref_genome
dbl (5): logFC, logCPM, F, PValue, FDR
lgl (1): .abundant

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

acount_smeta <- acount %>% 
  pivot_longer(where(is.numeric), names_to ="Sample", 
               values_to= "Count") %>% #reshape the data
  left_join(smeta, by=c("Sample"="Run")) #join with meta data

acount_smeta

# A tibble: 512,816 × 11
   Feature        Sample Count SampleName cell  dex   albut avgLength Experiment
   <chr>          <chr>  <dbl> <chr>      <chr> <chr> <chr>     <dbl> <chr>     
 1 ENSG000000000… SRR10…   679 GSM1275862 N613… untrt untrt       126 SRX384345 
 2 ENSG000000000… SRR10…   448 GSM1275863 N613… trt   untrt       126 SRX384346 
 3 ENSG000000000… SRR10…   873 GSM1275866 N052… untrt untrt       126 SRX384349 
 4 ENSG000000000… SRR10…   408 GSM1275867 N052… trt   untrt        87 SRX384350 
 5 ENSG000000000… SRR10…  1138 GSM1275870 N080… untrt untrt       120 SRX384353 
 6 ENSG000000000… SRR10…  1047 GSM1275871 N080… trt   untrt       126 SRX384354 
 7 ENSG000000000… SRR10…   770 GSM1275874 N061… untrt untrt       101 SRX384357 
 8 ENSG000000000… SRR10…   572 GSM1275875 N061… trt   untrt        98 SRX384358 
 9 ENSG000000000… SRR10…     0 GSM1275862 N613… untrt untrt       126 SRX384345 
10 ENSG000000000… SRR10…     0 GSM1275863 N613… trt   untrt       126 SRX384346 
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Key Functions

Here we are interested in functions that allow us to summarize our data. These include. 

group_by() - group a data frame by a categorical variable so that a given operation can

be performed per group / category. The data frame will not be reorganized, but it will

have a grouping attribute, which will impact how tidyverse functions interact with it. 

summarize() - computes summary statistics (1 or more) in a data frame. This function

creates a new data frame, returning one row for each combination of grouping variables.

If  there  are  no  grouping variables,  the  output  will  have a  single  row summarizing all

observations in the input. See ?summarize. 

The syntax:

summarize(new_column = operations_on_existing_columns)

where new_column is the name of the new column to appear in the resulting summary

table, and operations_on_existing_columns is where we apply summary functions

to an existing column to create what will go in new_column. This should return a single

value. To return more than one value per group, see ?reframe().

summarize may  include  multiple  new_column  =

operations_on_existing_columns statements, with each statement separated by ,.

We will see a similar syntax with mutate.

count() - computes groupwise counts. This does not require group_by. 

ungroup() - removes the grouping criteria set by group_by(). This is useful for

performing additional operations that you do not want applied by group. 

For example, 

Let's compute the median raw counts for each gene by treatment. 

# ℹ 512,806 more rows

# ℹ 2 more variables: Sample.y <chr>, BioSample <chr>

left_join()

left_join() is a mutating join function from  dplyr. We will learn more about this function in the next lesson.

Don't dwell on the code too much here. 

• 

• 

• 

• 

.by

summarize() can provide results by group without group_by using the .by argument. 
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Using summarize(), by default the output is grouped by every grouping column except the

last  (e.g.,  here,  no longer  grouped by "Feature"),  which is  helpful  for  performing additional

operations at higher levels of grouping (e.g., "dex"). 

Now, let's obtain the top five genes with the greatest median raw counts by treatment using

slice_max. Remember,  medcount has grouped output by dex. This grouping is maintained

unless ungroup was applied. 

#Call the data 
medcount<- acount_smeta %>% 
  # group_by dex and Feature (Feature nested within treatment)
  group_by(dex,Feature) %>%
  #for each group calculate the median value of raw counts
  summarize(median_counts=median(Count)) 

`summarise()` has grouped output by 'dex'. You can override using the `.groups`
argument.

medcount

# A tibble: 128,204 × 3
# Groups:   dex [2]
   dex   Feature         median_counts
   <chr> <chr>                   <dbl>
 1 trt   ENSG00000000003         510  
 2 trt   ENSG00000000005           0  
 3 trt   ENSG00000000419         512. 
 4 trt   ENSG00000000457         220  
 5 trt   ENSG00000000460          57.5
 6 trt   ENSG00000000938           0  
 7 trt   ENSG00000000971        6124. 
 8 trt   ENSG00000001036        1086. 
 9 trt   ENSG00000001084         598. 
10 trt   ENSG00000001167         252. 
# ℹ 128,194 more rows

medcount  %>% 
  slice_max(n=5, order_by=median_counts) #notice use of slice_max
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Often we are interested in knowing more about sample sizes and including that information in

summary output.  For example, how many rows per sample are in the  acount_smeta data

frame?  We  can  use  count() or  summarize() paired  with  other  functions  (e.g.,

n(),tally()). 

# A tibble: 10 × 3
# Groups:   dex [2]
   dex   Feature         median_counts
   <chr> <chr>                   <dbl>
 1 trt   ENSG00000115414       322164 
 2 trt   ENSG00000011465       263587 
 3 trt   ENSG00000156508       239676.
 4 trt   ENSG00000198804       230992 
 5 trt   ENSG00000116260       187288.
 6 untrt ENSG00000011465       336076 
 7 untrt ENSG00000115414       302956.
 8 untrt ENSG00000156508       294097 
 9 untrt ENSG00000164692       249846 
10 untrt ENSG00000198804       249206 

acount_smeta  %>% 
  count(dex, Sample) 

# A tibble: 8 × 3
  dex   Sample         n
  <chr> <chr>      <int>
1 trt   SRR1039509 64102
2 trt   SRR1039513 64102
3 trt   SRR1039517 64102
4 trt   SRR1039521 64102
5 untrt SRR1039508 64102
6 untrt SRR1039512 64102
7 untrt SRR1039516 64102
8 untrt SRR1039520 64102

acount_smeta  %>% 
  group_by(dex, Sample) %>% 
  summarize(n=n()) #there are multiple functions that can be used here 

`summarise()` has grouped output by 'dex'. You can override using the `.groups`
argument.
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This  output  makes  sense,  as  there  are  64,102  unique  Ensembl  ids  (See

n_distinct(acount_smeta$Feature)). 

Let's see this in practice

# A tibble: 8 × 3
# Groups:   dex [2]
  dex   Sample         n
  <chr> <chr>      <int>
1 trt   SRR1039509 64102
2 trt   SRR1039513 64102
3 trt   SRR1039517 64102
4 trt   SRR1039521 64102
5 untrt SRR1039508 64102
6 untrt SRR1039512 64102
7 untrt SRR1039516 64102
8 untrt SRR1039520 64102

na.rm

By default, all [built in] R functions operating on vectors that contain missing data will return NA. It’s a

way to make sure that users know they have missing data, and make a conscious decision on how

to deal with it. When dealing with simple statistics like the mean, the easiest way to ignore NA (the

missing  data)  is  to  use  na.rm  =  TRUE  (rm  stands  for  remove).  ---datacarpentry.org (https://

datacarpentry.org/genomics-r-intro/05-dplyr/index.html)

#This is used to get the same result
#with a pseudorandom number generator like sample()
set.seed(138) 

#make mock data frame
fun_df<-data.frame(genes=rep(c("A","B","C","D"), each=3),
                   counts=sample(1:500,12,TRUE)) %>% 
  #Assign NAs if the value is less than 100. This is arbitrary. 
  mutate(counts=replace(counts, counts<100, NA))

#let's view
fun_df 

   genes counts
1      A     NA
2      A    214
3      A     NA
4      B    352
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5      B    256
6      B     NA
7      C    400
8      C    381
9      C    250
10     D    278
11     D     NA
12     D    169

#Summarize mean, median, min, and max
fun_df %>% 
  group_by(genes) %>%
  summarize(
    mean_count = mean(counts),
    median_count = median(counts),
    min_count = min(counts),
    max_count = max(counts))

# A tibble: 4 × 5
  genes mean_count median_count min_count max_count
  <chr>      <dbl>        <int>     <int>     <int>
1 A            NA            NA        NA        NA
2 B            NA            NA        NA        NA
3 C           344.          381       250       400
4 D            NA            NA        NA        NA

#use na.rm
fun_df %>% 
  group_by(genes) %>%
  summarize(
    mean_count = mean(counts, na.rm=TRUE),
    median_count = median(counts, na.rm=TRUE),
    min_count = min(counts, na.rm=TRUE),
    max_count = max(counts, na.rm=TRUE))

# A tibble: 4 × 5
  genes mean_count median_count min_count max_count
  <chr>      <dbl>        <dbl>     <int>     <int>
1 A           214          214        214       214
2 B           304          304        256       352
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Lastly, similar to mutate, we can summarize across multiple columns at once using across().

We  will  focus  more  heavily  on  across() next  lesson.  Let's  get  the  mean  of  logFC and

logCPM. 

Additional Examples

Let's use penguins for additional practice. 

The penguins data contains 

Data on adult penguins covering three species found on three islands in the Palmer

Archipelago,  Antarctica,  including  their  size  (flipper  length,  body  mass,  bill

dimensions), and sex. - penguins docs 

Let's  summarize these data by finding the mean penguin  body mass by penguin  species.

Remember to include na.rm = TRUE to exclude missing values. 

What if we also want to include the standard deviation by species? 

3 C           344.         381        250       400
4 D           224.         224.       169       278

dexp %>% 
  summarize(across(starts_with("Log"), mean))

# A tibble: 1 × 2
     logFC logCPM
     <dbl>  <dbl>
1 -0.00859   3.71

penguins %>% 
  group_by(species) %>%
  summarize(mean_mass = mean(body_mass, na.rm = TRUE))

# A tibble: 3 × 2
  species   mean_mass
  <fct>         <dbl>
1 Adelie        3701.
2 Chinstrap     3733.
3 Gentoo        5076.
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Looking for more functions to use with summarize? Here (https://r4ds.had.co.nz/transform.html?

q=summar#summarise-funs) are  some  useful  summary  functions.  However,  the  use  of

summarize() is not limited to these suggestions. 

Reordering rows with arrange()

In the tidyverse, reordering rows is largely done by arrange(). Arrange will reorder a variable

from smallest  to largest,  or  in the case of  characters,  alphabetically,  from a to z.  This is in

ascending order. 

arrange() will break ties using additionally supplied columns for ordering. It will also mostly

ignore grouping. To order by group, use .by_group = TRUE. 

Let's arrange the genes in dexp. 

penguins %>%
  group_by(species) %>%
  summarize(mean_mass = mean(body_mass, na.rm = TRUE),
            sd_mass = sd(body_mass, na.rm = TRUE))

# A tibble: 3 × 3
  species   mean_mass sd_mass
  <fct>         <dbl>   <dbl>
1 Adelie        3701.    459.
2 Chinstrap     3733.    384.
3 Gentoo        5076.    504.

dexp %>% arrange(transcript)

# A tibble: 15,926 × 10
   feature   albut transcript ref_genome .abundant   logFC logCPM      F  PValue
   <chr>     <chr> <chr>      <chr>      <lgl>       <dbl>  <dbl>  <dbl>   <dbl>
 1 ENSG0000… untrt A1BG-AS1   hg38       TRUE       0.513   1.02   9.22  1.45e-2
 2 ENSG0000… untrt A2M        hg38       TRUE       0.528  10.1    3.57  9.24e-2
 3 ENSG0000… untrt A2M-AS1    hg38       TRUE      -0.337   0.308  2.76  1.32e-1
 4 ENSG0000… untrt A4GALT     hg38       TRUE       0.519   5.89  24.5   8.54e-4
 5 ENSG0000… untrt AAAS       hg38       TRUE      -0.0254  5.12   0.134 7.23e-1
 6 ENSG0000… untrt AACS       hg38       TRUE      -0.191   4.06   5.00  5.30e-2
 7 ENSG0000… untrt AADAT      hg38       TRUE      -0.642   2.67  16.9   2.76e-3
 8 ENSG0000… untrt AAGAB      hg38       TRUE      -0.165   5.08   5.82  3.98e-2
 9 ENSG0000… untrt AAK1       hg38       TRUE      -0.188   3.82   2.29  1.66e-1
10 ENSG0000… untrt AAMDC      hg38       TRUE       0.447   2.42   8.52  1.75e-2
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Let's arrange logFC from smallest to largest. 

What if we want to arrange from largest to smallest (in descending order)? We can use desc().

# ℹ 15,916 more rows

# ℹ 1 more variable: FDR <dbl>

dexp %>% arrange(logFC)

# A tibble: 15,926 × 10
   feature     albut transcript ref_genome .abundant logFC  logCPM     F  PValue
   <chr>       <chr> <chr>      <chr>      <lgl>     <dbl>   <dbl> <dbl>   <dbl>
 1 ENSG000002… untrt LINC00906  hg38       TRUE      -4.59  0.473  139.  1.13e-6
 2 ENSG000001… untrt LRRTM2     hg38       TRUE      -4.00  1.24   127.  1.64e-6
 3 ENSG000001… untrt VASH2      hg38       TRUE      -3.95  0.0171 152.  7.77e-7
 4 ENSG000001… untrt VCAM1      hg38       TRUE      -3.66  4.60   565.  2.87e-9
 5 ENSG000001… untrt SLC14A1    hg38       TRUE      -3.63  1.38    42.3 1.25e-4
 6 ENSG000002… untrt FER1L6     hg38       TRUE      -3.13  3.53   238.  1.18e-7
 7 ENSG000001… untrt SMTNL2     hg38       TRUE      -3.12  1.46   134.  1.29e-6
 8 ENSG000001… untrt WNT2       hg38       TRUE      -3.07  3.99   521.  4.09e-9
 9 ENSG000001… untrt EGR2       hg38       TRUE      -3.04 -0.141   96.1 5.11e-6
10 ENSG000001… untrt SLITRK6    hg38       TRUE      -3.03  1.16   130.  1.46e-6
# ℹ 15,916 more rows

# ℹ 1 more variable: FDR <dbl>

dexp %>% arrange(desc(logFC))

# A tibble: 15,926 × 10
   feature    albut transcript ref_genome .abundant logFC  logCPM     F   PValue
   <chr>      <chr> <chr>      <chr>      <lgl>     <dbl>   <dbl> <dbl>    <dbl>
 1 ENSG00000… untrt ALOX15B    hg38       TRUE      10.1   1.62    554. 5.92e- 7
 2 ENSG00000… untrt ZBTB16     hg38       TRUE       7.15  4.15   1429. 5.11e-11
 3 ENSG00000… untrt <NA>       <NA>       TRUE       6.17  1.35    380. 1.58e- 8
 4 ENSG00000… untrt ANGPTL7    hg38       TRUE       5.68  3.51    483. 5.66e- 9
 5 ENSG00000… untrt STEAP4     hg38       TRUE       5.22  3.66    445. 8.07e- 9
 6 ENSG00000… untrt PRODH      hg38       TRUE       4.85  1.29    253. 9.10e- 8
 7 ENSG00000… untrt FAM107A    hg38       TRUE       4.74  2.78    656. 1.51e- 9
 8 ENSG00000… untrt LGI3       hg38       TRUE       4.68 -0.0503  106. 3.45e- 6
 9 ENSG00000… untrt SPARCL1    hg38       TRUE       4.56  5.53    721. 1.00e- 9
10 ENSG00000… untrt KLF15      hg38       TRUE       4.48  4.69    479. 5.86e- 9
# ℹ 15,916 more rows

# ℹ 1 more variable: FDR <dbl>

127 Summarizing Data with dplyr

Bioinformatics Training and Education Program



Additional useful functions

distinct() - return distinct combinations of values

n_distinct() - "counts the number of unique/distinct combinations in a set of one or

more vectors." 
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Note

If  you include more than one column to order by descending values, each column needs to be wrapped with

desc(). 

• 

acount_smeta %>% distinct(Sample)

# A tibble: 8 × 1
  Sample    
  <chr>     
1 SRR1039508
2 SRR1039509
3 SRR1039512
4 SRR1039513
5 SRR1039516
6 SRR1039517
7 SRR1039520
8 SRR1039521

• 
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Joining and Transforming Data with dplyr

Objectives

Today we will continue to wrangle data using the tidyverse package, dplyr. We will learn:

how to join data frames using dplyr

how to transform and create new variables using mutate()

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to

NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to

connect:  https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/).  Then  follow  the

instructions  outlined  here (https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/

Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand). 

Loading Tidyverse

In this lesson, we are continuing with the package dplyr. We do not need to load the dplyr

package separately, as it is a core tidyverse package. Again, if you need to install and load

only dplyr, use install.packages("dplyr") and library(dplyr). 

Load the package:

Load the data

Let's load in some data to work with. In this lesson, we will continue to use sample metadata,

raw count data, and differential expression results derived from the airway RNA-Seq project.

1. 

2. 

library(tidyverse)

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.3.0
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
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Get the sample metadata:

Get the raw counts:

Get the differential expression results:

#sample information  
smeta<-read_delim("./data/airway_sampleinfo.txt")

Rows: 8 Columns: 9
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr (8): SampleName, cell, dex, albut, Run, Experiment, Sample, BioSample
dbl (1): avgLength

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

#raw count data
acount<-read_csv("./data/airway_rawcount.csv") %>%
  dplyr::rename("Feature" = "...1")

New names:
Rows: 64102 Columns: 9
── Column specification
──────────────────────────────────────────────────────── Delimiter: "," chr
(1): ...1 dbl (8): SRR1039508, SRR1039509, SRR1039512, SRR1039513, SRR1039516,
SRR1039...
ℹ Use `spec()` to retrieve the full column specification for this data. ℹ

Specify the column types or set `show_col_types = FALSE` to quiet this message.
• `` -> `...1`

#differential expression results
dexp<-read_delim("./data/diffexp_results_edger_airways.txt")

Rows: 15926 Columns: 10
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr (4): feature, albut, transcript, ref_genome
dbl (5): logFC, logCPM, F, PValue, FDR
lgl (1): .abundant
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Joining data frames

Any given project will often include multiple sets of data from different sources. These related

data are generally stored across multiple data frames. In such cases, while each data frame

likely contains different types of data, an identifier column or key (e.g., "sampleID") can be used

to unite or combine aspects of the data, which is useful depending on your analysis goal(s). 

There are a series of functions from dplyr devoted to the purpose of joining data frames. There

are  two  types  of  joins:  mutating  joins (https://dplyr.tidyverse.org/reference/mutate-joins.html)

and filtering joins (https://dplyr.tidyverse.org/reference/filter-joins.html). 

Mutating joins

Imagine we have two data frames x and y. A mutating join will keep all columns from x and y

by adding columns from y to x. 

left_join() - Output contains all rows from x

return all rows from x, and all columns from x and y. Rows in x with no match in y

will have NA values in the new columns. If there are multiple matches between x

and y, all  combinations of the matches are returned. ---  R documentation, dplyr

(version  0.7.8) (https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/

topics/join)

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
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Animation  from  Tidyexplain,  Garrick  Aden-Buie (https://github.com/gadenbuie/

tidyexplain)

right_join() - Output contains all rows from y

return all rows from y, and all columns from x and y. Rows in y with no match in x will

have NA values in the new columns. If there are multiple matches between x and y,

all combinations of the matches are returned. ---  R documentation, dplyr (version

0.7.8) (https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join). 
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Animation  from  Tidyexplain,  Garrick  Aden-Buie (https://github.com/gadenbuie/

tidyexplain)

inner_join() - Output contains matched rows from x

return all rows from x where there are matching values in y, and all columns from x

and  y.  If  there  are  multiple  matches  between  x  and  y,  all  combination  of  the

matches  are  returned.  ---  R  documentation,  dplyr  (version  0.7.8) (https://

www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join)

Unmatched values from x and unmatched values from y will be dropped. So use caution, as it

is easy to lose observations with an inner join. 
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Animation  from  Tidyexplain,  Garrick  Aden-Buie (https://github.com/gadenbuie/

tidyexplain)

full_join() - Output contains all rows from x and y

return all rows and all columns from both x and y. Where there are not matching

values, returns NA for the one missing. ---  R documentation, dplyr (version 0.7.8)

(https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join). 
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Animation  from  Tidyexplain,  Garrick  Aden-Buie (https://github.com/gadenbuie/

tidyexplain)

The most common type of join is the left_join(). Let's see this in action: 

Note

The R documentation for  dplyr  was updated with dplyr  v1.0.9.  However,  these descriptions still  stand and are

clearer (in my opinion) than the new documentation. 

#reshape acount
acount_smeta<-acount %>% pivot_longer(where(is.numeric),names_to ="Sample",
                    values_to= "Count") %>% left_join(smeta, by=c("Sample"="Run"))
acount_smeta

# A tibble: 512,816 × 11
   Feature        Sample Count SampleName cell  dex   albut avgLength Experiment
   <chr>          <chr>  <dbl> <chr>      <chr> <chr> <chr>     <dbl> <chr>     
 1 ENSG000000000… SRR10…   679 GSM1275862 N613… untrt untrt       126 SRX384345 
 2 ENSG000000000… SRR10…   448 GSM1275863 N613… trt   untrt       126 SRX384346 
 3 ENSG000000000… SRR10…   873 GSM1275866 N052… untrt untrt       126 SRX384349 
 4 ENSG000000000… SRR10…   408 GSM1275867 N052… trt   untrt        87 SRX384350 
 5 ENSG000000000… SRR10…  1138 GSM1275870 N080… untrt untrt       120 SRX384353 
 6 ENSG000000000… SRR10…  1047 GSM1275871 N080… trt   untrt       126 SRX384354 
 7 ENSG000000000… SRR10…   770 GSM1275874 N061… untrt untrt       101 SRX384357 
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Notice the use of by in left_join. The argument by requires the column or columns that we

want to join by. If the column we want to join by has a different name, we can use the notation

above, which says to match Sample from acount to Run from smeta. 

Filtering joins

Filtering joins result in filtered x data based on matching or non-matching with y. These joins do

not add columns from y to x. 

semi_join()

return all rows from x where there are matching values in y, keeping just columns

from x. --- R documentation, dplyr (version 0.7.8) (https://www.rdocumentation.org/

packages/dplyr/versions/0.7.8/topics/join)

Animation  from  Tidyexplain,  Garrick  Aden-Buie (https://github.com/gadenbuie/

tidyexplain)

anti_join()

 8 ENSG000000000… SRR10…   572 GSM1275875 N061… trt   untrt        98 SRX384358 
 9 ENSG000000000… SRR10…     0 GSM1275862 N613… untrt untrt       126 SRX384345 
10 ENSG000000000… SRR10…     0 GSM1275863 N613… trt   untrt       126 SRX384346 
# ℹ 512,806 more rows

# ℹ 2 more variables: Sample.y <chr>, BioSample <chr>
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return  all  rows  from  x  where  there  are  not  matching  values  in  y,  keeping  just

columns  from  x.  ---  R  documentation,  dplyr  (version  0.7.8) (https://

www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join)

Animation  from  Tidyexplain,  Garrick  Aden-Buie (https://github.com/gadenbuie/

tidyexplain)

Let's see a brief example of semi-join: 

#reshape acount
smeta_f<-smeta %>% filter(Run %in% c("SRR1039512","SRR1039508"))  

acount_L<-acount %>% pivot_longer(where(is.numeric),names_to ="Sample",
                    values_to= "Count")

semi_join(acount_L,smeta_f, by=c("Sample"="Run"))

# A tibble: 128,204 × 3
   Feature         Sample     Count
   <chr>           <chr>      <dbl>
 1 ENSG00000000003 SRR1039508   679
 2 ENSG00000000003 SRR1039512   873
 3 ENSG00000000005 SRR1039508     0
 4 ENSG00000000005 SRR1039512     0
 5 ENSG00000000419 SRR1039508   467
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In this case, we could have used filter. However, it is easier to use a filtering join if we know we

want to save elements from another table. This saves us from having to determine the filtering

criteria for use with filter(). 

Transforming variables

Data wrangling often involves transforming one variable to another. For example, we may be

interested in log transforming a variable or adding two variables to create a third. In dplyr this

can  be  done with  mutate().  mutate() allows  us  to  create  a  new variable  from existing

variables. 

mutate()

mutate() creates new columns that are functions of existing variables. It can also

modify (if  the name is the same as an existing column) and delete columns (by

setting  their  value  to  NULL).  ---  dplyr.tidyverse.org (https://dplyr.tidyverse.org/

reference/mutate.html)

Let's  create  a  column in  our  original  differential  expression  data  frame denoting significant

transcripts (those with an FDR corrected p-value less than 0.05 and a log fold change greater

than or equal to 2). 

This creates a column named Significant that contains TRUE values where the expression

above was true (meaning significant in this case) and FALSE where the expression was FALSE. 

 6 ENSG00000000419 SRR1039512   621
 7 ENSG00000000457 SRR1039508   260
 8 ENSG00000000457 SRR1039512   263
 9 ENSG00000000460 SRR1039508    60
10 ENSG00000000460 SRR1039512    40
# ℹ 128,194 more rows

dexp_sigtrnsc<-dexp %>% mutate(Significant= FDR<0.05 & abs(logFC) >=2)
head(dexp_sigtrnsc$Significant)

[1] FALSE FALSE FALSE FALSE FALSE FALSE

.keep

You can control which columns from the data are included in your output using .keep.

- "all" - default - keep all columns.

- "used" - keeps the transformed columns and new columns. 
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Let's look at another example. This time let's log transform our FDR corrected p-values. 

Here, .keep="none" resulted in retaining only a single column ("logFDR"). 

- "unused" - keeps only unused column and new columns.

- "none" - keeps the new columns and grouping variables. 

Recoding variables based on values

dplyr offers functions for recoding variables: if_else() and case_when().

if_else - uses two logical conditions

case_when - uses multiple logical conditions. Case_when uses a series of formulas (Syntax:  logical_test ~

Value_if_True). 



dexp_sigtrnsc2<- dexp %>% 
  mutate(Significant= if_else(FDR<0.05 & abs(logFC) >=2,
                              "Significant", "Not Significant"))

dexp_sigtrnsc3<- dexp %>% 
  mutate(Significant= 
           case_when(FDR<0.05 & logFC >=2 ~ "Up",
                     FDR<0.05 & logFC <=-2 ~ "Down",
                     .default = "Not Significant")
  )

dexp %>% mutate(logFDR = log10(FDR), .keep="none") 

# A tibble: 15,926 × 1
    logFDR
     <dbl>
 1 -2.55  
 2 -1.11  
 3 -0.0735
 4 -0.166 
 5 -2.42  
 6 -1.73  
 7 -0.100 
 8 -2.90  
 9 -0.320 
10 -0.158 
# ℹ 15,916 more rows
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Mutating several variables at once

What if we want to transform all of our counts spread across multiple columns in acount using

scale(),  which  applies  a  z-score  transformation?  In  this  case  we  use  across() within

mutate(),  which  has  replaced  the  scoped  verbs  (mutate_if,mutate_at,  and

mutate_all). 

Let's see this in action. 

For further information on  across (https://dplyr.tidyverse.org/articles/colwise.html),  check out

this great tutorial here (https://www.rebeccabarter.com/blog/2020-07-09-across/). 

Coercing variables with mutate

Mutate can also be used to coerce variables. Again, we need to use across() and where(). 

Using rowwise() and mutate()

mutate() works across columns, and it is not as easy to apply operations across rows for

some functions (e.g., mean).

acount %>% mutate(across(where(is.numeric),scale))

# A tibble: 64,102 × 9
   Feature         SRR1039508[,1] SRR1039509[,1] SRR1039512[,1] SRR1039513[,1]
   <chr>                    <dbl>          <dbl>          <dbl>          <dbl>
 1 ENSG00000000003         0.103          0.0527         0.0991         0.0643
 2 ENSG00000000005        -0.0929        -0.100         -0.0821        -0.0887
 3 ENSG00000000419         0.0418         0.0756         0.0468         0.0482
 4 ENSG00000000457        -0.0179        -0.0281        -0.0275        -0.0272
 5 ENSG00000000460        -0.0756        -0.0814        -0.0738        -0.0756
 6 ENSG00000000938        -0.0929        -0.100         -0.0817        -0.0887
 7 ENSG00000000971         0.845          1.16           1.20           1.51  
 8 ENSG00000001036         0.321          0.262          0.278          0.242 
 9 ENSG00000001084         0.0568         0.0295         0.0414         0.0962
10 ENSG00000001167         0.0208        -0.0196         0.0142        -0.0231
# ℹ 64,092 more rows

# ℹ 4 more variables: SRR1039516 <dbl[,1]>, SRR1039517 <dbl[,1]>,

#   SRR1039520 <dbl[,1]>, SRR1039521 <dbl[,1]>

#convert character vectors to factors
ex_coerce<-acount_smeta %>% mutate(across(where(is.character),as.factor)) 
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What if we wanted a new column that stored the mean of each row in our data frame? 

Let's create a small data frame, and use mutate() to get the mean(). What happens when we

use mean as is?

The first example simply gives us the mean of A, B, and C (not row wise). The second example

gave us what we wanted due to vectorization (Read more on vectorization in references listed

here (https://stackoverflow.com/questions/49967559/why-is-r-dplyrmutate-inconsistent-with-

custom-functions)). 

For the first example to work as expected, we can first group by row using  rowwise() and

then use mutate(). 

df<-data.frame(A=c(1,2,3),B=c(4,5,6),C=c(7,8,9))
df

  A B C
1 1 4 7
2 2 5 8
3 3 6 9

df %>% mutate(D= mean(c(A,B,C)))

  A B C D
1 1 4 7 5
2 2 5 8 5
3 3 6 9 5

df %>% mutate(D = (A+B+C)/3)

  A B C D
1 1 4 7 4
2 2 5 8 5
3 3 6 9 6

df %>% rowwise() %>% mutate(D= mean(c(A,B,C)))

141 Joining and Transforming Data with dplyr

Bioinformatics Training and Education Program

https://stackoverflow.com/questions/49967559/why-is-r-dplyrmutate-inconsistent-with-custom-functions
https://stackoverflow.com/questions/49967559/why-is-r-dplyrmutate-inconsistent-with-custom-functions
https://stackoverflow.com/questions/49967559/why-is-r-dplyrmutate-inconsistent-with-custom-functions
https://stackoverflow.com/questions/49967559/why-is-r-dplyrmutate-inconsistent-with-custom-functions


See more uses of rowwise() operations here (https://dplyr.tidyverse.org/articles/rowwise.html).

What's next?

Now that you know the basics of working with R and the key operations to wrangle your data, it

is time to learn how to visualize your data. Part 3 of this course will introduce data visualization

with ggplot2. Stay tuned for upcoming course dates. 
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# A tibble: 3 × 4
# Rowwise: 
      A     B     C     D
  <dbl> <dbl> <dbl> <dbl>
1     1     4     7     4
2     2     5     8     5
3     3     6     9     6
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R programming

Introduction to Data Visualization

This course is the third and final part of a larger 3-part course designed for novices: 

This  course  focuses  on  the  basics  of  ggplot2,  a  tidyverse  package  for  data  visualization.

Attendees will learn the building blocks needed to create publishable figures as well as tips and

tricks to make plotting easier. 

Lessons

January 6, 2026 - Introduction to ggplot2 for R Data Visualization

January 8, 2026 - Plot Customization with ggplot2

January 13, 2026 - From Data to Display: Crafting a Publishable Plot

January 15, 2026 - Recommendations and Tips for Creating Effective Plots with ggplot2

Prerequisites

This course is recommended for attendees familiar with the skills learned in  Part  1:  Getting

Started  with  R (https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/

Getting_Started_with_R/). Attendees will also benefit from skills learned in Part2: Introduction to

Data  Wrangling (https://bioinformatics.ccr.cancer.gov/btep/courses/introductory-r-for-novices-

introduction-to-data-wrangling). 

Course materials

We will use R on Biowulf for this course to avoid issues with R and package installations. To use

R on Biowulf,  you must have a NIH HPC account. If  you do not have a NIH HPC (Biowulf)

account, this course can be taken using a local R installation. However, we will not be able to

troubleshoot  package  installation  issues  during  class.  Additionally,  because  we  will  use

packages belonging to the tidyverse (https://www.tidyverse.org/), you will need to install these

packages using  install.packages("tidyverse") prior to the first lesson if you are not

using R on Biowulf. 

Get the Data

The data used in this course can be downloaded  here. To use these files, you should unzip

data.zip and add it to your working directory. 

1. 

2. 

3. 

4. 
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Introduction to ggplot2 for R Data

Visualization

Learning Objectives

Identify and describe the core components of a ggplot2 plot, including data, aesthetics,

and geometric layers.

Learn the grammar of graphics for plot construction. 

Construct basic plots in ggplot2 by mapping variables to aesthetics and adding simple

geometric layers. 

To get started with this lesson, you will first need to connect to RStudio on Biowulf. To connect to

NIH HPC Open OnDemand, you must be on the NIH network. Use the following website to

connect:  https://hpcondemand.nih.gov/ (https://hpcondemand.nih.gov/).  Then  follow  the

instructions  outlined  here (https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/

Getting_Started_with_R/Lesson1/#connect-to-rstudio-on-nih-hpc-open-ondemand). 

Why use R for Data Visualization?

Learning R and associated plotting packages is a great way to generate publishable figures in

a reproducible fashion. 

With R you can: 

1. Create simple or complex figures.

2. Create high resolution figures.

3. Generate scripts that can be reused to create the same or similar plot. 

ggplot2 is an R graphics package from the tidyverse collection. It allows the user to create

informative plots quickly by using a 'grammar of graphics' implementation, which is described

as "a coherent system for describing and building graphs" (R4DS). The power of this package is

1. 

2. 

3. 

Why not use Excel for data visualization?

Excel is a great program for managing data in a spreadsheet. However, it isn't great for working with "big data".

Large data sets are difficult to work with, and resulting plots are generally not publishable due to a low resolution.

Learning R and associated plotting packages is a great way to generate publishable figures in a reproducible

fashion. Using R will not only keep you from accidentally editing your data, but it will also allow you to generate

scripts that can be viewed later or reused to generate the same plot using different data. This will keep you from

having to rely on your memory when wondering what data was used or how a plot was generated. 


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that plots are built in layers and few changes to the code result in very different outcomes. This

makes it easy to reuse parts of the code for very different figures. 

Being a part of the tidyverse collection, ggplot2 works best with data frames (tidy data), which

you should already be accustomed to.

To begin plotting, let's load our tidyverse library. 

Example Data

We also need some data to plot, so if you haven't already, let's load the data we will need for

this lesson. 

#load libraries
library(tidyverse) # Tidyverse automatically loads ggplot2

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr     1.1.4     v readr     2.1.5
v forcats   1.0.0     v stringr   1.5.1
v ggplot2   3.5.2     v tibble    3.3.0
v lubridate 1.9.4     v tidyr     1.3.1
v purrr     1.0.4     
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Getting the Data

If you have not already done so, please download the data for this course from here and unzip it to your working

directory. 

If you are using RStudio on Biowulf, you can use the following steps to download and unzip the data directly to your

working directory. 

Open the "Terminal" in RStudio (See the tab next to "Console"). 

Make sure you are in your working directory. You can check this by typing pwd and hitting enter. If you are

not in your working directory, you can change to it using the cd command. For example, if your working

directory is /data/username/, you would type cd /data/username/ and hit enter. 

Download the data using the wget command: 

Unzip the data using the unzip command: 

• 

• 

• 

wget https://bioinformatics.ccr.cancer.gov/docs/r_for_novices/Data_Visualization_with_R/data.zip`

• 
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The example data we will  use for today's lesson were generated from data available in the

Bioconductor  package  airway (https://bioconductor.org/packages/release/data/experiment/

html/airway.html),  which  "provides a RangedSummarizedExperiment object of  read counts in

genes for an RNA-Seq experiment on four human airway smooth muscle cell lines treated with

dexamethasone" (https://bioconductor.org/packages/release/data/experiment/html/airway.html)

and reported in Himes et al. (2014) (https://pubmed.ncbi.nlm.nih.gov/24926665/). 

In this experiment, the authors compared transcriptomic differences in primary human airway

smooth muscle cell lines treated with dexamethasone, a common therapy for asthma. Each cell

line included a treated and untreated negative control resulting in a total sample size of 8.

Alternatively, you can download the data to your local machine and then upload it  to your working directory in

RStudio using the "Upload" button in the "Files" tab. 

unzip data.zip 

#scaled_counts data
scaled_counts<-
  read_delim("./data/filtlowabund_scaledcounts_airways.txt")

Rows: 127408 Columns: 18
-- Column specification --------------------------------------------------------
Delimiter: "\t"
chr (11): feature, SampleName, cell, dex, albut, Run, Experiment, Sample, Bi...
dbl  (6): sample, counts, avgLength, TMM, multiplier, counts_scaled
lgl  (1): .abundant

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

dexp<-read_delim("./data/diffexp_results_edger_airways.txt")

Rows: 15926 Columns: 10
-- Column specification --------------------------------------------------------
Delimiter: "\t"
chr (4): feature, albut, transcript, ref_genome
dbl (5): logFC, logCPM, F, PValue, FDR
lgl (1): .abundant

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
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Practice Data

There are a number of built-in data sets available for practicing with ggplot2. Check these out

here (https://ggplot2.tidyverse.org/reference/#data)! 

For example, mtcars is commonly used in ggplot2 documentation: 

Occasionally, I will pull in practice data to demonstrate specific aspects of ggplot2. 

The ggplot2 template

The following represents the basic ggplot2 template. 

ggplot(mpg, aes(displ, hwy)) + 
  geom_point() +     
  geom_smooth()

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
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We need three basic components to create a plot: 

data we want to plot

geom function(s)

mapping aesthetics

Notice the + symbol following the ggplot() function. This symbol will precede each additional

layer of code for the plot, and it is important that it is  placed at the end of the line. More on

geom functions and mapping aesthetics to come. 

Let's see this template in practice.

We will examine the relationship between the total transcript sums per sample (total reads) and

the number of recovered transcripts per sample. 

We can generate these data using

Let's plot 

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

• 

• 

• 

sc <- scaled_counts |> group_by(dex, SampleName) |> 
  summarize(Num_transcripts=sum(counts>100),TotalCounts=sum(counts))

`summarise()` has grouped output by 'dex'. You can override using the `.groups`
argument.

sc

# A tibble: 8 x 4
# Groups:   dex [2]
  dex   SampleName Num_transcripts TotalCounts
  <chr> <chr>                <int>       <dbl>
1 trt   GSM1275863           10768    18783120
2 trt   GSM1275867           10051    15144524
3 trt   GSM1275871           11658    30776089
4 trt   GSM1275875           10900    21135511
5 untrt GSM1275862           11177    20608402
6 untrt GSM1275866           11526    25311320
7 untrt GSM1275870           11425    24411867
8 untrt GSM1275874           11000    19094104
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We can easily see that there is a relationship between the number of reads per sample and the

total transcripts recovered per sample.  ggplot2 default parameters are great for exploratory

data analysis. But, with only a few tweaks, we can make some beautiful, publishable figures. 

What did we do in the above code?

The first step to creating this plot was initializing the ggplot object using the function ggplot().

Remember, we can look further for help using ?ggplot(). The function ggplot() takes data,

mapping, and further arguments. However, none of these need to actually be provided at the

initialization phase, which creates the coordinate system from which we build our plot.  But,

typically, you should at least call the data at this point. 

The data we called was from the data frame sc, which we created above. Next, we provided a

geom  function  (geom_point()),  which  created  a  scatter  plot.  This  scatter  plot  required

mapping information, which we provided for the x and y axes. More on this in a moment. 

Let's break down the individual components of the code.

ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts)) 
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#What does running ggplot() do?
ggplot(data=sc)

#What about just running a geom function?
geom_point(data=sc,aes(x=Num_transcripts, y = TotalCounts)) 

mapping: x = ~Num_transcripts, y = ~TotalCounts 
geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity 

#what about this
ggplot() +
geom_point(data=sc,aes(x=Num_transcripts, y = TotalCounts)) 
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Geom functions

A geom is the geometrical object that a plot uses to represent data. People often

describe  plots  by  the  type  of  geom  that  the  plot  uses.  ---  R4DS (https://

r4ds.had.co.nz/data-visualisation.html#geometric-objects)

There are multiple geom functions that change the basic plot type or the plot representation. 

scatter plots (geom_point()), 

line plots (geom_line(),geom_path()), 

bar plots (geom_bar(), geom_col()), 

line modeled to fitted data (geom_smooth()), 

heat maps (geom_tile()) (Tip: Use ComplexHeatmap or pheatmap), 

geographic maps (geom_polygon()), etc. 

ggplot2 provides over 40 geoms, and extension packages provide even more (see

https://exts.ggplot2.tidyverse.org/gallery/ (https://exts.ggplot2.tidyverse.org/

gallery/) for  a sampling).  The best  way to get a comprehensive overview is the

ggplot2 cheatsheet, which you can find at  https://posit.co/resources/cheatsheets/

(https://posit.co/resources/cheatsheets/).  ---  R4DS (https://r4ds.had.co.nz/data-

visualisation.html)

• 

• 

• 

• 

• 

• 
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You can also see a number of options pop up when you type geom into the console, or you can

look up the  ggplot2 documentation in the help tab. For more detailed reference pages and

examples,  see the  ggplot2  website  reference pages (https://ggplot2.tidyverse.org/reference/

index.html). 

Create a line plot

We can see how easy it is to change the way the data is plotted. Let's plot the same data using

geom_line(). 

Create a box plot

Let's  plot  the  same  data  using  geom_boxplot().  A  boxplot (https://www.data-to-viz.com/

caveat/boxplot.html) can be used to summarize the distribution of a numeric variable across

groups. 

ggplot(data=sc) + 
  geom_line(aes(x=Num_transcripts, y = TotalCounts)) 

ggplot(data=sc) + 
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Mapping and aesthetics (aes())

The geom functions require a mapping argument. The mapping argument includes the aes()

function,  which  "describes  how  variables  in  the  data  are  mapped  to  visual  properties

(aesthetics) of geoms" (ggplot2 R Documentation). If not included it will be inherited from the

ggplot() function. 

An  aesthetic  is  a  visual  property  of  the  objects  in  your  plot.---R4DS (https://

r4ds.had.co.nz/data-visualisation.html)

Mapping aesthetics include some of the following:

1. the x and y data arguments

2. shapes

3. color

4. fill

5. size

  geom_boxplot(aes(x=dex, y = TotalCounts)) 

Note

This time we also modified the x argument. 
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6. linetype

7. alpha 

This is not an all  encompassing list.  You can add multiple aesthetics to a plot to represent

different variables. 

Map a Color to a Variable

Let's return to our plot above. Is there a relationship between treatment ("dex") and the number

of transcripts or total counts?

There is potentially a relationship. ASM cells treated with dexamethasone in general have lower

total numbers of transcripts and lower total counts. 

Notice how we changed the color of our points to represent a variable, in this case. To do this,

we set color equal to 'dex' within the  aes() function. This mapped our aesthetic, color, to a

variable  we  were  interested  in  exploring  ("dex").  Aesthetics  that  are  not  mapped  to  our

#adding the color argument to our mapping aesthetic
ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,color=dex))
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variables  are  placed  outside  of  the  aes() function.  These  aesthetics  are  manually

assigned and do not undergo the same scaling process as those within aes().

For example, 

We  can  also  see  from this  that  'dex'  could  be  mapped  to  other  aesthetics.  In  the  above

example, we see it mapped to shape rather than color. By default, ggplot2 will only map six

shapes at a time, and if your number of categories goes beyond 6, the remaining groups

will go unmapped. This is by design because it is hard to discriminate between more than six

shapes at any given moment. This is a clue from ggplot2 that you should choose a different

aesthetic to map to your variable. However, if you choose to ignore this functionality, you can

manually  assign  more  than  six  shapes (https://r-graphics.org/RECIPE-SCATTER-

SHAPES.htmls). 

We could have just as easily mapped it to alpha, which adds a gradient to the point visibility by

category.

#map the shape aesthetic to the variable "dex"
#use the color purple across all points (NOT mapped to a variable)
ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,shape=dex),
             color="purple") 
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Or we could map it to size. There are multiple options, so feel free to explore a little with your

plots.

#map the alpha aesthetic to the variable "dex"
#use the color purple across all points (NOT mapped to a variable)
ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,alpha=dex),
             color="purple") #note the warning.

Warning: Using alpha for a discrete variable is not advised.

Defaults

Notice that the assignment of color, shape, or alpha to our variable was automatic, with a unique aesthetic level

representing each category (i.e., 'Dexamethasone', 'none') within our variable. Most of what we see on this plot is

auto generated with defaults (e.g., Assigned colors, legend, axis titles, plot background, tick marks and labels) and

we can change these defaults, for example, what colors are used, by adding additional layers to our code. 

R objects can also store figures

As we have discussed, R objects are used to store things created in R to memory. This includes plots created with

ggplot2. 


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How can we modify colors?

Colors are assigned to the fill and color aesthetics in aes(). We can change the default colors

by providing an additional layer to our figure. To change the color, we use the scale_color

functions: 

scale_color_manual(), 

scale_color_brewer() (https://r-graph-gallery.com/38-rcolorbrewers-palettes.html), 

scale_color_grey(), etc. 

Example: 

We can add additional layers directly to our object. 

scatter_plot<-ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,
                 color=dex)) 

scatter_plot

• 

• 

• 

ggplot(sc) +
  geom_point(aes(x=Num_transcripts, y = TotalCounts, 
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Similarly, if we want to change the  fill, we would use the  scale_fill options. To modify

shapes, use scale_shape options. 

                 color=dex)) +
  scale_color_manual(values=c("red","black"),
                     labels=c('treated','untreated'))

Additional arguments

We can modify the behavior of any function by adding additional arguments (if available). Here we changed the

color labels in the legend using the labels argument. The labels must be in the correct order. You do not want to

mislabel the legend. 

Order of Categorical Variables

By  default,  ggplot2 will  alphabetize  categorical  variables.  If  you  want  to  change  the  order  of  a  categorical

variable, you can do so by converting the variable to a factor and specifying the levels in the order you want them to

appear.  The  package  forcats has  a  number  of  functions  to  help  you  work  with  factors.  See  the  forcats

documentation (https://forcats.tidyverse.org/) for more information. 
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More on Colors

There are a number of ways to specify the color argument including by name, number, and hex

code. Here (https://r-graph-gallery.com/ggplot2-color.html) is a great resource from the R Graph

Gallery (https://www.r-graph-gallery.com/index.html) for assigning colors in R. 

There are also a number of complementary packages in R that expand our color options. 

viridis (https://cran.r-project.org/web/packages/viridis/index.html) - provides colorblind

friendly palettes. 

randomcoloR (https://cran.r-project.org/web/packages/randomcoloR/index.html) -

generates large numbers of random colors. 

Paletteer (https://github.com/EmilHvitfeldt/paletteer) - contains a comprehensive set of

color palettes to load the palettes from multiple packages all at once.

• 

• 

• 

library(viridis) 

Loading required package: viridisLite

ggplot(sc) +
  geom_point(aes(x=Num_transcripts, y = TotalCounts, 
                 color=dex)) + 
scale_color_viridis(discrete=TRUE, option="viridis")
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Facets

A way to add variables to a plot beyond mapping them to an aesthetic is to use facets or

subplots. There are two primary functions to add facets, facet_wrap() and facet_grid().

If faceting by a single variable, use facet_wrap(). If multiple variables, use facet_grid().

The first argument of either function is a formula, with variables separated by a ~ (See below).

Variables must be discrete (not continuous). In newer versions of ggplot2, you can additionally

use vars() to select variables for faceting. See ?facet_wrap() for more information. 

Let's  return  to  the  airway count  data  to  see how facets  are  useful.  Here,  we are  going to

compare scaled and unscaled count data using a density plot. 

A density plot  shows the distribution of  a numeric variable.  ---  R Graph Gallery

(https://r-graph-gallery.com/density-plot.html)

Using ~ in ggplot2

The ~ is used in R formulas to split the dependent or response variable from the independent variable(s). For more

information,  see  this  explanation  here. (https://medium.com/anu-perumalsamy/what-does-mean-in-

r-18cecd1b223f#:~:text='~(tilde)'%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.)

{target=_blank})

In facet_wrap() / facet_grid() the ~ is used to generate a formula specifying rows by columns. 
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In our example data,  density_data, the gene counts were scaled to account for technical

and composition differences using the trimmed mean of M values (TMM) from EdgeR (Robinson

and  Oshlack  2010),  but  non-normalized  values  remained  for  comparison.  Thus,  we  can

compare scaled vs unscaled counts by sample using faceting.

Let's import and examine the data with head().

Notice the source column, which indicates whether the counts are scaled or unscaled. These

data are in long vs wide format. You may need to reshape the data to represent the information

in a specific way with ggplot2. Here, we can use this variable to facet our density plot. 

density_data<-read.csv("./data/density_data.csv",
                       stringsAsFactors=TRUE)

head(density_data)

          feature sample SampleName   cell   dex albut        Run avgLength
1 ENSG00000000003    508 GSM1275862 N61311 untrt untrt SRR1039508       126
2 ENSG00000000003    508 GSM1275862 N61311 untrt untrt SRR1039508       126
3 ENSG00000000419    508 GSM1275862 N61311 untrt untrt SRR1039508       126
4 ENSG00000000419    508 GSM1275862 N61311 untrt untrt SRR1039508       126
5 ENSG00000000457    508 GSM1275862 N61311 untrt untrt SRR1039508       126
6 ENSG00000000457    508 GSM1275862 N61311 untrt untrt SRR1039508       126
  Experiment    Sample    BioSample transcript ref_genome .abundant      TMM
1  SRX384345 SRS508568 SAMN02422669     TSPAN6       hg38      TRUE 1.055278
2  SRX384345 SRS508568 SAMN02422669     TSPAN6       hg38      TRUE 1.055278
3  SRX384345 SRS508568 SAMN02422669       DPM1       hg38      TRUE 1.055278
4  SRX384345 SRS508568 SAMN02422669       DPM1       hg38      TRUE 1.055278
5  SRX384345 SRS508568 SAMN02422669      SCYL3       hg38      TRUE 1.055278
6  SRX384345 SRS508568 SAMN02422669      SCYL3       hg38      TRUE 1.055278
  multiplier        source abundance
1   1.415149        counts  679.0000
2   1.415149 counts_scaled  960.8864
3   1.415149        counts  467.0000
4   1.415149 counts_scaled  660.8748
5   1.415149        counts  260.0000
6   1.415149 counts_scaled  367.9388

#plot 
ggplot(data= density_data)+ #initialize ggplot
  geom_density(aes(x=abundance, color=SampleName)) + #call density plot geom
  facet_wrap(~source) + #use facet_wrap
  scale_x_log10()#scales the x axis using a base-10 log transformation  
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The distributions of sample counts did not differ greatly between samples before scaling, but

regardless, we can see that the distributions are more similar after scaling. 

Here, faceting allowed us to visualize multiple features of our data. We were able to see count

distributions by sample as well as normalized vs non-normalized counts. 

Note the help options with ?facet_wrap(). How would we make our plot facets vertical rather

than horizontal?

Warning in scale_x_log10(): log-10 transformation introduced infinite values.

Warning: Removed 140 rows containing non-finite outside the scale range
(`stat_density()`).

ggplot(data= density_data)+ #initialize ggplot
  geom_density(aes(x=abundance, 
             color=SampleName)) + #call density plot geom
  facet_grid(~source, ncol=1) + #use the ncol argument
  scale_x_log10()
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Building upon our template

This is the grammar of graphics. Adding layers to create unique figures. 

Note that there are a lot of invisible (default) layers that often go into each ggplot2, and there

are  ways  to  customize  these  layers.  See  this  chapter (https://r4ds.had.co.nz/data-

visualisation.html#the-layered-grammar-of-graphics) from  R  for  Data  Science  for  more

information on the grammar of graphics.

Warning in scale_x_log10(): log-10 transformation introduced infinite values.

Warning: Removed 140 rows containing non-finite outside the scale range
(`stat_density()`).

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(
     mapping = aes(<MAPPINGS>),
  ) +
  <FACET_FUNCTION>
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Labels, legends, scales, and themes

How do we ultimately get our figures to a publishable state? The bread and butter of pretty plots

really falls to the additional non-data layers of our ggplot2 code. These layers will include code

to  label  the  axes,  scale  the  axes,  and  customize  the  legends  and  theme (https://

ggplot2.tidyverse.org/reference/theme.html).  We  will  be  working  with  these  additional  plot

features in the weeks to come, so stay tuned.

Resource list

ggplot2 cheatsheet (https://ggplot2.tidyverse.org/index.html#cheatsheet)

The R Graph Gallery (https://www.r-graph-gallery.com/)

The R Graphics Cookbook (https://r-graphics.org/recipe-quick-bar)

ggplot2 extensions (https://exts.ggplot2.tidyverse.org/gallery/)

From Data to Viz (https://www.data-to-viz.com/)

Other Resources (https://ggplot2.tidyverse.org/index.html#learning-ggplot2)

ggplot2: Elegant Graphics for Data Analysis (https://ggplot2-book.org/index.html)
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Material  from  this  lesson  was  inspired  by  Chapter  3  of  R  for  Data  Science (https://

r4ds.had.co.nz/data-visualisation.html) and  from  "Data  Visualization",  Introduction  to  data

analysis  with  R  and  Bioconductor (https://carpentries-incubator.github.io/bioc-intro/40-

visualization/index.html), which is part of the Carpentries Incubator. 
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Plot Customization with ggplot2

Learning Objectives

Review the grammar of graphics template. 

Understand the statistical transformations inherent to geoms. 

Customize figures with labels, legends, scales, and themes. 

Save plots with ggsave(). 

Our grammar of graphics template

Last lesson we discussed the three basic components of creating a  ggplot2 plot: the  data, 

one or more geoms, and aesthetic mappings. 

But, we also learned of other features that greatly improve our figures (e.g., facets), and today

we will be expanding our ggplot2 template even further to include: 

---(Holmes  and  Huber,  2021 (https://web.stanford.edu/class/bios221/book/03-

chap.html#the-grammar-of-graphics)) 

1. 

2. 

3. 

4. 

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

 one or more datasets,

 one or more geometric objects that serve as the visual representations of the

data, – for instance, points, lines, rectangles, contours, 


 descriptions of how the variables in the data are mapped to visual properties

(aesthetics) of the geometric objects, and an associated scale (e. g., linear,

logarithmic, rank), 



 a  facet  specification,  i.e.  the  use  of  multiple  similar  subplots  to  look  at

subsets of the same data,


one or more coordinate systems,

optional parameters that affect the layout and rendering, such text size,

font and alignment, legend positions. 


statistical summarization rules
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Loading the libraries

To begin plotting, let's load our  tidyverse library. This includes  ggplot2, which we will be

using for plotting. 

Importing the data

We also need some data to plot, so if you haven't already, let's load the data we will need for

this lesson. 

ggplot(data = <DATA>) + 
  <GEOM_FUNCTION>(
     mapping = aes(<MAPPINGS>),
     stat = <STAT>
  ) +
  <FACET_FUNCTION> +
  <COORDINATE SYSTEM> +
  <THEME>

library(tidyverse) 

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr     1.1.4     v readr     2.1.5
v forcats   1.0.1     v stringr   1.5.2
v ggplot2   4.0.0     v tibble    3.3.0
v lubridate 1.9.4     v tidyr     1.3.1
v purrr     1.1.0     
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

#scaled_counts
scaled_counts <-
  read.delim("./data/filtlowabund_scaledcounts_airways.txt", 
             as.is=TRUE)

#differential expression results
dexp <- read.delim("./data/diffexp_results_edger_airways.txt", 
                 as.is=TRUE)  
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Using Multiple Geoms per Plot

In Lesson 1, we discovered that a geom, the geometrical representation of the plot, is required

to create a visualization with ggplot2. This is true, but keep in mind that we can use 1 or more

geoms to build our plot. 

Because  we build  plots  using  layers  in  ggplot2.  We can  add multiple  geoms to  a  plot  to

represent the data in unique ways. Let's see how this works. 

Let's combine a scatter plot with a line plot. 

As you can see, we simply add a new geom, geom_line() to add a line plot. 

#transcript counts greater than 100
sc <- read.csv("./data/sc.csv")

ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,color=dex)) +
  geom_line(aes(x=Num_transcripts, y = TotalCounts,color=dex))

Global vs local aesthetics
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Setting global aesthetics

Geoms can be added in many different ways to create unique representations. Remember, that

the layers are ordered, and the order matters for adding new geoms. 

Setting local aesthetics

We can plot different aesthetics per geom. 

To make our code more effective, we can put shared aesthetics in the ggplot function (ggplot()). Aesthetics in the

ggplot() function are global aesthetics, and will  be applied to all  geoms in the plot.  Aesthetics in the geom

functions are local aesthetics, and will only be applied to that specific geom. 

ggplot(data=sc, aes(x=Num_transcripts, y = TotalCounts,color=dex)) + 
  geom_point() +
  geom_line()

ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,
                 color=SampleName)) +
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Subsetting data per geom

We can represent only a subset of data in one geom and not the other. 

  geom_line(aes(x=Num_transcripts, y = TotalCounts,color=dex))

 ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,
                 color=SampleName)) +
  geom_line(data=filter(sc,dex=="trt"),
            aes(x=Num_transcripts, y = TotalCounts,color=dex))
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To get multiple legends for the same aesthetic, check out the CRAN package  ggnewscale

(https://eliocamp.github.io/ggnewscale/).  Whereas, legends for different aesthetics can easily

be controlled with the scale and guide functions. 

Statistical transformations

Many graphs, like scatterplots, plot the raw values of your dataset. Other graphs,

like bar charts, calculate new values to plot: 

bar charts, histograms, and frequency polygons bin your data and then plot

bin counts, the number of points that fall in each bin. 

smoothers fit a model to your data and then plot predictions from the model. 

boxplots compute a robust summary of the distribution and then display a

specially formatted box. The algorithm used to calculate new values for a

graph is called a stat, short for statistical transformation. --- R4DS (https://

r4ds.had.co.nz/data-visualisation.html#statistical-transformations)

Let's plot a bar graph using the data (sc). 

• 

• 

• 

#returns an error message. What went wrong?
ggplot(data=sc) + 
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An error was returned. What's the difference between stat identity and stat count? 

As we can see, stat="identity" returns the raw data, stat="count" "counts the number

of cases at each x position". You should be aware of the default statistic used by a geom. 

Let's look at another example. Here, we are looking at 4 genes of interest from our scaled

counts. 

  geom_bar( aes(x=Num_transcripts, y = TotalCounts)) 

Error in `geom_bar()`:
! Problem while computing stat.
i Error occurred in the 1st layer.
Caused by error in `setup_params()`:
! `stat_count()` must only have an x or y aesthetic.

ggplot(data=sc) + 
  geom_bar( aes(x=Num_transcripts, y = TotalCounts), stat="identity") 

#filter our data to include 4 transcripts of interest
keep_t<-c("CPD","EXT1","MCL1","LASP1")
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This is not a very useful figure, and probably not worth plotting. We could have gotten this info

using  str(), as we know we only have 8 samples. However, the point here is that there are

default statistical transformations occurring with many geoms, and you can specify alternatives.

interesting_trnsc<-scaled_counts %>% 
  filter(transcript %in% keep_t) 

#the default here is `stat_count()`, which requires only an x aesthetic
ggplot(data = interesting_trnsc) + 
  geom_bar(mapping = aes(x = transcript, y=counts_scaled)) 

Error in `geom_bar()`:
! Problem while computing stat.
i Error occurred in the 1st layer.
Caused by error in `setup_params()`:
! `stat_count()` must only have an x or y aesthetic.

#remove the y aesthetic
ggplot(data = interesting_trnsc) + 
  geom_bar(mapping = aes(x = transcript)) 
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Let's change the stat parameter to "identity", and set a fill aesthetic to  SampleName. This will

plot the raw values of the normalized counts rather than how many rows are present for each

transcript.

Notice that the output is stacked. What if we wanted the columns side by side? 

We can again refer to our function arguments. In this case, we can modify position and set to

"dodge" (position="dodge"). We can add facets to additionally view by treatment ("dex"). 

Note

Setting the color aesthetic in a bar plot results in a colored outline around the bar. 

#defaulted to a stacked barplot
ggplot(data = interesting_trnsc) + 
  geom_bar(mapping = aes(x = transcript,y=counts_scaled,
                         fill=SampleName),
           stat="identity",color="black") + 
  facet_wrap(~dex)

#introducing the position argument, position="dodge"
ggplot(data = interesting_trnsc) + 
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How  do  we  know  what  the  default  stat  is  for  geom_bar()?  Well,  we  could  read  the

documentation, ?geom_bar(). This is true of multiple geoms. The statistical transformation can

often be customized, so if the default is not what you need, check out the documentation to

learn more about how to make modifications. For example, you could provide custom mapping

for a box plot. To do this, see the examples section of the geom_boxplot() documentation. 

  geom_bar(mapping = aes(x = transcript,y=counts_scaled,
                         fill=SampleName),
           stat="identity",color="black",position="dodge") + 
  facet_wrap(~dex)

geom_col()

If  we read the documentation for  geom_bar(),  we see that  there is  an alternative function for  when we want

stat="identity" instead of  stat="count".  That  function is  geom_col().  By using  geom_col,  instead of

geom_bar, we avoid many of the problems we saw above. 

For example,



ggplot(data = interesting_trnsc) + 
  geom_col(mapping = aes(x = transcript,y=counts_scaled,
                        fill=SampleName),
          color="black",position="dodge") + 
  facet_wrap(~dex)
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Coordinate systems

ggplot2 uses a default coordinate system (the Cartesian coordinate system). This isn't super

important until we want to do something like make a map (See coord_quickmap()) or create

a pie chart (See coord_polar()). 

When will  we have to think about coordinate systems? We likely won't  have to modify from

default in too many cases (see those above). The most common circumstance in which we will

likely need to change the coordinate system is in the event that we want to switch the x and y

axes (?coord_flip()) or if  we want to fix our aspect ratio (?coord_fixed()). Fixing the

aspect ratio is useful when we want to ensure that one unit on the x-axis is the same length as

one unit on the y-axis. 

#let's return to our bar plot above
#get horizontal bars instead of vertical bars

ggplot(data = interesting_trnsc) + 
  geom_bar(mapping = aes(x = transcript,y=counts_scaled,
                         fill=SampleName),
           stat="identity",color="black",position="dodge") + 
  facet_wrap(~dex) +

176 Plot Customization with ggplot2

Bioinformatics Training and Education Program



Labels, legends, scales, and themes

How do we ultimately get our figures to a publishable state? The bread and butter of pretty plots

really falls to the additional non-data layers of our ggplot2 code. These layers will include code

to  label  the  axes,  scale  the  axes,  and  customize  the  legends  and  theme (https://

ggplot2.tidyverse.org/reference/theme.html). 

The default axes and legend titles come from the ggplot2 code. Let's return back to our simple

data set, sc, to demonstrate. 

  coord_flip()

Note

In the case of a bar plot, coord_flip is no longer required to get this effect. We could instead switch the x and y

arguments. You may, however, be interested in using coord_flip with a different geom in the future, so it is nice to

be aware of. 
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In  the  above  plot,  the  y-axis  label  ("TotalCounts")  is  the  variable  name  mapped  to  the  y

aesthetic,  while  the  x-axis  label  ("Num_transcripts")  is  the  variable  name  named  to  the  x

aesthetic. The fill aesthetic was set equal to "dex", and so this became the default title of the fill

legend. We can change these labels using ylab(), xlab(), or labs(), and guide() for the

legend. 

ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
             shape=21,size=2) + 
  scale_fill_manual(values=c("purple", "yellow"))

ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
             shape=21,size=2) + 
  scale_fill_manual(values=c("purple", "yellow"), 
                    labels=c('treated','untreated'))+ 
  labs(x ="Recovered transcripts per sample",
      y="Total sequences per sample")#add x and y labels
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Let's change the legend title. 

titles and subtitles

labs() can also be used to assign a title, subtitle, tags, and caption. See options with ?labs(). 

ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
             shape=21,size=2) + 
  scale_fill_manual(values=c("purple", "yellow"), 
                    labels=c('treated','untreated'))+ 
  labs(x ="Recovered transcripts per sample",
      y="Total sequences per sample") + 
  guides(fill = guide_legend(title="Treatment"))
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Legend titles  can  be  modified  with  guides(),  labs(),  or  within  the  scale function.  For

example, we could have also modified the legend title in  scale_fill_manual() using the

name argument. 

We can modify the axes scales of continuous variables using  scale_x_continuous() and

scale_y_continuous().  Discrete  (categorical  variable)  axes  can  be  modified  using

scale_x_discrete() and scale_y_discrete().

ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
             shape=21,size=2) + 
  scale_fill_manual(values=c("purple", "yellow"), 
                    labels=c('treated','untreated'))+ 
  labs(x ="Recovered transcripts per sample",
      y="Total sequences per sample") +
  guides(fill = guide_legend(title="Treatment")) + #label the legend
  scale_y_continuous(breaks=seq(1.0e7, 3.5e7, by = 2e6),
                     limits=c(1.0e7,3.5e7)) #change breaks and limits

180 Plot Customization with ggplot2

Bioinformatics Training and Education Program



Perhaps we want to represent these data on a logarithmic scale. 

library(scales)

Check out the scales (https://scales.r-lib.org/) package to make nice axes labels. 

ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
             shape=21,size=2) + 
  scale_fill_manual(values=c("purple", "yellow"), 
                    labels=c('treated','untreated'))+ 
  labs(x ="Recovered transcripts per sample",
      y="Total sequences per sample") +
  guides(fill = guide_legend(title="Treatment")) + #label the legend
  scale_y_continuous(trans="log10") #use the trans argument
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Finally, we can change the overall look of non-data elements of our plot (titles, labels, fonts,

background,  grid  lines,  and  legends)  by  customizing  ggplot2  themes.  Check  out  ?

ggplot2::theme(). For a list of available parameters. ggplot2 provides 8 complete themes,

with theme_gray() as the default theme.

Note

You could manually transform the data without transforming the scales. The figures would be the same, excluding

the  axes  labels.  When  you  use  the  transformed  scale  (e.g.,  scale_y_continuous(trans="log10") or

scale_y_log10()), the axis labels remain in the original data space. When the data is transformed manually, the

labels will also be transformed. 
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You can also create your own custom theme and then apply it to all figures in a plot.

Create a custom theme to use with multiple figures.

#Setting a theme
my_theme <-
    theme_bw() +
      theme(
        #Remove the border around the plot
        panel.border = element_blank(),
        # Add the axis lines back in
        axis.line = element_line(),
        #resize the major and minor grid lines
        panel.grid.major = element_line(size = 0.2),
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        panel.grid.minor = element_line(size = 0.1),
        #set the text size
        text = element_text(size = 12),
        #Move the legend to the bottom
        legend.position = "bottom",
        #Angle the x axis text
        axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
      )

Warning: The `size` argument of `element_line()` is deprecated 
as of ggplot2 3.4.0.
i Please use the `linewidth` argument instead.

ggplot(data=sc) + 
  geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
             shape=21,size=2) + 
  scale_fill_manual(values=c("purple", "yellow"), 
                    labels=c('treated','untreated'))+ 
  labs(x ="Recovered transcripts per sample",
      y="Total sequences per sample") +
  guides(fill = guide_legend(title="Treatment")) + #label the legend
  scale_y_continuous(trans="log10") + #use the trans argument
  my_theme
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Saving plots (ggsave())

Finally, we have a quality plot ready to publish. The next step is to save our plot to a file. The

easiest way to do this with ggplot2 is  ggsave(). This function will save the last plot that you

displayed by default. Look at the function parameters using ?ggsave().
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ggsave("Plot1.png",width=5.5,height=3.5,units="in",dpi=300)
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From Data to Display: Crafting a Publishable

Plot

Learning Objectives

Integrate previously learned ggplot2skills including data mapping, geoms, labels,

scales, and themes to construct a complete visualization workflow. 

Design and produce a polished, publication-ready plot from start to finish, making

informed choices about plot type, aesthetics, and formatting. 

For this exercise, we are going to use the information we have learned to create a volcano plot

of our differential expression results. 

Try  not  to  cheat.  Attempt  to  add  the  necessary  code  without  referring  to  the

documentation. To help you with this, code blocks are collapsed to hide the code.

A volcano plot is a type of scatterplot that shows statistical significance (P-value)

versus magnitude of change (fold change). It enables quick visual identification of

genes with large fold changes that are also statistically significant. These may be

the  most  biologically  significant  genes.  ---  Maria  Doyle,  2021 (https://

training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-

viz-with-volcanoplot/tutorial.html)

To  generate  a  volcano  plot,  we  need  to  know  which  genes  were  differentially  expressed.

Differential expression results can be obtained using a number of R packages (e.g.,  limma, 

edgeR, DESeq2). For today's lesson, we are using output generated from edgeR and available

in the file, "./data/diffexp_results_edger_airways.txt".

Step 1: Load the required packages.

What package(s) do we need to create our plot?

1. 

2. 

Warning

This lesson requires audience participation. 

Load the package(s) 

library(tidyverse)
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Primarily, we need ggplot2, but other packages from the tidyverse are useful for handling

factors or wrangling the data as needed. 

Step 2: Load and view the data.

For this lesson, we need to load the differential expression results. How can we load the data

and save to an object called dexp? The data is at "./data/diffexp_results_edger_airways.txt". 

How can we further examine these data?

Load the data 

dexp <- read_delim("./data/diffexp_results_edger_airways.txt")  

Rows: 15926 Columns: 10
-- Column specification --------------------------------------------------------
Delimiter: "\t"
chr (4): feature, albut, transcript, ref_genome
dbl (5): logFC, logCPM, F, PValue, FDR
lgl (1): .abundant

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Examine the data 

glimpse(dexp)

Rows: 15,926
Columns: 10
$ feature    <chr> "ENSG00000000003", "ENSG00000000419", "ENSG00000000457", "E~
$ albut      <chr> "untrt", "untrt", "untrt", "untrt", "untrt", "untrt", "untr~
$ transcript <chr> "TSPAN6", "DPM1", "SCYL3", "C1orf112", "CFH", "FUCA2", "GCL~
$ ref_genome <chr> "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "hg~
$ .abundant  <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,~
$ logFC      <dbl> -0.390100222, 0.197802179, 0.029160865, -0.124382022, 0.417~
$ logCPM     <dbl> 5.059704, 4.611483, 3.482462, 1.473375, 8.089146, 5.909668,~
$ F          <dbl> 3.284948e+01, 6.903534e+00, 9.685073e-02, 3.772134e-01, 2.9~
$ PValue     <dbl> 0.0003117656, 0.0280616149, 0.7629129276, 0.5546956332, 0.0~
$ FDR        <dbl> 0.002831504, 0.077013489, 0.844247837, 0.682326613, 0.00376~
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We can view the data using View(dexp) or select the data from the Global Environment pane. 

To understand the structure of the data, use dplyr::glimpse() or str(). 

Step 3: Define significance

The  volcano  plot  helps  us  identify  our  significant  genes.  Generally,  we  are  interested  in

identifying genes above or below certain thresholds for significance and log fold change. These

thresholds can be fairly arbitrary. Here, we will define significance based on values with an FDR

less than 0.01 and an absolute value of logFC of 1. Of note, logFC here is represented by log2

transformed values, so logFC = 1 corresponds to a fold change of 2. 

Create a new column in dexp called "Significant" that contains TRUE values where genes

were  significantly  differentially  expressed based on the  above thresholds  and FALSE

where they were not significant.  Order the data frame by FDR and logFC. Save these

transformed data to a new object called dexp_sigtrnsc. Unfamiliar with how to wrangling

the data? Check out Part 2 of this Series, Introduction to Data Wrangling. 

Because we arranged the data by significance, we can create an object with the top 6

significant genes to highlight these in our volcano plot. Save the names of these genes to

an object called topgenes.

Wrangle the data 

dexp_sigtrnsc <- dexp %>%  
  mutate(Significant = FDR < 0.01 & abs(logFC) >= 1) %>% arrange(FDR, abs(logFC)) 
dexp_sigtrnsc[,-c(2,4,5)]

# A tibble: 15,926 x 8
   feature         transcript logFC logCPM     F    PValue       FDR Significant
   <chr>           <chr>      <dbl>  <dbl> <dbl>     <dbl>     <dbl> <lgl>      
 1 ENSG00000165995 CACNB2      3.28   4.51 1575. 3.34 e-11   4.07e-7 TRUE       
 2 ENSG00000109906 ZBTB16      7.15   4.15 1429. 5.11 e-11   4.07e-7 TRUE       
 3 ENSG00000106976 DNM1       -1.76   5.38  646. 1.62 e- 9   2.57e-6 TRUE       
 4 ENSG00000162493 PDPN        1.88   5.68  768. 7.60 e-10   2.57e-6 TRUE       
 5 ENSG00000154930 ACSS1       1.89   4.96  657. 1.50 e- 9   2.57e-6 TRUE       
 6 ENSG00000157214 STEAP2      1.97   7.13  685. 1.25 e- 9   2.57e-6 TRUE       
 7 ENSG00000146250 PRSS35     -2.76   3.91  807. 6.16 e-10   2.57e-6 TRUE       
 8 ENSG00000120129 DUSP1       2.94   7.31  694. 1.18 e- 9   2.57e-6 TRUE       
 9 ENSG00000152583 SPARCL1     4.56   5.53  721. 1.000e- 9   2.57e-6 TRUE       
10 ENSG00000168309 FAM107A     4.74   2.78  656. 1.51 e- 9   2.57e-6 TRUE       
# i 15,916 more rows
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Step 4: Create the plot beginning with our 3 required

entities.

What are the 3 required components needed to create a plot?

Data 

data - the data should include our differential expression results (dexp_sigtrnsc). 

1 or more geoms

All  data  points  are  plotted  using  an  x  and  y  coordinate  system.  This  requires

geom_point(). 

Mapping aesthetics 

x-axis -  represents  the logarithm of  the fold  change between two conditions (https://

en.wikipedia.org/wiki/Volcano_plot_(statistics)). 

y-axis - represents the negative logarithm (base 10) of the p-value on the y-axis, ensuring

that  data  points  with  lower  p-values—indicative  of  higher  statistical  significance—are

positioned  toward  the  top  of  the  plot (https://en.wikipedia.org/wiki/

Volcano_plot_(statistics)). 

color - use color to differentiate between "significant" and "non-significant" genes. 

Get 6 top significant genes 

topgenes<-dexp_sigtrnsc$transcript[1:6]
topgenes

[1] "CACNB2" "ZBTB16" "DNM1"   "PDPN"   "ACSS1"  "STEAP2"

1. 

2. 

3. 

Begin the plot 

ggplot(data=dexp_sigtrnsc,aes(x = logFC, y = -log10(FDR))) +
  geom_point(aes( color = Significant)) 
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Step 5: Customize Our Figure

At this point, you have a relatively nice plot with just a couple of lines of code, but we really want

our figure to shine for publication. Think about what changes can be made to make the plot

nice but also effective! 

Scale the Colors

How can we control the colors representing our TRUE / FALSE values? Assign "black" to

FALSE and "red" to TRUE. 

Scale the Colors 

ggplot(data=dexp_sigtrnsc,aes(x = logFC, y = -log10(FDR))) +
  geom_point(aes( color = Significant)) +
  scale_color_manual(values = c("black","red"))
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Add Size and Alpha attributes to our Mapping Aesthetics

The red and black colors nicely discriminate between significant and non-significant genes.

However,  we can make a few more changes to really  highlight  our "significant"  genes.  Two

things come to mind. We can make the non-significant points less visible with alpha and size.

If we want to represent differences in a variable using alpha and size, where should we

put these in our code?

Note

There are many scale functions and scale_color functions. 

Assign alpha and size aesthetics 

ggplot(data=dexp_sigtrnsc,aes(x = logFC, y = -log10(FDR))) +
  geom_point(aes( color = Significant, alpha =Significant, 
  size = Significant)) +
  scale_color_manual(values = c("black","red"))
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The size mapping results in very large points for "Significant = TRUE". How can we fix

this?

Warning messages

You will likely see the following warning messages: 

1: Using alpha for a discrete variable is not advised.

2: Using size for a discrete variable is not advised. 

These are not  errors,  but  you should consider  what  they mean for  your  plot.  Make sure your  choices are not

misleading the audience. 

Scale the size aesthetic 

# Use scale_size_discrete to set the range of sizes possible
ggplot(data=dexp_sigtrnsc,aes(x = logFC, y = -log10(FDR))) +
  geom_point(aes( color = Significant, alpha =Significant, 
  size = Significant)) +
  scale_color_manual(values = c("black","red")) +
  scale_size_discrete(range=c(1,2))

192 From Data to Display: Crafting a Publishable Plot

Bioinformatics Training and Education Program



Again, scale can be applied to the parameters in our mapping aesthetics including the x and y

axes. 

Fix the legend

The legend isn't great. It is neither informative nor visually appealing. How can we modify the

legend?

Legends

If  we want separate legends for  each aesthetic,  we can set  this using arguments in the  scale functions.  For

example, see guide and name. 

Fix the legend 

ggplot(data=dexp_sigtrnsc,aes(x = logFC, y = -log10(FDR))) +
  geom_point(aes( color = Significant, alpha =Significant, 
  size = Significant)) +
  scale_color_manual(values = c("black","red")) +
  scale_size_discrete(range=c(1,2)) +
    guides(color = guide_legend(
      "Significance (logFC \u2265 |1|, FDR < 0.01)"), size = "none", alpha= "none") 
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There are multiple ways to modify the legend, including using guides() and theme. 

Adding mathematical expressions

There are multiple ways to add mathematical expressions to ggplot2 figures. 

Here are some useful resouces: 

From ggplot2 docs: https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-

subscripts-to-axis-labels (https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-

and-subscripts-to-axis-labels)

Guide on special symbols: https://steffilazerte.ca/posts/ggplot-symbols/#table (https://steffilazerte.ca/posts/

ggplot-symbols/#table)

Using expression(): https://library.virginia.edu/data/articles/mathematical-annotation-in-r (https://

library.virginia.edu/data/articles/mathematical-annotation-in-r)

?plotmath and demo(plotmath)

In this example, I used unicode, which is a universal character encoding standard assigning a unique number /

code to every character, symbol, etc. In R and ggplot2, unicode can be used to display special symbols (like

mathematical operators, Greek letters, or arrows) in plot labels, legends, and titles by using escape sequences

such as \u2265 for "≥". However, it doesn't work with all graphic devices, so use caution. 

As the references above suggest, we could have also used  bquote() or  expression(). For example, try the

following code instead: guides(color = guide_legend(bquote("Significance (logFC " >= " |1|,

FDR  <  0.01)")),  size  =  "none",  alpha=  "none").  Or,  make  the  x  and  y  axis  labels  nicer:

labs(x=expression(paste(Log[2],"FC")),y=expression(paste(-Log[10],italic("P")))). 

I would not necessarily memorize how to do this, but would look it up as needed. 



• 

• 

• 

• 

194 From Data to Display: Crafting a Publishable Plot

Bioinformatics Training and Education Program

https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-subscripts-to-axis-labels
https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-subscripts-to-axis-labels
https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-subscripts-to-axis-labels
https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-subscripts-to-axis-labels
https://ggplot2.tidyverse.org/articles/faq-axes.html#how-can-i-add-superscripts-and-subscripts-to-axis-labels
https://steffilazerte.ca/posts/ggplot-symbols/#table
https://steffilazerte.ca/posts/ggplot-symbols/#table
https://steffilazerte.ca/posts/ggplot-symbols/#table
https://steffilazerte.ca/posts/ggplot-symbols/#table
https://library.virginia.edu/data/articles/mathematical-annotation-in-r
https://library.virginia.edu/data/articles/mathematical-annotation-in-r
https://library.virginia.edu/data/articles/mathematical-annotation-in-r
https://library.virginia.edu/data/articles/mathematical-annotation-in-r


Clean it up with theme

Let's make this nicer by customizing the background, grid lines, legend position, and text. How

can we modify theme elements?

Set theme elements 

ggplot(data=dexp_sigtrnsc,aes(x = logFC, y = -log10(FDR))) +
  geom_point(aes( color = Significant, alpha =Significant, 
  size = Significant)) +
  scale_color_manual(values = c("black","red")) +
  scale_size_discrete(range=c(1,2)) +
    guides(color = guide_legend(
      "Significance (logFC \u2265 |1|, FDR < 0.01)"), size = "none", alpha= "none") +
  theme_classic() +
  theme(panel.grid.major = element_line(size = 0.2, color="grey"),
        panel.grid.minor = element_line(size = 0.1, color="grey"),
        text = element_text(size = 12),
        legend.position = "bottom")
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You are free to customize your plot however you see fit. Here, I decided to use the complete

theme,  theme_classic(). I then made some additional changes from there. For example, I

added in major and minor grid lines, resized the text, and positioned the legend. 

Add major grid lines: panel.grid.major = element_line(size = 0.2,

color="grey")

Add minor grid lines: panel.grid.minor = element_line(size = 0.1,

color="grey")

Assign all text 12 point font: text = element_text(size = 12)

Move the legend to the bottom of the plot: legend.position = "bottom"

Step 6: Label the most significant points.

How can we add text labels to some of our points?

To label our top significant genes, we can add an additional geom. In this case, geom_text().

• 

• 

• 

• 

Note

Here, we only want to plot labels for our significant genes. We can call these directly by filtering the data. 

Add text labels 

ggplot(data=dexp_sigtrnsc,aes(x = logFC, y = -log10(FDR))) +
  geom_point(aes( color = Significant, alpha =Significant, 
  size = Significant)) +
  scale_color_manual(values = c("black","red")) +
  scale_size_discrete(range=c(1,2)) +
    guides(color = guide_legend(
      "Significance (logFC \u2265 |1|, FDR < 0.01)"), 
      size = "none", alpha= "none") +
  geom_text(data=dexp_sigtrnsc %>% 
                    filter(transcript %in% topgenes), #filter the data
                  aes(label=transcript)) +
  theme_classic() +
  theme(panel.grid.major = element_line(size = 0.2, color="grey"),
        panel.grid.minor = element_line(size = 0.1, color="grey"),
        text = element_text(size = 12),
        legend.position = "bottom")
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As we can see, geom_text results in overlapping labels. To avoid overlapping labels, we can

use check_overlap = TRUE - feel free to try it. However, this will drop labels, and we want all

6 top genes to have labels. 

To get  around this,  we can use a package called  ggrepel (https://ggrepel.slowkow.com/),

which keeps the labels from overlapping. 

Use ggrepel to avoid overlapping labels 

# install the package with install.packages("ggrepel")
library(ggrepel)

ggplot(data=dexp_sigtrnsc,aes(x = logFC, y = -log10(FDR))) +
  geom_point(aes( color = Significant, alpha =Significant, 
  size = Significant)) +
  scale_size_discrete(range=c(1,2)) +
  scale_color_manual(values = c("black","red")) +
    guides(color = guide_legend(
      "Significance (logFC \u2265 |1|, FDR < 0.01)"), 
      size = "none", alpha= "none") +
  geom_text_repel(data=dexp_sigtrnsc %>% 
                    filter(transcript %in% topgenes), 
                  aes(label=transcript),
                  nudge_y=0.1,nudge_x=0.2,direction="both",
                  segment.color="gray") +
  theme_classic() +

197 From Data to Display: Crafting a Publishable Plot

Bioinformatics Training and Education Program

https://ggrepel.slowkow.com/
https://ggrepel.slowkow.com/
https://ggrepel.slowkow.com/


Using an External Package.

There are many packages external to ggplot2 that can be used to create or enhance figures.

We will learn about some of these in the next lesson. Such packages can save us a lot of time

and energy. See the below example with EnhancedVolcano. 

  theme(panel.grid.major = element_line(size = 0.2, color="grey"),
        panel.grid.minor = element_line(size = 0.1, color="grey"),
        text = element_text(size = 12),
        legend.position = "bottom") 

Geom ordering

In  ggplot2,  the order in which you add layers (such as  geom_point(),  geom_text(),  geom_line(),  etc.)

directly affects how your plot is rendered:

Layers added later  are drawn on top of  earlier  layers.  For example,  if  you add  geom_point() first  and then

geom_text(), the text labels will appear on top of the points. If you reverse the order, the points may cover or

obscure the text. 

Note

Search for packages using a dedicated R search Engine (https://rseek.org/).
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EnhancedVolcano

There  is  a  dedicated  Bioconductor  package  for  creating  volcano  plots  specifically  called

EnhancedVolcano (https://bioconductor.org/packages/release/bioc/html/

EnhancedVolcano.html).  Plots created using this package can be customized using ggplot2

functions and syntax. 

#The default cut-off for log2FC is >|2|
#the default cut-off for log10 p-value is 10e-6
library(EnhancedVolcano)
EnhancedVolcano(dexp_sigtrnsc,
                title = "Enhanced Volcano with Airways",
                lab = dexp_sigtrnsc$transcript,
                x = 'logFC',
                y = 'FDR') 

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
i The deprecated feature was likely used in the EnhancedVolcano package.
  Please report the issue to the authors.
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This creates a very nice plot rather quickly. 

Acknowledgements

The volcano plot code in this lesson was adapted from a 2021 workshop entitled Introduction to

Tidy  Transciptomics (https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/

tidytranscriptomics.html) by Maria Doyle and Stefano Mangiola. 

Adding horizontal and vertical lines

The horizontal and vertical lines can be added to our ggplot2 figure using geom_hline() and geom_vline(),

respectively. 
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Recommendations and Tips for Creating

Effective Plots with ggplot2

Learning Objectives

Evaluate general principles and best practices for designing clear, publication-quality

figures in ggplot2. 

Construct multi-panel figures using tools such as patchwork. 

Identify and explore specialized R packages that support particular plot types. 

Write simple R functions that wrap ggplot2 code to streamline the creation of repeatable

or customized plot templates. 

In the previous lessons, we learned the basics of the grammar of graphics. In this lesson, we

will focus on miscellaneous topics that will help you in your plot making journey. 

Included topics: 

recommendations for publishable figures 

additional packages that enhance ggplot2 functionality (e.g., patchwork, 

gghighlight, ggthemes, ggrepel, scales) 

creating plotting functions 

resources for further learning 

Recommendations for creating publishable figures

(Inspired by Visualizing Data in the Tidyverse, a Coursera lesson)

Consider whether the plot type you have chosen is the best way to convey your message

Make your plot visually appealing 

Careful color selection - color blind friendly if possible (e.g., library(viridis)) 

Eliminate unnecessary white space

Carefully choose themes including font types

Label all axes with concise and informative labels 

These labels should be straight forward and adequately describe the data

Ask yourself "Does the data make sense?" 

Does the data plotted address the question you are answering?

1. 

2. 

3. 

4. 

• 

• 

• 

• 

1. 

2. 

◦ 

◦ 

◦ 

3. 

◦ 

4. 

◦ 
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Try not to mislead the audience 

Often this means starting the y-axis at 0

Keep axes consistent when arranging facets or multiple plots 

Keep colors consistent across plots 

Do not try to convey too much information in the same plot 

Keep plots fairly simple

Complementary or Related Packages

There  are  many  complementary  R  packages  related  to  creating  publishable  figures  using

ggplot2.  Check  out  ggplot2  extensions  with  the  ggplot2  extensions  -  gallery (https://

exts.ggplot2.tidyverse.org/gallery/). By default, these are listed by popularity. 

Here is a sampling of data visualization packages you may be interested in: 

Genomics

gggenomes (https://thackl.github.io/gggenomes/) - extends the grammar of graphics for

comparative genomics. 

GViz (https://bioconductor.org/packages/release/bioc/vignettes/Gviz/inst/doc/Gviz.html) -

Plotting data and annotation information along genomic coordinates 

ComplexHeatmap (https://bioconductor.org/packages/release/bioc/html/

ComplexHeatmap.html) - generate simple or complex heatmaps 

EnhancedVolcano (https://bioconductor.org/packages/release/bioc/vignettes/

EnhancedVolcano/inst/doc/EnhancedVolcano.html) - generate high quality, publication

ready volcano plots 

pcaExplorer (https://www.bioconductor.org/packages/release/bioc/html/pcaExplorer.html)

- general-purpose interactive companion tool for RNA-seq analysis (uses a Shiny

application) 

OmicsCircos (https://www.cancer.gov/about-nci/organization/cbiit/training/library/

omnicircos) - generate high quality circular plots for omics data. 

You  may  also  search  for  plots  using  "plot"  or  "visualization"  using  Bioconductor:  https://

bioconductor.org/packages/release/BiocViews.html#___Software (https://bioconductor.org/

packages/release/BiocViews.html#___Software)

5. 

◦ 

◦ 

◦ 

6. 

◦ 

Warning

These packages do not exclusively use ggplot2 for graphic generation. 

1. 

2. 

3. 

4. 

5. 

6. 

Can I add ggplot2 layers? 
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Check  out  this  BTEP  tutorial (https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/

CC2023/complex_heatmap_enhanced_volcano/) on  EnhancedVolcano and

ComplexHeatmap. 

Statistics integration

ggpubr (https://ggplot2.tidyverse.org/) - generate out-of-the-box publication quality plots.

Includes statistical integration. 

Coding Club tutorial: https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/

CC2024/ggpubr/Intro_to_ggpubr/ (https://bioinformatics.ccr.cancer.gov/docs/btep-

coding-club/CC2024/ggpubr/Intro_to_ggpubr/)

ggfortify (https://github.com/sinhrks/ggfortify) - easily visualize statistical results including

PCA. 

factoextra (https://rpkgs.datanovia.com/factoextra/index.html) - visualize multivariate

statistics (e.g., PCA). 

Combining plots

patchwork (https://patchwork.data-imaginist.com/) -  the  go-to  package  for  combining

plots. 

Example: 

There are many -omics related packages that include data visualization wrappers (e.g.,  DESeq2, Seurat,  etc.).

These are not  visualization specific packages. Many of  these functions can be customized by adding ggplot2

layers. How do we know if we can add ggplot layers? Try any / all of the following: 

Check imports → does package depend on ggplot2? (e.g., packageDescription("package")

$Imports) 

Check the source code. Does it use ggplot2: (e.g., DESeq2::plotPCA) 

Call directly DESeq2::plotPCA

showMethods(PlotPCA) 

getMethod("plotPCA", "DESeqTransform") 

Inspect the output object → class(x) includes "gg" or "ggplot"? 

Try adding a layer → does + theme_minimal() work? 

Read examples/vignettes → do they use + syntax? 

1. 

2. 

1. 

2. 

3. 

3. 

4. 

5. 

1. 

◦ 

2. 

3. 

1. 

library(tidyverse)

library(patchwork)
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cowplot (https://wilkelab.org/cowplot/) -  also  includes  nice  themes  and  annotation

functions. 

You  may  find  this  BTEP  tutorial (https://bioinformatics.ccr.cancer.gov/docs/data-visualization-

with-r/Lesson6_V2/) on combining R graphics useful. 

Miscellaneous

gghighlight (https://yutannihilation.github.io/gghighlight/) - highlight specific points, lines,

etc. in a plot 

scales (https://scales.r-lib.org/) - tools for working with ggplot2 scaling infrastructure

(funcitons involving scale). 

ggthemes (https://jrnold.github.io/ggthemes/index.html) - extra geoms, scales, and

themes for ggplot2. 

sc <- read.csv("./data/sc.csv")

a <- ggplot(data=sc) + 
geom_boxplot(aes(x=dex, y = TotalCounts))   

b <- ggplot() +
    geom_point(data=sc,aes(x=Num_transcripts, y = TotalCounts)) 

a + b

2. 

1. 

2. 

3. 
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ggrepel (https://ggrepel.slowkow.com/) - repel overlapping text labels. 

plotly (https://plotly.com/ggplot2/) - create interactive plots (ggplotly to work with 

ggplot2 plots). 

Using ggplot2 in a function

While  we  have  learned  how  to  use  existing  functions  in  R,  we  have  not  covered  writing

functions. 

The Syntax

The syntax for writing a function is as follows: 

where function is the function used to write the function,

x is one or more arguments,

and bodyis the code that performs the function task. 

We would name the function by assigning it to an object using function_name <-. 

Here is an example. 

This function named add5 simply adds 5 to whatever number we include as an argument. 

4. 

5. 

Note

There are many more packages. Shop around, especially if you are interested in plotting a specific data type. 

function(x) {
    body # do something with x
}

add5 <- function(x){
    x+5
}

add5(5)

[1] 10

Note
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Functions that use ggplot2

Now that  you  know the  basics,  you  may  be  interested  in  creating  a  function  that  will  plot

different sets of data the same way using ggplot2. 

However, tidyverse functions use something called "tidy evaluation to allow you to refer to the

names of variables inside your data frame without any special treatment" (https://r4ds.hadley.nz/

functions.html#data-frame-functions). While there are two types of tidy evaluation to be aware

of, data-masking and tidy-selection, these are generally beyond the scope of this lesson. You

can  learn  more  about  tidy  evaluation  here (https://dplyr.tidyverse.org/articles/

programming.html). 

What you really need to know is that when you pass expressions containing column names to a

function using tidyverse verbs, including aes(). you need to use {{}}. Let's see why. 

Let's use our data sc to create a function that makes a boxplot. 

When you call a function in R, R evaluates all of the arguments before it passes them into the function body (unless

you’ve deliberately delayed evaluation with special tricks like tidy evaluation). This has important implications. 

my_boxplot<- function(data){
  ggplot(data,aes(x=dex, y = TotalCounts, fill=dex)) + 
    geom_boxplot() +
    geom_point() +
    scale_fill_manual(values=c("red","purple"))+
    theme_bw() +
    labs(x="Treatment",y="Total Counts")
}

my_boxplot(sc)
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Here, we need to supply the data frame to use this function, and everything works fine. 

But what if we intend to use this function on a data set where the x variable is not "dex". We want

to supply the column name as an argument. 

For example, 

my_boxplot_x<- function(data,x){
  ggplot(data,aes(x=x, y = TotalCounts, fill=dex)) + 
    geom_boxplot() +
    geom_point() +
    scale_fill_manual(values=c("red","purple"))+
    theme_bw() +
    labs(x="Treatment",y="Total Counts")

}

my_boxplot_x(sc, dex)

Error in `geom_boxplot()`:
! Problem while computing aesthetics.

207 Recommendations and Tips for Creating Effective Plots with ggplot2

Bioinformatics Training and Education Program



We run into an error that says  "object 'dex' not found". We know "dex" is in  sc, so what is

happening? 

When we run  my_boxplot_x(sc, dex), R tries to find an object called  dex in our global

environment, not in  sc. Because dex is not in the global environment, an error is thrown. We

need to tell our function to hold off on evaluating the argument right now, rather, capture it as an

expression to be evaluated in the right context (inside aes()). 

How do we fix this. We use something called embracing. "Embracing a variable means to wrap

it in braces so (e.g.) var becomes {{ var }}. Embracing a variable tells the [Tidyverse] verb

to use the value stored inside the argument, not the argument as the literal variable name."

(https://r4ds.hadley.nz/functions.html#indirection-and-tidy-evaluation)

Let's try embracing the x argument. 

i Error occurred in the 1st layer.
Caused by error:
! object 'dex' not found

More on embracing {{}}

{{x}} is shorthand for  aes(x = !!enquo(x)).  enquo(x) captures the unevaluated argument as a quoted

expression (a quosure), while  !! is the unquote operator, which tells tidy evaluation to evaluate and insert that

captured expression into the surrounding code. 



my_boxplot_x<- function(data,x){
  ggplot(data,aes(x={{x}}, y = TotalCounts, fill=dex)) + 
    geom_boxplot() +
    geom_point() +
    scale_fill_manual(values=c("red","purple"))+
    theme_bw() +
    labs(x="Treatment",y="Total Counts")

}
my_boxplot_x(sc, dex)
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To  learn  more  about  writing  plotting  functions  with  ggplot2,  see  this  chapter (https://

r4ds.hadley.nz/functions.html#plot-functions) in  R For Data Science and  this vignette (https://

ggplot2.tidyverse.org/articles/ggplot2-in-packages.html). 

Tips on Saving and Scaling

ggplot2 comes with its own function for simplified saving, ggsave(). When creating plots, we

tend to work interactively and save interactively. While you may create the perfect figure at a

width of 7 inches and height of 5 inches, this may not scale well (either smaller or larger). For

example, you may notice the text becomes very small when the size of your image is scaled up.

Text  is  set  using an absolute point  size.  If  you come across this issue, try the suggestions

outlined here (https://tidyverse.org/blog/2020/08/taking-control-of-plot-scaling/). 

Tips for saving: 

Use vector graphics (PDF, SVG) to save your figure. You can then scale the size of the

image outside of R and maintain proportions and crispness. 

If you need to use raster graphics (PNG, TIFF, JPEG), which suffer from blurring when

resized, use the R package ragg for image resizing. 

For example, 

1. 

2. 

209 Recommendations and Tips for Creating Effective Plots with ggplot2

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/functions.html#plot-functions
https://r4ds.hadley.nz/functions.html#plot-functions
https://r4ds.hadley.nz/functions.html#plot-functions
https://r4ds.hadley.nz/functions.html#plot-functions
https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html
https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html
https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html
https://ggplot2.tidyverse.org/articles/ggplot2-in-packages.html
https://tidyverse.org/blog/2020/08/taking-control-of-plot-scaling/
https://tidyverse.org/blog/2020/08/taking-control-of-plot-scaling/


The arguments res and scaling are specific to ragg:agg_png. 

Finding R packages for Beginners

Google Search 

Rseek (https://rseek.org/) - A special Google-powered search engine that searches

R-related websites (CRAN, R-bloggers, Stack Overflow, GitHub, etc.). 

Repository Search 

CRAN (https://cran.r-project.org/web/packages/index.html) - try CRAN Task Views 

Bioconductor (https://bioconductor.org/packages/release/

BiocViews.html#___Software) - repository for bioinformatics, genomics, and clinical

data analysis. 

r-universe (https://r-universe.dev/search) -  a  modern  R  package  ecosystem  and

discovery platform built  by the  rOpenSci (https://ropensci.org/) team. Publish, explore,

and evaluate R packages (CRAN and other sources). 

volcano <- readRDS("./data/Volcano.rds")

volcano

ggsave("png_small.png",width=7,height=5, dpi=300,units="in")

ggsave("scale_png.png", volcano,
    device = ragg::agg_png,
    width = 21, height = 15, units = "in", res = 300,
    scaling = 3)

Vector vs Raster Graphics

What are vector and raster graphics and why does this matter?

Raster and vector graphics differ in how they represent visual information, and that distinction directly affects how

visualizations look and scale. In short, this means that the output format of a plot matters. 

Raster graphics are made of a fixed grid of pixels, each storing a color value. Example formats include PNG, TIFF,

JPEG. This type of graphic is generally great for photos or heatmaps, but suffers from blurring when resized. Vector

graphics (e.g., PDF, SVG), in contrast, describe shapes, lines, and text mathematically, so they remain crisp at any

zoom level  and produce smaller  files  for  simple  plots.  This  matters  for  data  visualization  because the  choice

determines clarity and flexibility. Raster formats are better for complex, image-heavy displays or web use, while

vector  formats  are  ideal  for  reports,  publications,  and presentations  where  sharp  text  and scalable  detail  are

essential. 



1. 

1. 

2. 

1. 

2. 

3. 
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Blogs 

Posit (https://posit.co/blog/) - Highlights new Tidyverse and ecosystem tools. 

R bloggers (https://www.r-bloggers.com/) - aggregates posts from hundreds of R

users and developers. 

R Weekly (https://rweekly.org/) - A weekly digest of new packages, tutorials, and

news. 

Resources for Further Learning

Official ggplot2 documentation - https://ggplot2.tidyverse.org/ (https://

ggplot2.tidyverse.org/)

BTEP 

Coding Club (https://bioinformatics.ccr.cancer.gov/docs/btep-coding-club/)

Data Visualization with R (https://bioinformatics.ccr.cancer.gov/docs/data-

visualization-with-r/index.html)

Online books / tutorials

A self-learning platform (e.g., Coursera) 

4. 

1. 

2. 

3. 

1. 

2. 

1. 

2. 

3. 

4. 
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Exercise 1: Lesson2

Q1. What is the value of each object? Run the code and print the values. 

(Question  taken  from  https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r/

index.html)

Q2. Create the following objects; give each object an appropriate name.

a. Create an object that has the value of the number of bones in the adult human body.

b. We can create a vector of values using  c(). For example to create a vector of fruits, we

could use the following: fruit <- c("apples", "bananas", "mango", "kiwi"). Use

this information to create an object containing the names of four different bones. (We will learn

more about vectors in Lesson 3.) 

mass <- 47.5            # mass?
age  <- 122             # age?
mass <- mass * 2.0      # mass?
age  <- age - 20        # age?
mass_index <- mass / age  # mass_index?

Q1: Solution 

mass <- 47.5 # mass?
mass
## [1] 47.5
age <- 122 # age?
age
## [1] 122
mass <- mass * 2.0 # mass?
mass
## [1] 95
age <- age - 20 # age?
age
## [1] 102
mass_index <- mass / age # mass_index?
mass_index
## [1] 0.9313725

Q2: Solution 

# a.
bone_num<- 206
bone_num
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Q3. What types of data are stored in the objects created in question 2. 

Q4. Modify bone_num to contain the number of bones in an adult human hand. 

Q5. Here is an object storing multiple values: 

What is the mean of this vector? How about the median? What functions can you use to find this

information?

Q6. What does the function  paste() do? How can you find out? Can you use it to collapse

bone_names into a string of length 1? Hint: Read the help documentation closely.

## [1] 206

# b. 
bone_names<- c("talus","calcaneus","tibia","fibula")
bone_names
## [1] "talus"     "calcaneus" "tibia"     "fibula"

Q3: Solution 

typeof(bone_num)
## [1] "double"
typeof(bone_names)
## [1] "character"

Q4: Solution 

bone_num <- 27
bone_num
## [1] 27

num_vec <- c(1:100)

Q5: Solution 

mean(num_vec)
## [1] 50.5
median(num_vec)
## [1] 50.5

Q6: Solution 
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# To find help, use the ?
?paste

# To collapse the vector to length 1, check the collapse argument
paste(bone_names, collapse=", ")
## [1] "talus, calcaneus, tibia, fibula"
length(bone_names)
## [1] 4
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Exercise 2: Lesson 3

Q1. Let's use some functions. 

a. Use sum() to add the numbers from 1 to 10. 

b. Compute the base 10 logarithm of the elements in the following vector and save to an object

called logvec: c(1:10). 

c. Combine the following vectors and compute the mean. 

d. What does the function identical() do? Use it to compare the following vectors.

Q1a: Solution 

sum(1:10)
## [1] 55

Q1b: Solution 

logvec<- log10(c(1:10))

a <- c(45, 67, 34, 82)
b <- c(90, 45, 62, 56, 54)

Q1c: Solution 

mean(c(a,b))
## [1] 59.44444

c <- seq(2, 10, by=2)
d <- c(2, 4, 6, 8, 10)

Q1d: Solution 
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Q2. Vectors include data of  a single type, so what happens if  we mix different types? Use

typeof() to check the data type of the following objects.

(Question  taken  from  https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html

(https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r.html)) 

Q3. fruit is a vector containing the common names of different types of fruit. Can you replace

"kiwi" with "mango". 

#tells us whether the two vectors are the same
identical(c, d)
## [1] TRUE

num_char <- c(1, 2, 3, "a")
num_logical <- c(1, 2, 3, TRUE, FALSE)
char_logical <- c("a", "b", "c", TRUE)
tricky <- c(1, 2, 3, "4")

Q2: Solution 

#These were coerced into a single data type
typeof(num_char)
## [1] "character"
num_char
## [1] "1" "2" "3" "a"
typeof(num_logical)
## [1] "double"
num_logical
## [1] 1 2 3 1 0
typeof(char_logical)
## [1] "character"
char_logical
## [1] "a"    "b"    "c"    "TRUE"
typeof(tricky)
## [1] "character"
tricky
## [1] "1" "2" "3" "4"

fruit<-c("apples", "bananas", "oranges", "grapes","kiwi","kumquat")  

Q3: Solution 
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Q4. Given the following R code, return all values less than 678 in the vector "Total_subjects". 

Q5. This question uses the vectors created in Q2. Using indexing, create a new vector named

combined that contains: 

The 2nd and 3rd value of num_char.

The last value of char_logical.

The 1st value of tricky. 

combined contains data of what type? 

fruit[5] <- "mango"
fruit
## [1] "apples"  "bananas" "oranges" "grapes"  "mango"   "kumquat"

Total_subjects <- c(23, 4, 679, 3427, 12, 890, 654)

Q4: Solution 

Total_subjects[Total_subjects < 678]
## [1]  23   4  12 654

Q5: Solution 

combined <- c(num_char[2:3], char_logical[length(char_logical)],
tricky[1])

typeof(combined)
## [1] "character"
combined
## [1] "2"    "3"    "TRUE" "1"
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Exercise 3: Lesson 4

Loading data

The data used in this practice exercise can be found here. 

Q1. Import data from the sheet "iris_data_long" from the excel workbook (file_path = "./data/

iris_data.xlsx"). Make sure the column names are unique and do not contain spaces. Save the

imported data to an object called iris_long. 

Q2. Import a tab delimited file (file_path= "./data/species_datacarpentry.txt"). Save the file to an

object  named  species.  genus,species,  and  taxa should  be  converted  to  factors  upon

import. 

Q1: Solution 

iris_long<-readxl::read_excel("../data/iris_data.xlsx",sheet="iris_data_long",.name_repair="universal",skip=3)
## New names:
## • `Iris ID` -> `Iris.ID`
## • `Measurement location` -> `Measurement.location`
iris_long
## # A tibble: 600 × 4
##    Iris.ID Species Measurement.location Measurement
##      <dbl> <chr>   <chr>                      <dbl>
##  1       1 setosa  Sepal.Length                 5.1
##  2       1 setosa  Sepal.Width                  3.5
##  3       1 setosa  Petal.Length                 1.4
##  4       1 setosa  Petal.Width                  0.2
##  5       2 setosa  Sepal.Length                 4.9
##  6       2 setosa  Sepal.Width                  3  
##  7       2 setosa  Petal.Length                 1.4
##  8       2 setosa  Petal.Width                  0.2
##  9       3 setosa  Sepal.Length                 4.7
## 10       3 setosa  Sepal.Width                  3.2
## # ℹ 590 more rows

Q2: Solution 

species<-readr::read_delim("../data/species_datacarpentry.txt",col_types="cfff")
species
## # A tibble: 54 × 4
##    species_id genus            species         taxa   
##    <chr>      <fct>            <fct>           <fct>  
##  1 AB         Amphispiza       bilineata       Bird   
##  2 AH         Ammospermophilus harrisi         Rodent 
##  3 AS         Ammodramus       savannarum      Bird   
##  4 BA         Baiomys          taylori         Rodent 
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Q3. Load in a comma separated file with row names present (file_path= "./data/countB.csv")

and save to an object named countB. 

Challenge data load

Q4.  Load  in  a  tab  delimited  file (file_path=  "./data/WebexSession_report.txt")  using

read_delim().  You  will  need  to  troubleshoot  the  error  message  and  modify  the  function

arguments as needed. 

##  5 CB         Campylorhynchus  brunneicapillus Bird   
##  6 CM         Calamospiza      melanocorys     Bird   
##  7 CQ         Callipepla       squamata        Bird   
##  8 CS         Crotalus         scutalatus      Reptile
##  9 CT         Cnemidophorus    tigris          Reptile
## 10 CU         Cnemidophorus    uniparens       Reptile
## # ℹ 44 more rows

Q3: Solution 

countB<-read.csv("../data/countB.csv",row.names=1)
head(countB)
##        SampleA_1 SampleA_2 SampleA_3 SampleB_1 SampleB_2 SampleB_3
## Tspan6       703       567       867        71       970       242
## TNMD         490       482        18       342       935       469
## DPM1         921       797       622       661         8       500
## SCYL3        335       216       222       774       979       793
## FGR          574       574       515       584       941       344
## CFH          577       792       672       104       192       936

Q4: Solution 

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

read_delim("../data/WebexSession_report.txt",delim="\t",locale = locale(encoding = 'UTF-16'),skip=2) #via readr
## Rows: 10 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr   (7): Name, Date, Invited, Registered, Duration, Network joined from:, ...
## dbl   (1): Participant
## lgl  (11): Audio Type, Email, Company, Title, Phone Number, Address 1, Addre...
## time  (2): Start time, End time
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## 
## ℹ Use `spec()` to retrieve the full column specification for this data.

## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

## # A tibble: 10 × 21
##    Participant `Audio Type` Name     Email Date  Invited Registered `Start time`
##          <dbl> <lgl>        <chr>    <lgl> <chr> <chr>   <chr>      <time>      
##  1           1 NA           Partici… NA    6/8/… No      N/A        13:00       
##  2           2 NA           Partici… NA    6/9/… <NA>    <NA>       13:00       
##  3           3 NA           Partici… NA    6/10… No      N/A        12:57       
##  4           4 NA           Partici… NA    6/11… <NA>    <NA>       12:57       
##  5           5 NA           Partici… NA    6/12… No      N/A        12:55       
##  6           6 NA           Partici… NA    6/13… <NA>    <NA>       12:55       
##  7           7 NA           Partici… NA    6/14… No      N/A        12:32       
##  8           8 NA           Partici… NA    6/15… <NA>    <NA>       12:32       
##  9           9 NA           Partici… NA    6/16… Yes     N/A        12:42       
## 10          NA NA           <NA>     NA    <NA>  <NA>    <NA>          NA       
## # ℹ 13 more variables: `End time` <time>, Duration <chr>, Company <lgl>,

## #   Title <lgl>, `Phone Number` <lgl>, `Address 1` <lgl>, `Address 2` <lgl>,
## #   City <lgl>, `State/Province` <lgl>, `Zip/Postal Code` <lgl>,
## #   `Country/region` <lgl>, `Network joined from:` <chr>,
## #   `Internal Participant:` <chr>
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Exercise 4: Lesson 5

For this exercise we will use filtlowabund_scaledcounts_airways.txt, which includes

normalized and non-normalized transcript count data from an RNAseq experiment. You can

read more about the experiment  here (https://pubmed.ncbi.nlm.nih.gov/24926665/). To obtain

this file, click here. 

The following questions synthesize several of the skills you have learned thus far. It may not be

immediately apparent how you would go about answering these questions. Remember, the R

community is expansive, and there are a number of ways to get help including but not limited to

google search. These questions have multiple solutions, but you should try to stick to the tools

you have learned to use thus far. 

Q1. Import  filtlowabund_scaledcounts_airways.txt into R and save to an R object

named transcript_counts. Try not to use the drop-down menu for loading the data. 

Q2. What are the dimensions of transcript_counts? 

Q3. What are the column names? 

Q4. Is there a difference in the number of transcripts with greater than 0 normalized counts

(counts_scaled) per sample? What commands did you use to answer this question. 

Q1 Solution 

transcript_counts <-read.delim("../data/filtlowabund_scaledcounts_airways.txt")

Q2 Solution 

dim(transcript_counts)
## [1] 127408     18

Q3 Solution 

colnames(transcript_counts)
##  [1] "feature"       "sample"        "counts"        "SampleName"   
##  [5] "cell"          "dex"           "albut"         "Run"          
##  [9] "avgLength"     "Experiment"    "Sample"        "BioSample"    
## [13] "transcript"    "ref_genome"    ".abundant"     "TMM"          
## [17] "multiplier"    "counts_scaled"
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Q5.  How many  categories  of  transcripts  are  there?  Think  about  what  you  know regarding

factors. Why is this number much smaller than the results of question 4?

Q6.  Subset  transcript_counts  to  only  include  the  following  columns:  sample,  cell,  dex,

transcript,  avgLength,  counts_scaled.  Save  this  new  dataframe  to  a  new  object  called

transc_df. 

Q7. Using your new data frame from question six (transc_df), rename the column "sample" to

"Sample". 

Q4 Solution 

#using table
table(transcript_counts[transcript_counts$counts_scaled>0,]$sample)
## 
##   508   509   512   513   516   517   520   521 
## 15921 15919 15923 15918 15913 15920 15914 15910

#alternative solution
summary(factor(transcript_counts[transcript_counts$counts_scaled>0,]$sample))
##   508   509   512   513   516   517   520   521 
## 15921 15919 15923 15918 15913 15920 15914 15910

# or using the tidyverse
library(dplyr)
transcript_counts %>% filter(counts_scaled>0) %>% count(sample)
##   sample     n
## 1    508 15921
## 2    509 15919
## 3    512 15923
## 4    513 15918
## 5    516 15913
## 6    517 15920
## 7    520 15914
## 8    521 15910

Q5 Solution 

nlevels(factor(transcript_counts$transcript, exclude = NULL))
## [1] 14576

Q6 Solution 

transc_df <- transcript_counts[c("sample","cell","dex",
"transcript","avgLength",
"counts_scaled")]
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Q8. What is the mean and standard deviation of "avgLength" across the entire transc_df data

frame? Hint: Read the help documentation for mean() and sd(). 

Q9.  Make a data frame with  the column names "Mean"  and "Standard_Dev"  that  holds the

values from question 8. Hint: check out the function data.frame(). 

Q7 Solution 

colnames(transc_df)[1]<-"Sample"

Q8 Solution 

mean_avgLength<- mean(transc_df$avgLength)
sd_avgLength<- sd(transc_df$avgLength)

Q9 Solution 

data.frame(Mean=mean_avgLength, Standard_Dev=sd_avgLength)
##     Mean Standard_Dev
## 1 113.75     14.85561
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Data Reshape

Q1. Import data from the sheet "iris_data_long" from the excel workbook (file_path = "./data/

iris_data.xlsx"). Make sure the column names are unique and do not contain spaces. Save the

imported data to an object called iris_long. 

Q2. Reshape iris_long to a wide format. Your new column names will contain names from

Measurement.location. Your wide data should look as follows: 

Q1 Solution 

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

iris_long<-readxl::read_excel("./data/iris_data.xlsx",sheet="iris_data_long",.name_repair="universal",skip=3)
## New names:
## • `Iris ID` -> `Iris.ID`
## • `Measurement location` -> `Measurement.location`

iris_long
## # A tibble: 600 × 4
##    Iris.ID Species Measurement.location Measurement
##      <dbl> <chr>   <chr>                      <dbl>
##  1       1 setosa  Sepal.Length                 5.1
##  2       1 setosa  Sepal.Width                  3.5
##  3       1 setosa  Petal.Length                 1.4
##  4       1 setosa  Petal.Width                  0.2
##  5       2 setosa  Sepal.Length                 4.9
##  6       2 setosa  Sepal.Width                  3  
##  7       2 setosa  Petal.Length                 1.4
##  8       2 setosa  Petal.Width                  0.2
##  9       3 setosa  Sepal.Length                 4.7
## 10       3 setosa  Sepal.Width                  3.2
## # ℹ 590 more rows

# A tibble: 150 × 6
   Iris.ID Species Sepal.Length Sepal.Width Petal.Length Petal.Width
     <dbl> <chr>          <dbl>       <dbl>        <dbl>       <dbl>
 1       1 setosa           5.1         3.5          1.4         0.2
 2       2 setosa           4.9         3            1.4         0.2
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Q3. Let's use  table4a from the  tidyr package. Use  pivot_longer() to place the year

columns in a column named year and their values in a column named cases. 

The resulting data frame should appear as follows: 

 3       3 setosa           4.7         3.2          1.3         0.2
 4       4 setosa           4.6         3.1          1.5         0.2
 5       5 setosa           5           3.6          1.4         0.2
 6       6 setosa           5.4         3.9          1.7         0.4
 7       7 setosa           4.6         3.4          1.4         0.3
 8       8 setosa           5           3.4          1.5         0.2
 9       9 setosa           4.4         2.9          1.4         0.2
10      10 setosa           4.9         3.1          1.5         0.1
# ℹ 140 more rows

Q2 Solution 

tidyr::pivot_wider(iris_long, names_from = Measurement.location, values_from = Measurement)
## # A tibble: 150 × 6
##    Iris.ID Species Sepal.Length Sepal.Width Petal.Length Petal.Width
##      <dbl> <chr>          <dbl>       <dbl>        <dbl>       <dbl>
##  1       1 setosa           5.1         3.5          1.4         0.2
##  2       2 setosa           4.9         3            1.4         0.2
##  3       3 setosa           4.7         3.2          1.3         0.2
##  4       4 setosa           4.6         3.1          1.5         0.2
##  5       5 setosa           5           3.6          1.4         0.2
##  6       6 setosa           5.4         3.9          1.7         0.4
##  7       7 setosa           4.6         3.4          1.4         0.3
##  8       8 setosa           5           3.4          1.5         0.2
##  9       9 setosa           4.4         2.9          1.4         0.2
## 10      10 setosa           4.9         3.1          1.5         0.1
## # ℹ 140 more rows

data(table4a)
table4a

# A tibble: 3 × 3
  country     `1999` `2000`
  <chr>        <dbl>  <dbl>
1 Afghanistan    745   2666
2 Brazil       37737  80488
3 China       212258 213766

228 Data Reshape

Bioinformatics Training and Education Program



Q4. Separate the column rate from tidyr's table3 into two columns: cases and population. 

The result should appear as follows: 

# A tibble: 6 × 3
  country     year   cases
  <chr>       <chr>  <dbl>
1 Afghanistan 1999     745
2 Afghanistan 2000    2666
3 Brazil      1999   37737
4 Brazil      2000   80488
5 China       1999  212258
6 China       2000  213766

Q3 Solution 

pivot_longer(table4a,2:3, names_to = "year", values_to = "cases")
## # A tibble: 6 × 3
##   country     year   cases
##   <chr>       <chr>  <dbl>
## 1 Afghanistan 1999     745
## 2 Afghanistan 2000    2666
## 3 Brazil      1999   37737
## 4 Brazil      2000   80488
## 5 China       1999  212258
## 6 China       2000  213766

data(table3)
table3

# A tibble: 6 × 3
  country      year rate             
  <chr>       <dbl> <chr>            
1 Afghanistan  1999 745/19987071     
2 Afghanistan  2000 2666/20595360    
3 Brazil       1999 37737/172006362  
4 Brazil       2000 80488/174504898  
5 China        1999 212258/1272915272
6 China        2000 213766/1280428583

# A tibble: 6 × 4
  country      year cases  population
  <chr>       <dbl> <chr>  <chr>     
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Reshape challenge

Q5 Use pivot_longer to reshape countB. You will need to import countB (file_path = "./data/

countB.csv"). Your reshaped data should look the same as the data below. 

1 Afghanistan  1999 745    19987071  
2 Afghanistan  2000 2666   20595360  
3 Brazil       1999 37737  172006362 
4 Brazil       2000 80488  174504898 
5 China        1999 212258 1272915272
6 China        2000 213766 1280428583

Q4 Solution 

separate(table3, rate, into = c("cases", "population"))
## # A tibble: 6 × 4
##   country      year cases  population
##   <chr>       <dbl> <chr>  <chr>     
## 1 Afghanistan  1999 745    19987071  
## 2 Afghanistan  2000 2666   20595360  
## 3 Brazil       1999 37737  172006362 
## 4 Brazil       2000 80488  174504898 
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583

# A tibble: 27 × 4
   Feature Replicate SampleA SampleB
   <chr>   <chr>       <int>   <int>
 1 Tspan6  1             703      71
 2 Tspan6  2             567     970
 3 Tspan6  3             867     242
 4 TNMD    1             490     342
 5 TNMD    2             482     935
 6 TNMD    3              18     469
 7 DPM1    1             921     661
 8 DPM1    2             797       8
 9 DPM1    3             622     500
10 SCYL3   1             335     774
# ℹ 17 more rows

Q5 Solution 

countB<-read.csv("../data/countB.csv",row.names=1) %>% rownames_to_column("Feature")

countB_l<-pivot_longer(countB,
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cols=2:length(countB),
names_to = c(".value", "Replicate"),
names_sep = "_")

tibble(countB_l)
## # A tibble: 27 × 4
##    Feature Replicate SampleA SampleB
##    <chr>   <chr>       <int>   <int>
##  1 Tspan6  1             703      71
##  2 Tspan6  2             567     970
##  3 Tspan6  3             867     242
##  4 TNMD    1             490     342
##  5 TNMD    2             482     935
##  6 TNMD    3              18     469
##  7 DPM1    1             921     661
##  8 DPM1    2             797       8
##  9 DPM1    3             622     500
## 10 SCYL3   1             335     774
## # ℹ 17 more rows
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Select and Filter

All solutions use the pipe. Solutions have multiple possibilities. 

Q1. Import the file "./data/filtlowabund_scaledcounts_airways.txt" and save to an object named

sc.  Create  a  data  frame  from  sc that  only  includes  the  columns  sample,  cell,  dex, 

transcript, and  counts_scaled and only rows that include the treatment "untrt" and the

transcripts "ACTN1" and "ANAPC4"?

Q1 Solution 

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

sc <- read_delim("../data/filtlowabund_scaledcounts_airways.txt")
## Rows: 127408 Columns: 18
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (11): feature, SampleName, cell, dex, albut, Run, Experiment, Sample, Bi...
## dbl  (6): sample, counts, avgLength, TMM, multiplier, counts_scaled
## lgl  (1): .abundant
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.

## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

cnames <- c('sample', 'cell', 'dex', 'transcript', 'counts_scaled')

sc %>% select(all_of(cnames)) %>% filter(dex == "untrt" & (transcript %in% c("ACTN1","ANAPC4") ))
## # A tibble: 8 × 5
##   sample cell    dex   transcript counts_scaled
##    <dbl> <chr>   <chr> <chr>              <dbl>
## 1    508 N61311  untrt ANAPC4              777.
## 2    508 N61311  untrt ACTN1             14410.
## 3    512 N052611 untrt ANAPC4              786.
## 4    512 N052611 untrt ACTN1             16644.
## 5    516 N080611 untrt ANAPC4              709.
## 6    516 N080611 untrt ACTN1             15805.
## 7    520 N061011 untrt ANAPC4              827.
## 8    520 N061011 untrt ACTN1             16015.
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Q2. Using dexp ("./data/diffexp_results_edger_airways.txt") create a data frame containing the

top 5 differentially expressed genes and save to an object named top5. Top genes in this case

will  have the smallest  FDR corrected p-value and an absolute value of the log fold change

greater than 2. See dplyr::slice(). 

Q3. Filter sc to contain only the top 5 differentially expressed genes. 

Q2 Solution 

dexp<-read_delim("../data/diffexp_results_edger_airways.txt")
## Rows: 15926 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (4): feature, albut, transcript, ref_genome
## dbl (5): logFC, logCPM, F, PValue, FDR
## lgl (1): .abundant
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.

## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

top5<- dexp %>%
dplyr::filter(abs(logFC) > 2) %>%
slice_min(n=5,order_by=FDR, with_ties=FALSE)

top5
## # A tibble: 5 × 10
##   feature      albut transcript ref_genome .abundant logFC logCPM     F   PValue
##   <chr>        <chr> <chr>      <chr>      <lgl>     <dbl>  <dbl> <dbl>    <dbl>
## 1 ENSG0000010… untrt ZBTB16     hg38       TRUE       7.15   4.15 1429. 5.11e-11
## 2 ENSG0000016… untrt CACNB2     hg38       TRUE       3.28   4.51 1575. 3.34e-11
## 3 ENSG0000012… untrt DUSP1      hg38       TRUE       2.94   7.31  694. 1.18e- 9
## 4 ENSG0000014… untrt PRSS35     hg38       TRUE      -2.76   3.91  807. 6.16e-10
## 5 ENSG0000015… untrt SPARCL1    hg38       TRUE       4.56   5.53  721. 1.00e- 9
## # ℹ 1 more variable: FDR <dbl>

Q3 Solution 

sc %>% dplyr::filter(transcript %in% top5$transcript)
## # A tibble: 40 × 18
##    feature sample counts SampleName cell  dex   albut Run   avgLength Experiment
##    <chr>    <dbl>  <dbl> <chr>      <chr> <chr> <chr> <chr>     <dbl> <chr>     
##  1 ENSG00…    508      4 GSM1275862 N613… untrt untrt SRR1…       126 SRX384345 
##  2 ENSG00…    508    665 GSM1275862 N613… untrt untrt SRR1…       126 SRX384345 
##  3 ENSG00…    508    330 GSM1275862 N613… untrt untrt SRR1…       126 SRX384345 
##  4 ENSG00…    508     62 GSM1275862 N613… untrt untrt SRR1…       126 SRX384345 
##  5 ENSG00…    508     80 GSM1275862 N613… untrt untrt SRR1…       126 SRX384345 
##  6 ENSG00…    509    739 GSM1275863 N613… trt   untrt SRR1…       126 SRX384346 
##  7 ENSG00…    509   5020 GSM1275863 N613… trt   untrt SRR1…       126 SRX384346 
##  8 ENSG00…    509     41 GSM1275863 N613… trt   untrt SRR1…       126 SRX384346 
##  9 ENSG00…    509   2040 GSM1275863 N613… trt   untrt SRR1…       126 SRX384346 
## 10 ENSG00…    509    731 GSM1275863 N613… trt   untrt SRR1…       126 SRX384346 
## # ℹ 30 more rows

## # ℹ 8 more variables: Sample <chr>, BioSample <chr>, transcript <chr>,
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Q4. Select only columns of type character from sc. 

Q5. Select all columns from dexp except .abundant and PValue. Keep only rows with FDR

less than or equal to 0.01. 

Q6. Import the file "./data/airway_rawcount.csv". Use the function rename() to rename the first

column. Use the pipe to import and rename successively without intermediate steps or function

nesting. Save to an object named acount. 

## #   ref_genome <chr>, .abundant <lgl>, TMM <dbl>, multiplier <dbl>,
## #   counts_scaled <dbl>

Q4 Solution 

sc %>% select(where(is.character))
## # A tibble: 127,408 × 11
##    feature        SampleName cell  dex   albut Run   Experiment Sample BioSample
##    <chr>          <chr>      <chr> <chr> <chr> <chr> <chr>      <chr>  <chr>    
##  1 ENSG000000000… GSM1275862 N613… untrt untrt SRR1… SRX384345  SRS50… SAMN0242…
##  2 ENSG000000004… GSM1275862 N613… untrt untrt SRR1… SRX384345  SRS50… SAMN0242…
##  3 ENSG000000004… GSM1275862 N613… untrt untrt SRR1… SRX384345  SRS50… SAMN0242…
##  4 ENSG000000004… GSM1275862 N613… untrt untrt SRR1… SRX384345  SRS50… SAMN0242…
##  5 ENSG000000009… GSM1275862 N613… untrt untrt SRR1… SRX384345  SRS50… SAMN0242…
##  6 ENSG000000010… GSM1275862 N613… untrt untrt SRR1… SRX384345  SRS50… SAMN0242…
##  7 ENSG000000010… GSM1275862 N613… untrt untrt SRR1… SRX384345  SRS50… SAMN0242…
##  8 ENSG000000011… GSM1275862 N613… untrt untrt SRR1… SRX384345  SRS50… SAMN0242…
##  9 ENSG000000014… GSM1275862 N613… untrt untrt SRR1… SRX384345  SRS50… SAMN0242…
## 10 ENSG000000014… GSM1275862 N613… untrt untrt SRR1… SRX384345  SRS50… SAMN0242…
## # ℹ 127,398 more rows

## # ℹ 2 more variables: transcript <chr>, ref_genome <chr>

Q5 Solution 

dexp %>% select(-c(.abundant,PValue)) %>% filter(FDR <= 0.01)
## # A tibble: 2,763 × 8
##    feature         albut transcript ref_genome  logFC logCPM     F       FDR
##    <chr>           <chr> <chr>      <chr>       <dbl>  <dbl> <dbl>     <dbl>
##  1 ENSG00000000003 untrt TSPAN6     hg38       -0.390  5.06   32.8 0.00283  
##  2 ENSG00000000971 untrt CFH        hg38        0.417  8.09   29.3 0.00376  
##  3 ENSG00000001167 untrt NFYA       hg38       -0.509  4.13   44.9 0.00126  
##  4 ENSG00000002834 untrt LASP1      hg38        0.388  8.39   22.7 0.00722  
##  5 ENSG00000003096 untrt KLHL13     hg38       -0.949  4.16   84.8 0.000234 
##  6 ENSG00000003402 untrt CFLAR      hg38        1.18   6.90  130.  0.0000800
##  7 ENSG00000003987 untrt MTMR7      hg38        0.993  0.341  24.7 0.00585  
##  8 ENSG00000004059 untrt ARF5       hg38        0.358  5.84   30.9 0.00328  
##  9 ENSG00000004487 untrt KDM1A      hg38       -0.308  5.86   23.5 0.00663  
## 10 ENSG00000004700 untrt RECQL      hg38        0.360  5.60   22.7 0.00721  
## # ℹ 2,753 more rows
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Q7. Use filter on the object acount to keep only genes that had a count greater than 10 in at

least one sample.

Q6 Solution 

acount<-read_csv("../data/airway_rawcount.csv") %>%
dplyr::rename(Feature = ...1)

## New names:
## Rows: 64102 Columns: 9
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (1): ...1 dbl (8): SRR1039508, SRR1039509, SRR1039512, SRR1039513, SRR1039516,
## SRR1039...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ

## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
acount
## # A tibble: 64,102 × 9
##    Feature     SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517
##    <chr>            <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>
##  1 ENSG000000…        679        448        873        408       1138       1047
##  2 ENSG000000…          0          0          0          0          0          0
##  3 ENSG000000…        467        515        621        365        587        799
##  4 ENSG000000…        260        211        263        164        245        331
##  5 ENSG000000…         60         55         40         35         78         63
##  6 ENSG000000…          0          0          2          0          1          0
##  7 ENSG000000…       3251       3679       6177       4252       6721      11027
##  8 ENSG000000…       1433       1062       1733        881       1424       1439
##  9 ENSG000000…        519        380        595        493        820        714
## 10 ENSG000000…        394        236        464        175        658        584
## # ℹ 64,092 more rows

## # ℹ 2 more variables: SRR1039520 <dbl>, SRR1039521 <dbl>

Q7 Solution 

acount %>%
filter(if_any(where(is.numeric), ~.> 10))

## # A tibble: 17,792 × 9
##    Feature     SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517
##    <chr>            <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>
##  1 ENSG000000…        679        448        873        408       1138       1047
##  2 ENSG000000…        467        515        621        365        587        799
##  3 ENSG000000…        260        211        263        164        245        331
##  4 ENSG000000…         60         55         40         35         78         63
##  5 ENSG000000…       3251       3679       6177       4252       6721      11027
##  6 ENSG000000…       1433       1062       1733        881       1424       1439
##  7 ENSG000000…        519        380        595        493        820        714
##  8 ENSG000000…        394        236        464        175        658        584
##  9 ENSG000000…        172        168        264        118        241        210
## 10 ENSG000000…       2112       1867       5137       2657       2735       2751
## # ℹ 17,782 more rows

## # ℹ 2 more variables: SRR1039520 <dbl>, SRR1039521 <dbl>
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Q8. Challenge Question: Filter genes from acount that had a total count less than ten across

all  samples.  Hint:  Use  column_to_rownames and look up  rowSums().  For  an alternative

solution,  check  out  the  docs  from  rowwise  operations (https://dplyr.tidyverse.org/articles/

rowwise.html). 

Q8 Solution 

f_acount<- acount %>% column_to_rownames("Feature") %>% filter(rowSums(.) > 10)

# Alternatively 

f_acount2<- acount %>% filter(rowSums(pick(where(is.numeric))) > 10)
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Group_by, Summarize, Arrange

We will continue with penguins for this exercise. Questions and solutions (Q1-Q3) were taken

from  https://allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize (https://

allisonhorst.shinyapps.io/dplyr-learnr/#section-dplyrgroup_by-summarize). 

First, let's convert penguins to a tibble. 

Q1:  Use  group_by() and  summarize() to  obtain  the  mean  and  standard  deviation  of

penguin bill length, grouped by penguin species and sex.

Q2: Use group_by() and summarize() to prepare a summary table containing the maximum

and minimum flipper length for male Adelie penguins, grouped by island.

penguins <- dplyr::as_tibble(penguins)

Q1: Solution 

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

penguins %>%
group_by(species, sex) %>%
summarize(bill_length_mean = mean(bill_len, na.rm = TRUE),

bill_length_sd = sd(bill_len, na.rm = TRUE))
## `summarise()` has grouped output by 'species'. You can override using the
## `.groups` argument.
## # A tibble: 8 × 4
## # Groups:   species [3]
##   species   sex    bill_length_mean bill_length_sd
##   <fct>     <fct>             <dbl>          <dbl>
## 1 Adelie    female             37.3           2.03
## 2 Adelie    male               40.4           2.28
## 3 Adelie    <NA>               37.8           2.80
## 4 Chinstrap female             46.6           3.11
## 5 Chinstrap male               51.1           1.56
## 6 Gentoo    female             45.6           2.05
## 7 Gentoo    male               49.5           2.72
## 8 Gentoo    <NA>               45.6           1.37
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Q3: Starting with penguins,  create a summary table containing the maximum and minimum

length of flippers (call the columns "flip_max" and "flip_min") for chinstrap penguins, grouped by

island.

Q4. Create a data frame reordering penguins by year, island, and sex. 

Q2: Solution 

penguins %>%
filter(species == "Adelie", sex == "male") %>%
group_by(island) %>%
summarize(flip_max_length = max(flipper_len),

flip_min_length = min(flipper_len))
## # A tibble: 3 × 3
##   island    flip_max_length flip_min_length
##   <fct>               <int>           <int>
## 1 Biscoe                203             180
## 2 Dream                 208             178
## 3 Torgersen             210             181

Q3: Solution 

penguins %>%
filter(species == "Chinstrap") %>%
group_by(island) %>%
summarize(flip_max = max(flipper_len),

flip_min = min(flipper_len))
## # A tibble: 1 × 3
##   island flip_max flip_min
##   <fct>     <int>    <int>
## 1 Dream       212      178
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Q5.  Create  a  data  frame  containing  male  Adelie  penguins  reordered  by  body_mass  in

descending order. 

Q4: Solution 

penguins %>% arrange(year, island, sex)
## # A tibble: 344 × 8
##    species island bill_len bill_dep flipper_len body_mass sex     year
##    <fct>   <fct>     <dbl>    <dbl>       <int>     <int> <fct>  <int>
##  1 Adelie  Biscoe     37.8     18.3         174      3400 female  2007
##  2 Adelie  Biscoe     35.9     19.2         189      3800 female  2007
##  3 Adelie  Biscoe     35.3     18.9         187      3800 female  2007
##  4 Adelie  Biscoe     40.5     17.9         187      3200 female  2007
##  5 Adelie  Biscoe     37.9     18.6         172      3150 female  2007
##  6 Gentoo  Biscoe     46.1     13.2         211      4500 female  2007
##  7 Gentoo  Biscoe     48.7     14.1         210      4450 female  2007
##  8 Gentoo  Biscoe     46.5     13.5         210      4550 female  2007
##  9 Gentoo  Biscoe     45.4     14.6         211      4800 female  2007
## 10 Gentoo  Biscoe     43.3     13.4         209      4400 female  2007
## # ℹ 334 more rows

Q5: Solution 

penguins %>%
filter(species == "Adelie", sex == "male") %>%
arrange(desc(body_mass))

## # A tibble: 73 × 8
##    species island    bill_len bill_dep flipper_len body_mass sex    year
##    <fct>   <fct>        <dbl>    <dbl>       <int>     <int> <fct> <int>
##  1 Adelie  Biscoe        43.2     19           197      4775 male   2009
##  2 Adelie  Biscoe        41       20           203      4725 male   2009
##  3 Adelie  Torgersen     42.9     17.6         196      4700 male   2008
##  4 Adelie  Torgersen     39.2     19.6         195      4675 male   2007
##  5 Adelie  Dream         39.8     19.1         184      4650 male   2007
##  6 Adelie  Dream         39.6     18.8         190      4600 male   2007
##  7 Adelie  Biscoe        45.6     20.3         191      4600 male   2009
##  8 Adelie  Torgersen     42.5     20.7         197      4500 male   2007
##  9 Adelie  Dream         37.5     18.5         199      4475 male   2009
## 10 Adelie  Torgersen     41.8     19.4         198      4450 male   2008
## # ℹ 63 more rows
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Mutate and Wrangle Challenge

Let's grab some data to work with. 

Q1.  Using  mutate  apply  a  base-10  logarithmic  transformation  to  the  numeric  columns  in

acount; add a pseudocount of 1 prior to this transformation. Save the resulting data frame to

an object called log10counts. 

library(tidyverse)
acount_smeta<-read_tsv("../data/countsANDmeta.txt")
acount_smeta

#raw count data
acount<-read_csv("../data/airway_rawcount.csv") %>%
  dplyr::rename("Feature" = "...1")
acount

#differential expression results
dexp<-read_delim("../data/diffexp_results_edger_airways.txt")
dexp

Q1: Solution 

log10counts<- acount %>%
mutate(across(where(is.numeric),~log10(.x+1)))

log10counts
## # A tibble: 64,102 × 9
##    Feature     SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517
##    <chr>            <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>
##  1 ENSG000000…       2.83       2.65      2.94        2.61      3.06        3.02
##  2 ENSG000000…       0          0         0           0         0           0   
##  3 ENSG000000…       2.67       2.71      2.79        2.56      2.77        2.90
##  4 ENSG000000…       2.42       2.33      2.42        2.22      2.39        2.52
##  5 ENSG000000…       1.79       1.75      1.61        1.56      1.90        1.81
##  6 ENSG000000…       0          0         0.477       0         0.301       0   
##  7 ENSG000000…       3.51       3.57      3.79        3.63      3.83        4.04
##  8 ENSG000000…       3.16       3.03      3.24        2.95      3.15        3.16
##  9 ENSG000000…       2.72       2.58      2.78        2.69      2.91        2.85
## 10 ENSG000000…       2.60       2.37      2.67        2.25      2.82        2.77
## # ℹ 64,092 more rows

## # ℹ 2 more variables: SRR1039520 <dbl>, SRR1039521 <dbl>
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Q2. Create a column in dexp called Expression. This column should say "Down-regulated" if

logFC is less than -1 or "Up-regulated" if logFC is greater than 1. All other values should say

"None". 

Challenge question:

Q3.  Calculate  the  mean  raw  counts  for  each  gene  ("Feature")  by  treatment  ("dex")  in

acount_smeta. Combine these results with the differential expression results. Your resulting

data frame should resemble the following: 

Q2: Solution 

dexp_new<-dexp %>%
mutate(Expression=case_when(logFC < -1 ~ "Down-regulated",

logFC > 1 ~ "Up-regulated",
.default = "None")

)

# A tibble: 15,926 × 12
   Feature         Mean_Counts_trt Mean_Counts_untrt albut transcript ref_genome
   <chr>                     <dbl>             <dbl> <chr> <chr>      <chr>     
 1 ENSG00000000003           619.              865   untrt TSPAN6     hg38      
 2 ENSG00000000419           547.              523   untrt DPM1       hg38      
 3 ENSG00000000457           234.              250.  untrt SCYL3      hg38      
 4 ENSG00000000460            53.2              63.5 untrt C1orf112   hg38      
 5 ENSG00000000971          6738.             5331.  untrt CFH        hg38      
 6 ENSG00000001036          1123.             1487.  untrt FUCA2      hg38      
 7 ENSG00000001084           573.              658.  untrt GCLC       hg38      
 8 ENSG00000001167           316               469   untrt NFYA       hg38      
 9 ENSG00000001460           168.              208   untrt STPG1      hg38      
10 ENSG00000001461          2545              3113.  untrt NIPAL3     hg38      
# ℹ 15,916 more rows

# ℹ 6 more variables: .abundant <lgl>, logFC <dbl>, logCPM <dbl>, F <dbl>,

#   PValue <dbl>, FDR <dbl>

Rows: 15,926
Columns: 12
$ Feature           <chr> "ENSG00000000003", "ENSG00000000419", "ENSG000000004…
$ Mean_Counts_trt   <dbl> 618.75, 546.75, 233.75, 53.25, 6738.25, 1122.75, 572…
$ Mean_Counts_untrt <dbl> 865.00, 523.00, 250.25, 63.50, 5331.25, 1487.25, 657…
$ albut             <chr> "untrt", "untrt", "untrt", "untrt", "untrt", "untrt"…
$ transcript        <chr> "TSPAN6", "DPM1", "SCYL3", "C1orf112", "CFH", "FUCA2…
$ ref_genome        <chr> "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "hg3…
$ .abundant         <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE…
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Q4. If you are interested in practicing data wrangling further, try this wrangling challenge

(https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/Lesson8/#wrangling-a-

realistic-dataset).

$ logFC             <dbl> -0.390100222, 0.197802179, 0.029160865, -0.124382022…
$ logCPM            <dbl> 5.059704, 4.611483, 3.482462, 1.473375, 8.089146, 5.…
$ F                 <dbl> 3.284948e+01, 6.903534e+00, 9.685073e-02, 3.772134e-…
$ PValue            <dbl> 0.0003117656, 0.0280616149, 0.7629129276, 0.55469563…
$ FDR               <dbl> 0.002831504, 0.077013489, 0.844247837, 0.682326613, …

Q3: Solution 

a<-acount_smeta %>%
group_by(dex, Feature) %>%
summarise(mean_count = mean(Count)) %>%
pivot_wider(names_from=dex,values_from=mean_count,

names_prefix="Mean_Counts_") %>%
right_join(dexp, by=c("Feature" = "feature"))

## `summarise()` has grouped output by 'dex'. You can override using the `.groups`
## argument.
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Lesson 1 Exercise Questions: ggplot2

basics

These  exercise  questions  should  be  attempted  after  completing  Lesson  1:  Introduction  to

ggplot2 for R Data Visualization. 

Q1: What geoms would you use to draw each of the following named plots?

a. Scatterplot  

b. Line chart   

c. Histogram   

d. Bar chart   

e. Pie chart

(Question taken from  https://ggplot2-book.org/individual-geoms.html (https://ggplot2-book.org/

individual-geoms.html).) 

Q2.  We will use the  mpg data set for the remainder of the questions. Use  ?mpg to learn

more about these data. Visualize highway miles per gallon (hwy) by the class of car using a

box plot. 

Q1: Solution

a. geom_point

b. geom_line

c. geom_histogram

d. geom_bar

c. geom_bar with coord_polar 



Q2: Solution 

library(ggplot2)

ggplot(mpg)+
geom_boxplot(aes(class,hwy))
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Q3. Using the plot from Q2, fill each box with color by class. 

Q3: Solution 

ggplot(mpg)+
geom_boxplot(aes(class,hwy,fill=class))
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Q4. Challenge Question: Using the plot from Q3, reorder the boxes by the median of hwy. Hint:

See fct_reorder() from forcats.

Q4: Solution 

library(forcats)
ggplot(mpg)+

geom_boxplot(aes(fct_reorder(factor(class),hwy,median),hwy,fill=class))
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Q5. Visualize highway miles per gallon (hwy) by the class of car using a violin plot. 

Q5: Solution 

ggplot(mpg)+
geom_violin(aes(class,hwy))

247 Lesson 1 Exercise Questions: ggplot2 basics

Bioinformatics Training and Education Program



Q6. Visualize a cars engine size in liters (displ) versus fuel efficiency on the hwy (hwy) using a

scatter plot. 

Q6: Solution 

ggplot(mpg) +
geom_point(aes(displ,hwy))
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Q7. Using the plot generated in Q6, fit a smooth line (loess) to the data. Color the points by car

class. 

Q7: Solution 

ggplot(mpg) +
geom_point(aes(displ,hwy,color=class))+
geom_smooth(aes(displ,hwy))

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
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Q8.  Visualize  a  histogram  of  hwy and  facet  by  year.  What  is  bindwidith  (See  ?

geom_histogram)? Explore the binwidth and color the bars red with a black outline. 

Q8: Solution 

ggplot(mpg)+
geom_histogram(aes(hwy),fill="red",color="black", binwidth=5) +
facet_wrap(~year)
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Lesson 2 Exercise Questions: ggplot2 Plot

Customization

This document contains practice questions on plot customization using ggplot2. 

All questions use datasets available in base R or in ggplot2. Suggested workflow for students: 

Attempt each question in your own script or console.

Only then consult the provided solution code. 

Start by loading ggplot2. 

Q1. Using the mtcars dataset, create the following scatter plot: 

Set the x-axis to hp and the y-axis to mpg. 

Map cyl to color and am to shape. 

Increase point size and add a smoothed line (loess) in a different color, without a

confidence band.

Customize the following: 

Make axes labels more informative (e.g., “Horsepower (HP)”). 

Add a plot title (e.g., "Fuel Efficiency vs Horsepower in Motor Cars"). 

Set a minimal theme with a customized base font size = 14. 

1. 

2. 

Note

While one solution is provided per answer, multiple solutions are possible. 

if (!requireNamespace("ggplot2", quietly = TRUE)) install.packages("ggplot2")

library(ggplot2)

• 

• 

• 

• 

◦ 

◦ 

◦ 

Q1: Solution 

ggplot(mtcars, aes(x = hp, y = mpg)) +
geom_point(aes(color = factor(cyl),

shape = factor(am)), size = 3) +
geom_smooth(se = FALSE, method = "loess", color = "black") +
labs(

x = "Horsepower (HP)",
y = "Fuel efficiency (mpg)",
color = "Cylinders",
shape = "Transmission (0 = auto, 1 = manual)",
title = "Fuel Efficiency vs Horsepower in Motor Cars",
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Q2: Using diamonds from ggplot2: 

Create a scatter plot of carat (x-axis) and price (y-axis); set the general transparency

of the points to 0.3. 

Apply a log10 transformation to the y-axis, maintaining the original units on the axis (See

?scale_y_log10()). 

Limit the x-axis to carats between 0.2 and 2.5. 

Clean up the labels and add a title. 

) +
theme_minimal(base_size = 14)

• 

• 

• 

• 

Q2: Solution 

ggplot(diamonds, aes(x = carat, y = price)) +
geom_point(alpha = 0.3) +
scale_y_log10() +
scale_x_continuous(limits = c(0.2, 2.5))+
labs(

title = "Diamond price vs carat",
x = "Carat",
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Q3: Using ggplot2::mpg, create a scatterplot of displ on the x-axis and hwy on the y-axis. 

Color points by class. 

Facet the plot by drv (front, rear, 4-wheel drive). 

Customize the facet labels using a labeller to replace drv values with more

descriptive labels (e.g., "Four-wheel drive", "Front-wheel drive", and "Rear-wheel drive"). 

Arrange the facets in a single row. 

Rotate the x-axis text by 45 degrees and right-align it. 

y = "Price (log10 scale)"
)

• 

• 

• 

• 

• 

Q3: Solution 

drv_labels <- c(
"4" = "Four-wheel drive",
"f" = "Front-wheel drive",
"r" = "Rear-wheel drive"

)

ggplot(mpg, aes(x = displ, y = hwy, color = class)) +
geom_point(alpha = 0.7) +
facet_wrap(~ drv, nrow = 1,
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Q4. Using ToothGrowth:

Convert dose to a factor.

Plot len (tooth length) vs dose, with:

dose on the x-axis.

Points colored by supp and shape also mapped to supp.

Customize the plot:

Use scale_color_manual() and scale_shape_manual() to assign specific

colors and shapes to each supplement type.

Combine color and shape into a single legend with a custom title “Supplement

type”.

Remove the legend background and legend key borders.

labeller = labeller(drv = drv_labels)) +
theme(

axis.text.x = element_text(angle = 45, hjust = 1)
)

• 

• 

◦ 

◦ 

• 

◦ 

◦ 

◦ 

Q4: Solution 

ToothGrowth$dose <- factor(ToothGrowth$dose)
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ggplot(ToothGrowth,
aes(x = dose, y = len,

color = supp, shape = supp)) +
geom_point(size = 3, position = position_jitter(width = 0.05, height = 0)) +
scale_color_manual(

name = "Supplement type",
values = c("OJ" = "#1b9e77", "VC" = "#d95f02")

) +
scale_shape_manual(

name = "Supplement type",
values = c("OJ" = 16, "VC" = 17)

) +
labs(

title = "Tooth length by dose and supplement type",
x = "Dose (mg)",
y = "Tooth length"

) +
theme_minimal(base_size = 13) +
theme(

legend.background = element_blank(),
legend.key = element_blank(),
legend.position = "right"

)
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Q5: Using ggplot2::economics:

Create a line plot of date on the x-axis and unemploy (number unemployed) on the y-

axis.

Add:

A vertical line at a chosen date ( lubrdiate::as_date("2000-01-01"))

using geom_vline().

A text annotation near that line describing the event (See annotate()).

Customize the plot:

Change the line color and size (within geom_line()).

Use a clean theme.

Adjust x-axis date breaks and labels (e.g., show ticks every 5 years).

• 

• 

◦ 

◦ 

• 

◦ 

◦ 

◦ 

Q5: Solution 

library(lubridate)
marker_date <- lubridate::as_date("2000-01-01")

ggplot(economics, aes(x = date, y = unemploy)) +
geom_line(color = "steelblue", linewidth = 1) +
geom_vline(xintercept = marker_date,

linetype = "dashed",
color = "red") +

annotate("text",
x = marker_date,
y = max(economics$unemploy) * 0.7,
label = "Marker date",
color = "red",
angle = 90,
vjust = -0.5) +

scale_x_date(date_breaks = "5 years", date_labels = "%Y") +
labs(

title = "US Unemployment Over Time",
x = "Year",
y = "Number unemployed"

) +
theme_minimal(base_size = 13)
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Q6. Using any plot you created above (for example, the mtcars plot from Question 1):

Save the plot object to a variable, e.g., p.

Use ggsave() to:

Export the plot as a PNG file.

Specify a custom width and height in inches.

Set a suitable DPI (e.g., 300).

• 

• 

◦ 

◦ 

◦ 

Q6: Solution 

# Create the plot and assign to p
p <- ggplot(mtcars, aes(x = hp, y = mpg)) +

geom_point(aes(color = factor(cyl),
shape = factor(am)), size = 3) +

geom_smooth(se = FALSE, method = "loess", color = "black") +
labs(

x = "Horsepower (HP)",
y = "Fuel efficiency (mpg)",
color = "Cylinders",
shape = "Transmission (0 = auto, 1 = manual)",
title = "Fuel Efficiency vs Horsepower in Motor Cars",

) +
theme_minimal(base_size = 14)
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# Save as high-resolution PNG
ggsave(

filename = "mtcars_mpg_hp.png",
plot = p,
width = 6, # inches
height = 4, # inches
dpi = 300

)
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Lesson 3 Exercise Questions: Building a

Publication Quality Plot

Putting what we have learned to the test:

The following questions synthesize several of the skills you have learned thus far. It may not be

immediately apparent how you would go about answering these questions. Remember, the R

community is expansive, and there are a number of ways to get help including but not limited to

google search. These questions have multiple solutions, but you should try to stick to the tools

you have learned to use thus far. 

Your mission is to make a publishable figure. 

We will use the iris data set for this. 

Start by loading ggplot2. 

Q1.  Start  by  creating  a  scatter  plot  of  iris with  Petal.Length on  the  x-axis  and

Petal.Width on the y-axis. Color the points by Species. 

if (!requireNamespace("ggplot2", quietly = TRUE)) install.packages("ggplot2")

library(ggplot2)

Q1: Solution 

ggplot(iris)+
geom_point(aes(Petal.Length,Petal.Width,color=Species))
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Q2.  Fix  the  axes  so  that  the  dimensions  on  the  x-axis  and  the  y-axis  are  equal  (See  ?

coord_fixed). Both axes should start at 0. Label the axis breaks every 0.5 units on the y-axis

and every 1.0 units on the x-axis. 

Q2: Solution 

ggplot(iris)+
geom_point(aes(Petal.Length,Petal.Width,color=Species))+
coord_fixed(ratio=1,ylim=c(0,2.75),xlim=c(0,7)) +
scale_y_continuous(breaks=seq(0,2.5, by=0.5)) +
scale_x_continuous(breaks=0:7)
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Q3. Assign a color blind friendly palette to the color of the points, and change the legend title to

"Iris Species". Label the x and y axes to make the variable names visually appealing; include

unit information. 

Q3: Solution 

#multiple ways to find color blind friendly palettes. 
#using color brewer scales 
RColorBrewer::display.brewer.all(colorblindFriendly=TRUE)
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ggplot(iris)+
geom_point(aes(Petal.Length,Petal.Width,color=Species))+
coord_fixed(ratio=1,ylim=c(0,2.75),xlim=c(0,7)) +
scale_y_continuous(breaks=seq(0,2.5, by=0.5)) +
scale_x_continuous(breaks=0:7) +
scale_color_brewer(palette = "Dark2",name="Iris Species") +
labs(x="Petal Length (cm)", y= "Petal Width (cm)")
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Q4. Play with the theme to make your plot nicer and more publishable. Change font style to

"Times". Change all font sizes to 12 pt font. Bold the legend title and the axes titles. Increase the

size of the points on the plot to 2. Bonus: fill the points with color and have a black outline

around each point.

Q4: Solution 

ggplot(iris)+
geom_point(aes(Petal.Length,Petal.Width,fill=Species),size=2,shape=21)+
coord_fixed(ratio=1,ylim=c(0,2.75),xlim=c(0,7)) +
scale_y_continuous(breaks=seq(0,2.5, by=0.5)) +
scale_x_continuous(breaks=0:7) +
scale_fill_brewer(palette = "Dark2",name="Iris Species") +
labs(x="Petal Length (cm)", y= "Petal Width (cm)") +
theme_bw()+
theme(axis.text=element_text(family="Times",size=12),

axis.title=element_text(family="Times",face="bold",size=12),
legend.text=element_text(family="Times",size=12),
legend.title = (element_text(family="Times",face="bold",size=12))
)
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Q5. Save your plot using ggsave. 

Q5: Solution 

ggsave("iris.tiff", width=5.5, height=3.5,units="in")
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Lesson 4 Exercise Questions: ggplot2

This exercise questions are meant to test your learning following Lesson 4: Recommendations

and Tips for Creating Effective Plots with ggplot2. To approach these questions, you will need to

understand how to find help. 

Start by loading ggplot2 and patchwork. 

Q1. Write a function plot_mpg_by_cyl(df) that plots a box plot of  mpg vs  cyl colored by

gear. Test on mtcars. 

if (!requireNamespace("ggplot2", quietly = TRUE)) install.packages("ggplot2")
if (!requireNamespace("patchwork", quietly = TRUE)) install.packages("patchwork")

library(ggplot2)
library(patchwork)

Q1: Solution 

plot_mpg_by_cyl <- function(df) {
ggplot(df) +

geom_boxplot(aes(x = factor(cyl), y = mpg, fill = factor(gear))) +
labs(x = "cyl", y = "mpg", color = "gear") +
theme_minimal()

}

plot_mpg_by_cyl(mtcars)
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Q2.  Write  scatter_plot(df, x, y, color) that  creates  a  scatter  plot  using  column

names for x, y, and color. Test on iris with Sepal.Length, Petal.Length, Species.

Q2: Solution 

scatter_plot <- function(df, x, y, color) {
ggplot(df) +

geom_point(aes(x = {{x}}, y = {{y}}, color = {{color}})) +
theme_minimal()

}

scatter_plot(iris, Sepal.Length, Petal.Length, Species)
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Q3.  Write  facet_histogram(df, variable, facet_by, bins = 30) that  draws  a

histogram of a numeric variable and facet_wraps by facet_by. The function should also

accept a bins argument. Test on diamonds with price by cut.

Q3: Solution 

facet_histogram <- function(df, variable, facet_by, bins = 30) {
ggplot(df) +

geom_histogram(aes(x = {{variable}}), bins = bins,
color = "white") +
facet_wrap(vars({{facet_by}})) +
labs(x= stringr::str_to_sentence(rlang::englue("{{variable}}")),
y = "Count") +
theme_minimal()

}

facet_histogram(ggplot2::diamonds, price, cut, bins = 40)
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Q4. Challenge Question:  Define a function  plot_relationship(df, x, y, method =

"point") that:

uses geom_point() when method = "point", 

uses geom_point() and geom_smooth() when method = "smooth", 

includes a custom theme_minimal() and title using rlang::englue(). 

Test on mpg with both methods to compare relationships between displ and hwy.

• 

• 

• 

Q4: Solution 

plot_relationship <- function(df, x, y, method = "point") {
label <- rlang::englue("Relationship: {{x}} vs {{y}}")
base <- ggplot(df, aes(x = {{x}}, y = {{y}})) +

geom_point(alpha = 0.8) +
labs(title = label) +
theme_minimal(base_size = 12)

if (method == "point") {
base

} else if (method == "smooth") {
base + geom_smooth(se = TRUE)

} else {
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Method = "point":

Method = "smooth":

stop("method must be 'point' or 'smooth'")
}

}

# Examples using mpg
p4_point <- plot_relationship(mpg, displ, hwy, method = "point")
p4_smooth <- plot_relationship(mpg, displ, hwy, method = "smooth")
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Q5. Using mpg, build two scatter plots: 

p1 - plot displ on the x-axis and hwy on the y-axis 

p2 - plot cty on the x-axis and hwy on the y-axis 

Include the complete theme,  theme_minimal().  Stack the plots vertically  and horizontally

using patchwork. 

• 

• 

Q5: Solution 

p1 <- ggplot(mpg) +
geom_point(aes(displ, hwy)) + theme_minimal()

p2 <- ggplot(mpg) +
geom_point(aes(cty, hwy)) + theme_minimal()

#vertically
p1 / p2

#horizontally
p1 | p2
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Vertical:

Horizontal:
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Q6.  With  the  built-in  data  set  economics,  make  3  line  plots  using  geom_line() and

theme_minimal(): 

p1 - plot date on the x-axis and unemploy on the y-axis. Include a plot title (title =

"Unemployment"). 

p2 - plot date on the x-axis and psavert on the y-axis. Include a plot title (title =

"Personal Saving Rate"). 

p3 - plot date on the x-axis and pop on the y-axis. Include a plot title (title =

"Population"). 

Arrange the plots using patchwork. p1 should be on the top (row 1), and p2 and p3 should be

oriented horizontally on the bottom (row 2). 

• 

• 

• 

Q6: Solution 

p1 <- ggplot(economics) +
geom_line(aes(date, unemploy)) + labs(title = "Unemployment") + theme_minimal()

p2 <- ggplot(economics) +
geom_line(aes(date, psavert)) + labs(title = "Personal Saving Rate") + theme_minimal()

p3 <- ggplot(economics) +
geom_line(aes(date, pop)) + labs(title = "Population") + theme_minimal()
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Q7. Using mtcars, create two plots: 

a - a scatter plot with hp on the x-axis and mpg on the y-axis 

b - a smooth plot with hp on the x-axis and mpg on the y-axis.

Combine  the  plots  in  a  horizontal  orientation  (1  row,  2  columns)  using  patchwork.  Use

plot_annotation() to include a shared title. 

(p1 / (p2 | p3))

• 

• 

Q7: Solution 

a <- ggplot(mtcars) +
geom_point(aes(hp, mpg)) + theme_minimal()

b <- ggplot(mtcars) +
geom_smooth(aes(hp, mpg),se = TRUE) + theme_minimal()

(a | b) + plot_annotation(title = "MPG vs HP: Two Views")
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Q8.  Write  a  function,  compare_two_vars(df,  x,  y,  group) that  makes  two  plots

combined with patchwork.

p1 - create a scatter plot taking two arguments, x and y, and color set to group, 

p2 makes a boxplot of y by group, - combines them side-by-side with patchwork.

Test on iris with Sepal.Width (x), Petal.Width (y), grouped by Species.

• 

• 

Q8: Solution 

compare_two_vars <- function(df, x, y, group) {
p1 <- ggplot(df) +

geom_point(aes(x = {{x}}, y = {{y}}, color = {{group}})) +
theme_minimal() +
theme(legend.position = "none")

p2 <- ggplot(df) +
geom_boxplot(aes(x = {{group}}, y = {{y}}, fill = {{group}})) +
theme_minimal()

p1 | p2
}
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compare_two_vars(iris, Sepal.Width, Petal.Width, Species)
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Additional Resources

Books and / or Book Chapters of Interest

R for Data Science (https://r4ds.hadley.nz/)

Hands-on Programming with R (https://rstudio-education.github.io/hopr/)

Statistical Inference via Data Science: A ModernDive into R and the Tidyverse (https://

moderndive.com/v2/preface.html#about-the-bookl)

The R Graphics Cookbook (https://r-graphics.org/index.html)

ggplot2: Elegant Graphics for Data Analysis (https://ggplot2-book.org/index.html)

Advanced R (https://adv-r.hadley.nz/)

YaRrr! The Pirate’s Guide to R (https://bookdown.org/ndphillips/YaRrr/)

R Cheat Sheets

Cheat sheets can be accessed directly using the Help tab within RStudio (Help > Cheat Sheets

> Browse Cheat Sheets). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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Other Resources

The R Graph Gallery (https://www.r-graph-gallery.com/)

From Data to Viz (https://www.data-to-viz.com/)

RMarkdown from RStudio (https://rmarkdown.rstudio.com/lesson-1.html)

Quarto for R (https://quarto.org/docs/computations/r.html)

Ten simple rules for teaching yourself R, Lawlor et al. 2022, PLoS Comput Biol (https://

www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/)

Learn R (https://www.learn-r.org/)

Dplyr Learn R tutorial (https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome)

1. 

2. 

3. 

4. 

5. 

6. 

7. 
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