
Toward Reproducibility

with R on Biowulf

Alexandra L Emmons, PhD & Joe Wu, PhD

BTEP/GAU/CCR/NCI/NIH - email ncibtep@mail.nih.gov

Bioinformatics Training and Education Program

6

6

6

6

6

6

7

7

8

8

8

8

9

10

10

10

11

11

11

11

Table of Contents

Course Overview

• Course Overview

• Welcome to Toward Reproducibility with R on Biowulf

• Course Expectations

• Course topics

• Lesson 1: Introduction to Biowulf, Unix, and R

• Lesson 2: Getting Started with R on Biowulf

• Lesson 3: R Project Management and renv

• Lesson 4: Submitting R Scripts via command line

Lesson 1: Introduction to Biowulf, Unix, and R

• Lesson 1: Introduction to Biowulf, Unix, and R

• Learning Objectives

• Why use R for bioinformatics?

• What is Bioconductor?

• What is Biowulf, and why use R on Biowulf?

• Getting a Biowulf account

• NIH HPC Documentation

• Additional help

• Unix Refresher

• How much Unix do I need to know to work on Biowulf?

• Accessing your local terminal or command prompt

• Mac OS

11

12

12

12

12

13

13

13

13

13

14

14

14

14

14

14

15

15

15

16

16

16

16

17

17

17

18

18

• Windows 10 or greater

• Unix commands to know

• Navigating the file system

• File management

• Obtaining help

• Useful information

• File download

• Remote connection

• Biowulf

• Modules on Biowulf

• Resources for learning Unix

• Learning Unix: Classes / Courses

• Additional useful Unix resources

• R Refresher

• Navigating directories

• Getting help

• Installing and loading packages

• Commenting

• Assignment operators

• Object naming conventions

• Object data types

• Importing and exporting data

• Using functions

• Vectors

• Lists

• Data frames

• Plotting

• Getting info on R Session

18

18

18

18

19

19

20

20

20

21

22

23

23

23

24

25

25

25

26

• Resources for learning R

• BTEP courses

• Test your Knowledge

• Are your Unix skills satisfactory?

• Are your R skills ready?

• Do you need a Biowulf refresher?

Lesson 2: Getting Started with R on Biowulf

• Lesson 2: Getting Started with R on Biowulf

• Learning objectives

• Deploying R on Biowulf

• Connect to Biowulf (Hands-on)

• Getting started with R

• Loading modules

• Setting up local libraries

• Open R and check your library path.

• Next time

Lesson 3: R Project Management and renv

• Lesson 3: R Project Management and renv

• Learning objectives

• What is the 2023 NIH Data Management and Sharing Policy?

• How can we make our R analyses more reproducible?

28

28

28

29

29

30

30

31

31

32

33

34

35

35

36

36

36

37

38

39

40

40

40

41

• R Project Management and renv

• Introducing renv (reproducible environments)

• Main functions

• Getting Started: Setting up our R Project

• Connect to Biowulf, obtain an interactive session, load R

• Set up an R project

• Create the R project

• Initialize and activate renv in the project

• Cache directory set-up

• Run renv::init()

• Establish a consistent project structure

• Test it

• Next Lesson

• Acknowledgements

Lesson 4: Submitting R Scripts via command line

• Lesson 4: Submitting R Scripts via command line

• Learning Objectives

• Example scripts

• Running R from command line

• Adding command line arguments

• Rendering Rmarkdown files from command line

• Using sbatch

• Default allocations for an sbatch job include:

• More about sbatch

• Submitting the R script as a job using sbatch.

42

42

42

43

46

46

46

• Using swarm

• Rswarm

• Parallelizing code

• Need help running your R code on Biowulf?

Additional Resources

Additional Resources

• HPC Biowulf Resources

• Other Resources

Course Overview

Welcome to Toward Reproducibility with R on

Biowulf

This course includes a series of four lessons designed for beginner to intermediate R users

interested in working with R on Biowulf. The purpose of this course is to introduce the various

ways to use R on Biowulf, while emphasizing reproducible practices such as project

organization and R package dependency management. This course is not designed for

advanced R users.

Course Expectations

This course will include a series of four, 1-hour lessons taught over four weeks. Lessons will be

on Thursdays at 1 PM.

Course participants should have beginner level knowledge of working on the Unix command

line, Biowulf, and R. While Lesson 1 will provide a refresher in these areas, this course is not

recommended for novices.

Course topics

Lesson 1: Introduction to Biowulf, Unix, and R

Lesson 1 will serve as a course introduction and refresher on Unix, Biowulf, and R.

Lesson 2: Getting Started with R on Biowulf

In Lesson 2, partipants will learn about ways to use R on Biowulf. The focus will be on

interactively working with R on Biowulf. Two different ways of accessing RStudio will be

demonstrated. In addition, there will be a discussion on R modules and setting up custom R

libraries.

Biowulf account required

In order to follow along with course lessons, participants are expected to have a Biowulf account. Instructions for

obtaining an account can be found here (https://hpc.nih.gov/docs/accounts.html). If you have an account but it has

been inactive for more than 60 days, you will need to unlock your account. See instructions to unlock your account

here (https://hpc.nih.gov/docs/how_to.html). Email us at ncibtep@nih.gov (mailto:ncibtep@nih.gov) if you experience

any issues.

6 Course Overview

Bioinformatics Training and Education Program

https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/how_to.html
https://hpc.nih.gov/docs/how_to.html
mailto:ncibtep@nih.gov
mailto:ncibtep@nih.gov
L1_Intro_to_HPC/
L2_GettingStarted/

Lesson 3: R Project Management and renv

Lesson 3 will focus on enhancing reproducibility as you get started using R. In particular,

participants will learn how to set up and organize an R project and use the renv package for R

dependency management.

Lesson 4: Submitting R Scripts via command line

Lesson 4 will focus on using R from the command line and submitting R scripts using sbatch

on Biowulf. There will also be a brief discussion on paralellizing R code.

7 Course Overview

Bioinformatics Training and Education Program

L3_PackageManagement/
L4_RScript_sbatch_1/

Lesson 1: Introduction to Biowulf, Unix, and

R

Learning Objectives

Learn about why you may want to use R on Biowulf.

Refresh Unix and R skills.

This lesson will not be hands on.

Why use R for bioinformatics?

R is both a computational language and environment for statitical computing and graphics. It is

open-source and widely used, not just by bioinformaticians. R is a particularly great resource for

statistical analysis, plotting, and report generation, and it has become a powerhouse for

biological assay data analysis (e.g., RNA-Seq, sc-RNAseq, ChIP-seq, population genomics).

Package repositories like Bioconductor have influenced the rise of R programming in the -omics

fields.

What is Bioconductor?

Bioconductor is an R package repository for free open-source software that "facilitates rigorous

and reproducible analysis of data from current and emerging biological assays" (https://

www.bioconductor.org/). Bioconductor is released semi-annually, with two working

Bioconductor releases per every release of R. Packages in Bioconductor undergo rigorous

testing to ensure the interoperability of included software.

1.

2.

8 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.bioconductor.org/

Bioconductor not only provides methodologically based software packages, packages focused

on offering new methods for the analysis of specific data types, but also software focused on

core infrastructure. Package developers are encouraged to use existing Bioconductor

infrastructure, for the storage and accession of data, to increase the usability of packages by

minimizing the time spent learning new data structures for different workflows. This emphasis on

common infrastructure classes makes the use of Bioconductor software scalable to emerging

data types and methods. Developers can build off of existing infrastructure and methods to

rapidly deploy new packages with technological advancements in the molecular sciences.

Beyond software, Bioconductor offers other types of packages including those that focus on

annotation, providing access to well known databases such as Entrez genes, Ensembl, UCSC,

the Gene Ontology Consortium, KEGG, etc. In addtiion, there are experimental data packages

that provide datasets for package validation or package tutorials, and workflow packages

focused on combining aspects of multiple Bioconductor packages to complete a particular type

of analysis.

The latest version of Bioconductor (v 3.17, compatible with R v.4.3) includes 2,230 software

packages, 419 experiment data packages, 912 annotation packages, 27 workflows, and 3

books. The Bioconductor project strives to "further scientific understanding" through extensive

documentation and training opportunities. Each package includes one or more quality vignettes

outlining the use of included functions.

What is Biowulf, and why use R on Biowulf?

Biological datasets can be massive. Often our local computers (laptops, desktops) do not have

the storage space or computational power to analyze these datasets. Biowulf is the NIH high

performance compute cluster. It has greater than 90k processors, and can easily perform large

numbers of simultaneous jobs. Biowulf also includes greater than 600 preinstalled scientific

software and databases.

You should use Biowulf when: software is unavailable or difficult to install on your local

computer and is available on Biowulf, you are working with large amounts of data that can be

parallelized to shorten computational time, or you are performing computational tasks that are

memory intensive.

Many of the initial data processing steps for most data types will be performed with unix-based

bioinformatics software, often requiring one to use Biowulf, especially in the case of Window's

users. Users may want to further analyze data output from these inital workflows, which can still

include "large data", using Bioconductor or other R packages. Instead of transferring data from

Biowulf to your local computer, it may be easier to use R directly on Biowulf compute nodes.

Warning

Never run computational tasks on the login node. Computational tasks on Biowulf should be submitted as a job

(sbatch, swarm) or run through an interactive session (sinteractive).

9 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

Getting a Biowulf account

If you do not already have a Biowulf account, you can obtain one by following the instructions

here (https://hpc.nih.gov/docs/accounts.html) . NIH HPC accounts are available to all NIH

employees and contractors listed in the NIH Enterprise Directory. Obtaining an account requires

PI approval and a nominal fee of $35 per month. Accounts are renewed annually contigent

upon PI approval.

When you apply for a Biowulf account you will be issued two primary storage spaces:

/home/$USER (16 GB)

/data/$USER (100 GB)

You may request more space in /data/$USER by filing an online storage request (https://

hpcnihapps.cit.nih.gov/auth/dashboard/storage_request.php).

NIH HPC Documentation

The NIH HPC systems are well-documented at hpc.nih.gov (https://hpc.nih.gov/) . The User

guides (https://hpc.nih.gov/docs/user_guides.html) , Training documentation (https://

hpc.nih.gov/training/), and How To (https://hpc.nih.gov/docs/how_to.html) docs are fantastic

resources for getting help with most HPC tasks.

Additional help

Contact staff@hpc.nih.gov (mailto:staff@hpc.nih.gov)

The HPC team welcomes questions and is happy to offer guidance to address your

concerns.

Monthly Zoom consult sessions

The HPC team offers montly zoom consult sessions. []"All problems and concerns are

welcome, from scripting problems to node allocation, to strategies for a particular project,

to anything that is affecting your use of the HPC systems. The Zoom details are emailed

to all Biowulf users the week of the consult."](https://hpc.nih.gov/training/){target=_blank}

Bioinformatics Training and Education Program

BTEP is here to help with all training needs. We are happy to help you get started with

Biowulf and begin analyzing your data. If you experience any difficulties or challenges,

especially with different bioinformatics applications, please do not hesitate to email us

(mailto:ncibtep@nih.gov).

Danger

Do not put data with PII (personally identifiable information), patient data for example, on Biowulf.

•

•

•

10 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

https://hpc.nih.gov/docs/accounts.html
https://hpc.nih.gov/docs/accounts.html
https://hpcnihapps.cit.nih.gov/auth/dashboard/storage_request.php
https://hpcnihapps.cit.nih.gov/auth/dashboard/storage_request.php
https://hpcnihapps.cit.nih.gov/auth/dashboard/storage_request.php
https://hpcnihapps.cit.nih.gov/auth/dashboard/storage_request.php
https://hpc.nih.gov/
https://hpc.nih.gov/
https://hpc.nih.gov/docs/user_guides.html
https://hpc.nih.gov/docs/user_guides.html
https://hpc.nih.gov/docs/user_guides.html
https://hpc.nih.gov/training/
https://hpc.nih.gov/training/
https://hpc.nih.gov/training/
https://hpc.nih.gov/training/
https://hpc.nih.gov/docs/how_to.html
https://hpc.nih.gov/docs/how_to.html
mailto:staff@hpc.nih.gov
mailto:staff@hpc.nih.gov
mailto:ncibtep@nih.gov
mailto:ncibtep@nih.gov
mailto:ncibtep@nih.gov
mailto:ncibtep@nih.gov

Unix Refresher

Biowulf computational nodes use a Unix-like (Linux) operating system (distributions RHEL8/

Rocky8). Unix is a proprietary operating system like Windows or MacOS (Unix based). There

are many Unix and Unix-like operating systems, including open source Linux and its multiple

distributions. Biowulf requires knowledge and use of the command line interface (shell) to direct

computational functionality. To work on the command line we need to be able to issue Unix

commands to tell the computer what we want it to do.

A basic foundation of Unix is advantageous for most scientists, as many bioinformatics open-

source tools are available or accessible by command line on Unix-like systems.

How much Unix do I need to know to work on Biowulf?

As with any language, the learning curve for Unix can be quite steep. However, to work on

Biowulf you really need to understand the following:

Directory navigation: what the directory tree is, how to navigate and move

around with cd

Absolute and relative paths: how to access files located in directories

What simple Unix commands do: ls, mv, rm, mkdir, cat, man

Getting help: how to find out more on what a unix command does

What are “flags”: how to customize typical unix programs ls vs ls -l

Shell redirection: what is the standard input and output, how to “pipe” or

redirect the output of one program into the input of the other --- Biostar

Handbook (https://www.biostarhandbook.com/introduction-to-unix.html)

Accessing your local terminal or command prompt

Mac OS

Type cmd + spacebar and search for "terminal". Once open, right click on the app logo

in the dock. Select Options and Keep in Dock.

Windows 10 or greater

You can start an SSH session in your command prompt by executing ssh

user@machine and you will be prompted to enter your password. ---Windows

documentation (https://docs.microsoft.com/en-us/windows/terminal/tutorials/ssh?

source=recommendations)

To find the Command Prompt, type cmd in the search box (lower left), then press Enter to open

the highlighted Command Prompt shortcut.

1.

2.

3.

4.

5.

6.

•

11 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

https://www.biostarhandbook.com/introduction-to-unix.html
https://www.biostarhandbook.com/introduction-to-unix.html
https://www.biostarhandbook.com/introduction-to-unix.html
https://docs.microsoft.com/en-us/windows/terminal/tutorials/ssh?source=recommendations
https://docs.microsoft.com/en-us/windows/terminal/tutorials/ssh?source=recommendations
https://docs.microsoft.com/en-us/windows/terminal/tutorials/ssh?source=recommendations
https://docs.microsoft.com/en-us/windows/terminal/tutorials/ssh?source=recommendations
https://docs.microsoft.com/en-us/windows/terminal/tutorials/ssh?source=recommendations

If this yields any major issues, try installing PuTTY (https://www.chiark.greenend.org.uk/

~sgtatham/putty/latest.html), Solar-PuTTY (https://www.solarwinds.com/free-tools/solar-putty?

a_aid=BIZ-PAP-CMPRTCH&a_bid=1bd20791&CMP=BIZ-PAP-CMPR_PCW-SolarPutty-FSPTY-

LM&data1=&data2=list), or MobaXterm (https://mobaxterm.mobatek.net/).

Unix commands to know

The following list is not comprehensive. Only select commands are included.

Navigating the file system

pwd (print working directory)

ls (list)

cd (change directory), by itself will take you home, cd .. (will take you up one directory),

cd /results_dir/exp1 (go directly to this directory)

File management

touch creates an empty file

nano basic editor for creating small text files

rm remove files or directories. Be careful!

mkdir make a directory and rmdir (remove a directory with NO files)

mv rename or move files and directories

less and more view files; less can also be used to view zipped files on Biowulf. Use q

to escape.

cp copy files or directories

cat, head, and tail - print to screen, print first few lines to the screen, print last few

lines to the screen

zcat viewing zipped files

chmod,chown modify file / directory permissions

wc number of lines (-l), words (-w), and bytes (-c, usually one byte per character); for

number of characters use -m.

grep search files using regular expressions

cut cuts selected portions of a file (e.g., column selection)

sed and awk - file editing (find and replace, column selection, filtering, etc.)

Obtaining help

help display information about builtin commands

man access online manual pages

-h,--help flags for obtaining help

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

12 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.solarwinds.com/free-tools/solar-putty?a_aid=BIZ-PAP-CMPRTCH&a_bid=1bd20791&CMP=BIZ-PAP-CMPR_PCW-SolarPutty-FSPTY-LM&data1=&data2=list
https://www.solarwinds.com/free-tools/solar-putty?a_aid=BIZ-PAP-CMPRTCH&a_bid=1bd20791&CMP=BIZ-PAP-CMPR_PCW-SolarPutty-FSPTY-LM&data1=&data2=list
https://www.solarwinds.com/free-tools/solar-putty?a_aid=BIZ-PAP-CMPRTCH&a_bid=1bd20791&CMP=BIZ-PAP-CMPR_PCW-SolarPutty-FSPTY-LM&data1=&data2=list
https://www.solarwinds.com/free-tools/solar-putty?a_aid=BIZ-PAP-CMPRTCH&a_bid=1bd20791&CMP=BIZ-PAP-CMPR_PCW-SolarPutty-FSPTY-LM&data1=&data2=list
https://www.solarwinds.com/free-tools/solar-putty?a_aid=BIZ-PAP-CMPRTCH&a_bid=1bd20791&CMP=BIZ-PAP-CMPR_PCW-SolarPutty-FSPTY-LM&data1=&data2=list
https://www.solarwinds.com/free-tools/solar-putty?a_aid=BIZ-PAP-CMPRTCH&a_bid=1bd20791&CMP=BIZ-PAP-CMPR_PCW-SolarPutty-FSPTY-LM&data1=&data2=list
https://mobaxterm.mobatek.net/
https://mobaxterm.mobatek.net/

Useful information

Flags and command options (-) are used to alter program functions

Wildcards (e.g., *)

Tab complete for less typing

Accessing user history with the "up" and "down" arrows on the keyboard

Working with file content (<, >, >>)

Combining commands with pipe (|). Where the heck is pipe anyway?

Performing repetitive actions with Unix (for loop), GNU parallel

File download

wget The non-interactive network downloader

curl transfer a URL

Remote connection

ssh secure shell protocol for remote login to Biowulf / Helix

Biowulf

batchlim show cpu and job limits for batch jobs

freen show free and total nodes and cores

jobdata show lots of info for a single jobid

sacct select slurm jobs

sbatch submit slurm job

scancel delete slurm jobs

sinfo view information about Slurm nodes and partitions

sinteractive allocate an interactive session

sjobs show brief summary of queued and running jobs

squeue display status of slurm batch jobs

sstat display various status information of a running job/step

swarm submit a swarm of commands to cluster

Modules on Biowulf

module avail list available applications on Biowulf

module load load an application

module purge purge applications

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

13 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

Resources for learning Unix

Learning Unix: Classes / Courses

Introduction to Biowulf (May – Jun, 2023) (https://bioinformatics.ccr.cancer.gov/docs/

biowulf-introduction-summer-2023/index.html)

Introduction to Unix on Biowulf (Jan – Feb, 2023) (https://bioinformatics.ccr.cancer.gov/

docs/unix-on-biowulf-2023/index.html)

Bioinformatics for Beginners: Module 1 Unix/Biowulf (https://

bioinformatics.ccr.cancer.gov/docs/b4b/Module1_Unix_Biowulf/Lesson1/)

Additional useful Unix resources

BashScripting_LinuxCommands from the NIH HPC team (https://hpc.nih.gov/training/

handouts/BashScripting_LinuxCommands.pdf)

Fosswire linux reference sheet (https://bioinformatics.ccr.cancer.gov/docs/b4b/

fosswire_reference.pdf)

R Refresher

R can be accessed from the command line using R, which opens the R console, or it can be

accessed via and Integrated development environment (IDE) (e.g., RStudio, VSCode, etc.). R

commands can be submitted together in a script or interactively in a console.

Navigating directories

setwd() Set working directory (equivalent to cd)

getwd() Get working directory (equivalent to pwd)

Getting help

help() and ? "provide access to the documentation pages for R functions, data sets, and

other objects".

help.search() "allows for searching the help system for documentation matching a given

character string in the (file) name, alias, title, concept or keyword entries (or any combination

thereof)"; equivalent to ??pattern

args() returns information on function arguments including names and defaults

See more on getting help here (https://www.r-project.org/help.html).

•

•

•

•

•

14 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/biowulf-introduction-summer-2023/index.html
https://bioinformatics.ccr.cancer.gov/docs/biowulf-introduction-summer-2023/index.html
https://bioinformatics.ccr.cancer.gov/docs/biowulf-introduction-summer-2023/index.html
https://bioinformatics.ccr.cancer.gov/docs/biowulf-introduction-summer-2023/index.html
https://bioinformatics.ccr.cancer.gov/docs/unix-on-biowulf-2023/index.html
https://bioinformatics.ccr.cancer.gov/docs/unix-on-biowulf-2023/index.html
https://bioinformatics.ccr.cancer.gov/docs/unix-on-biowulf-2023/index.html
https://bioinformatics.ccr.cancer.gov/docs/unix-on-biowulf-2023/index.html
https://bioinformatics.ccr.cancer.gov/docs/b4b/Module1_Unix_Biowulf/Lesson1/
https://bioinformatics.ccr.cancer.gov/docs/b4b/Module1_Unix_Biowulf/Lesson1/
https://bioinformatics.ccr.cancer.gov/docs/b4b/Module1_Unix_Biowulf/Lesson1/
https://bioinformatics.ccr.cancer.gov/docs/b4b/Module1_Unix_Biowulf/Lesson1/
https://hpc.nih.gov/training/handouts/BashScripting_LinuxCommands.pdf
https://hpc.nih.gov/training/handouts/BashScripting_LinuxCommands.pdf
https://hpc.nih.gov/training/handouts/BashScripting_LinuxCommands.pdf
https://hpc.nih.gov/training/handouts/BashScripting_LinuxCommands.pdf
https://bioinformatics.ccr.cancer.gov/docs/b4b/fosswire_reference.pdf
https://bioinformatics.ccr.cancer.gov/docs/b4b/fosswire_reference.pdf
https://bioinformatics.ccr.cancer.gov/docs/b4b/fosswire_reference.pdf
https://bioinformatics.ccr.cancer.gov/docs/b4b/fosswire_reference.pdf
https://www.r-project.org/help.html
https://www.r-project.org/help.html

Installing and loading packages

To take full advantage of R, you need to install R packages. R packages are loadable

extensions that contain code, data, documentation, and tests in a standardized shareable

format that can easily be installed by R users. The primary repository for R packages is the

Comprehensive R Archive Network (CRAN) (https://cran.r-project.org/) . CRAN is a global

network of servers that store identical versions of R code, packages, documentation, etc

(cran.r-project.org).

An R library is, effectively, a directory of installed R packages which can be loaded

and used within an R session. ---renv (https://rstudio.github.io/renv/articles/

renv.html)

install.packages() install packages from CRAN

library() load packages in R session

You will need to install and use the BiocManager to install and use Bioconductor packages:

.libPaths() reports the directory where your installed R packages are located.

devtools::install_github() to install an R package from Github

Commenting

You can annotate your code by starting annotations with #. Comments to the right of # will be

ignored by R.

Use # ---- to create navigable code sections.

Assignment operators

Anything that you want assigned to memory must be assigned to an R object.

<- the primary assignment operator, assigning values on the right to objects on the left.

= can also be used to assign values to objects, but is usually reserved for other purposes (e.g.,

function arguments)

Use ls() to list objects created in R. rm() can be used to remove an object from memory.

if (!require("BiocManager", quietly = TRUE))
 install.packages("BiocManager")
BiocManager::install(version = "3.17")

15 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

https://cran.r-project.org/
https://cran.r-project.org/
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html

Object naming conventions

There are rules regarding the naming of objects:

Avoid spaces or special characters EXCEPT '_' and '.'

No numbers or underscores at the beginning of an object name.

Avoid common names with special meanings (See ?Reserved) or assigned to existing

functions (These will auto complete).

Object data types

There are many functions in R to understand the types of objects you are working with. For

example:

class() returns the class of an object

typeof() returns type or storage mode of object

mode() returns object storage mode

Importing and exporting data

Use the read functions to import data (e.g., read.csv, read.delim, etc.). Use write

functions to export data (e.g., write.table).

Using functions

An R function is like a unix command. Functions perform specific tasks. R has a ton of built-in

functions and functions available through additional packages. You can also create your own

functions.

The general syntax for a function is the name followed by parantheses, function_name()

(e.g., round()).

To create a function:

1.

2.

3.

Note

R is case sensitive, so an object with the name "FOO" is not the same as "foo".

function_name <- function(arg_1, arg_2, ...) {
 Function body
}

16 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

Vectors

A vector is a collection of values that are all of the same type (numbers, characters,

etc.) --- datacarpentry.org (https://datacarpentry.org/genomics-r-intro/02-r-basics/

index.html)

c() - used to combine elements of a vector

When you combine elements of different types in the same vector, they are forced into the same

type via "coercion" (logical < numeric < character).

length() - returns the number of elements in a vector

Use brackets to extract elements of a vector:

Lists

Unlike vectors, lists can hold values of different types.

Data frames

Data frames hold tabular data comprised of rows and columns; they can be created using

data.frame().

To understand more about the structure of an object and data frame, consider the following

functions:

str() displays the structure of an object, not just data frames

dplyr::glimpse()similar to str but applies to data frames and produces cleaner output

summary() produces result summaries of the results of various model fitting functions

ncol() returns number of columns in data frame

nrow() returns number of rows of data frame

dim() returns row and column numbers

unique() returns a vector of with duplicates removed; also see dplyr::distinct()

We can subset data frames using bracket notation:

a <- 1:10
a[2]

list(1, "apple", 3)

17 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html

We can also use functions from dplyr such as filter() for subsetting by row and

select() for subsetting by column.

Plotting

There are 3 primary plotting systems with R: base R, ggplot2, and lattice.

Check out the R Graph Gallery (https://r-graph-gallery.com/) for data visualization examples and

code.

Getting info on R Session

sessionInfo() Print version information about R, the OS and attached or loaded packages.

Resources for learning R

Base R cheat sheet (https://iqss.github.io/dss-workshops/R/Rintro/base-r-cheat-sheet.pdf)

Other cheat sheets can be here (https://posit.co/resources/cheatsheets/).

There is also a nice review here (https://cosima.nceas.ucsb.edu/r-self-assessment/#section-r-

overview).

BTEP courses

R Introductory Series (https://bioinformatics.ccr.cancer.gov/docs/rintro/index.html)

Data Wrangling with R (https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/)

Data Visualization with R (https://bioinformatics.ccr.cancer.gov/docs/data-visualization-

with-r/index.html)

Test your Knowledge

Are your Unix skills satisfactory?

Complete the scavenger hunt from https://sanderslab.github.io/code/ (https://

sanderslab.github.io/code/).

df<- data.frame(Counts=seq(1,5), animals=c("racoon","squirrel","bird","dog","cat"))
#to return just the animals column
df[,"animals"]

•

•

•

18 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

https://r-graph-gallery.com/
https://r-graph-gallery.com/
https://iqss.github.io/dss-workshops/R/Rintro/base-r-cheat-sheet.pdf
https://iqss.github.io/dss-workshops/R/Rintro/base-r-cheat-sheet.pdf
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://cosima.nceas.ucsb.edu/r-self-assessment/#section-r-overview
https://cosima.nceas.ucsb.edu/r-self-assessment/#section-r-overview
https://cosima.nceas.ucsb.edu/r-self-assessment/#section-r-overview
https://cosima.nceas.ucsb.edu/r-self-assessment/#section-r-overview
https://bioinformatics.ccr.cancer.gov/docs/rintro/index.html
https://bioinformatics.ccr.cancer.gov/docs/rintro/index.html
https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/
https://bioinformatics.ccr.cancer.gov/docs/data-wrangle-with-r/
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://bioinformatics.ccr.cancer.gov/docs/data-visualization-with-r/index.html
https://sanderslab.github.io/code/
https://sanderslab.github.io/code/
https://sanderslab.github.io/code/
https://sanderslab.github.io/code/

Are your R skills ready?

Use this assessment (https://cosima.nceas.ucsb.edu/r-self-assessment/) to determine whether

you need to further brush up on your R skills.

Do you need a Biowulf refresher?

So you think you know Biowulf? Quiz yourself using the hpc.nih.gov biowulf-quiz (https://

hpc.nih.gov/training/intro_biowulf/biowulf-quiz/).

19 Lesson 1: Introduction to Biowulf, Unix, and R

Bioinformatics Training and Education Program

https://cosima.nceas.ucsb.edu/r-self-assessment/
https://cosima.nceas.ucsb.edu/r-self-assessment/
https://hpc.nih.gov/training/intro_biowulf/biowulf-quiz/
https://hpc.nih.gov/training/intro_biowulf/biowulf-quiz/
https://hpc.nih.gov/training/intro_biowulf/biowulf-quiz/
https://hpc.nih.gov/training/intro_biowulf/biowulf-quiz/

Lesson 2: Getting Started with R on Biowulf

Learning objectives

Understand how R can be deployed on Biowulf

Understand how to access and use R modules

Learn to create a custom R library on Biowulf

Deploying R on Biowulf

There are multiple ways to use R on Biowulf. See the HPC documentation (https://hpc.nih.gov/

apps/R.html).

Interactively

Your workflow may require some element of interactivity (e.g., modifying code based on

graphical output). In such cases, users generally like to use an IDE (Integrated

development environment). The preferred IDE for R programming is generally RStudio.

However, if you are expeirencing significant lag, there are other options including Jupyter

Lab and VSCode.

RStudio (https://hpc.nih.gov/apps/RStudio.html)

There are currently 2 ways to run RStudio on Biowulf.

Using NoMachine (To be demoed)

To get started, you will need to install NoMachine (NX) (https://

hpc.nih.gov/docs/nx.html), "a graphical client that presents a full virtual

Linux desktop to a window on the user's local machine".

Once NoMachine is installed, follow these instructions (https://

hpc.nih.gov/apps/RStudio.html) to start RStudio.

1.

2.

3.

Note

R sessions are not allowed on Helix or the login node. All R sessions must use computational nodes.

1.

◦

1.

▪

▪

Warning

20 Lesson 2: Getting Started with R on Biowulf

Bioinformatics Training and Education Program

https://hpc.nih.gov/apps/R.html
https://hpc.nih.gov/apps/R.html
https://hpc.nih.gov/apps/R.html
https://hpc.nih.gov/apps/R.html
https://hpc.nih.gov/apps/RStudio.html
https://hpc.nih.gov/apps/RStudio.html
https://hpc.nih.gov/docs/nx.html
https://hpc.nih.gov/docs/nx.html
https://hpc.nih.gov/docs/nx.html
https://hpc.nih.gov/docs/nx.html
https://hpc.nih.gov/apps/RStudio.html
https://hpc.nih.gov/apps/RStudio.html
https://hpc.nih.gov/apps/RStudio.html
https://hpc.nih.gov/apps/RStudio.html

Using RStudio Server (https://hpc.nih.gov/apps/rstudio-server.html) (Warning:

Under development) (To be demoed)

Jupyter Lab (https://hpc.nih.gov/apps/jupyter.html)

VSCode (https://hpc.nih.gov/apps/vscode.html)

To use the VSCode R extension, use these instructions.

Connecting and using just an R console (Lesson 1)

This is how we will use R in today's lesson.

Submitting R scripts via sbatch (Lesson 4)

To submit an R script from command line, you can use the command Rscript or R CMD

BATCH. Rscript is preferred and prints output to stdout. R CMD BATCH prints R

commands and output to a .Rout file. See more information here (https://

support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-

line).

Remove your hands from your keyboard, sit back, and enjoy a demo on how to use the RStudio

IDE on Biowulf. If you intend to use an IDE to interact with R on Biowulf and you experience

difficulties in the future, please email us at ncibtep@nih.gov (mailto:ncibtep@nih.gov).

Connect to Biowulf (Hands-on)

To connect to Biowulf, you must be on the NIH network, either on campus or via VPN.

We will then connect using an ssh protocol.

Open your terminal if on a mac or the command prompt if using a Windows and type the

following:

Replace username with your NIH user name. You will then be prompted for your NIH

password.

NoMachine uses X11 forwarding and will experience lags.

1.

◦

◦

▪

◦

2.

ssh username@biowulf.nih.gov

Note

The cursor will not move nor will you be able to see what you type when entering your password.

21 Lesson 2: Getting Started with R on Biowulf

Bioinformatics Training and Education Program

https://hpc.nih.gov/apps/rstudio-server.html
https://hpc.nih.gov/apps/rstudio-server.html
https://hpc.nih.gov/apps/jupyter.html
https://hpc.nih.gov/apps/jupyter.html
https://hpc.nih.gov/apps/vscode.html
https://hpc.nih.gov/apps/vscode.html
../R_using_VSCode/
../L4_RScript_sbatch_1/
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
mailto:ncibtep@nih.gov
mailto:ncibtep@nih.gov

Getting started with R

We will be working with R from our /data/$USER directory. There is not much space in ~ (16

GB), so it is good practice to always cd to /data/$USER.

The default R installation on Biowulf is R/4.3.0 as of May 2023. R is available on Biowulf via

environment modules (https://hpc.nih.gov/apps/modules.html).

To see the available modules use:

Here we using the module command with the option to use regular expression matching (-r)

and avail to return a list of available modules.

Before loading the R module and running R, we first need an interactive session. R cannot be

used on the login node or on helix.

cd /data/$USER

Info

$USER is an environment variable. You can read more about environment variables here (https://

www.geeksforgeeks.org/environment-variables-in-linux-unix/).

module -r avail '^R$'

sinteractive --gres=lscratch:5

sinteractive default allocations

The default sinteractive allocation is 1 core (2 CPUs) and 0.768 GB/CPU (1.536 GB but rounded to 2 GB in the

terminal) of memory and a walltime of 8 hours.

Note: lscratch

"R will automatically use lscratch for temporary files if it has been allocated" (HPC Biowulf docs). lscratch space

can be requested using --gres=lscratch:#, where gres stands for "generic resources" and # is the number of

GB you would like allocated. This will be code dependent.

Info: more memory and CPUs?

22 Lesson 2: Getting Started with R on Biowulf

Bioinformatics Training and Education Program

https://www.geeksforgeeks.org/environment-variables-in-linux-unix/
https://www.geeksforgeeks.org/environment-variables-in-linux-unix/
https://www.geeksforgeeks.org/environment-variables-in-linux-unix/
https://www.geeksforgeeks.org/environment-variables-in-linux-unix/
https://hpc.nih.gov/apps/modules.html
https://hpc.nih.gov/apps/modules.html

Loading modules

Load the R module and begin the R session.

Setting up local libraries

Each version of R loaded as a module includes a number of installed packages (https://

hpc.nih.gov/apps/R.html#packages). However, you may want to install additional packages,

which will by default be stored in "~/R/%v/library where %v is the major.minor version of R

(e.g. 4.2)".

Due to the space constraints associated with biowulf home directories (16GB), it is safer to save

installed packages to /data/$USER.

First, make a new package directory.

Next, set this location using $R_LIBS_USER in your ~/.bashrc file.

Copy and paste export R_LIBS_USER="/data/$USER/R/%v" to the file. Replace $USER

with your username and %v with the correct version number. Use Ctrl + O to write the file,

press return, and Ctrl + X to exit.

Open R and check your library path.

You may want to also include more memory and more CPUs (for multi-threaded) (e.g., sinteractive --cpus-

per-task=2 --mem=6g --gres=lscratch:20). However, often more memory is not needed and most R code

is single threaded, unless written specifically to be multi-threaded. Track memory and CPU usage using jobload

(https://hpc.nih.gov/docs/biowulf_tools.html#jobload) or the user dashboard (https://hpcnihapps.cit.nih.gov/auth/

dashboard/).

Load the module
module load R/4.2.2
Begin the R session
R

#replace %v with the major.minor version of R you plan to use (e.g., 4.2)
mkdir -p /data/$USER/R/%v

nano ~/.bashrc

23 Lesson 2: Getting Started with R on Biowulf

Bioinformatics Training and Education Program

https://hpc.nih.gov/docs/biowulf_tools.html#jobload
https://hpc.nih.gov/docs/biowulf_tools.html#jobload
https://hpc.nih.gov/docs/biowulf_tools.html#jobload
https://hpc.nih.gov/docs/biowulf_tools.html#jobload
https://hpc.nih.gov/docs/biowulf_tools.html#jobload
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpcnihapps.cit.nih.gov/auth/dashboard/
https://hpc.nih.gov/apps/R.html#packages
https://hpc.nih.gov/apps/R.html#packages
https://hpc.nih.gov/apps/R.html#packages
https://hpc.nih.gov/apps/R.html#packages

You should see the new path to your personal library listed first followed by the library

established my module load R.

Let's quit R and end the interactive session.

Next time

Lesson 3 will feature R project management and using renv to manage package

dependencies.

R
.libPaths()

q() # quit R
exit # end interactive session

24 Lesson 2: Getting Started with R on Biowulf

Bioinformatics Training and Education Program

Lesson 3: R Project Management and renv

Learning objectives

Discuss the importance of reproducibility

Learn ways to make R analyses more reproducible

Learn how to set up and organize an R project

Learn how to use renv for R package management

What is the 2023 NIH Data Management and

Sharing Policy?

Effective January 25, 2023, the NIH released the 2023 NIH Data Management and Sharing

Policy (https://oir.nih.gov/sourcebook/intramural-program-oversight/intramural-data-sharing/

2023-nih-data-management-sharing-policy). This policy requires that NIH intramural

researchers plan for data management and sharing prior to conducting scientific research. To

do this, scientists are required to submit a Data Management and Sharing plan and comply with

the approved plan. While the policy highlights types of data that should be managed and

shared and provides links to further resources (https://sharing.nih.gov), it does not provide any

guidance on the management and sharing of code needed to truly replicate an analysis.

Sharing data and reporting on analysis steps is not enough to reproduce scientific results.

Figure from Peng 2012, Science, doi: 10.1126/science.1213847 (doi: 10.1126/science.1213847).

On the reproducibility spectrum, we should strive for "Full replication". Ultimately, this includes

making an analysis executable with a fully functioning computational environment. We aren't

going to get that far today. However, we will discuss some ways to organize data, code, and

package dependencies to improve data analysis sharing and collaboration.

1.

2.

3.

4.

25 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://oir.nih.gov/sourcebook/intramural-program-oversight/intramural-data-sharing/2023-nih-data-management-sharing-policy
https://oir.nih.gov/sourcebook/intramural-program-oversight/intramural-data-sharing/2023-nih-data-management-sharing-policy
https://oir.nih.gov/sourcebook/intramural-program-oversight/intramural-data-sharing/2023-nih-data-management-sharing-policy
https://oir.nih.gov/sourcebook/intramural-program-oversight/intramural-data-sharing/2023-nih-data-management-sharing-policy
https://oir.nih.gov/sourcebook/intramural-program-oversight/intramural-data-sharing/2023-nih-data-management-sharing-policy
https://sharing.nih.gov
https://sharing.nih.gov
doi:%2010.1126/science.1213847
doi:%2010.1126/science.1213847

How can we make our R analyses more

reproducible?

There are many ways to increase collaboration and document and share code and results using

R.

Some examples include:

RMarkdown / Quarto (i.e., literate programming)

R Markdown provides an unified authoring framework for data science,

combining your code, its results, and your prose commentary. R Markdown

documents are fully reproducible and support dozens of output formats, like

PDFs, Word files, slideshows, and more. --- R4DS (https://r4ds.had.co.nz/r-

markdown.html#r-markdown)

RMarkdown and Quarto can be used to communicate analysis steps and results. They

can specifically be used to:

Create a data science lab notebook

Share and report results to collaborators and others via specific output formats

(e.g., html, pdf, etc.)

Create a dashboard of results (via flexdashboard (https://pkgs.rstudio.com/

flexdashboard/))

R Project

RStudio projects are self-contained project directories that include the data, code,

outputs, and other related files to reproduce an analysis. When you use relative file paths

(relative to the project directory), it is fairly easy to reproduce any results within the

project.

We are going to leverage the benefits of an R project to enhance reproducibility.

Version Control (e.g. Git) (Recommended)

1.

Note

Quarto is the next generation of R Markdown with new and enhanced features.

1.

2.

3.

Tip

Always include a code chunk calling sessionInfo() at the end of your RMarkdown file. This will yield

crucial information about your R session, including your operating system requirements, R version, and

package versions.

2.

3.

26 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/r-markdown.html#r-markdown
https://r4ds.had.co.nz/r-markdown.html#r-markdown
https://r4ds.had.co.nz/r-markdown.html#r-markdown
https://r4ds.had.co.nz/r-markdown.html#r-markdown
https://pkgs.rstudio.com/flexdashboard/
https://pkgs.rstudio.com/flexdashboard/
https://pkgs.rstudio.com/flexdashboard/
https://pkgs.rstudio.com/flexdashboard/

Version control is a great way to enhance data management and collaboration. When you

use version control, you can easily track changes that you make to your code and

eliminate the need for multiple copies of a script (e.g., Final, Finalv2, Final_final, etc.).

Version control is easy to use with R packages and R projects.

R package

R packages are loadable extensions that contain code, data, documentation, and tests in

a standardized shareable format that can easily be installed by R users. While the primary

repository for R packages is CRAN, you can also readily distribute R packages directly

from GitHub.

Here are some resources if interested in bundling your analysis in an R package:

Put your Data Analysis in an R Package — Even if You Don’t Publish it (https://

towardsdatascience.com/put-your-data-analysis-in-an-r-package-even-if-you-dont-

publish-it-64f2bb8fd791)

How to turn your analysis project into a stand alone R package (https://vimeo.com/

427243128)

The fusen package: inflates a Rmarkdown file to magically create a package

(https://thinkr-open.github.io/fusen/)

Containerization

Cointanerizing a computational environment using Docker or Singularity freezes the

computational environment, including operating system, so that results are truly

reproducible.

Today we will focus on organizing our data, code, documents in an R project.

Info

For more information on using Git with R, check out https://happygitwithr.com/index.html (https://

happygitwithr.com/index.html) and https://raps-with-r.dev/git.html (https://raps-with-r.dev/git.html).

4.

1.

2.

3.

5.

Other tips for reproducible programming

Incorporate functional programming

Elminate repetitive code with well-written functions, making code easier to test, document, and

share.

Make code as independent from the global environment as possible.

Use literate programming

Rmarkdown, quarto, etc. to generate parameterized reports.

1.

1.

2.

2.

1.

27 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://happygitwithr.com/index.html
https://happygitwithr.com/index.html
https://happygitwithr.com/index.html
https://happygitwithr.com/index.html
https://raps-with-r.dev/git.html
https://raps-with-r.dev/git.html
https://towardsdatascience.com/put-your-data-analysis-in-an-r-package-even-if-you-dont-publish-it-64f2bb8fd791
https://towardsdatascience.com/put-your-data-analysis-in-an-r-package-even-if-you-dont-publish-it-64f2bb8fd791
https://towardsdatascience.com/put-your-data-analysis-in-an-r-package-even-if-you-dont-publish-it-64f2bb8fd791
https://towardsdatascience.com/put-your-data-analysis-in-an-r-package-even-if-you-dont-publish-it-64f2bb8fd791
https://towardsdatascience.com/put-your-data-analysis-in-an-r-package-even-if-you-dont-publish-it-64f2bb8fd791
https://towardsdatascience.com/put-your-data-analysis-in-an-r-package-even-if-you-dont-publish-it-64f2bb8fd791
https://vimeo.com/427243128
https://vimeo.com/427243128
https://vimeo.com/427243128
https://vimeo.com/427243128
https://thinkr-open.github.io/fusen/
https://thinkr-open.github.io/fusen/
https://thinkr-open.github.io/fusen/
https://thinkr-open.github.io/fusen/

R Project Management and renv

R projects allow us to easily share data, code, and other related information, but this only

scratches the surface of what is required for true data analysis reproducibility. We won't take all

steps to make our project reproducible today, but beyond basic project organization, it is fairly

easy to document and manage package dependencies.

Too often an R script will fail simply due to a clash in package dependencies. Versions are

important. R versions change over time; Bioconductor versions evolve, and R packages

change. While we can include the sessionInfo() at the end of a script or markdown file, this

in no way facilitates our ability to truly replicate the infrastructure surrounding our code.

Thankfully, there are R packages available that help us do just that.

Check out this chapter from R 4 Data Science (https://r4ds.had.co.nz/workflow-projects.html).

Introducing renv (reproducible environments)

The renv package is a new effort to bring project-local R dependency management

to your projects. The goal is for renv to be a robust, stable replacement for the

Packrat package, with fewer surprises and better default behaviors.

Underlying the philosophy of renv is that any of your existing workflows should just

work as they did before – renv helps manage library paths (and other project-

specific state) to help isolate your project’s R dependencies, and the existing tools

you’ve used for managing R packages (e.g. install.packages(),

remove.packages()) should work as they did before.--- renv (https://

rstudio.github.io/renv/articles/renv.html)

In a nut shell, renv will allow us to recreate our sessionInfo(). However, it is not perfect,

and does require extra storage due to the creation of a per project library.

Main functions

Creates a local library of R packages copying what you used from your project.

The primary functions and workflow is as follows:

renv::init() initialize the project to be used with renv and creates a project library

This is only required once. Once initialized, you work in the project as normal.

Note

renv does not manage R versions. You will need to make sure you are using an appropriate version of R to recreate

an R project library. Because Biowulf uses module environments for R installations, this isn't a huge hurdle.

1.

28 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/workflow-projects.html
https://r4ds.had.co.nz/workflow-projects.html
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html

renv::init() will detect package dependencies based on library() and

require() in R scripts found in the R project.

renv::snapshot() updates renv.lock file (https://rstudio.github.io/renv/articles/

lockfile.html), saving the state of the project library.

renv::restore() restores the state of R environment to replicate what is in lock file.

Getting Started: Setting up our R Project

Connect to Biowulf, obtain an interactive session, load R

Let's connect remotely to Biowulf.

Enter your password and hit enter.

Navigate to your /data/$USER directory.

Get an interactive session.

Let's make a class directory.

Load R version 4.2.2.

Note

You can intialize a project without dependency discovery and installation using renv::init(bare=TRUE).

2.

3.

ssh username@biowulf.nih.gov

cd /data/$USER

sinteractive --gres=lscratch:5

mkdir R_on_Biowulf
cd R_on_Biowulf

module load R/4.2.2

Note

29 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://rstudio.github.io/renv/articles/lockfile.html
https://rstudio.github.io/renv/articles/lockfile.html
https://rstudio.github.io/renv/articles/lockfile.html
https://rstudio.github.io/renv/articles/lockfile.html

Set up an R project

Things to consider:

R Projects are generally created with intent to use with RStudio; you do not need to create

an "R project" to organize a project directory.

When creating a project directory:

Create a consistent directory structure with the top level as the project directory

All inputs and outputs (where possible) should be contained within a project

directory

"never use absolute paths in your scripts, because they hinder sharing: no one else

will have exactly the same directory configuration as you" R4ds (https://

r4ds.had.co.nz/workflow-projects.html)

We will not be using an IDE but we will create an R project using the R package usethis

(https://usethis.r-lib.org/index.html), which is accessible via devtools. usethis is a "package

that facilitates interactive workflows for R project creation and development" (https://

www.tidyverse.org/blog/2020/12/usethis-2-0-0/).

Create the R project

When prompted:

Save workspace image? [y/n/c]: n

The arguments open = TRUE activates the new project and establishes a new working

directory. rstudio = FALSE establishes a .here (https://here.r-lib.org/) file that allows the

project directory to be recognized as the top level of a project.

R/4.3.0 became the default R installation as of May 2023.

•

•

◦

◦

◦

#open R
R
#create project
usethis::create_project(path = "MyNewProject", open = TRUE, rstudio = FALSE)
#quit R
q()

v Creating 'MyNewProject/'
v Setting active project to '/vf/users/emmonsal/R_on_Biowulf/MyNewProject'
v Creating 'R/'
v Writing a sentinel file '.here'
* Build robust paths within your project via `here::here()`
* Learn more at <https://here.r-lib.org>

30 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/workflow-projects.html
https://r4ds.had.co.nz/workflow-projects.html
https://r4ds.had.co.nz/workflow-projects.html
https://r4ds.had.co.nz/workflow-projects.html
https://usethis.r-lib.org/index.html
https://usethis.r-lib.org/index.html
https://usethis.r-lib.org/index.html
https://usethis.r-lib.org/index.html
https://usethis.r-lib.org/index.html
https://www.tidyverse.org/blog/2020/12/usethis-2-0-0/
https://www.tidyverse.org/blog/2020/12/usethis-2-0-0/
https://www.tidyverse.org/blog/2020/12/usethis-2-0-0/
https://www.tidyverse.org/blog/2020/12/usethis-2-0-0/
https://www.tidyverse.org/blog/2020/12/usethis-2-0-0/
https://here.r-lib.org/
https://here.r-lib.org/
https://here.r-lib.org/

Now, we will see our new directory MyNewProject. Let's copy our R scripts to our new project

directory.

Initialize and activate renv in the project

Cache directory set-up

First, let's set up our renv cache location. renv uses a global cache to reduce duplicate

installs of packages across projects.

When using renv with the global package cache, the project library is instead

formed as a directory of symlinks (or, on Windows, junction points) into the renv

global package cache. --- renv (https://rstudio.github.io/renv/articles/

renv.html#cache)

By default the renv cache will be created in your home directory, which can quickly fill up if

using Bioconductor packages. We are going to instead create a cache in our /data/$USER

directory.

Create a .Renviron file (https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-

with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf) within your

home directory.

Add the following line:

RENV_PATHS_ROOT=/data/$USER/.cache/R/renv

Replace $USER with your actual username.

Use ctrl+O to save, return, and ctrl+X to exit.

ls

cd MyNewProject
cp /data/classes/BTEP/R_on_Biowulf_2023/scripts/*.R ./R

mkdir -p /data/$USER/.cache/R/renv

nano ~/.Renviron

Important

The renv cache only needs to be set up once regardless of the version of R you are using as long as you created a

user level .Renviron file establishing its location.

31 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://rstudio.github.io/renv/articles/renv.html#cache
https://rstudio.github.io/renv/articles/renv.html#cache
https://rstudio.github.io/renv/articles/renv.html#cache
https://rstudio.github.io/renv/articles/renv.html#cache
https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf

Run renv::init()

Once we have done this, we can activate renv within our project. But, first, let's verify the

location of our renv cache.

Now that we have initialized renv with this project. Let's check our R library paths.

You should see the renv project library listed first, meaning it is prioritized over the module

(site) libraries.

The library snapshot resulted in an error due to GenomeInfoDb [installed 1.35.14 !=

latest 1.34.9].

Let's update the installation of GenomeInfoDb as suggested by the prompt.

Packages from Bioconductor can be installed by using the bioc:: prefix. ---renv

vignette (https://rstudio.github.io/renv/reference/install.html)

R
renv::paths$cache() # Check the cache location
renv::init(bioconductor = "3.16") #initialize renv in the project

Info

We can initialize renv with a specific version of Bioconductor. This eliminates later headaches as Bioconductor

updates to newer versions. See here (https://rstudio.github.io/renv/articles/bioconductor.html) for more information.

Warning

This step takes about 5-10 minutes.

.libPaths()

[1] "/vf/users/$USER/R_on_Biowulf/MyNewProject/renv/library/R-4.2/x86_64-pc-linux-gnu"
[2] "/usr/local/apps/R/4.2/site-library_4.2.2"
[3] "/usr/local/apps/R/4.2/4.2.2/lib64/R/library"

renv::install("bioc::GenomeInfoDb")

Note

32 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://rstudio.github.io/renv/articles/bioconductor.html
https://rstudio.github.io/renv/articles/bioconductor.html
https://rstudio.github.io/renv/reference/install.html
https://rstudio.github.io/renv/reference/install.html
https://rstudio.github.io/renv/reference/install.html

Call renv::snapshot() to save the state of the project library to the lockfile.

We see a long list of packages being written to the lockfile and the following message:

Type y.

This was successful and the lockfile was written. The lockfile is necessary to restore the project

at a later date.

Establish a consistent project structure

Now that we have renv set up with our project, let's also establish a project structure.

Let's exit R and edit our .Rprofile.

Delete the single line in the .Rprofile file, and paste the following, which was borrowed from a

blog on data management (https://www.r-bloggers.com/2020/02/efficient-data-management-in-

r/), into the Rproject .Rprofile:

Without specifying a version of Bioconductor to be used with a project (e.g., renv::init(bioconductor =

"3.16")), install("bioc::GenomeInfoDb") will attempt to install the latest-available version from

Bioconductor (v.3.17).

renv::snapshot()

The version of R recorded in the lockfile will be updated:
- R [* -> 4.2.2]

Do you want to proceed? [y/N]:

* Lockfile written to '/vf/users/$USER/R_on_Biowulf/MyNewProject/renv.lock'.

Note

When we ran renv::init() a local .Rprofile file was created with the code source("renv/activate.R").

This code is necessary "to automatically load and use the private [renv] library for new R sessions launched from

the project root directory" (renv (https://rstudio.github.io/renv/articles/renv.html#workflow)).

q()
Save workspace image? [y/n/c]: n
nano .Rprofile

33 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://rstudio.github.io/renv/articles/renv.html#workflow
https://rstudio.github.io/renv/articles/renv.html#workflow
https://www.r-bloggers.com/2020/02/efficient-data-management-in-r/
https://www.r-bloggers.com/2020/02/efficient-data-management-in-r/
https://www.r-bloggers.com/2020/02/efficient-data-management-in-r/
https://www.r-bloggers.com/2020/02/efficient-data-management-in-r/

ctrl + O to save, return, ctrl+X to exit.

This code creates several directories (i.e., figures, outputs, data, and docs) and initializes the

project for use with the renv package using renv::init or if already initialized activates the

renv project library using renv/activate.R. This will not overwrite directories that have

already been created.

We will need to start a new R session for the .Rprofile to take effect.

Save workspace image? [y/n/c]: n

Now we are ready to work with our project files.

Test it

Before we end today's lesson, let's test out renv.

.First <- function() {
 dir.create(paste0(getwd(), "/figures"), showWarnings = F)
 dir.create(paste0(getwd(), "/outputs"), showWarnings = F)
 dir.create(paste0(getwd(), "/data"), showWarnings = F)
 dir.create(paste0(getwd(), "/docs"), showWarnings = F)

 if (!("renv" %in% list.files())) {
 renv::init()
 } else {
 source("renv/activate.R")
 }

 cat("\nWelcome to your R-Project:", basename(getwd()), "\n")
}

Note

You can change these directory names to whatever works best with your organization style. The key, however, is to

stay as consistent as possible across projects.

Info

Using version control (git via GitHub) is an even better way to manage data and share inputs, code, and results.

You can easily manage a Github repository or create a new repository using the usethis package. Also, check out

this resource (https://happygitwithr.com/index.html) for understanding more regarding version control and R.

R
q()

34 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://happygitwithr.com/index.html
https://happygitwithr.com/index.html

We will create a new directory and transfer our R script and lock file. We will then restore the

project and run our R script.

Now, we can run our script.

Next Lesson

In the final lesson, we will learn more about submitting jobs using R on Biowulf.

Acknowledgements

Making your analysis portable and reproducible (https://diytranscriptomics.com/project/

lecture-12) from DIY transcriptomics.

Efficient Data Management in R (https://www.r-bloggers.com/2020/02/efficient-data-

management-in-r/).

R Packages with renv (https://sites.google.com/nyu.edu/nyu-hpc/hpc-systems/greene/

software/r-packages-with-renv)

#change director to /data/$USER
cd ..
#make test directory
mkdir renv_test
#copy files to test directory
cp MyNewProject/renv.lock renv_test/
cp MyNewProject/R/DESeq2_airway.R renv_test/
#change directory to test directory
cd renv_test
#load R module if not already loaded and start R session
module load R/4.2.2
R
#Restore renv library
renv::restore()

source("DESeq2_airway.R")

Note

The R version used to create a new project with the MyNewProject renv.lock file must be the same.

Also, because the required packages were already in our renv cache, updating the test library was much faster.

•

•

•

35 Lesson 3: R Project Management and renv

Bioinformatics Training and Education Program

https://diytranscriptomics.com/project/lecture-12
https://diytranscriptomics.com/project/lecture-12
https://diytranscriptomics.com/project/lecture-12
https://diytranscriptomics.com/project/lecture-12
https://www.r-bloggers.com/2020/02/efficient-data-management-in-r/
https://www.r-bloggers.com/2020/02/efficient-data-management-in-r/
https://www.r-bloggers.com/2020/02/efficient-data-management-in-r/
https://www.r-bloggers.com/2020/02/efficient-data-management-in-r/
https://sites.google.com/nyu.edu/nyu-hpc/hpc-systems/greene/software/r-packages-with-renv
https://sites.google.com/nyu.edu/nyu-hpc/hpc-systems/greene/software/r-packages-with-renv
https://sites.google.com/nyu.edu/nyu-hpc/hpc-systems/greene/software/r-packages-with-renv
https://sites.google.com/nyu.edu/nyu-hpc/hpc-systems/greene/software/r-packages-with-renv

Lesson 4: Submitting R Scripts via

command line

Learning Objectives

Learn how to use R with less interaction

Learn how to deploy sbatch R jobs, and learn about alternatives such as swarm.

Learn about R job parallelization in the context of Biowulf

We have organized our R project directory and have set up renv to make our R environment a

bit more reproducible. Now, we need to learn how to submit an R script. Thus far, we have been

using R interactively by first obtaining an interactive compute node (sinteractive). However,

we can submit R scripts without interaction using sbatch and swarm. This is advantageous as

we may want to include our R Script in a pipeline or process thousands of files.

Running R scripts from the command line can be a powerful way to:

Automate your R scripts

Integrate R into production

Call R through other tools or systems--- Nathan Stephens, Posit Support

(https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-

from-the-command-line)

Example scripts

We will use a couple of example scripts in this section (DESeq2_airway.R, Volcano.R). The

first script uses the R package airway, which contains data from Himes et al. 2014 (https://

pubmed.ncbi.nlm.nih.gov/24926665/), a bulk RNA-Seq study, as a Ranged

SummarizedExperiment. The Bioconductor package DESeq2 is then used to produce

differential expression results. This R script largely follows a Bioconductor workflow on RNA-seq

(https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/

rnaseqGene.html). The second script (Volcano.R) takes output from the first script and makes

a volcano plot using the package EnhancedVolcano.

1.

2.

3.

•

•

•

Warning

These scripts are for example only. You should not use them to apply to your own data.

36 Lesson 4: Submitting R Scripts via command line

Bioinformatics Training and Education Program

https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.posit.co/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html
https://bioconductor.org/packages/release/workflows/vignettes/rnaseqGene/inst/doc/rnaseqGene.html

Running R from command line

Before jumping into submitting scripts in job files, let's first focus on how to run R from the

command line.

The primary way to run R from the command line is to call Rscript. Rscript is a binary front-

end to R, to use for scripting applications; basically, it is a convenience function.

Let's see this in action first in an interactive session:

Let's use our renv_test directory to see how this works. The syntax is Rscript [options]

file [args] .

The default is --no-echo, which makes R run as quietly as possible, and --no-restore,

which indicates that we do not want anything restored (e.g., objects, history, etc.) also imply --

no-save, meaning the workspace will not be saved. Here, we have no additional options or

args.

As a convenience function, Rscript is the same as calling

sinteractive --gres=lscratch:5
module load R/4.2.2

cd /data/$USER/R_on_Biowulf/renv_test
Rscript DESeq2_airway.R > DESeq2_airway.out

R --no-echo --no-restore --no-save --file=DESeq2_airway.R > DESeq2_airway2.out

Note

We have been using > to direct stdout to a file. We can also use < to direct the input file. See below.

R --no-echo --no-restore --no-save < DESeq2_airway.R > DESeq2_airway3.out

Info: Rscript --help

You can learn more about Rscript using Rscript --help and R --help. Notice from R --help that you can

also use R CMD BATCH to run an R script from command line. To run a script from the R console, use source().

37 Lesson 4: Submitting R Scripts via command line

Bioinformatics Training and Education Program

Adding command line arguments

R scripts can be run from the command line with command line arguments. Here (http://

swcarpentry.github.io/r-novice-inflammation/05-cmdline.html) is a great resource from software

carpentry explaining command line arguments.

To use command line arguments with an R script, we leverage commandArgs(). This function

creates a vector of command line arguments. When using trailingOnly = TRUE,

commandArgs() only returns arguments after R -no-echo --no-restore --file --

args.

Let's see how this works in a simple script that returns a volcano plot of our differential

expression results. First, let's copy over the Volcano.R script to our test directory, renv_test.

The contents of Volcano.R:

Saving R output

Notice that we can easily save R output directed to standard output using >. However, this will exclude messages,

warnings, and errors, which are directed to standard error. For stdout you can specify 1> or >; for stderr you can

specify 2>, and for both in a single file you can specify &>. See here (https://www.r-bloggers.com/2020/04/where-

does-the-output-of-rscript-go/) and here (https://tldp.org/LDP/abs/html/io-redirection.html) for more information.

cp /data/classes/BTEP/R_on_Biowulf_2023/scripts/Volcano.R .

Create a Volcano Plot from DESeq2 differential expression results ----
library(EnhancedVolcano)
library(dplyr)

set command line arguments ----
args <- commandArgs(trailingOnly = TRUE)

#stop the script if no command line argument
if(length(args)==0){
 print("Please include differential expression results!")
 stop("Requires command line argument.")
}

Read in data ----
data<-read.csv(args[1],row.names=1) %>% filter(!is.na(padj))

labs<-head(row.names(data),5)

Plot ----
EnhancedVolcano(data,

38 Lesson 4: Submitting R Scripts via command line

Bioinformatics Training and Education Program

https://www.r-bloggers.com/2020/04/where-does-the-output-of-rscript-go/
https://www.r-bloggers.com/2020/04/where-does-the-output-of-rscript-go/
https://www.r-bloggers.com/2020/04/where-does-the-output-of-rscript-go/
https://www.r-bloggers.com/2020/04/where-does-the-output-of-rscript-go/
https://tldp.org/LDP/abs/html/io-redirection.html
https://tldp.org/LDP/abs/html/io-redirection.html
http://swcarpentry.github.io/r-novice-inflammation/05-cmdline.html
http://swcarpentry.github.io/r-novice-inflammation/05-cmdline.html
http://swcarpentry.github.io/r-novice-inflammation/05-cmdline.html
http://swcarpentry.github.io/r-novice-inflammation/05-cmdline.html

This script requires a single argument, a .csv file containing our differential expression results.

How can we run this from the command line?

The easiest way to checkout the output of this function (Volcano.png) is to mount our HPC

system directories locally (https://hpc.nih.gov/docs/helixdrive.html).

Rendering Rmarkdown files from command line

In addition to R scripts, we can render Rmarkdown files directly from the command line by

adding an R expression (an object that represents an action that can be performed by R

(https://adv-r.hadley.nz/expressions.html)) directly to our Rscript command using the -e

expression flag.

To make this work, parameters had to be added to the yaml of the Rmarkdown.

 title = "Enhanced Volcano with Airways",
 lab = rownames(data),
 selectLab=labs,
 labSize=3,
 drawConnectors = TRUE,
 x = 'log2FoldChange',
 y = 'padj')

ggsave("./figures/Volcano.png",width=5.5,height=3.5,units="in",dpi=300,scale=2)

Rscript Volcano.R ./outputs/deseq2_DEGs.csv

Info: Packages used to parse command-line arguments

There are also several packages that can be used to parse command-line arguments such as getopt (https://

github.com/trevorld/r-getopt), optparse (https://github.com/trevorld/r-optparse) ,optigrab (https://github.com/

cran/optigrab), argparse (https://github.com/trevorld/r-argparse) , docopt (https://github.com/docopt/docopt.R) ,

GetoptLong (https://github.com/jokergoo/GetoptLong).

cp /data/classes/BTEP/R_on_Biowulf_2023/rmarkdown/Volcano.Rmd .
cp ./outputs/deseq2_DEGs.csv DEGs.csv

Rscript -e "rmarkdown::render('Volcano.Rmd',params=list(args = 'DEGs.csv'))"

39 Lesson 4: Submitting R Scripts via command line

Bioinformatics Training and Education Program

https://hpc.nih.gov/docs/helixdrive.html
https://hpc.nih.gov/docs/helixdrive.html
https://hpc.nih.gov/docs/helixdrive.html
https://github.com/trevorld/r-getopt
https://github.com/trevorld/r-getopt
https://github.com/trevorld/r-getopt
https://github.com/trevorld/r-getopt
https://github.com/trevorld/r-getopt
https://github.com/trevorld/r-optparse
https://github.com/trevorld/r-optparse
https://github.com/trevorld/r-optparse
https://github.com/cran/optigrab
https://github.com/cran/optigrab
https://github.com/cran/optigrab
https://github.com/cran/optigrab
https://github.com/cran/optigrab
https://github.com/trevorld/r-argparse
https://github.com/trevorld/r-argparse
https://github.com/trevorld/r-argparse
https://github.com/docopt/docopt.R
https://github.com/docopt/docopt.R
https://github.com/docopt/docopt.R
https://github.com/jokergoo/GetoptLong
https://github.com/jokergoo/GetoptLong
https://github.com/jokergoo/GetoptLong
https://adv-r.hadley.nz/expressions.html
https://adv-r.hadley.nz/expressions.html
https://adv-r.hadley.nz/expressions.html
https://adv-r.hadley.nz/expressions.html

Using sbatch

R batch jobs are similar to any other batch job. A batch script ('rjob.sh') is created

that sets up the environment and runs the R code. --- R/Bioconductor on Biowulf

(https://hpc.nih.gov/apps/R.html#sbatch)

Default allocations for an sbatch job include:

2 CPUs with a default memory per CPU of 2 GB. Therefore, the default memory allocation is 4

GB.

More about sbatch

sbatch is used to submit batch jobs, which are resource provisions that run applications on

compute nodes and do not require supervision or interaction (https://curc.readthedocs.io/en/

stable/running-jobs/batch-jobs.html). To submit a batch job, a job script containing a list of unix

commands to be executed by the job is typically required. This script may also include resource

requirements (job directives) telling the job scheduler what types of resources are needed for

the job. While bash shell scripting is typically used to write these files. Other shells can also be

used.

Features of job scripts:

if using a bash shell, the file typically ends in .sh.

File content starts with a shebang (#!) followed by the path to the interpreter (/bin/

bash) on the first line.

Content may include SLURM job directives denoted by #SBATCH at the beginning of the

script directly following #!/bin/bash. These can provide information to the Biowulf

batch system such as:

Partition (default = "norm", --partition)

Name of the job (--job-name)

What types of job status notifications to send (--mail-type)

Where to send job status notification (--mail-user)

Memory to allocate (--mem)

Time to allocate (--time)

cpus per tasks (# of threads if multithreaded) (--cpus-per-task)

Following #SBATCH directives, you can include comments throughout your list of

commands using #.

See important sbatch flags here (https://hpc.nih.gov/docs/userguide.html#submit) and

complete options with sbatch --help.

•

•

•

◦

◦

◦

◦

◦

◦

◦

•

40 Lesson 4: Submitting R Scripts via command line

Bioinformatics Training and Education Program

https://hpc.nih.gov/apps/R.html#sbatch
https://hpc.nih.gov/apps/R.html#sbatch
https://hpc.nih.gov/apps/R.html#sbatch
https://hpc.nih.gov/apps/R.html#sbatch
https://curc.readthedocs.io/en/stable/running-jobs/batch-jobs.html
https://curc.readthedocs.io/en/stable/running-jobs/batch-jobs.html
https://curc.readthedocs.io/en/stable/running-jobs/batch-jobs.html
https://curc.readthedocs.io/en/stable/running-jobs/batch-jobs.html
https://curc.readthedocs.io/en/stable/running-jobs/batch-jobs.html
https://hpc.nih.gov/docs/userguide.html#submit
https://hpc.nih.gov/docs/userguide.html#submit

Submitting the R script as a job using sbatch.

We will create and submit a job script using sbatch that will run the R scripts in the project we

created in Lesson 3 (MyNewProject).

Example job script:

Paste the following:

Ctrl+O, return, Ctrl+X

The R script should be run in the project directory (MyNewProject) to take advantage of renv.

We included the job directives --gres=lscratch:5 and --mail-type=BEGIN,END. --

gres=lscratch:5 ensures that we have 5 GB of lscratch space for temporary storage. --

mail-type=BEGIN,END directs the job scheduler to send us an email when the job starts and

ends. This email will by default go to your NIH email.

nano rjob.sh

#!/bin/bash
#SBATCH --gres=lscratch:5
#SBATCH --mail-type=BEGIN,END

#Load the R module
module load R/4.2.2

#change to project directory
cd /data/$USER/R_on_Biowulf/MyNewProject

#Run R scripts using Rscript
Rscript ./R/DESeq2_airway.R
Rscript ./R/Volcano.R ./outputs/deseq2_DEGs.csv

Note: stdout & stderr

For an sbatch job, a stdout and stderr file is automatically generated (by default, slurm######.out in the submitting

directory). This can be modified using the following sbatch flags / directives (--output=/path/to/dir/

filename, --error=/path/to/dir/filename).

Note: command line flags vs directives

You can also include job flags at the time of job submission. If these conflict with #SBATCH directives, the

command line flags take priority.

41 Lesson 4: Submitting R Scripts via command line

Bioinformatics Training and Education Program

Let's submit the script.

This job script can be submitted from any location as long as the path to the script (rjob.sh) is

correct.

Using swarm

Swarm (https://hpc.nih.gov/apps/swarm.html) is a way to submit multiple commands to the

Biowulf batch system and each command will be run as an independent job with identical

resources, allowing for parallelization.

Swarm scripts have the extension *.swarm.

Lines that start with #SWARM are not run as a part of the script but these are directives

that tells the Biowulf batch system what resoures (ie. memory, time, temporary storage,

modules) are needed.

See here (https://hpc.nih.gov/apps/R.html#swarm) for submitting R swarm jobs.

Rswarm

There is also a utility Rswarm that may interest you in specific cases.

Rswarm is a utility to create a series of R input files from a single R (master)

template file with different output filenames and with unique random number

generator seeds. It will simultaneously create a swarm command file that can be

used to submit the swarm of R jobs. Rswarm was originally developed by Lori

Dodd and Trevor Reeve with modifications by the Biowulf staff.

Rswarm is great for simulations; see an example use case of rswarm here (https://hpc.nih.gov/

apps/R.html#rswarm).

Parallelizing code

Can you speed up your code with parallelization?

Considerations:

levels of parallelization: multiprocessing vs multithreads

The most common form of parallelism in R is multiprocessing. This is usually

explicitly done by you or package you are using. There are are some parts of

base R and the underlying math libraries that can multithread which is mostly

sbatch rjob.sh

•

•

•

42 Lesson 4: Submitting R Scripts via command line

Bioinformatics Training and Education Program

https://hpc.nih.gov/apps/swarm.html
https://hpc.nih.gov/apps/swarm.html
https://hpc.nih.gov/apps/R.html#swarm
https://hpc.nih.gov/apps/R.html#swarm
https://hpc.nih.gov/apps/R.html#rswarm
https://hpc.nih.gov/apps/R.html#rswarm
https://hpc.nih.gov/apps/R.html#rswarm
https://hpc.nih.gov/apps/R.html#rswarm

implicit parallelism. You can check if your code can take advantage of that.

You can allocate for example 4 CPUs and then run your script with different

settings of the $OMP_NUM_THREADS or $MKL_NUM_THREADS environment

variable. If you see a significant speed up and the dashboard data shows

that it used multiple CPUs then it's worth using more than one CPU.

It is important to always test parallel efficiency and monitor actual usage of

CPUs and memory with the dashboard (https://hpc.nih.gov/dashboard) or

using the dashboard_cli command. For running jobs there is also jobload.

--- R on Biowulf, NIH HPC Team (https://hpc.nih.gov/training/handouts/

R_on_Biowulf.pdf)

Can the job be split into multiple independent processes? If yes, consider an R swarm job

(https://hpc.nih.gov/apps/R.html#swarm).

Are there functions in the code that support multiple threads? If so, you can take

advantage of multi-threading.

Is there a lapply/sapply function? Consider replacing with mclapply (https://

www.rdocumentation.org/packages/parallel/versions/3.4.0/topics/mclapply).

Is there 'for' loop? Consider using foreach (https://cran.r-project.org/web/packages/

foreach/vignettes/foreach.html) for parallel execution.

You may find this resource (https://bookdown.org/rdpeng/rprogdatascience/parallel-

computation.html) on parallelizing R code, helpful.

However, see tips from the NIH HPC R/Bioconductor documentation for specific considerations

on:

1. Using the parallel package (https://hpc.nih.gov/apps/R.html#parallel)

2. Using the BiocParallel package (https://hpc.nih.gov/apps/R.html#parallel)

3. Implicit multi-threading (https://hpc.nih.gov/apps/R.html#threading)

See specific examples regarding parallelization and troubleshooting in the NIH HPC training R

on Biowulf (https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf).

Need help running your R code on Biowulf?

If you experience difficulties with running R on Biowulf, you should:

Read the R docs on Biowulf (https://hpc.nih.gov/apps/R.html).

Contact the HPC team at staff@hpc.nih.gov (mailto:staff@hpc.nih.gov)

•

•

•

•

Info: Pitfalls around parallelizing R Code

Some R packages will detect all cores on a node even if they are not allocated (e.g.

parallel::detectCores()). You should use parallelly::availableCores() to detect allocated CPUs. ---

R on Biowulf, HPC Team (https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf)

1.

2.

43 Lesson 4: Submitting R Scripts via command line

Bioinformatics Training and Education Program

https://hpc.nih.gov/dashboard
https://hpc.nih.gov/dashboard
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/apps/R.html#swarm
https://hpc.nih.gov/apps/R.html#swarm
https://hpc.nih.gov/apps/R.html#swarm
https://hpc.nih.gov/apps/R.html#swarm
https://www.rdocumentation.org/packages/parallel/versions/3.4.0/topics/mclapply
https://www.rdocumentation.org/packages/parallel/versions/3.4.0/topics/mclapply
https://www.rdocumentation.org/packages/parallel/versions/3.4.0/topics/mclapply
https://www.rdocumentation.org/packages/parallel/versions/3.4.0/topics/mclapply
https://www.rdocumentation.org/packages/parallel/versions/3.4.0/topics/mclapply
https://cran.r-project.org/web/packages/foreach/vignettes/foreach.html
https://cran.r-project.org/web/packages/foreach/vignettes/foreach.html
https://cran.r-project.org/web/packages/foreach/vignettes/foreach.html
https://cran.r-project.org/web/packages/foreach/vignettes/foreach.html
https://cran.r-project.org/web/packages/foreach/vignettes/foreach.html
https://bookdown.org/rdpeng/rprogdatascience/parallel-computation.html
https://bookdown.org/rdpeng/rprogdatascience/parallel-computation.html
https://bookdown.org/rdpeng/rprogdatascience/parallel-computation.html
https://bookdown.org/rdpeng/rprogdatascience/parallel-computation.html
https://hpc.nih.gov/apps/R.html#parallel
https://hpc.nih.gov/apps/R.html#parallel
https://hpc.nih.gov/apps/R.html#parallel
https://hpc.nih.gov/apps/R.html#parallel
https://hpc.nih.gov/apps/R.html#threading
https://hpc.nih.gov/apps/R.html#threading
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/apps/R.html
https://hpc.nih.gov/apps/R.html
https://hpc.nih.gov/apps/R.html
mailto:staff@hpc.nih.gov
mailto:staff@hpc.nih.gov

Attend monthly HPC walk-in virtual consultations (https://hpc.nih.gov/training/)

Also, please feel free to email us at ncibtep@nih.gov (mailto:ncibtep@nih.gov)

3.

44 Lesson 4: Submitting R Scripts via command line

Bioinformatics Training and Education Program

https://hpc.nih.gov/training/
https://hpc.nih.gov/training/
mailto:ncibtep@nih.gov
mailto:ncibtep@nih.gov

Additional Resources

Additional Resources

HPC Biowulf Resources

Biowulf User Guide (https://hpc.nih.gov/docs/userguide.html)

R/Bioconductor on Biowulf (https://hpc.nih.gov/apps/R.html)

R on Biowulf Training by the HPC team (https://hpc.nih.gov/training/handouts/

R_on_Biowulf.pdf)

Other Resources

What they forgot to teach you about R (https://rstats.wtf/)

usethis package reference (https://usethis.r-lib.org/articles/usethis-setup.html)

Controlling R Startup with .Rprofile, .Renviron, etc. (https://support.posit.co/hc/en-us/

articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-

rsession-conf-and-repos-conf)

Workflow:projects from R 4 Data Science (https://r4ds.had.co.nz/workflow-projects.html)

Introduction to renv (https://rstudio.github.io/renv/articles/renv.html)

Happy Git and GitHub for the useR (https://happygitwithr.com/index.html)

Building reproducible analytical pipelines with R (https://raps-with-r.dev/)

RStudio Background jobs (https://docs.posit.co/ide/user/ide/guide/tools/jobs.html)

1.

2.

3.

1.

2.

3.

4.

5.

6.

7.

8.

46 Additional Resources

Bioinformatics Training and Education Program

https://hpc.nih.gov/docs/userguide.html
https://hpc.nih.gov/docs/userguide.html
https://hpc.nih.gov/apps/R.html
https://hpc.nih.gov/apps/R.html
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://hpc.nih.gov/training/handouts/R_on_Biowulf.pdf
https://rstats.wtf/
https://rstats.wtf/
https://usethis.r-lib.org/articles/usethis-setup.html
https://usethis.r-lib.org/articles/usethis-setup.html
https://usethis.r-lib.org/articles/usethis-setup.html
https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://support.posit.co/hc/en-us/articles/360047157094-Managing-R-with-Rprofile-Renviron-Rprofile-site-Renviron-site-rsession-conf-and-repos-conf
https://r4ds.had.co.nz/workflow-projects.html
https://r4ds.had.co.nz/workflow-projects.html
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html
https://happygitwithr.com/index.html
https://happygitwithr.com/index.html
https://raps-with-r.dev/
https://raps-with-r.dev/
https://docs.posit.co/ide/user/ide/guide/tools/jobs.html
https://docs.posit.co/ide/user/ide/guide/tools/jobs.html

	Toward Reproducibility with R on Biowulf
	Table of Contents
	Course Overview
	Lesson 1: Introduction to Biowulf, Unix, and R
	Lesson 2: Getting Started with R on Biowulf
	Lesson 3: R Project Management and renv
	Lesson 4: Submitting R Scripts via command line
	Additional Resources
	Additional Resources

	Course Overview
	Welcome to Toward Reproducibility with R on Biowulf
	Course Expectations
	Course topics
	Lesson 1: Introduction to Biowulf, Unix, and R
	Lesson 2: Getting Started with R on Biowulf
	Lesson 3: R Project Management and renv
	Lesson 4: Submitting R Scripts via command line

	Lesson 1: Introduction to Biowulf, Unix, and R
	Learning Objectives
	Why use R for bioinformatics?
	What is Bioconductor?

	What is Biowulf, and why use R on Biowulf?
	Getting a Biowulf account
	NIH HPC Documentation
	Additional help

	Unix Refresher
	How much Unix do I need to know to work on Biowulf?
	Accessing your local terminal or command prompt
	Mac OS
	Windows 10 or greater

	Unix commands to know
	Navigating the file system
	File management
	Obtaining help
	Useful information
	File download
	Remote connection
	Biowulf
	Modules on Biowulf

	Resources for learning Unix
	Learning Unix: Classes / Courses
	Additional useful Unix resources

	R Refresher
	Navigating directories
	Getting help
	Installing and loading packages
	Commenting
	Assignment operators
	Object naming conventions

	Object data types
	Importing and exporting data
	Using functions
	Vectors
	Lists
	Data frames
	Plotting
	Getting info on R Session
	Resources for learning R
	BTEP courses

	Test your Knowledge
	Are your Unix skills satisfactory?
	Are your R skills ready?
	Do you need a Biowulf refresher?

	Lesson 2: Getting Started with R on Biowulf
	Learning objectives
	Deploying R on Biowulf
	Connect to Biowulf (Hands-on)
	Getting started with R
	Loading modules
	Setting up local libraries
	Open R and check your library path.

	Next time

	Lesson 3: R Project Management and renv
	Learning objectives
	What is the 2023 NIH Data Management and Sharing Policy?
	How can we make our R analyses more reproducible?
	R Project Management and renv
	Introducing renv (reproducible environments)
	Main functions

	Getting Started: Setting up our R Project
	Connect to Biowulf, obtain an interactive session, load R
	Set up an R project
	Create the R project
	Initialize and activate renv in the project
	Cache directory set-up
	Run renv::init()

	Establish a consistent project structure

	Test it

	Next Lesson
	Acknowledgements

	Lesson 4: Submitting R Scripts via command line
	Learning Objectives
	Example scripts
	Running R from command line
	Adding command line arguments
	Rendering Rmarkdown files from command line

	Using sbatch
	Default allocations for an sbatch job include:
	More about sbatch
	Submitting the R script as a job using sbatch.

	Using swarm
	Rswarm

	Parallelizing code
	Need help running your R code on Biowulf?

	Additional Resources
	Additional Resources
	HPC Biowulf Resources
	Other Resources

