
R Introductory Series

Alexandra L Emmons Ph.D.

BTEP/GAU/CCR/NCI/NIH - email ncibtep@mail.nih.gov

Bioinformatics Training and Education Program

10

10

10

10

10

10

10

11

11

11

11

11

11

11

13

13

13

14

14

14

Table of Contents

Course Overview

• Course Overview

• Welcome to the R Introductory Series!

• A series of introductory lessons in R for scientists.

• Course Expectations

• Content Organization

• Introduction to R and RStudio

• The Basics of R Programming

• R Data Structures: Introducing Data Frames

• Data Frames and Data Wrangling (part 1)

• Data Frames and Data Wrangling (part 2)

• Introduction to Data Visualization with R (part 1)

• Introduction to Data Visualization with R (Part 2)

• Introduction to Bioconductor and report generation with R

• Required Course Materials

Introduction to R and RStudio

• Learning Objectives

• What is R?

• Why R?

• Where do we get R packages?

• Ways to run R

• What is RStudio?

15

15

16

16

17

17

18

18

19

19

20

21

23

24

25

26

26

26

27

28

28

28

31

32

33

• Getting Started with R and R Studio

• Creating an R project

• Creating an R script

• Introduction to the RStudio layout

• When to use Source vs Console?

• Uploading and exporting files from RStudio Server

• Data Management

• Saving your R environment (.Rdata)

• Navigating directories

• What is a path?

• Using functions

• Getting help

• Addtional Sources for help

• Test your learning

• Acknowledgments

Basics of R Programming

• Objectives

• R objects

• Creating and deleting objects

• Naming conventions and reproducibility

• Reassigning objects

• Deleting objects

• Object data types

• Mathematical operations

• Vectors

• Test your learning

33

36

38

38

39

39

40

41

41

41

42

42

42

42

43

43

43

45

45

46

47

49

51

51

• Creating, subsetting, modifying, exporting

• Logical subsetting

• Other ways to handle missing data

• Using objects to store thresholds

• Using the %in% operator.

• Test your learning

• Saving and loading objects

• Exporting your R project

• Acknowledgments

• Additional Resources

R Data Structures: Introducing Data Frames

• Learning Objectives

• Data Structures

• What are factors?

• Important functions

• Lists

• Important functions

• Example

• Data Frames: Working with Tabular Data

• Best Practices for organizing genomic data

• Introducing the airway data

• Importing / exporting data

• Examining and summarizing data frames

• What is the length of our data.frame? What are the dimensions?

• Other useful functions for inspecting data frames

51

53

54

54

55

58

58

59

59

59

59

60

64

64

65

67

68

68

69

69

69

70

71

73

73

• Data frame coercion and accessors

• Using colnames() to rename columns

• Test your learning

• Exporting Data (Save the data frame to a file)

• Data Matrices

• Acknowledgements

• Resources

Data Frames and Data Wrangling (Part 1)

• Learning Objectives

• Best Practices for organizing genomic data

• Introducing tidy data

• What is tidy data?

• What is messy data?

• Tools for working with tidy data

• Load the core tidyverse packages

• Load the data

• Subsetting data frames with base R

• Using %in%

• Tips to remember for subsetting

• Data wrangling with tidyverse

• Subsetting with dplyr

• Selecting columns

• Test your learning

• Filtering by row

• Test your learning

• Acknowledgements

73

74

74

74

75

75

75

76

76

77

78

78

78

79

80

80

81

82

83

85

86

87

87

88

88

• Resources

Data Frames and Data Wrangling (Part 2)

• Learning Objectives

• Load the tidyverse

• Re-load the data

• Introducing the pipe

• Running code one step at a time

• Nesting code

• Using the Pipe

• We can pipe from the beginning to the end.

• Test your learning

• Mutate

• Create a new column using existing columns

• Coerce variables

• More examples

• Test your learning

• Arrange, group_by, summarize

• Using arrange()

• The slice functions

• Sample sizes (counts and tallies) and missing data

• Test your learning

• Data Reshaping

• Pivot wider

• Coerce to a matrix

• Pivot longer

• Reshaping for plotting

90

90

92

92

92

92

93

97

98

102

102

108

112

116

116

118

118

119

120

120

• Acknowledgements

• Resources

Introduction to Data Visualization with R (Part 1)

• Data visualization with ggplot2

• Objectives

• Why use R for Data Visualization?

• Introducing ggplot2

• The ggplot2 template

• Geom functions

• Mapping and aesthetics (aes())

• R objects can also store figures

• Colors

• Facets

• Using multiple geoms per plot

• Other data visualization options in R

• R base graphics

• Lattice

• Resource list

• Acknowledgements

Introduction to Data Visualization with R (Part 2)

• Objectives

• Our grammar of graphics template

121

121

122

126

127

133

135

135

137

138

138

139

139

139

140

140

141

141

142

142

143

143

143

144

144

• Loading the libraries

• Importing the data

• Statistical transformations

• Coordinate systems

• Labels, legends, scales, and themes

• Create a custom theme to use with multiple figures.

• Saving plots (ggsave())

• Nice plot example

• Recommendations for creating publishable figures

• Complementary packages

• Acknowledgements

Introduction to Bioconductor and report generation with R

• Objectives

• Introducing Bioconductor

• What types of packages are available in Bioconductor?

• Bioconductor versions and install

• Bioconductor release schedule

• How to install a Bioconductor package?

• How to find Bioconductor packages of interest?

• Bioconductor education and communication

• Resources for learning

• Communication

• Introduction to report generation with R.

• What is Quarto?

• Why use Quarto

• Gallery of examples

145

145

147

148

149

149

151

151

154

154

157

157

160

160

162

162

165

165

165

166

• Getting Started

• Open a new .qmd file

• Don't know markdown? No problem. Use the Visual editor.

• Anatomy of Quarto document

• Addtional Resources

• Acknowledgements

Additional Exercises

Base R: Objects, vectors, and data types

• Lesson 2 Exercise Questions: Base R syntax, objects, and data types

Base R and data frames

• Lesson 3 Exercise Questions: BaseR dataframe manipulation and factors

Practicing the Tidyverse (Part 1)

• Lesson 4 Exercise Questions: Tidyverse

Practicing the Tidyverse (Part 2)

• Lesson 5 Exercise Questions: Tidyverse

ggplot2: Changing plot types

• Lesson 5 Exercise Questions: ggplot2

ggplot2: Making Pretty Plots

• Lesson 6 Exercise Questions: ggplot2

• Start by plotting Petal.Length on the x-axis and Petal.Width on the y-axis.

• Fix the axes so that the dimensions on the x-axis and the y-axis are equal. Both axes

should start at 0. Label the axis breaks every 0.5 units on the y-axis and every 1.0 units on

the x-axis.

167

169

170

172

174

176

176

176

176

• Change to color of the points by species to be color blind friendly, and change the

legend title to "Iris Species". Label the x and y axis to eliminate the variable names and

add unit information.

• Play with the theme to make this a bit nicer. Change font style to "Times". Change all

font sizes to 12 pt font. Bold the legend title and the axes titles. Increase the size of the

points on the plot to 2. Bonus: fill the points with color and have a black outline around

each point.

• Now, save your plot using ggsave.

Getting the Data

• Data Access

Getting help

Need help?

References

For Further Reading

• Books and / or Book Chapters of Interest

• R Cheat Sheets

• Other Resources

Course Overview

Welcome to the R Introductory Series!

A series of introductory lessons in R for scientists.

This course will include a series of lessons for individuals new to R or with limited R experience.

The purpose of this course is to introduce the foundational skills necessary to begin to analyze

and visualize data in R. This course is not designed for those with intermediate R experience

and is not tailored to any one specific type of analysis.

Course Expectations

The course will include a series of eight lessons taught in 1-hour blocks over four weeks.

Lessons will be on Tuesdays and Thursdays at 1 pm. Each lesson will be followed by an

optional 1-hour help session. Content has been adapted from material provided by Data

Carpentry Intro to R and RStudio for Genomics (https://datacarpentry.org/genomics-r-intro/)

(Link to the license (https://creativecommons.org/licenses/by/4.0/)) as well as R for Data

Science (https://r4ds.had.co.nz/index.html).

Content Organization

Introduction to R and RStudio

This lesson will serve as a general introduction to R and RStudio. Attendees will explore the

RStudio interactive development environment (IDE) and learn to create R projects and scripts,

navigate between directories, use functions, and obtain help.

The Basics of R Programming

In this lesson, attendees will learn the most basic features of the R programming language

including:

R syntax

Creating R objects

Data types

Using mathematical operations

Using comparison operators

Creating, subsetting, and modifying vectors

•

•

•

•

•

•

10 Course Overview

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/
https://datacarpentry.org/genomics-r-intro/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html
Lesson_1/

R Data Structures: Introducing Data Frames

This lesson will introduce data structures with a focus on data frames. Attendees will learn how

to import, summarize, and explore data stored in data frames.

Data Frames and Data Wrangling (part 1)

This lesson will introduce data wrangling with R. Attendees will learn to filter data using base R

and tidyverse (dplyr) functionality.

Data Frames and Data Wrangling (part 2)

In this lesson, attendees will learn how to transform, summarize, and reshape data using

functions from the tidyverse.

Introduction to Data Visualization with R (part 1)

This lesson will introduce prominent ways to visualize data with R. The majority of the lesson will

be devoted to learning how to create publishable figures using the ggplot2 package.

Introduction to Data Visualization with R (Part 2)

In this lesson, attendees will continue learning how to plot publishable figures with ggplot2.

Introduction to Bioconductor and report generation with R

This lesson will be divided into two parts. Part 1 will introduce Bioconductor, an R package

repository for the analysis of biological data. Part 2 will introduce RMarkdown and Quarto for

report generation with R.

Required Course Materials

To participate in this class you will need your government-issued computer and a reliable

internet connection. You do not need to download or install any software to participate in the

class. However, at the end of the class, we will provide instruction on installing R and R Studio

on your local machine.

This class will be taught on the DNAnexus platform. Every learner will need to create a

DNAnexus account (https://dnanexus.com).

DNAnexus Accounts

If you are not taking the live iteration of this course and you are following this documentation on your own, you do

not need a DNAnexus account. DNAnexus is only accessible to course registrants during class times.

11 Course Overview

Bioinformatics Training and Education Program

https://dnanexus.com
https://dnanexus.com

Video Recordings

Video recordings of BTEP Coding Club events can be found in the BTEP Video Archive (https://

bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/) 24-48 hours following any given event.

12 Course Overview

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/
https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/
https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/
https://bioinformatics.ccr.cancer.gov/btep/btep-video-archive-of-past-classes/

Introduction to R and RStudio

Learning Objectives

To understand:

1. the difference between R and RStudioIDE.

2. how to work within the RStudio environment including:

creating an Rproject and Rscript

navigating between directories

using functions

obtaining help

how R can enhance data analysis reproducibility

By the end of this section, you should be able to easily navigate and explore your RStudio

environment.

What is R?

R is both a computational language and environment for statistical computing and graphics. It

is open-source and widely used by scientists, not just bioinformaticians. Base packages of R

are built into your initial installation, but R functionality is greatly improved by installing other

packages. R as a programming language is based on the S language, developed by Bell

laboratories. R is maintained by a network of collaborators from around the world, and core

contributors are known as the R Core team (Term used for citations). However, R is also a

resource for and by scientists, and R functionality makes it easy to develop and share

packages on any topic. Check out more about R on The R Project for Statistical Computing

(https://www.r-project.org/about.html) website.

Why R?

R is a particularly great resource for statistical analyses, plotting, and report generating. The

fact that it is widely used means that users do not need to reinvent the wheel. There is a

package available for most types of analyses, and if users need help, it is only a Google search

away. As of now, CRAN houses +20,000 available packages. There are also many field specific

packages, including those useful in the -omics (genomics, transcriptomics, metabolomics, etc.).

For example, the latest version of Bioconductor (v 3.18) includes 2,266 software packages, 429

experiment data packages, 920 annotation packages, 30 workflows, and 4 books.

•

•

•

•

•

13 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://www.r-project.org/about.html
https://www.r-project.org/about.html
https://www.r-project.org/about.html
https://www.r-project.org/about.html

Where do we get R packages?

To take full advantage of R, you need to install R packages. R packages are loadable

extensions that contain code, data, documentation, and tests in a standardized shareable

format that can easily be installed by R users. The primary repository for R packages is the

Comprehensive R Archive Network (CRAN). CRAN (https://cran.r-project.org/

#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.) is

a global network of servers that store identical versions of R code, packages, documentation,

etc (cran.r-project.org). To install a CRAN package, use

install.packages("packageName"). Github is another common source used to store R

packages; though, these packages do not necessarily meet CRAN standards so approach with

caution. To install a Github packages use library(devtools) followed by

install_github(). Many genomics and other packages useful to biologists / molecular

biologists can be found on Bioconductor (https://www.bioconductor.org/) - more on this later.

METACRAN (https://www.r-pkg.org/) is a useful database that allows you to search and browse

CRAN/R packages.

Ways to run R

R can be used via command line interactively, command line using a script (https://

support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-

line), or interactively through an environment. This course will demonstrate the utility of the

RStudio integrated development environment (IDE).

What is RStudio?

RStudio (https://posit.co/products/open-source/rstudio/) is an integrated development

environment for R, and now python. RStudio includes a console, editor, and tools for plotting,

history, debugging, and work space management. It provides a graphic user interface for

working with R, thereby making R more user friendly. RStudio is open-source and can be

installed locally or used through a browser (RStudio Server or Posit Cloud). We will be

showcasing RStudio Server, but we highly encourage new users to install R and RStudio locally

to their PC or macbook.

Note

RStudio the company is now Posit (https://posit.co/).

Installing R and RStudio

Macbook: Follow these instructions (https://posit.co/download/rstudio-desktop/).

Windows: Request installation from service.cancer.gov (https://service.cancer.gov/ncisp).

14 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.r-pkg.org/
https://www.r-pkg.org/
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://posit.co/products/open-source/rstudio/
https://posit.co/products/open-source/rstudio/
https://posit.co/
https://posit.co/
https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/
https://service.cancer.gov/ncisp
https://service.cancer.gov/ncisp

Getting Started with R and R Studio

This tutorial closely follows the Intro to R and RStudio for Genomics lesson provided by

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/00-introduction.html).

Creating an R project

Because we are working on DNAnexus, and our files will not remain at the end of each class,

we aren't going to use a R project for all lessons. However, it is worth creating an R project and

discussing the benefits here.

Creating an R project for each project you are working on facilitates organization and scientific

reproducibility.

An RStudio project allows you to more easily:

Save data, files, variables, packages, etc. related to a specific analysis

project

Restart work where you left off

Collaborate, especially if you are using version control such as git. ---

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/00-

introduction.html)

R projects simplify data reproducibility by allowing us to use relative file paths that will translate

well when sharing the project.

To start a new R project, select File > New Project... or use the R project button (See

image below)

A New project wizard will appear. Click New Directory and New Project. Choose a new

directory name....perhaps "LearningR"? To make your project more reproducible, consider

clicking the option box for renv. The R project file ends in .Rproj.

One of the most wonderful and also frustrating aspects of working with R is

managing packages. Unfortunately it is very common that you may run into

versions of R and/or R packages that are not compatible. This may make it difficult

•

•

•

15 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html

for someone to run your R script using their version of R or a given R package, and/

or make it more difficult to run their scripts on your machine. renv is an RStudio

add-on that will associate your packages and project so that your work is more

portable and reproducible. To turn on renv click on the Tools menu and select

Project Options. Under Environments check off “Use renv with this project” and

follow any installation instructions. ---datacarpentry.org (https://datacarpentry.org/

genomics-r-intro/00-introduction.html)

Read more about renv here (https://rstudio.github.io/renv/articles/renv.html).

Creating an R script

As we learn more about R and start learning our first commands, we will keep a record of our

commands using an R script. Remember, good annotation is key to reproducible data analysis.

An R script can also be generated to run on its own without user interaction, from R console

using source() and from linux command line using Rscript.

To create an R script, click File > New File > R Script. You can save your script by

clicking on the floppy disk icon. You can name your script whatever you want, perhaps

"LearningR_intro". R scripts end in .R. Save your R script to your working directory, which will be

the default location on RStudio Server.

Introduction to the RStudio layout

Let's look a bit into our RStudio layout.

16 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://rstudio.github.io/renv/articles/renv.html
https://rstudio.github.io/renv/articles/renv.html

Source: This pane is where you will write/view R scripts. Some outputs (such as if

you view a dataset using View()) will appear as a tab here.

Console/Terminal/Jobs: This is actually where you see the execution of commands.

This is the same display you would see if you were using R at the command line

without RStudio. You can work interactively (i.e. enter R commands here), but for

the most part we will run a script (or lines in a script) in the source pane and watch

their execution and output here. The “Terminal” tab give you access to the BASH

terminal (the Linux operating system, unrelated to R). RStudio also allows you to run

jobs (analyses) in the background. This is useful if some analysis will take a while to

run. You can see the status of those jobs in the background.

Environment/History: Here, RStudio will show you what datasets and objects

(variables) you have created and which are defined in memory. You can also see

some properties of objects/datasets such as their type and dimensions. The

“History” tab contains a history of the R commands you’ve executed R.

Files/Plots/Packages/Help/Viewer: This multipurpose pane will show you the

contents of directories on your computer. You can also use the “Files” tab to

navigate and set the working directory. The “Plots” tab will show the output of any

plots generated. In “Packages” you will see what packages are actively loaded, or

you can attach installed packages. “Help” will display help files for R functions and

packages. “Viewer” will allow you to view local web content (e.g. HTML outputs).

---datacarpentry.org (https://datacarpentry.org/genomics-r-intro/00-

introduction.html)

Also, you can change your RStudio layout. See this blog (https://www.r-bloggers.com/2018/05/

a-perfect-rstudio-layout/) if you are interested. For simplicity, please do NOT change the layout

during this course.

When to use Source vs Console?

We will use the Source pane to keep a record of the code that we run. However, at times, we

may want to do quick testing without keeping a record. This is the scenario in which you would

use the Console.

Uploading and exporting files from RStudio Server

RStudio Server works via a web browser, and so you see this additional Upload option in the

Files pane. If you select this option, you can upload files from your local computer into the

Note

You can already see your R project and R script file in your project directory under the Files tab. If you chose to

use renv you will also see some files and directories related to that.

Additional panes may show up depending on what you are doing in RStudio. For example, you may notice a

Render tab in the Console/Terminal/Jobs pane when working with Rmarkdown files (.Rmd).

17 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/

server environment. If you select More, you will also see an Export option. You can use this to

export the files created in the RStudio environment.

Data Management

Data organization is extremely important to reproducible science. Consider organizing your

project directory in a way that facilitates reproducibility. All inputs and outputs (where possible)

should be contained within the project directory, and a consistent directory structure should be

created. For example, you may want directories for data, docs, outputs, figures, and scripts.

See additional details here (https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-

biowulf/L3_PackageManagement/). How you organize project directories is up to you, but

consistency is fairly important for reproducibility. We will discuss more on this subject when

introducing data frames.

Saving your R environment (.Rdata)

When exiting RStudio, you will be prompted to save your R workspace or .RData. The .RData

file saves the objects generated in your R environment. You can also save the .RData at any

time using the floppy disk icon just below the Environment tab. You may also save your R

workspace from the console using save.image(). RData files are often not visible in a

directory. You can see them using ls -a from the terminal. RData files within a working

directory associated with a given project will launch automatically under the default option

Restore .RData into workspace at startup. You may also load .Rdata by using load().

Warning

Your files will not remain when you exit the RStudio server session. If you want to keep notes or other files, you will

need to export them.

Tip

Do not use absolute file paths in scripts.

18 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/
https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/
https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/
https://bioinformatics.ccr.cancer.gov/docs/reproducible-r-on-biowulf/L3_PackageManagement/

Navigating directories

Now we are ready to work with some of our first R commands. We are going to run commands

directly from our R script rather than typing into the R console.

Our first command will be getwd(). This simply prints your working directory and is the R

equivalent of pwd (if you know unix coding).

To run this command, we have a number of options. First, you can use the Run button above.

This will run highlighted or selected code. You may also use the source button to run your entire

script. My preferred method is to use keyboard shortcuts. Move your cursor to the code of

interest and use command + return for macs or control + enter for PCs. If a command is

taking a long time to run and you need to cancel it, use control + c from the command line or

escape in RStudio. Once you run the command, you will see the command print to the console

in blue followed by the output.

It is good practice to annotate your code using a comment. We can denote comments with #.

We set our working directory when we created our R project, but if for some reason we needed

to set our working directory, we can do this with setwd(). There is no need to run currently.

However, if you were to run it, you would use the following notation:

setwd("/home/rstudio/LearningR")

The path should be in quotes. You can use tab completion to fill in the path.

What is a path?

According to Wikipedia, a path is "a string of characters used to uniquely identify a location in a

directory structure."

Therefore, a file path simply tells us where a file or files are located. You will need to direct R to

the location of files that you want to work with or output that you create.

Tip

If you are working with significantly large datasets, you may not want to automatically save and restore .RData. To

turn this off, go to Tools -> Global Options -> deselect "Restore .RData into workspace at startup" and choose

"Never" for "Save workspace to .RData on exit".

#print our working directory
getwd()

[1] "/home/rstudio/LearningR"

19 Introduction to R and RStudio

Bioinformatics Training and Education Program

The working directory is the location in your file system that you are currently working in. In other

words, it is the default location that R will look for input files and write output files.

Using functions

A function in R (or any computing language) is a short program that takes some

input and returns some output.

An R function has three key properties:

Functions have a name (e.g. dir, getwd); note that functions are case

sensitive!

Following the name, functions have a pair of ()

Inside the parentheses, a function may take 0 or more arguments ---

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/00-

introduction.html)

We have already used some R functions (e.g. getwd() and setwd())! Let's look at another

example using the round() function. round() "rounds the values in its first argument to the

specified number of decimal places (default 0)" --- R help.

Consider

In this example, we only provided the required argument in this case, which was any numeric or

complex vector. We can see that two arguments can be included by the context prompt while

typing (See below image). The optional second argument (i.e., digits) indicates the number of

decimal places to round to. Contextual help is generally provided as you type the name of a

function. We will discuss other types of help in a moment.

Note

R uses unix formatting for directories, so regardless of whether you have a Windows computer or a mac, the way

you enter the directory information will be the same. You can use tab completion to help you fill in directory

information.

•

•

•

round(5.65) #can provide a single number

[1] 6

round(c(5.65,7.68,8.23)) #can provide a vector

[1] 6 8 8

20 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html
https://datacarpentry.org/genomics-r-intro/00-introduction.html

At times a function may be masked by another function. This can happen if two functions are

named the same (e.g., dplyr::filter() vs plyr::filter()). We can get around this by

explicitly calling a function from the correct package using the following syntax:

package::function().

Getting help

Now we know a bit about using functions, but what if I had no idea what the function round()

was used for or what arguments to provide?

Getting help in R is fairly easy. In the pane to the bottom right, you should see a Help tab. You

can search for help regarding a specific topic using the search field (look for the magnifying

glass).

#provide an additional argument rounding to the tenths place
round(5.65,digits=1)

[1] 5.7

Info

See this R reference card (https://cran.r-project.org/doc/contrib/Short-refcard.pdf) for a list of useful functions to get

to know.

21 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf

Alternatively, you can search directly for help in the console using ?round() or ??round().

help.search() or ?? can be used to search for a function using a keyword and will also work

for unloaded packages; for example, you may try help.search("anova").

R help pages provide a lot of information. The description and argument sections are likely

where you will want to start. If you are still unsure how to use the function, scroll down and

check out the examples section of the documentation. Consider testing some of the examples

yourself and applying to your own data.

Many R packages also include more detailed help documentation known as a vignette. To see a

package vignette, use browseVignettes() (e.g.,

browseVignettes(package="dplyr")).

To see a function's arguments, you can use args().

round() takes two arguments, x, which is the number to be rounded, and a digits

argument. The = sign indicates that a default (in this case 0) is already set. Since x

is not set, round() requires we provide it, in contrast to digits where R will use the

default value 0 unless you explicitly provide a different value. --- datacarpentry.org

(https://datacarpentry.org/genomics-r-intro/01-introduction/index.html)

R arguments are also positional, so instead of including digits=1 in our above use of round(),

we could instead do the following:

args(round)

function (x, digits = 0)
NULL

22 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html

Addtional Sources for help

Try googling your problem or using some other search engine. rseek (https://rseek.org/) is an

R specific search engine that searches several R related sites. If using google directly, make

sure you use R to tag your search.

Stack Overflow is a particularly great resource for finding help. If you post a question, you will

need to make a reproducible example (reprex) and be as descriptive as possible regarding the

problem. For this purpose, you may find the reprex (https://reprex.tidyverse.org/) package

particularly useful.

To provide details about your R session, use

round(5.65, 1)

[1] 5.7

sessionInfo()

23 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://rseek.org/
https://rseek.org/
https://rseek.org/
https://reprex.tidyverse.org/
https://reprex.tidyverse.org/
https://reprex.tidyverse.org/

Test your learning

Which of the following functions is used to print your working directory in R?

a. pwd

b. Setwd()

c. getwd()

d. wkdir()

{{Sdet}}

Solution{{Esum}}

C

{{Edet}}

Which of the following can be used to learn more regarding an R function?

a. ?function()

b. ??function()

c. args(function)

d. All of the above

{{Sdet}}

R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.2.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapac

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):
[1] digest_0.6.33 R6_2.5.1 fastmap_1.1.1 xfun_0.41
[5] cachem_1.0.8 knitr_1.45 htmltools_0.5.7 rmarkdown_2.25
[9] cli_3.6.1 sass_0.4.7 jquerylib_0.1.4 compiler_4.3.2
[13] rstudioapi_0.15.0 tools_4.3.2 evaluate_0.23 bslib_0.5.1
[17] yaml_2.3.7 rlang_1.1.2 jsonlite_1.8.7

1.



2.

24 Introduction to R and RStudio

Bioinformatics Training and Education Program

Solution{{Esum}}

D

{{Edet}}

Acknowledgments

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-

introduction/index.html). Material was also inspired by content from Introduction to data analysis

with R and Bioconductor (https://carpentries-incubator.github.io/bioc-intro/), which is part of the

Carpentries Incubator (https://github.com/carpentries-incubator/proposals/#the-carpentries-

incubator).



25 Introduction to R and RStudio

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://carpentries-incubator.github.io/bioc-intro/
https://carpentries-incubator.github.io/bioc-intro/
https://carpentries-incubator.github.io/bioc-intro/
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator

Basics of R Programming

Objectives

To understand some of the most basic features of the R language including:

Creating R objects and understanding object types

Using mathematical operations

Using comparison operators

Creating, subsetting, and modifying vectors

By the end of this section, you should understand what an object and vector is and how to

access and work with objects and vectors.

R objects

Everything assigned a value in R is technically an object. Mostly we think of R objects as

something in which a method (or function) can act on; however, R functions, too, are R object. R

objects are what gets assigned to memory in R and are of a specific type or class. Objects

include things like vectors, lists, matrices, arrays, factors, and data frames. Don't get too

bogged down by terminology. Many of these terms will become clear as we begin to use them

in our code. In order to be assigned to memory, an r object must be created.

Creating and deleting objects

To create an R object, you need a name, a value, and an assignment operator (e.g., <- or =)

(https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html). R is

case sensitive, so an object with the name "FOO" is not the same as "foo".

Let's create a simple object and run our code. There are a few methods to run code (the run

button, key shortcuts (Windows: ctrl+Enter, Mac: Command+Return), or type directly into

the console).

•

•

•

•

Note

You can use alt + - on a PC to generate the -> or option + - on a mac.

#You can and should annotate your code with comments for better
#reproducibility.
#Create an object called "a" assigned to a value of 1.
a<-1

26 Basics of R Programming

Bioinformatics Training and Education Program

https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html

In this example, "a" is the name of the object, 1 is the value, and <- is the assignment operator.

Naming conventions and reproducibility

There are rules regarding the naming of objects.

1. Avoid spaces or special characters EXCEPT '_' and '.'

2. No numbers or underscores at the beginning of an object name.

For example:

In contrast:

What do you think would have happened if we didn't put 'apples' in quotes?

3. Avoid common names with special meanings (See ?Reserved) or assigned to existing

functions (These will auto complete).

See the tidyverse style guide (https://style.tidyverse.org/syntax.html) for more information on

naming conventions.

#Simply call the name of the object to print the value to the screen
a
[1] 1

1a<-"apples" # this will throw and error
1a

Error: <text>:1:2: unexpected symbol
1: 1a
^

Note

It is generally a good habit to not begin sample names with a number.

a<-"apples" #this works fine
a

[1] "apples"

How do I know what objects have been created?

27 Basics of R Programming

Bioinformatics Training and Education Program

https://style.tidyverse.org/syntax.html
https://style.tidyverse.org/syntax.html

Reassigning objects

To reassign an object, simply overwrite the object.

Deleting objects

Object data types

The data type of an R object affects how that object can be used or will behave. Examples of

base R data types include numeric, integer, complex, character, and logical. R objects can also

To view a list of the objects you have created, use ls() or look at your global environment pane.***

#object with gene named 'tp53'
gene_name<-"tp53"
gene_name

[1] "tp53"

#if instead we want to reassign gene_name to a different gene,
#we would use:
gene_name<-"GH1"
gene_name

[1] "GH1"

Warning

R will not warn you when objects are being overwritten, so use caution.

delete the object 'gene_name'
rm(gene_name)

#the object no longer exists, so calling it will result in an error
gene_name

Error in eval(expr, envir, enclos): object 'gene_name' not found

28 Basics of R Programming

Bioinformatics Training and Education Program

have certain assigned attributes (related to class), and these attributes will be important for how

they interact with certain methods / functions. Ultimately, understanding the mode / type and

class of an object will be important for how an object can be used in R. When the mode of an

object is changed, we call this "coercion". You may see a coercion warning pop up when

working with objects in the future.

The most common modes (from datacarpentry.org); Other examples: complex, raw, etc. (See ?

typeof()).

Data types are familiar in many programming languages, but also in natural

language where we refer to them as the parts of speech, e.g. nouns, verbs,

adverbs, etc. Once you know if a word - perhaps an unfamiliar one - is a noun, you

can probably guess you can count it and make it plural if there is more than one

(e.g. 1 Tuatara, or 2 Tuataras). If something is a adjective, you can usually change it

into an adverb by adding “-ly” (e.g. jejune vs. jejunely). Depending on the context,

you may need to decide if a word is in one category or another (e.g “cut” may be a

noun when it’s on your finger, or a verb when you are preparing vegetables). These

concepts have important analogies when working with R objects.

--- datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-r-basics.html)

The mode or type of an object can be examined using mode() or typeof(), while the class of

an object can be viewed using class().

Let's create some objects and determine their types and classes.

chromosome_name <- 'chr02'
mode(chromosome_name)
[1] "character"
typeof(chromosome_name)
[1] "character"
class(chromosome_name)
[1] "character"

od_600_value <- 0.47
mode(od_600_value)
[1] "numeric"
typeof(od_600_value)
[1] "double"
class(od_600_value)
[1] "numeric"

29 Basics of R Programming

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-r-basics.html
https://datacarpentry.org/genomics-r-intro/01-r-basics.html

As you can see, the output of mode() and typeof() is largely the same but typeof() does

differ in some cases and is based on the storage mode. So numeric types can be stored in

memory differently, with doubles taking up more memory than an integer, for example. If this is

confusing, you can always read the documentation ?mode() and ?typeof(). Searching for

help provided this nifty R explanation for mode vs type names.

On the other hand,

df<-head(iris)
mode(df)
[1] "list"
typeof(df)
[1] "list"
class(df)
[1] "data.frame"

chr_position <- '1001701bp'
mode(chr_position)
[1] "character"
typeof(chr_position)
[1] "character"
class(chr_position)
[1] "character"

spock <- TRUE
mode(spock)
[1] "logical"
typeof(spock)
[1] "logical"
class(spock)
[1] "logical"

30 Basics of R Programming

Bioinformatics Training and Education Program

'class' is a property assigned to an object that determines how generic functions

operate with it. It is not a mutually exclusive classification. If an object has no

specific class assigned to it, such as a simple numeric vector, it's class is usually

the same as its mode, by convention. ---stackexchange (https://

stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-

objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.)

There are also functions that can gauge types directly, for example, is.numeric(),

is.character(), is.logical(). It is often most useful to use class() and typeof() to

find out more about an object or str() (more on this function later).

There are some special use, null-able values. Read more to learn about NULL, NA, NaN, and

Inf (https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/).

Mathematical operations

As mentioned, an object's mode can be used to understand the methods that can be applied to

it. Objects of mode numeric can be treated as such, meaning mathematical operators can be

used directly with those objects.

This chart from datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-r-basics.html)

shows many of the mathematical operators used in R:

Let's see this in practice.

#create an object storing the number of human chromosomes (haploid)
human_chr_number<-23
#let's check the mode of this object
mode(human_chr_number)

[1] "numeric"

31 Basics of R Programming

Bioinformatics Training and Education Program

https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://stats.stackexchange.com/questions/3212/mode-class-and-type-of-r-objects#:~:text=class%20is%20an%20attribute%20of,physical%20characteristic%20of%20an%20object.
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://datacarpentry.org/genomics-r-intro/01-r-basics.html
https://datacarpentry.org/genomics-r-intro/01-r-basics.html

Moreover, we do not need an object to perform mathematical computations. R can be used like

a calculator.

For example

Vectors

Vectors are probably the most used commonly used object type in R. A vector is a

collection of values that are all of the same type (numbers, characters, etc.). The

columns that make up a data frame are vectors. One of the most common ways to

create a vector is to use the c() function - the “concatenate” or “combine”

function. Inside the function you may enter one or more values; for multiple values,

separate each value with a comma. --- datacarpentry.org (https://

datacarpentry.org/genomics-r-intro/01-r-basics.html).

Another property of vectors worth exploring is their length. Try length()

#Now, lets get the total number of human chromosomes (diploid)
human_chr_number * 2 #The output is 46!

[1] 46

(1 + (5 ** 0.5))/2

[1] 1.618034

#create a vector of gene names
transcript_names<-c("TSPAN6","TNMD","SCYL3","GCLC")
#Let's check out the mode. What do you think?
mode(transcript_names)
[1] "character"
typeof(transcript_names)
[1] "character"

length(transcript_names)

[1] 4

32 Basics of R Programming

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-r-basics.html
https://datacarpentry.org/genomics-r-intro/01-r-basics.html
https://datacarpentry.org/genomics-r-intro/01-r-basics.html
https://datacarpentry.org/genomics-r-intro/01-r-basics.html

In addition, you can assess the underlying structure of the object (vector in this case) by using

str(). str() will be invaluable for understanding more complicated data structures such as

matrices and data frames, which will be discussed later.

Test your learning

Given the following R code:

What type of data is stored in this vector?

a. double

b. character

c. logical

d. complex

{{Sdet}}

Solution{{Esum}}

B

{{Edet}}

Creating, subsetting, modifying, exporting

Let's learn how to further work with vectors, including creating, sub-setting, modifying, and

saving.

str(transcript_names) #this will return properties of the object's underlying structur

chr [1:4] "TSPAN6" "TNMD" "SCYL3" "GCLC"

#We know this is a vector from the length but you could always check with
is.vector(transcript_names)

[1] TRUE

numbers<- c("1","2.56","83","678")



33 Basics of R Programming

Bioinformatics Training and Education Program

There may be moments where you want to retrieve a specific value or values from a vector. To

do this, we use bracket notation sub-setting.In bracket notation, you call the name of the vector

followed by brackets. The brackets contain an index for the value that we want.

In R vector indices start with 1 and end with length(vector). This is important and can differ

based on programming language.

For example:

Programming languages like Fortran, MATLAB, Julia, and R start counting at 1,

because that’s what human beings typically do. Languages in the C family

(including C++, Java, Perl, and Python) count from 0 because that’s simpler for

computers to do.---bioc-intro (https://datacarpentry.org/genomics-r-intro/01-r-

basics.html).

So to extract the last element in a vector, you could use the following annotation:

This is the same as:

#Some possible RNASeq data
cell_line<- c("N052611", "N061011", "N080611", "N61311")
sample_id <- c("SRR1039508", "SRR1039509", "SRR1039512", "SRR1039513", "SRR1039516", "
transcript_counts <- c(679, 0, 467, 260, 60, 0)

#Get the second value from the vector cell_types
cell_line[2]

[1] "N061011"

#retrieve the last element in the sample_id vector
sample_id[length(sample_id)]

[1] "SRR1039521"

#retrieve the last element in the sample_id vector
sample_id[8]

[1] "SRR1039521"

34 Basics of R Programming

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-r-basics.html
https://datacarpentry.org/genomics-r-intro/01-r-basics.html
https://datacarpentry.org/genomics-r-intro/01-r-basics.html
https://datacarpentry.org/genomics-r-intro/01-r-basics.html

You may also want to subset a range of values.

The combine function c() can be used to add an element to a vector.

Indexing can be used to remove a value.

We can rename a value by

#Retrieve the second and third value from cell_types
cell_line[2:3]

[1] "N061011" "N080611"

#Retrieve the first, fifth, and sixth values from transcript_counts
transcript_counts[c(1,5:6)]

[1] 679 60 0

#Lets add a gene to transcript_names
transcript_names<-c(transcript_names,"ANAPC10P1","ABCD1")
#The object will not be overwritten without assigning it to a name
transcript_names
[1] "TSPAN6" "TNMD" "SCYL3" "GCLC" "ANAPC10P1" "ABCD1"

#Let's remove "SCYL3"
transcript_names<-transcript_names[-3]
transcript_names

[1] "TSPAN6" "TNMD" "GCLC" "ANAPC10P1" "ABCD1"

#Let's rename "GCLC"
transcript_names[3]<-"NNAME"
transcript_names

[1] "TSPAN6" "TNMD" "NNAME" "ANAPC10P1" "ABCD1"

35 Basics of R Programming

Bioinformatics Training and Education Program

Logical subsetting

It is also possible to subset in R using logical evaluation or numerical comparison. To do this,

we use comparison operators (See table below).

Comparison OperatorDescription

> greater than

>= greater than or equal to

< less than

<= less than or equal to

!= Not equal

== equal

a | b a or b

a & b a and b

So if, for example, we wanted a subset of all transcript counts greater than 260, we could use

indexing combined with a comparison operator:

Why does this work? Let's break down the code.

#We can also call a value directly
#Rename "ABCD1" to "NEW"; more on this to come
transcript_names[transcript_names == "ABCD1"] <- "NEW"
transcript_names

[1] "TSPAN6" "TNMD" "NNAME" "ANAPC10P1" "NEW"

transcript_counts[transcript_counts > 260]

[1] 679 467

transcript_counts > 260

[1] TRUE FALSE TRUE FALSE FALSE FALSE

36 Basics of R Programming

Bioinformatics Training and Education Program

This returns a logical vector. We can see that positions 1 and 3 are TRUE, meaning they are

greater than 260. Therefore, the initial subsetting above is asking for a subset based on TRUE

values. Here is the equivalent:

You can also use this functionality to do a kind of find and replace. Perhaps we want to find

zero values and replace them with NAs. We could use:

Now, if we want to return only values that aren't NAs, we can use

transcript_counts[c(TRUE, FALSE, TRUE, FALSE, FALSE, FALSE)]

[1] 679 467

transcript_counts[transcript_counts==0]<-NA

Note

if you instead ran transcript_counts[transcript_counts==0]<-"NA", you would coerce this vector to a

character vector.

transcript_counts[!is.na(transcript_counts)] #values that aren't NAs

[1] 679 467 260 60

is.na(transcript_counts) #if you simply want to know if there are NAs

[1] FALSE TRUE FALSE FALSE FALSE TRUE

which(is.na(transcript_counts)) #if you want the indices of those NAs

[1] 2 6

37 Basics of R Programming

Bioinformatics Training and Education Program

Other ways to handle missing data

Other functions you may find useful when working with NAs inclue na.omit() and

complete.cases().

na.omit() removes the NAs from a vector.

complete.cases() creates a logical vector that you can use for subsetting based on the

absence of NAs.

Using objects to store thresholds

To make scripting reproducible, you could avoid calling a specific number directly and use

objects in logical evaluations like those above. If we use an object, the value itself could easily

be replaced with whatever value is needed. For example:

na.omit(transcript_counts)

[1] 679 467 260 60
attr(,"na.action")
[1] 2 6
attr(,"class")
[1] "omit"

transcript_counts[complete.cases(transcript_counts)]

[1] 679 467 260 60

trnsc_cutoff <- 260
transcript_counts[transcript_counts>trnsc_cutoff] #note this will also include NAs in

[1] 679 NA 467 NA

transcript_counts[!is.na(transcript_counts) & transcript_counts>trnsc_cutoff] #if we w

[1] 679 467

38 Basics of R Programming

Bioinformatics Training and Education Program

Using the %in% operator.

There may be a time you want to know whether there are specific values in your vector. To do

this, we can use the %in% operator (?match()). This operator returns TRUE for any value that

is in your vector and can be used for subsetting. It makes more sense to use this with data

frames but we can see how this works here.

For example:

This type of searching will come in handy when we discuss filtering in Lesson 2.

Test your learning

Given the following R code:

have a look at transcript_names
transcript_names

[1] "TSPAN6" "TNMD" "NNAME" "ANAPC10P1" "NEW"

test to see if "NNAME" and "ANAPC10P1" are in this vector
if you are looking for more than one value, you must pass this as a vector

c("NNAME","ANAPC10P1") %in% transcript_names

[1] TRUE TRUE

#We could also save the search vector to an object and search that way.
find_transcripts<-c("NNAME","ANAPC10P1")
find_transcripts %in% transcript_names

[1] TRUE TRUE

#to use this for subetting the vector lengths should match
transcript_names[transcript_names %in% find_transcripts]

[1] "NNAME" "ANAPC10P1"

39 Basics of R Programming

Bioinformatics Training and Education Program

What does fruit[5]<-"mango" do?

a. renames the object "fruit" to "mango"

b. adds "mango" to an existing vector named "fruit"

c. replaces "bananas" with "mango"

d. replaces "kiwi" with "mango"

{{Sdet}}

Solution{{Esum}}

D

{{Edet}}

Given the following R code:

Which of the following could be used to return all values less than 678 in the vector

"Total_subjects"?

a. Total_subjects < 678

b. Total_subjects[> 678]

c. Total_subjects(Total_subjects < 678)

d. Total_subjects[Total_subjects < 678]

{{Sdet}}

Solution{{Esum}}

D

{{Edet}}

Saving and loading objects

We discussed saving the R workspace (.RData), but what if we simply want to save a single

object. In such a case, we can use saveRDS().

Let's save our transcript_counts vector to our working directory.

Check the Files pane for your newly created file. Make sure you are viewing the contents of

your working directory (getwd()).

fruit<-c("apples", "bananas", "oranges", "grapes","kiwi","kumquat")


Total_subjects <- c(23, 4, 679, 3427, 12, 890, 654)



saveRDS(transcript_counts,"transcript_counts.rds")

40 Basics of R Programming

Bioinformatics Training and Education Program

Exporting your R project

To use the materials you generated on the RServer on DNAnexus on your local computer, let's

export our files. To do this, let's select all files in our working directory. This will export a zipped

file with the contents of your working directory.

If you plan to use these files again on DNAnexus, simply use Upload. To upload a directory, the

contents must be zipped. To zip a directory on a mac, simply right click on the directory and

select Compress "directory_name". To zip a directory on a PC, right click the folder and choose

"Send to: Compressed (zipped) folder".

Acknowledgments

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-

introduction/index.html). Material was also inspired by content from Introduction to data analysis

with R and Bioconductor (https://carpentries-incubator.github.io/bioc-intro/), which is part of the

Carpentries Incubator (https://github.com/carpentries-incubator/proposals/#the-carpentries-

incubator).

Additional Resources

Hands-on Programming with R (https://rstudio-education.github.io/hopr/)

41 Basics of R Programming

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://carpentries-incubator.github.io/bioc-intro/
https://carpentries-incubator.github.io/bioc-intro/
https://carpentries-incubator.github.io/bioc-intro/
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://github.com/carpentries-incubator/proposals/#the-carpentries-incubator
https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/

R Data Structures: Introducing Data Frames

Learning Objectives

Learn about data structures including factors, lists, data frames, and matrices.

Load, explore, and access data in a tabular format (data frames)

Learn to write out (export) data from the R environment

Data Structures

Data structures are objects that store data.

Previously, we learned that vectors are collections of values of the same type (https://

datacarpentry.org/genomics-r-intro/01-r-basics.html#vectors). A vector is also one of the most

basic data structures.

Other common data structures in R include:

factors

lists

data frames

matrices

What are factors?

Factors are an important data structure in statistical computing. They are specialized vectors

(ordered or unordered) for the storage of categorical data. While they appear to be character

vectors, data in factors are stored as integers. These integers are associated with pre-defined

levels, which represent the different groups or categories in the vector.

Important functions

factor() - to create a factor and reorder levels

as.factor() - to coerce to a factor

levels() - view the levels of a factor

nlevels() - return the number of levels

For example:

1.

2.

3.

•

•

•

•

•

•

•

•

42 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-r-basics.html#vectors
https://datacarpentry.org/genomics-r-intro/01-r-basics.html#vectors
https://datacarpentry.org/genomics-r-intro/01-r-basics.html#vectors
https://datacarpentry.org/genomics-r-intro/01-r-basics.html#vectors

Check out the package forcats (https://forcats.tidyverse.org/) for managing and reordering

factors.

Lists

Unlike an atomic vector, a list can contain multiple elements of different types, (e.g., character

vector, numeric vector, list, data frame, matrix).

Important functions

list() - create a list

names() - create named elements (Also useful for vectors)

lapply(), sapply() - for looping over elements of the list

Example

sex <- factor(c("M","F","F","M","M","M"))
levels(sex)

[1] "F" "M"

Note

R will organize factor levels alphabetically by default.

Warning

Pay attention when coercing from a factor to a numeric. To do this, you should first convert to a character vector.

Otherwise, the numbers that you want to be numeric (the factor level names) will be returned as integers.

•

•

•

#Create a list
My_exp <- list(c("N052611", "N061011", "N080611", "N61311"),
 c("SRR1039508", "SRR1039509", "SRR1039512",
 "SRR1039513", "SRR1039516", "SRR1039517",
 "SRR1039520", "SRR1039521"),c(100,200,300,400))
#Look at the structure
str(My_exp)

List of 3
 $: chr [1:4] "N052611" "N061011" "N080611" "N61311"

43 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

https://forcats.tidyverse.org/
https://forcats.tidyverse.org/
https://forcats.tidyverse.org/

 $: chr [1:8] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" ...
 $: num [1:4] 100 200 300 400

#Name the elements of the list
names(My_exp)<-c("cell_lines","sample_id","counts")
#See how the structure changes
str(My_exp)

List of 3
 $ cell_lines: chr [1:4] "N052611" "N061011" "N080611" "N61311"
 $ sample_id : chr [1:8] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" ...
 $ counts : num [1:4] 100 200 300 400

#Subset the list
My_exp[[1]][2]

[1] "N061011"

My_exp$cell_lines[2]

[1] "N061011"

#Apply a function (remove the first index from each vector)
lapply(My_exp,function(x){x[-1]})

$cell_lines
[1] "N061011" "N080611" "N61311"

$sample_id
[1] "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516" "SRR1039517"
[6] "SRR1039520" "SRR1039521"

$counts
[1] 200 300 400

44 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

We are not going to spend a lot of time on lists, but you should consider learning more about

them in the future, as you may receive output at some point in the form of a list. For a brief

introduction to lists, see the following resources:

R4DS (https://r4ds.had.co.nz/vectors.html#lists)

UVA list tutorial (https://bioconnector.github.io/workshops/r-lists.html)

Data Frames: Working with Tabular Data

In genomics, we work with a lot of tabular data - data organized in rows and columns. The data

structure that stores this type of data is a data frame. Data frames are collections of vectors of

the same length but can be of different types. Because we often have data of multiple types, it

is natural to examine that data in a data frame.

You may be tempted to open and manually work with these data in excel. However, there are a

number of reasons why this can be to your detriment. First, it is very easy to make mistakes

when working with large amounts of tabular data in excel. Have you ever mistakenly left out a

column or row while sorting data? Second, many of the files that we work with are so large (big

data) that excel and your local machine do not have the bandwidth to handle them. Third, you

will likely need to apply analyses that are unavailable in excel. Lastly, it is difficult to keep track

of any data manipulation steps or analyses in a point and click environment like excel.

R, on the other hand, can make analyzing tabular data more efficient and reproducible. But

before getting into working with this data in R, let's review some best practices for data

management.

Best Practices for organizing genomic data

"Keep raw data separate from analyzed data" -- datacarpentry.org (https://

datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html)

For large genomic data sets, you may want to include a project folder with two main

subdirectories (i.e., raw_data and data_analysis). You may even consider changing the

permissions (check out the unix command chmod (https://www.howtogeek.com/437958/

how-to-use-the-chmod-command-on-linux/)) in your raw directory to make those files read

only. Keeping raw data separate is not a problem in R, as one must explicitly import and

export data.

"Keep spreadsheet data Tidy" -- datacarpentry.org (https://datacarpentry.org/

genomics-r-intro/03-basics-factors-dataframes.html)

Data organization can be frustrating, and many scientists devote a great deal of time and

energy toward this task. Keeping data tidy, which we will talk about more next lesson, can

make data science more efficient, effective, and reproducible.

•

•

1.

2.

45 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/vectors.html#lists
https://r4ds.had.co.nz/vectors.html#lists
https://bioconnector.github.io/workshops/r-lists.html
https://bioconnector.github.io/workshops/r-lists.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html

"Trust but verify" -- datacarpentry.org (https://datacarpentry.org/genomics-r-

intro/03-basics-factors-dataframes.html)

R makes data analysis more reproducible and can eliminate some mistakes from human

error. However, you should approach data analysis with a plan, and make sure you

understand what a function is doing before applying it to your data. Hopefully, today's

lesson will help with this. Often using small subsets of data can be used as a form of data

debugging to make sure the expected result materialized.

Some functions for creating practice data include: data.frame(), rep(), seq(),

rnorm(), sample() and others. See some examples here (https://

ademos.people.uic.edu/

Chapter7.html#32_b_using_the_rep_function_to_create_data_frames).

Introducing the airway data

There are data sets available in R to practice with or showcase different packages. For today's

lesson and the remainder of this course, we will use data from the Bioconductor package

airway (https://bioconductor.org/packages/release/data/experiment/html/airway.html) to

showcase tools used for data wrangling and visualization. The use of this data was inspired by

a 2021 workshop entitled Introduction to Tidy Transciptomics (https://stemangiola.github.io/

bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html) by Maria Doyle and Stefano

Mangiola. Code has been adapted from this workshop to explore tidyverse functionality.

The airway data is from Himes et al. (2014) (https://pubmed.ncbi.nlm.nih.gov/24926665/). These

data, which are contained within a RangedSummarizedExperiment, object are from a bulk

RNAseq experiment. In the experiment, the authors "characterized transcriptomic changes in

four primary human ASM cell lines that were treated with dexamethasone," a common therapy

for asthma. The airway package includes RNAseq count data from 8 airway smooth muscle

cell samples. Each cell line includes a treated and untreated negative control.

Do not worry about the RangedSummarizedExperiment. The data we will use today and next

week have been provided to you in the following files:

filtlowabund_scaledcounts_airways.txt - Includes scaled transcript count data.

diffexp_results_edger_airways.txt - Includes results from differential expression

analysis using EdgeR.

Object (.rds) files have also been included.

3.

Note

Current recommendations indicate that there should be 3-5 sample replicates for an RNAseq experiment.

•

•

Note

46 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes.html
https://ademos.people.uic.edu/Chapter7.html#32_b_using_the_rep_function_to_create_data_frames
https://ademos.people.uic.edu/Chapter7.html#32_b_using_the_rep_function_to_create_data_frames
https://ademos.people.uic.edu/Chapter7.html#32_b_using_the_rep_function_to_create_data_frames
https://ademos.people.uic.edu/Chapter7.html#32_b_using_the_rep_function_to_create_data_frames
https://ademos.people.uic.edu/Chapter7.html#32_b_using_the_rep_function_to_create_data_frames
https://ademos.people.uic.edu/Chapter7.html#32_b_using_the_rep_function_to_create_data_frames
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
../data/filtlowabund_scaledcounts_airways.txt
../data/filtlowabund_scaledcounts_airways.txt
../data/filtlowabund_scaledcounts_airways.txt
../data/filtlowabund_scaledcounts_airways.txt
../data/diffexp_results_edger_airways.txt
../data/diffexp_results_edger_airways.txt
../data/diffexp_results_edger_airways.txt
../data/diffexp_results_edger_airways.txt

Importing / exporting data

Before we can do anything with our data, we need to first import it into R. There are several

ways to do this.

First, the RStudio IDE has a dropdown menu for data import. Simply go to File > Import

Dataset and select one of the options and follow the prompts.

Let's focus on the base R import functions. These include read.csv(), read.table(),

read.delim(), etc. You should examine the function arguments (e.g., ?read.delim()) to

get an idea of what is happening at import and ensure that your data is being parsed correctly.

We can now see this object in our RStudio environment pane.

Bioconductor will be discussed further in Lesson 8.

Note

readr is a tidyverse package, but it isn't necessary for import. You can read more about readr and its advantages

here (https://readr.tidyverse.org/).

#Let's import our data and save to an object called scaled_counts
scaled_counts<-read.delim(
 "./data/filtlowabund_scaledcounts_airways.txt", as.is=TRUE)

47 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

https://readr.tidyverse.org/
https://readr.tidyverse.org/

This object can be viewed by clicking on it in the environment pane. Alternatively, you can use

View(scaled_counts).

To import an existing object, we usereadRDS().

#Let's import our data from the .rds file
#and save to an object called scaled_counts_rds
scaled_counts_rds<-
 data.frame(readRDS("./data/filtlowabund_scaledcounts_airways.rds"))

48 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

To export data to file, you will use similar functions

(write.table(),write.csv(),saveRDS(), etc.). We will show how these work later in the

lesson.

Examining and summarizing data frames

The object that we imported, scaled_counts, is a data frame. Let's learn a bit more about our

data frame. First, we can learn more about the structure of our data using str(). We have seen

this function in use previously.

str() shows us that we are looking at a data frame object with 127,408 observations in 18

variables (or columns). The column names are to the far left preceded by a $. This is a data

frame accessor, and we will see how this works later. We can also see the data type (character,

integer, logical, numeric) after the column name. This will help us understand how we can

transform and visualize the data in these columns.

We can also get an overview of summary statistics of this data frame using summary().

Note

Using RStudio functionality, you can navigate to the files tab and click on the .rds file of interest. You will receive a

prompt asking if you would like to load the object into R.

str(scaled_counts)

'data.frame': 127408 obs. of 18 variables:
 $ feature : chr "ENSG00000000003" "ENSG00000000419" "ENSG00000000457" "ENSG0000
 $ sample : int 508 508 508 508 508 508 508 508 508 508 ...
 $ counts : int 679 467 260 60 3251 1433 519 394 172 2112 ...
 $ SampleName : chr "GSM1275862" "GSM1275862" "GSM1275862" "GSM1275862" ...
 $ cell : chr "N61311" "N61311" "N61311" "N61311" ...
 $ dex : chr "untrt" "untrt" "untrt" "untrt" ...
 $ albut : chr "untrt" "untrt" "untrt" "untrt" ...
 $ Run : chr "SRR1039508" "SRR1039508" "SRR1039508" "SRR1039508" ...
 $ avgLength : int 126 126 126 126 126 126 126 126 126 126 ...
 $ Experiment : chr "SRX384345" "SRX384345" "SRX384345" "SRX384345" ...
 $ Sample : chr "SRS508568" "SRS508568" "SRS508568" "SRS508568" ...
 $ BioSample : chr "SAMN02422669" "SAMN02422669" "SAMN02422669" "SAMN02422669" ...
 $ transcript : chr "TSPAN6" "DPM1" "SCYL3" "C1orf112" ...
 $ ref_genome : chr "hg38" "hg38" "hg38" "hg38" ...
 $.abundant : logi TRUE TRUE TRUE TRUE TRUE TRUE ...
 $ TMM : num 1.06 1.06 1.06 1.06 1.06 ...
 $ multiplier : num 1.42 1.42 1.42 1.42 1.42 ...
 $ counts_scaled: num 960.9 660.9 367.9 84.9 4600.7 ...

49 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

Our data frame has 18 variables, so we get 18 fields that summarize the data. Counts,

avgLength, TMM, multiplier, and counts_scaled are numerical data and so we get

summary statistics on the min and max values for these columns, as well as mean, median, and

interquartile ranges.

summary(scaled_counts)

 feature sample counts SampleName
 Length:127408 Min. :508.0 Min. : 0 Length:127408
 Class :character 1st Qu.:511.2 1st Qu.: 66 Class :character
 Mode :character Median :514.5 Median : 310 Mode :character
 Mean :514.5 Mean : 1376
 3rd Qu.:517.8 3rd Qu.: 960
 Max. :521.0 Max. :513766
 cell dex albut Run
 Length:127408 Length:127408 Length:127408 Length:127408
 Class :character Class :character Class :character Class :character
 Mode :character Mode :character Mode :character Mode :character

 avgLength Experiment Sample BioSample
 Min. : 87.0 Length:127408 Length:127408 Length:127408
 1st Qu.:100.2 Class :character Class :character Class :character
 Median :123.0 Mode :character Mode :character Mode :character
 Mean :113.8
 3rd Qu.:126.0
 Max. :126.0
 transcript ref_genome .abundant TMM
 Length:127408 Length:127408 Mode:logical Min. :0.9512
 Class :character Class :character TRUE:127408 1st Qu.:0.9706
 Mode :character Mode :character Median :1.0052
 Mean :1.0006
 3rd Qu.:1.0257
 Max. :1.0553
 multiplier counts_scaled
 Min. :1.026 Min. : 0.0
 1st Qu.:1.230 1st Qu.: 95.4
 Median :1.467 Median : 445.8
 Mean :1.466 Mean : 1933.7
 3rd Qu.:1.581 3rd Qu.: 1369.6
 Max. :2.136 Max. :632885.3

Tip

50 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

What is the length of our data.frame? What are the dimensions?

Other useful functions for inspecting data frames

Size:

nrow() - number of rows

ncol() - number of columns

Content:

head() - returns first 6 rows by default

tail() - returns last 6 rows by default

Names:

colnames() - returns column names

rownames() - returns row names

Section content from "Starting with Data", Introduction to data analysis with R and Bioconductor

(https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html).

Data frame coercion and accessors

Notice that "sample" was treated as numeric, rather than as a character vector. If we intend to

work with this column, we will need to convert it or coerce it to a character or factor vector.

We can access a column of our data frame using [], [[]], or using the $ (http://adv-

r.had.co.nz/Subsetting.html). These behave slightly differently, as we will see.

Let's access "sample" from scaled_counts. We use head() to limit the printed output.

summary() is also useful for obtaining quick information about a categorial (factor) variable, answering how many

groups and the sample size of each group.

#length returns the number of columns
length(scaled_counts)

[1] 18

#dimensions, returns the row and column numbers
dim(scaled_counts)

[1] 127408 18

51 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html
https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html
https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html
https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html
https://carpentries-incubator.github.io/bioc-intro/25-starting-with-data.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html

Let's convert the "sample" column from an integer to a character vector. This is known as

coercion.

#Using $
head(scaled_counts$sample)

[1] 508 508 508 508 508 508

#Using []
head(scaled_counts["sample"])

 sample
1 508
2 508
3 508
4 508
5 508
6 508

#Using [[]]
head(scaled_counts[["sample"]])

[1] 508 508 508 508 508 508

#We can see that sample is being treated as numeric
is.numeric(scaled_counts$sample)

[1] TRUE

#let's convert it to a character vector
scaled_counts$sample<-as.character(scaled_counts$sample)
#check this
is.character(scaled_counts$sample)

[1] TRUE

52 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

See other related functions (e.g., as.factor(),as.numeric()).

Be careful with data coercion. What happens if we change a character vector into a numeric?

Some helpful things to remember

When you explicitly coerce one data type into another (this is known as

explicit coercion), be careful to check the result. Ideally, you should try to see

if its possible to avoid steps in your analysis that force you to coerce.

R will sometimes coerce without you asking for it. This is called

(appropriately) implicit coercion. For example when we tried to create a

vector with multiple data types, R chose one type through implicit coercion.

Check the structure (str()) of your data frames before working with them! ---

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/05-dplyr/

index.html)

Using colnames() to rename columns

colnames() will return a vector of column names from our data frame. We can use this vector

and [] subsetting to easily modify column names.

For example, let's rename the column "Sample" to "Accession".

#check this
is.numeric(scaled_counts$sample)

[1] FALSE

#A warning is thrown and the entire column is filled with NA
head(as.numeric(scaled_counts$Sample))

Warning in head(as.numeric(scaled_counts$Sample)): NAs introduced by coercion

[1] NA NA NA NA NA NA

•

•

•

#Let's rename "Sample" to "Accession"
colnames(scaled_counts)[11]<-"Accession"

#if unsure of the index of the "Sample" column, you could use which()
which(colnames(scaled_counts)=="Sample")

53 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html

Test your learning

Which of the following will NOT print the "Run" column from scaled_counts?

a. scaled_counts$Run

b. scaled_counts["Run"]

c. scaled_counts[8,]

d. scaled_counts[8]

{{Sdet}}

Solution{{Esum}}

C

{{Edet}}

What is the column index for "avgLength" from the scaled_counts df?

a. 3

b. 8

c. 12

d. 9

{{Sdet}}

Solution{{Esum}}

D {{Edet}}

Exporting Data (Save the data frame to a file)

If we want to export our df (scaled_counts) to use with another program, we can write out to

a file.

If you are unsure what these arguments mean, use ?write.table().

#or you could get the indices in a data frame
data.frame(colnames(scaled_counts))

#or something like this
colnames(scaled_counts)[colnames(scaled_counts) ==
 "Sample"] <- "Accession"



write.table(scaled_counts,
 file = "scaled_counts_mod.txt",
 quote=FALSE,row.names=FALSE,sep="\t")

54 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

Data Matrices

Another important data structure in R is the data matrix. Data frames and data matrices are

similar in that both are tabular in nature and are defined by dimensions (i.e., rows (m) and

columns (n), commonly denoted m x n). However, a matrix contains only values of a single type

(i.e., numeric, character, logical, etc.).

Elements in a matrix and a data frame can be referenced by using their row and column indices

(for example, a[1,1] references the element in row 1 and column 1).

Below, we create the object a1, a 3 row by 4 column matrix.

Using the typeof() and class() command, we see that the elements in a1 are double and a1 a

matrix, respectively.

Earlier, we mentioned that elements in a matrix can be referenced by their row and column

number. Below, we extract the element in the 3rd row and 4th column of a1 (which is 2)

Note

A vector can be viewed as a 1 dimensional matrix.

a1 <- matrix(c(3,4,2,4,6,3,8,1,7,5,3,2), ncol=4)
a1

 [,1] [,2] [,3] [,4]
[1,] 3 4 8 5
[2,] 4 6 1 3
[3,] 2 3 7 2

typeof(a1)

[1] "double"

class(a1)

[1] "matrix" "array"

55 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

We can assign column and row names to a matrix.

But, we cannot reference columns using $.

We can create matrices mixed with words and numbers (see a2).

But, R will coerce all of the elements to the same type, in this case character.

a1[3,4] ## returns 2

[1] 2

colnames(a1) <- c("control1","control2","tumor1","tumor2")
rownames(a1) <- c("ADA","AMPD2","HPRT")
a1

 control1 control2 tumor1 tumor2
ADA 3 4 8 5
AMPD2 4 6 1 3
HPRT 2 3 7 2

a1$control1

Error in a1$control1: $ operator is invalid for atomic vectors

a2 <- matrix(c("apples","pears","oranges",50,25,75), ncol=2)
a2

 [,1] [,2]
[1,] "apples" "50"
[2,] "pears" "25"
[3,] "oranges" "75"

typeof(a2)

[1] "character"

56 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

We can also perform mathematical operations on matrices.

Below we multiply every element in a1 by a3 and store in a4. Note, we are still left with a 3 by 4

matrix except the values have been multiplied by the value assigned to a3 (5).

Here are some similarities and differences between matrices and data frames:

typeof(a2[,2])

[1] "character"

class(a2)

[1] "matrix" "array"

a3 <- 5
a3

[1] 5

a4 <- a1*a3
a1

 control1 control2 tumor1 tumor2
ADA 3 4 8 5
AMPD2 4 6 1 3
HPRT 2 3 7 2

a4

 control1 control2 tumor1 tumor2
ADA 15 20 40 25
AMPD2 20 30 5 15
HPRT 10 15 35 10

57 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

Acknowledgements

Material from this lesson was either taken directly or adapted from Intro to R and RStudio for

Genomics provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/aio.html)

and from a 2021 workshop entitled Introduction to Tidy Transciptomics (https://

stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html) by Maria

Doyle and Stefano Mangiola.

Resources

BaseR cheatsheet

 Characteristic Matrix Data.frame
1 is rectangular data table yes yes
2 can perform math operations yes yes
3 needs homogenous data type yes no
4 can have heterogeneous data type no yes
5 can reference using row and column number yes yes
6 can reference column using $ no yes
7 can use for plotting yes yes

1.

58 R Data Structures: Introducing Data Frames

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/aio.html
https://datacarpentry.org/genomics-r-intro/aio.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
../resources/base-r_cheatsheet.pdf

Data Frames and Data Wrangling (Part 1)

This lesson will introduce data wrangling with R. Attendees will learn to filter data using base R

and tidyverse (dplyr) functionality.

Learning Objectives

Understand the concept of tidy data.

Become familiar with the tidyverse packages.

Be able to filter a data frame by rows and columns using base R and dplyr.

Best Practices for organizing genomic data

Let's refer back to our best practices for organizing genomic data.

"Keep raw data separate from analyzed data" -- datacarpentry.org (https://

datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html)

"Keep spreadsheet data Tidy" -- datacarpentry.org (https://datacarpentry.org/

genomics-r-intro/03-basics-factors-dataframes/index.html)

But, what is tidy data???

"Trust but verify" -- datacarpentry.org (https://datacarpentry.org/genomics-r-

intro/03-basics-factors-dataframes/index.html)

Introducing tidy data

What is tidy data?

Tidy data is an approach (or philosophy) to data organization and management. There are

three rules to tidy data: (1) each variable forms its own column, (2) each observation forms a

row, and (3) each value has its own cell. One advantage to following these rules is that the data

structure remains consistent, making it easier to understand the tools that work well with the

underlying structure, and there are a lot of tools in R built specifically to interact with tidy data.

Equipped with the right tools will make data analysis more efficient. See the infographics below.

•

•

•

1.

2.

3.

59 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html

Image from Lowndes and Horst 2020: Tidy Data for Efficiency, Reproducibility, and

Collaboration (https://www.openscapes.org/blog/2020/10/12/tidy-data/)

Image from Lowndes and Horst 2020: Tidy Data for Efficiency, Reproducibility, and

Collaboration (https://www.openscapes.org/blog/2020/10/12/tidy-data/)

What is messy data?

“Tidy datasets are all alike, but every messy dataset is messy in its own way.” ––

Hadley Wickham.

60 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

https://www.openscapes.org/blog/2020/10/12/tidy-data/
https://www.openscapes.org/blog/2020/10/12/tidy-data/
https://www.openscapes.org/blog/2020/10/12/tidy-data/
https://www.openscapes.org/blog/2020/10/12/tidy-data/
https://www.openscapes.org/blog/2020/10/12/tidy-data/
https://www.openscapes.org/blog/2020/10/12/tidy-data/

Messy data sets tend to share five common problems:

Column headers are values, not variable names.

Multiple variables are stored in one column.

Variables are stored in both rows and columns.

Multiple types of observational units are stored in the same table.

A single observational unit is stored in multiple tables. --- Hadley Wickham,

Tidy Data (http://vita.had.co.nz/papers/tidy-data.pdf)

Let's look at a few examples of untidy data presented in Tidyverse Skills for Data Science

(https://jhudatascience.org/tidyversecourse/intro.html#examples-of-untidy-data).

Remember our data frame scaled_counts? scaled_counts is a tidy data frame. Let's take

a moment to envision an untidy data frame containing the same data. Again, remember, there

are infinite possibilities for messy data, but here is one example.

The orginal data frame:

1.

2.

3.

4.

5.

#import the data and save to an object called scaled_counts
scaled_counts<-read.delim(
 "./data/filtlowabund_scaledcounts_airways.txt", as.is=TRUE)
head(scaled_counts)

 feature sample counts SampleName cell dex albut Run
1 ENSG00000000003 508 679 GSM1275862 N61311 untrt untrt SRR1039508
2 ENSG00000000419 508 467 GSM1275862 N61311 untrt untrt SRR1039508
3 ENSG00000000457 508 260 GSM1275862 N61311 untrt untrt SRR1039508
4 ENSG00000000460 508 60 GSM1275862 N61311 untrt untrt SRR1039508
5 ENSG00000000971 508 3251 GSM1275862 N61311 untrt untrt SRR1039508
6 ENSG00000001036 508 1433 GSM1275862 N61311 untrt untrt SRR1039508
 avgLength Experiment Sample BioSample transcript ref_genome .abundant
1 126 SRX384345 SRS508568 SAMN02422669 TSPAN6 hg38 TRUE
2 126 SRX384345 SRS508568 SAMN02422669 DPM1 hg38 TRUE
3 126 SRX384345 SRS508568 SAMN02422669 SCYL3 hg38 TRUE
4 126 SRX384345 SRS508568 SAMN02422669 C1orf112 hg38 TRUE
5 126 SRX384345 SRS508568 SAMN02422669 CFH hg38 TRUE
6 126 SRX384345 SRS508568 SAMN02422669 FUCA2 hg38 TRUE
 TMM multiplier counts_scaled
1 1.055278 1.415149 960.88642
2 1.055278 1.415149 660.87475
3 1.055278 1.415149 367.93883
4 1.055278 1.415149 84.90896
5 1.055278 1.415149 4600.65058
6 1.055278 1.415149 2027.90904

61 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
https://jhudatascience.org/tidyversecourse/intro.html#examples-of-untidy-data
https://jhudatascience.org/tidyversecourse/intro.html#examples-of-untidy-data
https://jhudatascience.org/tidyversecourse/intro.html#examples-of-untidy-data
https://jhudatascience.org/tidyversecourse/intro.html#examples-of-untidy-data
https://jhudatascience.org/tidyversecourse/intro.html#examples-of-untidy-data

An untidy version (subset) of scaled_counts.

 508
cell N61311
dex untrt
SampleName GSM1275862
Run / Experiment / Accession SRR1039508;SRX384345;SRS508568
TSPAN6 960.886417275434
DPM1 660.874752382368
SCYL3 367.938834302817
C1orf112 84.9089617621886
CFH 4600.65057814792
 509
cell N61311
dex trt
SampleName GSM1275863
Run / Experiment / Accession SRR1039509;SRX384346;SRS508567
TSPAN6 716.779730254346
DPM1 823.976698841491
SCYL3 337.590453311757
C1orf112 87.9975115267612
CFH 5886.23354376281
 512
cell N052611
dex untrt
SampleName GSM1275866
Run / Experiment / Accession SRR1039512;SRX384349;SRS508571
TSPAN6 1075.40953718585
DPM1 764.982041915709
SCYL3 323.977901809712
C1orf112 49.2742055984354
CFH 7609.16919953838
 513
cell N052611
dex trt
SampleName GSM1275867
Run / Experiment / Accession SRR1039513;SRX384350;SRS508572
TSPAN6 871.667100344899
DPM1 779.800224573256
SCYL3 350.375991315107
C1orf112 74.7753640001752
CFH 9084.13850653557
 516
cell N080611
dex untrt
SampleName GSM1275870

62 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

Run / Experiment / Accession SRR1039516;SRX384353;SRS508575
TSPAN6 1392.02747542151
DPM1 718.031746988071
SCYL3 299.689570719041
C1orf112 95.4113735350417
CFH 8221.28001960276
 517
cell N080611
dex trt
SampleName GSM1275871
Run / Experiment / Accession SRR1039517;SRX384354;SRS508576
TSPAN6 1074.3148432507
DPM1 819.844851726182
SCYL3 339.635351591197
C1orf112 64.6435865566326
CFH 11314.6798247617
 520
cell N061011
dex untrt
SampleName GSM1275874
Run / Experiment / Accession SRR1039520;SRX384357;SRS508579
TSPAN6 1212.77045557059
DPM1 656.786077886933
SCYL3 366.981189802531
C1orf112 119.702018991383
CFH 8152.33750393948
 521
cell N061011
dex trt
SampleName GSM1275875
Run / Experiment / Accession SRR1039521;SRX384358;SRS508580
TSPAN6 868.672540272425
DPM1 771.478409892293
SCYL3 347.772747766408
C1orf112 91.1194972313732
CFH 12141.6730060805

63 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

Tools for working with tidy data

The tidyverse is an opinionated collection of R packages designed for data

science. All packages share an underlying design philosophy, grammar, and data

structures. ---tidyverse.org (https://www.tidyverse.org/)

The core packages within tidyverse include dplyr, ggplot2, forcats, tibble, readr,

stringr, tidyr, and purr, some of which we will use in this lesson and future lessons.

Load the core tidyverse packages

The tidyverse includes a collection of packages. To use these packages, we need to load the

packages using the library() function.

64 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

https://www.tidyverse.org/
https://www.tidyverse.org/

Load the data

To explore tidyverse functionality, let's read in some data and take a look.

We've already learned str(), but let's check out the tidyverse equivalent, glimpse().

library(tidyverse)

#let's use our differential expression results
dexp<-readRDS("./data/diffexp_results_edger_airways.rds")

str(dexp, give.attr=FALSE)

tibble [15,926 × 10] (S3: tbl_df/tbl/data.frame)
 $ feature : chr [1:15926] "ENSG00000000003" "ENSG00000000419" "ENSG00000000457" "EN
 $ albut : Factor w/ 1 level "untrt": 1 1 1 1 1 1 1 1 1 1 ...
 $ transcript: chr [1:15926] "TSPAN6" "DPM1" "SCYL3" "C1orf112" ...
 $ ref_genome: chr [1:15926] "hg38" "hg38" "hg38" "hg38" ...
 $.abundant : logi [1:15926] TRUE TRUE TRUE TRUE TRUE TRUE ...
 $ logFC : num [1:15926] -0.3901 0.1978 0.0292 -0.1244 0.4173 ...
 $ logCPM : num [1:15926] 5.06 4.61 3.48 1.47 8.09 ...
 $ F : num [1:15926] 32.8495 6.9035 0.0969 0.3772 29.339 ...
 $ PValue : num [1:15926] 0.000312 0.028062 0.762913 0.554696 0.000463 ...
 $ FDR : num [1:15926] 0.00283 0.07701 0.84425 0.68233 0.00376 ...

glimpse(dexp)

Rows: 15,926
Columns: 10
$ feature <chr> "ENSG00000000003", "ENSG00000000419", "ENSG00000000457", "E…
$ albut <fct> untrt, untrt, untrt, untrt, untrt, untrt, untrt, untrt, unt…
$ transcript <chr> "TSPAN6", "DPM1", "SCYL3", "C1orf112", "CFH", "FUCA2", "GCL…
$ ref_genome <chr> "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "hg…
$.abundant <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,…
$ logFC <dbl> -0.390100222, 0.197802179, 0.029160865, -0.124382022, 0.417…
$ logCPM <dbl> 5.059704, 4.611483, 3.482462, 1.473375, 8.089146, 5.909668,…
$ F <dbl> 3.284948e+01, 6.903534e+00, 9.685073e-02, 3.772134e-01, 2.9…
$ PValue <dbl> 0.0003117656, 0.0280616149, 0.7629129276, 0.5546956332, 0.0…
$ FDR <dbl> 0.002831504, 0.077013489, 0.844247837, 0.682326613, 0.00376…

65 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

We can see that glimpse() is a little more succinct and clean and that str() will show

attributes. These attribues were ignored above using give.attr=FALSE to get around

package dependencies.

We can use import functions from the tidyverse to load sscaled, which are a bit more efficient

and create a data frame like object, known as a tibble.

sscaled

We will also use a subset version of scaled_counts that includes the columns "sample, "cell", "dex", "transcript",

"counts", and "counts_scaled".

 scaled_counts[
 c("sample","cell","dex","transcript","counts","counts_scaled")]

#import sscaled
sscaled<-read_delim("data/sscaled.txt")

Rows: 127408 Columns: 6
── Column specification ──
Delimiter: "\t"
chr (3): cell, dex, transcript
dbl (3): sample, counts, counts_scaled

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

sscaled

A tibble: 127,408 × 6
 sample cell dex transcript counts counts_scaled
 <dbl> <chr> <chr> <chr> <dbl> <dbl>
 1 508 N61311 untreated TSPAN6 679 961.
 2 508 N61311 untreated DPM1 467 661.
 3 508 N61311 untreated SCYL3 260 368.
 4 508 N61311 untreated C1orf112 60 84.9
 5 508 N61311 untreated CFH 3251 4601.
 6 508 N61311 untreated FUCA2 1433 2028.
 7 508 N61311 untreated GCLC 519 734.
 8 508 N61311 untreated NFYA 394 558.
 9 508 N61311 untreated STPG1 172 243.

66 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

Notice the tibble output. Tibbles easily show you the data types in each column and limit output

to the screen (i.e., first 10 rows; only the columns that fit). They also do not force syntactic

variable names.

Subsetting data frames with base R

Before diving into subsetting with dplyr, let's take a step back and learn to subset with base R.

Subsetting a data frame is similar to subsetting a vector; we can use bracket notation [].

However, a data frame is two dimensional with both rows and columns, so we can specify either

one argument or two arguments (e.g., df[row,column]) depending. If you provide one

argument, columns will be assumed. This is because a data frame has characteristics of both a

list and a matrix.

For now, let's focus on providing two arguments to subset. (Note when a df structure is

returned)

What happens when we provide a single argument?

10 508 N61311 untreated NIPAL3 2112 2989.
ℹ 127,398 more rows

scaled_counts[2,4] #Returns the value in the 4th column and 2nd row

scaled_counts[2,] #Returns a df with row two

scaled_counts[-1,] #Returns a df without row 1

scaled_counts[1:4,1] #returns a vector of rows 1-4 of column 1

#call names of columns directly
scaled_counts[1:10,c("sample","counts")]

#use comparison operators
scaled_counts[scaled_counts$sample == "508",]

#notice the difference here
scaled_counts[,2] #returns column two
#treated similar to a matrix
#does not return a df if the output is a single column

scaled_counts[2] #returns column two
#treated similar to a list; maintains the df structure

#You can preserve the structure of the data frame while subsetting

67 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

Using %in%

%in% "returns a logical vector indicating if there is a match or not for its left operand". This

logical vector can then be used to filter the datamframe to only matched values.

For example, perhaps we have 4 transcripts that we are interested in exploring further. We can

assign those transcripts to a vector.

We can then see where those transcripts match transcripts in sscaled$trasncript.

We can further use this logical transcript to filter our data frame by true values.

Tips to remember for subsetting

Typically provide two values separated by commas: data.frame[row, column]

In cases where you are taking a continuous range of numbers use a colon

between the numbers (start:stop, inclusive)

For a non continuous set of numbers, pass a vector using c()

Index using the name of a column(s) by passing them as vectors using c() ---

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/03-basics-

factors-dataframes/index.html)

use drop = F
scaled_counts[,2,drop=F]

Note

We can also use [[]] or $ for selecting specific columns.

keep_t<-c("CPD","EXT1","MCL1","LASP1")

head(sscaled$transcript %in% keep_t)

[1] FALSE FALSE FALSE FALSE FALSE FALSE

#Let's filter our data to only include 4 transcripts of interest
interesting_trnsc<-sscaled[sscaled$transcript %in% keep_t,]

•

•

•

•

Info

68 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html

Data wrangling with tidyverse

While bracket notation is useful, it is not always the most readable or easy to employ, especially

for beginners. This is where dplyr comes in. The dplyr package in the tidyverse world

simplifies data wrangling with easy to employ and easy to understand functions specific for

data manipulation in data frames.

The package dplyr is a fairly new (2014) package that tries to provide easy tools for

the most common data manipulation tasks. It was built to work directly with data

frames. The thinking behind it was largely inspired by the package plyr which has

been in use for some time but suffered from being slow in some cases. dplyr

addresses this by porting much of the computation to C++. An additional feature is

the ability to work with data stored directly in an external database. The benefits of

doing this are that the data can be managed natively in a relational database,

queries can be conducted on that database, and only the results of the query

returned. This addresses a common problem with R in that all operations are

conducted in memory and thus the amount of data you can work with is limited by

available memory. The database connections essentially remove that limitation in

that you can have a database that is over 100s of GB, conduct queries on it directly

and pull back just what you need for analysis in R. --- datacarpentry.com (https://

datacarpentry.org/genomics-r-intro/05-dplyr.html)

We do not need to load the dplyr package, as it is included in library(tidyverse), which

we have already installed and loaded. However, if you need to install and load on your local

machine you would use the following:

Subsetting with dplyr

We've seen how to select columns and rows using base R, but now let's look at a more intuitive

way with functions (select() and filter()) from the tidyverse package dplyr.

Selecting columns

select() requires the data frame followed by the columns that we want to select or deselect

as arguments.

Subsetting including simplifying vs preserving can get confusing. Here (http://adv-r.had.co.nz/Subsetting.html) is a

great chapter - though, a bit more advanced - that may clear things up if you are confused.

install.packages("dplyr")
library("dplyr")

#select the gene / transcript, logFC, and FDR corrected p-value

69 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html

We can also select all columns, leaving out ones that do not interest us using - or !. This is

helpful if the columns to keep far outweigh those to exclude.

For readability we should move the transcript column to the front. We can select a range of

columns using the :.

We can also include helper functions such as starts_with() and ends_with(). See more

helper functions with ?select().

Test your learning

From the interesting_trnsc data frame select the following columns and save to an

object: sample, dex, transcript, counts_scaled.

{{Sdet}}

#first argument is the df followed by columns to select
dexp_s<-select(dexp, transcript, logFC, FDR)

df_exp<-select(dexp, -feature)

#you can reorder columns and call a range of columns using select().
df_exp<-select(df_exp, transcript:FDR,albut)
#Note: this also would have excluded the feature column

select(df_exp, transcript, starts_with("log"), FDR)

A tibble: 15,926 × 4
 transcript logFC logCPM FDR
 <chr> <dbl> <dbl> <dbl>
 1 TSPAN6 -0.390 5.06 0.00283
 2 DPM1 0.198 4.61 0.0770
 3 SCYL3 0.0292 3.48 0.844
 4 C1orf112 -0.124 1.47 0.682
 5 CFH 0.417 8.09 0.00376
 6 FUCA2 -0.250 5.91 0.0186
 7 GCLC -0.0581 4.84 0.794
 8 NFYA -0.509 4.13 0.00126
 9 STPG1 -0.136 3.12 0.478
10 NIPAL3 -0.0500 7.04 0.695
ℹ 15,916 more rows

1.

70 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

Possible Solution{{Esum}}

{{Edet}}

From the interesting_trnsc data frame select all columns except cell and counts.

{{Sdet}}

Possible Solution{{Esum}}

{{Edet}}

Filtering by row

Now let's filter the rows based on a condition. Let's look at only the treated samples in

scaled_counts using the function filter(). filter() requires the df as the first argument

followed by the filtering conditions.

We can also filter using %in%



interesting_trnsc_s<- select(interesting_trnsc, sample, dex, transcript, counts_s

2.



interesting_trnsc_s2<-select(interesting_trnsc,!c(cell,counts))

filter(sscaled, dex == "treated") #we've seen == notation before

#filter for two cell lines
f_sscale<-filter(sscaled,cell %in% c("N061011", "N052611"))
#let's check that this worked
levels(factor(f_sscale$cell))

[1] "N052611" "N061011"

#let's filter by keep_t from above
filter(f_sscale,transcript %in% keep_t)

A tibble: 16 × 6
 sample cell dex transcript counts counts_scaled
 <dbl> <chr> <chr> <chr> <dbl> <dbl>
 1 512 N052611 untreated LASP1 7831 9647.

71 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

And we can filter using numeric columns. There are lots of options for filtering so explore the

functionality a bit when you get a chance.

 2 512 N052611 untreated CPD 8270 10187.
 3 512 N052611 untreated MCL1 5170 6369.
 4 512 N052611 untreated EXT1 8503 10474.
 5 513 N052611 treated LASP1 5809 12411.
 6 513 N052611 treated CPD 7638 16318.
 7 513 N052611 treated MCL1 5153 11009.
 8 513 N052611 treated EXT1 2317 4950.
 9 520 N061011 untreated LASP1 5766 9082.
10 520 N061011 untreated CPD 7067 11131.
11 520 N061011 untreated MCL1 4410 6946.
12 520 N061011 untreated EXT1 6925 10907.
13 521 N061011 treated LASP1 7825 11884.
14 521 N061011 treated CPD 10091 15325.
15 521 N061011 treated MCL1 7338 11144.
16 521 N061011 treated EXT1 3242 4923.

#get only results from counts greater than or equal to 20k
#use head to get only the first handful of rows
head(filter(f_sscale,counts_scaled >= 20000))

A tibble: 6 × 6
 sample cell dex transcript counts counts_scaled
 <dbl> <chr> <chr> <chr> <dbl> <dbl>
1 512 N052611 untreated CSDE1 19863 24468.
2 512 N052611 untreated MRC2 23978 29537.
3 512 N052611 untreated DCN 422752 520769.
4 512 N052611 untreated VIM 37558 46266.
5 512 N052611 untreated CD44 25453 31354.
6 512 N052611 untreated VCL 17309 21322.

#use `|` operator
#look at only results with named genes (not NAs)
#and those with a log fold change greater than 2
#and either a p-value or an FDR corrected p_value < or = to 0.01
#The comma acts as &
sig_annot_transcripts<-
 filter(df_exp, !is.na(transcript),
 abs(logFC) > 2, (PValue | FDR <= 0.01))

72 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

Test your learning

Filter the interesting_trnsc data frame to only include the following genes: MCL1 and EXT1.

{{Sdet}}

Possible Solution{{Esum}}

{{Edet}}

Acknowledgements

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/05-

dplyr.html) and from a 2021 workshop entitled Introduction to Tidy Transciptomics (https://

stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html) by Maria

Doyle and Stefano Mangiola. This lesson was also inspired by material from "Manipulating and

analyzing data with dplyr", Introduction to data analysis with R and Bioconductor (https://

carpentries-incubator.github.io/bioc-intro/30-dplyr.html).

Resources

R for Data Science (https://r4ds.had.co.nz/index.html)

Statistical Inference via Data Science: A ModernDive into R and the tidyverse (https://

moderndive.com/3-wrangling.html)

dplyr cheatsheet

tidyr cheatsheet

Other cheatsheets (https://www.rstudio.com/resources/cheatsheets/)

interesting_trnsc_f<-filter(interesting_trnsc, transcript %in% c("MCL1","EXT1"))

interesting_trnsc_f<-filter(interesting_trnsc, transcript == "MCL1" | transcript =="EX



1.

2.

3.

4.

5.

73 Data Frames and Data Wrangling (Part 1)

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
../resources/dplyr_cheatsheet.pdf
../resources/tidyr_cheatsheet.pdf
https://www.rstudio.com/resources/cheatsheets/
https://www.rstudio.com/resources/cheatsheets/

Data Frames and Data Wrangling (Part 2)

In this lesson, attendees will learn how to transform, summarize, and reshape data using

functions from the tidyverse.

Learning Objectives

Continue to wrangle data using tidyverse functionality. To this end, you should understand:

how to use common dplyr functions (e.g., group_by(), arrange(), mutate(), and

summarize()).

how to employ the pipe (|>) operator to link functions.

how to perform more complicated wrangling using the split, apply, combine concept.

how to tidy (reshape) data using tidyr.

Load the tidyverse

Remember that this loads the core tidyverse packages. There are other packages that you may

be interested in; see here (https://www.tidyverse.org/packages/).

Re-load the data

We will continue working with the airway data for this lesson. Let's import the data.

1.

2.

3.

4.

library(tidyverse)

scaled_counts<-read_delim(
 "./data/filtlowabund_scaledcounts_airways.txt")

sscaled <- select(scaled_counts, sample,
 cell, dex, transcript, counts, counts_scaled)

dexp <- read_delim("./data/diffexp_results_edger_airways.txt")

74 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

https://www.tidyverse.org/packages/
https://www.tidyverse.org/packages/

Introducing the pipe

Often we will apply multiple functions to wrangle a data frame into the state that we need it. For

example, maybe you want to select and filter. What are our options?

We could run one step after another, saving an object for each step.

Running code one step at a time

Or we could nest a function within a function.

Nesting code

#Run one step at a time with intermediate objects.
#We've done this a few times above
#select gene, logFC, FDR
dexp_s<-select(dexp, transcript, logFC, FDR)

#Now filter for only the genes "TSPAN6" and DPM1
tspanDpm<- filter(dexp_s, transcript == "TSPAN6" | transcript=="DPM1")

#Print
tspanDpm

A tibble: 2 × 3
 transcript logFC FDR
 <chr> <dbl> <dbl>
1 TSPAN6 -0.390 0.00283
2 DPM1 0.198 0.0770

#Nested code example; processed from inside out
tspanDpm<- filter(select(dexp, c(transcript, logFC, FDR)),
 transcript == "TSPAN6" | transcript=="DPM1")
tspanDpm

A tibble: 2 × 3
 transcript logFC FDR
 <chr> <dbl> <dbl>
1 TSPAN6 -0.390 0.00283
2 DPM1 0.198 0.0770

75 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

But, these affect code readability and clutter our work space, making it difficult to follow what

we or someone else did.

Using the Pipe

Let's explore how piping streamlines this. Piping (using |>) allows you to employ multiple

functions consecutively, while improving readability. The output of one function is passed

directly to another without storing the intermediate steps as objects. You can pipe from the

beginning (reading in the data) all the way to plotting without storing the data or intermediate

objects, if you want.

To pipe, we have to first call the data and then pipe it into a function. The output of each step is

then piped into the next step.

Let's see how this works

Notice that the data argument has been dropped from select() and filter(). This is

because the pipe passes the object from the left to the right.

We can pipe from the beginning to the end.

The magrittr pipe (%>%)

Prior to R version 4.1.0, the native R pipe did NOT exist. Use of the pipe came from the magrittr package, which

is a dependency of the tidyverse. While the native pipe (|>) and the magrittr pipe (%>%) are fairly similar. They

are not identical. You can read more about the differences here (https://www.tidyverse.org/blog/2023/04/base-vs-

magrittr-pipe/).

tspanDpm <- dexp |> #call the data and pipe to select()
 select(transcript, logFC, FDR) |> #select columns of interest
 filter(transcript == "TSPAN6" | transcript=="DPM1") #filter
tspanDpm

A tibble: 2 × 3
 transcript logFC FDR
 <chr> <dbl> <dbl>
1 TSPAN6 -0.390 0.00283
2 DPM1 0.198 0.0770

Important

The |> must be at the end of each line.

76 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/
https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe/

The dplyr functions by themselves are somewhat simple, but by combining them

into linear workflows with the pipe, we can accomplish more complex manipulations

of data frames. ---datacarpentry.org (https://datacarpentry.org/genomics-r-intro/05-

dplyr.html)

Test your learning

Using what you have learned about select() and filter(), use the pipe (|>) to create a

subset data frame from scaled_counts that only includes the columns 'sample', 'cell', 'dex',

'transcript', and 'counts_scaled' and only rows that include the treatment "untrt" and the

transcripts "ACTN1" and "ANAPC4"?

{{Sdet}}

readRDS("./data/diffexp_results_edger_airways.rds") |> #read data
 select(transcript, logFC, FDR) |> #select columns of interest
 filter(transcript == "TSPAN6" | transcript=="DPM1") |> #filter
 ggplot(aes(x=transcript,y=logFC,fill=FDR)) + #plot
 geom_bar(stat = "identity") +
 theme_classic() +
 geom_hline(yintercept=0, linetype="dashed", color = "black")

77 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html

Possible Solution{{Esum}}

{{Edet}}

Mutate

Another useful data manipulation function from dplyr is mutate(). mutate() allows you to

create a new variable from existing variables. Perhaps you want to know the ratio of two

columns or convert the units of a variable. That can be done with mutate().

mutate() creates new columns that are functions of existing variables. It can also

modify (if the name is the same as an existing column) and delete columns (by

setting their value to NULL). --- dplyr.tidyverse.org (https://dplyr.tidyverse.org/

reference/mutate.html)

Create a new column using existing columns

Let's create a column in our original differential expression data frame denoting significant

transcripts (those with an FDR corrected p-value less than 0.05 and a log fold change greater

than or equal to 2).

The conditional evaluates to a logical vector, containing TRUE or FALSE values.

Coerce variables

We can also use mutate to coerce variables.

scaled_counts |> select(sample,cell,dex,transcript,counts_scaled) |>
 filter(dex=="untrt", transcript %in% c("ACTN1","ANAPC4"))



dexp_sigtrnsc<-dexp |> mutate(Significant= FDR<0.05 & abs(logFC) >=2)
head(dexp_sigtrnsc["Significant"])

A tibble: 6 × 1
 Significant
 <lgl>
1 FALSE
2 FALSE
3 FALSE
4 FALSE
5 FALSE
6 FALSE

78 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html

To mutate across multiple columns, we need to use the function across() with the select

helper where().

More examples

Check out more examples using mutate() here (https://dplyr.tidyverse.org/reference/

mutate.html#ref-examples)

#view sscaled
glimpse(sscaled)

Rows: 127,408
Columns: 6
$ sample <dbl> 508, 508, 508, 508, 508, 508, 508, 508, 508, 508, 508, 5…
$ cell <chr> "N61311", "N61311", "N61311", "N61311", "N61311", "N6131…
$ dex <chr> "untrt", "untrt", "untrt", "untrt", "untrt", "untrt", "u…
$ transcript <chr> "TSPAN6", "DPM1", "SCYL3", "C1orf112", "CFH", "FUCA2", "…
$ counts <dbl> 679, 467, 260, 60, 3251, 1433, 519, 394, 172, 2112, 524,…
$ counts_scaled <dbl> 960.88642, 660.87475, 367.93883, 84.90896, 4600.65058, 2…

#use mutate with across and select helpers
ex_coerce<-sscaled |> mutate(across(where(is.character),as.factor))
glimpse(ex_coerce)

Rows: 127,408
Columns: 6
$ sample <dbl> 508, 508, 508, 508, 508, 508, 508, 508, 508, 508, 508, 5…
$ cell <fct> N61311, N61311, N61311, N61311, N61311, N61311, N61311, …
$ dex <fct> untrt, untrt, untrt, untrt, untrt, untrt, untrt, untrt, …
$ transcript <fct> TSPAN6, DPM1, SCYL3, C1orf112, CFH, FUCA2, GCLC, NFYA, S…
$ counts <dbl> 679, 467, 260, 60, 3251, 1433, 519, 394, 172, 2112, 524,…
$ counts_scaled <dbl> 960.88642, 660.87475, 367.93883, 84.90896, 4600.65058, 2…

Note

across() has superseded the use of mutate_if, _at, _all. For more information on across() see this

reference article (https://dplyr.tidyverse.org/reference/across.html).

79 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/mutate.html#ref-examples
https://dplyr.tidyverse.org/reference/mutate.html#ref-examples
https://dplyr.tidyverse.org/reference/mutate.html#ref-examples
https://dplyr.tidyverse.org/reference/mutate.html#ref-examples

Test your learning

Using mutate apply a base 10 logarithmic transformation to the counts_scaled column of

sscaled. Save the resulting data frame to an object called log10counts. Hint: see the function

log10().

{{Sdet}}

Possible Solution{{Esum}}

{{Edet}}

Arrange, group_by, summarize

There is an approach to data analysis known as "split-apply-combine", in which the data is split

into smaller components, some type of analysis is applied to each component, and the results

are combined. The dplyr functions including group_by() and summarize() are key players

in this type of workflow. The function arrange() may also be handy.

group_by() allows us to group a data frame by a categorical variable so that a given

operation can be performed per group.

Let's get the median counts_scaled by transcript within a treatment. When you reduce the size

of a data set through a calculation, you need to use summarize().



log10counts<-sscaled |> mutate(logCounts=log10(counts_scaled))

scaled_counts |> #Call the data
 group_by(dex,transcript) |> # group_by treatment and transcript
 #(transcript nested within treatment)
 summarize(median_counts=median(counts_scaled))

`summarise()` has grouped output by 'dex'. You can override using the `.groups`
argument.

A tibble: 29,152 × 3
Groups: dex [2]
 dex transcript median_counts
 <chr> <chr> <dbl>
 1 trt A1BG-AS1 80.2
 2 trt A2M 37821.
 3 trt A2M-AS1 24.2

80 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

The output is a grouped data frame.

Using arrange()

Now, if we want the top five transcripts with the greatest median scaled counts by treatment, we

need to organize our data frame and then return the top rows. We can use arrange() to

arrange our data frame by median_counts. If we want to arrange from highest to lowest value,

we will additionally need to use desc(). The .by_group allows us to arrange by median

counts within a grouping. By including slice_head() we can return the top five values by

group.

 4 trt A4GALT 2043.
 5 trt AAAS 1086.
 6 trt AACS 481.
 7 trt AADAT 154.
 8 trt AAGAB 984.
 9 trt AAK1 399.
10 trt AAMDC 181.
ℹ 29,142 more rows

Note

group_by() can also be used with mutate().

scaled_counts |> #Call the data
 group_by(dex,transcript) |> # group_by treatment and transcript
 #(transcript nested within treatment)
 summarize(median_counts=median(counts_scaled)) |> #for each group
 #calculate the median value of scaled counts
 arrange(desc(median_counts),.by_group = TRUE) |>
 #arrange in descending order
 slice_head(n=5) #return the top 5 values for each group

`summarise()` has grouped output by 'dex'. You can override using the `.groups`
argument.

A tibble: 10 × 3
Groups: dex [2]
 dex transcript median_counts
 <chr> <chr> <dbl>
 1 trt FN1 486430.
 2 trt DCN 389306.

81 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

The slice functions

We could have skipped arrange() and used slice_max(). slice_max() returns the rows

with the greatest values from each group.

The other slice functions include:

slice_head(n = 1) takes the first row from each group.

slice_tail(n = 1) takes the last row in each group.

slice_min(x, n = 1) takes the row with the smallest value of column x.

 3 trt MT-CO1 369456.
 4 trt EEF1A1 346869.
 5 trt QSOX1 284100.
 6 untrt FN1 456360.
 7 untrt DCN 439781.
 8 untrt EEF1A1 404269.
 9 untrt MT-CO1 346974.
10 untrt COL1A2 331816.

scaled_counts |>
 group_by(dex,transcript) |>
 summarize(median_counts=median(counts_scaled)) |>
 slice_max(median_counts, n=5) #notice use of slice_max

`summarise()` has grouped output by 'dex'. You can override using the `.groups`
argument.

A tibble: 10 × 3
Groups: dex [2]
 dex transcript median_counts
 <chr> <chr> <dbl>
 1 trt FN1 486430.
 2 trt DCN 389306.
 3 trt MT-CO1 369456.
 4 trt EEF1A1 346869.
 5 trt QSOX1 284100.
 6 untrt FN1 456360.
 7 untrt DCN 439781.
 8 untrt EEF1A1 404269.
 9 untrt MT-CO1 346974.
10 untrt COL1A2 331816.

82 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

slice_sample(n = 1) takes one random row. --- R4DS (https://r4ds.hadley.nz/data-

transform.html#the-slice_-functions).

Sample sizes (counts and tallies) and missing data

How many rows per sample are in the scaled_counts data frame?

scaled_counts |>
 group_by(dex, sample) |>
 summarize(n=n()) #there are multiple functions that can be used here

`summarise()` has grouped output by 'dex'. You can override using the `.groups`
argument.

A tibble: 8 × 3
Groups: dex [2]
 dex sample n
 <chr> <dbl> <int>
1 trt 509 15926
2 trt 513 15926
3 trt 517 15926
4 trt 521 15926
5 untrt 508 15926
6 untrt 512 15926
7 untrt 516 15926
8 untrt 520 15926

#See count(); can also use tally()
scaled_counts |>
 count(dex,sample)

A tibble: 8 × 3
 dex sample n
 <chr> <dbl> <int>
1 trt 509 15926
2 trt 513 15926
3 trt 517 15926
4 trt 521 15926
5 untrt 508 15926
6 untrt 512 15926

83 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

https://r4ds.hadley.nz/data-transform.html#the-slice_-functions
https://r4ds.hadley.nz/data-transform.html#the-slice_-functions
https://r4ds.hadley.nz/data-transform.html#the-slice_-functions
https://r4ds.hadley.nz/data-transform.html#the-slice_-functions

Let's see this in practice

7 untrt 516 15926
8 untrt 520 15926

Note

By default, all [built in] R functions operating on vectors that contain missing data will return NA. It’s a

way to make sure that users know they have missing data, and make a conscious decision on how

to deal with it. When dealing with simple statistics like the mean, the easiest way to ignore NA (the

missing data) is to use na.rm = TRUE (rm stands for remove). --- datacarpentry.org (https://

datacarpentry.org/genomics-r-intro/05-dplyr.html)

set.seed(138) #This is used to get the same result
#with a pseudorandom number generator like sample()

#make mock data frame
fun_df<-data.frame(genes=rep(c("A","B","C","D"), each=3),
 counts=sample(1:500,12,TRUE))

#Assign NAs if the value is less than 100. This is arbitrary.
fun_df<-fun_df |> mutate(counts=ifelse(counts<100,NA,counts))

fun_df #view

 genes counts
1 A NA
2 A 214
3 A NA
4 B 352
5 B 256
6 B NA
7 C 400
8 C 381
9 C 250
10 D 278
11 D NA
12 D 169

#We should get NAs returned for some of our genes
fun_df |>
 group_by(genes) |>
 summarize(

84 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html

Test your learning

Create a data frame summarizing the mean counts_scaled by sample from the scaled_counts

data frame.

{{Sdet}}

Possible Solution{{Esum}}

 mean_count = mean(counts),
 median_count = median(counts),
 min_count = min(counts),
 max_count = max(counts))

A tibble: 4 × 5
 genes mean_count median_count min_count max_count
 <chr> <dbl> <int> <int> <int>
1 A NA NA NA NA
2 B NA NA NA NA
3 C 344. 381 250 400
4 D NA NA NA NA

#Now let's use na.rm
fun_df |>
 group_by(genes) |>
 summarize(
 mean_count = mean(counts, na.rm=TRUE),
 median_count = median(counts, na.rm=TRUE),
 min_count = min(counts, na.rm=TRUE),
 max_count = max(counts, na.rm=TRUE))

A tibble: 4 × 5
 genes mean_count median_count min_count max_count
 <chr> <dbl> <dbl> <int> <int>
1 A 214 214 214 214
2 B 304 304 256 352
3 C 344. 381 250 400
4 D 224. 224. 169 278



scaled_counts |> group_by(sample) |>
 summarize(Mean_counts_scaled=mean(counts_scaled))

85 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

{{Edet}}

Data Reshaping

Tidy data implies that we have one observation per row and one variable per column. This

generally means data is in a long format. However, whether data is tidy or not will depend on

what we consider a variable versus an observation, so wide data sets may also be tidy. Often if

data is in a wide format, data related to the same measurement is distributed in different

columns. This at times will mean the data looks more like a data matrix; though, it may not

necessarily be a matrix.

In genomics, we often receive data in wide format. For example, you may be given RNAseq

data from a colleague with the first column being sampleIDs and all additional columns being

genes. The data frame itself holds count data.

For example:

You may recognize these data. These are from our fun_df, which was originally in long format.

Above we added a sampleid column and replaced the NAs with 0s and converted to wide

format.

A tibble: 3 × 5
 sampleid A B C D
 <chr> <dbl> <dbl> <dbl> <dbl>
1 A1 0 352 400 278
2 B1 214 256 381 0
3 C1 0 0 250 169

#Add sample id; replace NAs with 0s
fun_df <- data.frame(sampleid=rep(c("A1","B1","C1"),4),fun_df) |>
 mutate(counts= ifelse(is.na(counts), 0, counts))
fun_df

 sampleid genes counts
1 A1 A 0
2 B1 A 214
3 C1 A 0
4 A1 B 352
5 B1 B 256
6 C1 B 0
7 A1 C 400
8 B1 C 381
9 C1 C 250

86 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

Pivot wider

We can convert to wide format using pivot_wider(), which takes three main arguments:

1. the data we are reshaping

2. the column that includes the new column names - names_from

3. the column that includes the values that will fill our new columns - values_from

This resembles a matrix. At times we may need to work with a matrix while at others we may

need a data frame. We can coerce to a matrix by sending the sample ids to the row names

using column_to_rownames() and as.matrix(). Remember, our as. functions are usually

reserved for coercing.

Coerce to a matrix

Now, we can apply functions that require data matrices.

10 A1 D 278
11 B1 D 0
12 C1 D 169

fun_df_w<-fun_df |>
 pivot_wider(names_from=genes,values_from=counts)
fun_df_w

A tibble: 3 × 5
 sampleid A B C D
 <chr> <dbl> <dbl> <dbl> <dbl>
1 A1 0 352 400 278
2 B1 214 256 381 0
3 C1 0 0 250 169

fun_mat<-fun_df_w |> column_to_rownames("sampleid") |>
 as.matrix(rownames.force=TRUE)
fun_mat

 A B C D
A1 0 352 400 278
B1 214 256 381 0
C1 0 0 250 169

87 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

Pivot longer

We can convert back to long / tidy format using pivot_longer().

pivot_longer() takes four main arguments:

1. the data we want to transform

2. the columns we want to pivot longer

3. the column we want to create to store the column names - names_to

4. the column we want to create to store the values associated with the column names -

quantity

Reshaping for plotting

There are other reasons you may be interested in using pivot_wider or pivot_longer. In

my experience, most uses revolve around plotting criteria. For example, you may want to plot

two different but related measurements on the same plot. You could pivot_longer so that

those two measurements are now in the same column, stored as a categorical variable.

Let's see how this might work with our scaled_counts data. We want to plot both "counts" and

"counts_scaled" together in a density plot to understand the distribution of the data. Did scaling

the counts improve the distribution?

We can place "counts" and "counts_scaled" into a column named "source" and place their

values in a column named "abundance".

fun_df_w |>
 pivot_longer(where(is.numeric),names_to="genes", values_to="counts")

A tibble: 12 × 3
 sampleid genes counts
 <chr> <chr> <dbl>
 1 A1 A 0
 2 A1 B 352
 3 A1 C 400
 4 A1 D 278
 5 B1 A 214
 6 B1 B 256
 7 B1 C 381
 8 B1 D 0
 9 C1 A 0
10 C1 B 0
11 C1 C 250
12 C1 D 169

88 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

Now let's create a density plot using ggplot2.

#getting the data
scounts_long<- scaled_counts |>
 #pivot
 pivot_longer(cols = c("counts", "counts_scaled"),
 names_to = "source", values_to = "abundance")
#View
scounts_long |> select(source, abundance) |> head()

A tibble: 6 × 2
 source abundance
 <chr> <dbl>
1 counts 679
2 counts_scaled 961.
3 counts 467
4 counts_scaled 661.
5 counts 260
6 counts_scaled 368.

ggplot(data=scounts_long, aes(x = abundance + 1, color = SampleName))+
 geom_density() +
 facet_wrap(~source) +
 ggplot2::scale_x_log10() +
 theme_bw()+
 ylab("Density")+
 xlab(expression('log'[10]*'Abundance'))

89 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

Acknowledgements

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/05-

dplyr.html) and from a 2021 workshop entitled Introduction to Tidy Transciptomics (https://

stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html) by Maria

Doyle and Stefano Mangiola. This lesson was also inspired by material from "Manipulating and

analyzing data with dplyr", Introduction to data analysis with R and Bioconductor (https://

carpentries-incubator.github.io/bioc-intro/30-dplyr.html).

Resources

R for Data Science (https://r4ds.had.co.nz/index.html)

Statistical Inference via Data Science: A ModernDive into R and the tidyverse (https://

moderndive.com/3-wrangling.html)

dplyr cheatsheet

tidyr cheatsheet

Note

It's not important to understand the code here. This will make more sense in the next lesson.

1.

2.

3.

4.

90 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://datacarpentry.org/genomics-r-intro/05-dplyr.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://carpentries-incubator.github.io/bioc-intro/30-dplyr.html
https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
../resources/dplyr_cheatsheet.pdf
../resources/tidyr_cheatsheet.pdf

Other cheatsheets (https://www.rstudio.com/resources/cheatsheets/)5.

91 Data Frames and Data Wrangling (Part 2)

Bioinformatics Training and Education Program

https://www.rstudio.com/resources/cheatsheets/
https://www.rstudio.com/resources/cheatsheets/

Data visualization with ggplot2

Objectives

To learn how to create publishable figures using the ggplot2 package in R.

By the end of this lesson, learners should be able to create simple, pretty, and effective figures.

Why use R for Data Visualization?

Learning R and associated plotting packages is a great way to generate publishable figures in

a reproducible fashion.

With R you can:

1. Create simple or complex figures.

2. Create high resolution figures.

3. Generate scripts that can be reused to create the same or similar plot.

Introducing ggplot2

ggplot2 is an R graphics package from the tidyverse collection. It allows the user to create

informative plots quickly by using a 'grammar of graphics' implementation, which is described

as "a coherent system for describing and building graphs" (R4DS). The power of this package is

that plots are built in layers and few changes to the code result in very different outcomes. This

makes it easy to reuse parts of the code for very different figures.

Being a part of the tidyverse collection, ggplot2 works best with data frames (tidy data), which

you should already be accustomed to.

To begin plotting, let's load our tidyverse library.

#load libraries

library(tidyverse) # Tidyverse automatically loads ggplot2

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.3 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.4 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.0

92 Data visualization with ggplot2

Bioinformatics Training and Education Program

We also need some data to plot, so if you haven't already, let's load the data we will need for

this lesson.

The ggplot2 template

The following represents the basic ggplot2 template:

✔ purrr 1.0.2
── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflict

#scaled_counts

#We used this in lesson 2 so you may not need to reload

scaled_counts<-

 read_delim("./data/filtlowabund_scaledcounts_airways.txt")

Rows: 127408 Columns: 18
── Column specification ──
Delimiter: "\t"
chr (11): feature, SampleName, cell, dex, albut, Run, Experiment, Sample, Bi...
dbl (6): sample, counts, avgLength, TMM, multiplier, counts_scaled
lgl (1): .abundant

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

dexp<-read_delim("./data/diffexp_results_edger_airways.txt")

Rows: 15926 Columns: 10
── Column specification ──
Delimiter: "\t"
chr (4): feature, albut, transcript, ref_genome
dbl (5): logFC, logCPM, F, PValue, FDR
lgl (1): .abundant

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

93 Data visualization with ggplot2

Bioinformatics Training and Education Program

We need three basic components to create a plot: the data we want to plot, geom function(s),

and mapping aesthetics. Notice the + symbol following the ggplot() function. This symbol will

precede each additional layer of code for the plot, and it is important that it is placed at the end

of the line. More on geom functions and mapping aesthetics to come.

Let's see this template in practice.

What is the relationship between total transcript sums per sample and the number of recovered

transcripts per sample?

ggplot(data = <DATA>) +
 <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

#let's get some data

#we are only interested in transcript counts greater than 100

#read in the data

sc<-read_csv("./data/sc.csv")

Rows: 8 Columns: 4
── Column specification ──
Delimiter: ","
chr (2): dex, SampleName
dbl (2): Num_transcripts, TotalCounts

ℹ Use `spec()` to retrieve the full column specification for this data.

ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

#let's view the data

sc

A tibble: 8 × 4
dex SampleName Num_transcripts TotalCounts
<chr> <chr> <dbl> <dbl>
1 trt GSM1275863 10768 18783120
2 trt GSM1275867 10051 15144524
3 trt GSM1275871 11658 30776089
4 trt GSM1275875 10900 21135511
5 untrt GSM1275862 11177 20608402
6 untrt GSM1275866 11526 25311320
7 untrt GSM1275870 11425 24411867
8 untrt GSM1275874 11000 19094104

94 Data visualization with ggplot2

Bioinformatics Training and Education Program

These data include total transcript read counts summed by sample and the total number of

transcripts recovered by sample that had at least 100 reads.

Let's plot

We can easily see that there is a relationship between the number of transcripts per sample and

the total transcripts recovered per sample. ggplot2 default parameters are great for

exploratory data analysis. But, with only a few tweaks, we can make some beautiful, publishable

figures.

Note

These data can be generated using

scaled_counts |> group_by(dex, SampleName) |>

 summarize(Num_transcripts=sum(counts>100),TotalCounts=sum(counts))

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts))

95 Data visualization with ggplot2

Bioinformatics Training and Education Program

What did we do in the above code?

The first step to creating this plot was initializing the ggplot object using the function ggplot().

Remember, we can look further for help using ?ggplot(). The function ggplot() takes data,

mapping, and further arguments. However, none of this needs to actually be provided at the

initialization phase, which creates the coordinate system from which we build our plot. But,

typically, you should at least call the data at this point.

The data we called was from the data frame sc, which we created above. Next, we provided a

geom function (geom_point()), which created a scatter plot. This scatter plot required

mapping information, which we provided for the x and y axes. More on this in a moment.

Let's break down the individual components of the code.

#What does running ggplot() do?

ggplot(data=sc)

#What about just running a geom function?

geom_point(data=sc,aes(x=Num_transcripts, y = TotalCounts))

96 Data visualization with ggplot2

Bioinformatics Training and Education Program

Geom functions

A geom is the geometrical object that a plot uses to represent data. People often

describe plots by the type of geom that the plot uses. --- R4DS (https://

r4ds.had.co.nz/data-visualisation.html#geometric-objects)

There are multiple geom functions that change the basic plot type or the plot representation. We

can create scatter plots (geom_point()), line plots (geom_line(),geom_path()), bar plots

(geom_bar(), geom_col()), line modeled to fitted data (geom_smooth()), heat maps

(geom_tile()), geographic maps (geom_polygon()), etc.

mapping: x = ~Num_transcripts, y = ~TotalCounts
geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity

#what about this

ggplot() +

geom_point(data=sc,aes(x=Num_transcripts, y = TotalCounts))

97 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects

ggplot2 provides over 40 geoms, and extension packages provide even more (see

https://exts.ggplot2.tidyverse.org/gallery/ (https://exts.ggplot2.tidyverse.org/

gallery/) for a sampling). The best way to get a comprehensive overview is the

ggplot2 cheatsheet, which you can find at https://posit.co/resources/cheatsheets/

(https://posit.co/resources/cheatsheets/). --- R4DS (https://r4ds.had.co.nz/data-

visualisation.html)

You can also see a number of options pop up when you type geom into the console, or you can

look up the ggplot2 documentation in the help tab.

We can see how easy it is to change the way the data is plotted. Let's plot the same data using

geom_line().

Mapping and aesthetics (aes())

The geom functions require a mapping argument. The mapping argument includes the aes()

function, which "describes how variables in the data are mapped to visual properties

(aesthetics) of geoms" (ggplot2 R Documentation). If not included it will be inherited from the

ggplot() function.

ggplot(data=sc) +

 geom_line(aes(x=Num_transcripts, y = TotalCounts))

98 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html

An aesthetic is a visual property of the objects in your plot.---R4DS (https://

r4ds.had.co.nz/data-visualisation.html)

Mapping aesthetics include some of the following:

1. the x and y data arguments

2. shapes

3. color

4. fill

5. size

6. linetype

7. alpha

This is not an all encompassing list.

Let's return to our plot above. Is there a relationship between treatment ("dex") and the number

of transcripts or total counts?

There is potentially a relationship. ASM cells treated with dexamethasone in general have lower

total numbers of transcripts and lower total counts.

#adding the color argument to our mapping aesthetic

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,color=dex))

99 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html

Notice how we changed the color of our points to represent a variable, in this case. To do this,

we set color equal to 'dex' within the aes() function. This mapped our aesthetic, color, to a

variable we were interested in exploring. Aesthetics that are not mapped to our variables are

placed outside of the aes() function. These aesthetics are manually assigned and do not

undergo the same scaling process as those within aes().

For example

We can also see from this that 'dex' could be mapped to other aesthetics. In the above

example, we see it mapped to shape rather than color. By default, ggplot2 will only map six

shapes at a time, and if your number of categories goes beyond 6, the remaining groups will go

unmapped. This is by design because it is hard to discriminate between more than six shapes

at any given moment. This is a clue from ggplot2 that you should choose a different aesthetic to

map to your variable. However, if you choose to ignore this functionality, you can manually

assign more than six shapes (https://r-graphics.org/recipe-scatter-shapes).

#map the shape aesthetic to the variable "dex"

#use the color purple across all points (NOT mapped to a variable)

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,shape=dex),

 color="purple")

100 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://r-graphics.org/recipe-scatter-shapes
https://r-graphics.org/recipe-scatter-shapes

We could have just as easily mapped it to alpha, which adds a gradient to the point visibility by

category.

Or we could map it to size. There are multiple options, so explore a little with your plots.

Other things to note:

The assignment of color, shape, or alpha to our variable was automatic, with a unique aesthetic

level representing each category (i.e., 'trt', 'untrt') within our variable. You will also notice that

ggplot2 automatically created a legend to explain the levels of the aesthetic mapped. We can

change aesthetic parameters - what colors are used, for example - by adding additional layers

to the plot. We will be adding layers throughout the tutorial.

#map the alpha aesthetic to the variable "dex"

#use the color purple across all points (NOT mapped to a variable)

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,alpha=dex),

 color="purple") #note the warning.

Warning: Using alpha for a discrete variable is not advised.

101 Data visualization with ggplot2

Bioinformatics Training and Education Program

R objects can also store figures

As we have discussed, R objects are used to store things created in R to memory. This includes

plots created with ggplot2.

We can add additional layers directly to our object. We will see how this works by defining some

colors for our 'dex' variable.

Colors

ggplot2 will automatically assign colors to the categories in our data. Colors are assigned to

the fill and color aesthetics in aes(). We can change the default colors by providing an

additional layer to our figure. To change the color, we use the scale_color functions:

scale_color_manual(), scale_color_brewer(), scale_color_grey(), etc. We can

also change the name of the color labels in the legend using the labels argument of these

functions

dot_plot<-ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,color=dex))

dot_plot

102 Data visualization with ggplot2

Bioinformatics Training and Education Program

dot_plot +

 scale_color_manual(values=c("red","black"),

 labels=c('treated','untreated'))

dot_plot +

 scale_color_grey()

103 Data visualization with ggplot2

Bioinformatics Training and Education Program

dot_plot +

 scale_color_brewer(palette = "Paired")

104 Data visualization with ggplot2

Bioinformatics Training and Education Program

Similarly,if we want to change the fill, we would use the scale_fill options. To apply scale_fill to

shape, we will have to alter the shapes, as only some shapes take a fill argument.

105 Data visualization with ggplot2

Bioinformatics Training and Education Program

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),

 shape=21,size=2) + #increase size and change points

 scale_fill_manual(values=c("purple", "yellow"))

106 Data visualization with ggplot2

Bioinformatics Training and Education Program

There are a number of ways to specify the color argument including by name, number, and hex

code.Here (https://www.r-graph-gallery.com/ggplot2-color.html) is a great resource from the R

Graph Gallery (https://www.r-graph-gallery.com/index.html) for assigning colors in R.

There are also a number of complementary packages in R that expand our color options. One

of my favorites is viridis, which provides colorblind friendly palettes. randomcoloR is a

great package if you need a large number of unique colors.

library(viridis) #Remember to load installed packages before use

Loading required package: viridisLite

dot_plot + scale_color_viridis(discrete=TRUE, option="viridis")

107 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://www.r-graph-gallery.com/ggplot2-color.html
https://www.r-graph-gallery.com/ggplot2-color.html
https://www.r-graph-gallery.com/index.html
https://www.r-graph-gallery.com/index.html
https://www.r-graph-gallery.com/index.html

Paletteer contains a comprehensive set of color palettes, if you want to load the palettes

from multiple packages all at once. See the Github page (https://github.com/EmilHvitfeldt/

paletteer) for details.

Facets

A way to add variables to a plot beyond mapping them to an aesthetic is to use facets or

subplots. There are two primary functions to add facets, facet_wrap() and facet_grid().

If faceting by a single variable, use facet_wrap(). If multiple variables, use facet_grid().

The first argument of either function is a formula, with variables separated by a ~ (See below).

Variables must be discrete (not continuous).

Let's return to the airway count data to see how facets are useful. Here, we are going to

compare scaled and unscaled count data using a density plot.

Using ~ in ggplot2

The ~ is used in R formulas to split the dependent or response variable from the independent variable(s). For more

information, see this explanation here. (https://medium.com/anu-perumalsamy/what-does-mean-in-

r-18cecd1b223f#:~:text='~(tilde)'%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text

{target=_blank})

In facet_wrap() / facet_grid() the ~ is used to generate a formula specifying rows by columns.

108 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://github.com/EmilHvitfeldt/paletteer
https://github.com/EmilHvitfeldt/paletteer
https://github.com/EmilHvitfeldt/paletteer
https://github.com/EmilHvitfeldt/paletteer
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text=%27~(tilde)%27%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text=%27~(tilde)%27%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text=%27~(tilde)%27%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text=%27~(tilde)%27%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text=%27~(tilde)%27%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.
https://medium.com/anu-perumalsamy/what-does-mean-in-r-18cecd1b223f#:~:text=%27~(tilde)%27%20is%20an%20operator%20that%20splits%20the%20left,the%20set%20of%20feature%20variables.&text=In%20the%20above%20example%2C%20df,the%20columns%20wages%20and%20yearsEd.

A density plot shows the distribution of a numeric variable. --- R Graph Gallery

(https://r-graph-gallery.com/density-plot.html)

In our example data, density_data, the gene counts were scaled to account for technical

and composition differences using the trimmed mean of M values (TMM) from EdgeR (Robinson

and Oshlack 2010), but non-normalized values remained for comparison. Thus, we can

compare scaled vs unscaled counts by sample using faceting.

#density plot

#let's grab the data and take a look

density_data<-read.csv("./data/density_data.csv",

 stringsAsFactors=TRUE)

head(density_data)

feature sample SampleName cell dex albut Run avgLength
1 ENSG00000000003 508 GSM1275862 N61311 untrt untrt SRR1039508 126
2 ENSG00000000003 508 GSM1275862 N61311 untrt untrt SRR1039508 126
3 ENSG00000000419 508 GSM1275862 N61311 untrt untrt SRR1039508 126
4 ENSG00000000419 508 GSM1275862 N61311 untrt untrt SRR1039508 126
5 ENSG00000000457 508 GSM1275862 N61311 untrt untrt SRR1039508 126
6 ENSG00000000457 508 GSM1275862 N61311 untrt untrt SRR1039508 126
Experiment Sample BioSample transcript ref_genome .abundant TMM
1 SRX384345 SRS508568 SAMN02422669 TSPAN6 hg38 TRUE 1.055278
2 SRX384345 SRS508568 SAMN02422669 TSPAN6 hg38 TRUE 1.055278
3 SRX384345 SRS508568 SAMN02422669 DPM1 hg38 TRUE 1.055278
4 SRX384345 SRS508568 SAMN02422669 DPM1 hg38 TRUE 1.055278
5 SRX384345 SRS508568 SAMN02422669 SCYL3 hg38 TRUE 1.055278
6 SRX384345 SRS508568 SAMN02422669 SCYL3 hg38 TRUE 1.055278
multiplier source abundance
1 1.415149 counts 679.0000
2 1.415149 counts_scaled 960.8864
3 1.415149 counts 467.0000
4 1.415149 counts_scaled 660.8748
5 1.415149 counts 260.0000
6 1.415149 counts_scaled 367.9388

109 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://r-graph-gallery.com/density-plot.html
https://r-graph-gallery.com/density-plot.html
https://r-graph-gallery.com/density-plot.html
https://r-graph-gallery.com/density-plot.html

The distributions of sample counts did not differ greatly between samples before scaling, but

regardless, we can see that the distributions are more similar after scaling.

Here, faceting allowed us to visualize multiple features of our data. We were able to see count

distributions by sample as well as normalized vs non-normalized counts.

Note the help options with ?facet_wrap(). How would we make our plot facets vertical rather

than horizontal?

#plot

ggplot(data= density_data)+

 aes(x=abundance,

 color=SampleName)+ #initialize ggplot

 geom_density() + #call density plot geom

 facet_wrap(~source) + #use facet_wrap; see ~source

 scale_x_log10()#scales the x axis using a base-10 log transformation

Warning: Transformation introduced infinite values in continuous x-axis

Warning: Removed 140 rows containing non-finite values (`stat_density()`).

110 Data visualization with ggplot2

Bioinformatics Training and Education Program

We could plot each sample individually using facet_grid()

ggplot(data= density_data)+ #initialize ggplot

 geom_density(aes(x=abundance,

 color=SampleName)) + #call density plot geom

 facet_wrap(~source, ncol=1) + #use the ncol argument

 scale_x_log10()

Warning: Transformation introduced infinite values in continuous x-axis

Warning: Removed 140 rows containing non-finite values (`stat_density()`).

ggplot(data= density_data)+ #initialize ggplot

 geom_density(aes(x=abundance,

 color=SampleName)) + #call density plot geom

 facet_grid(as.factor(sample)~source) + # formula is sample ~ source

 scale_x_log10()

111 Data visualization with ggplot2

Bioinformatics Training and Education Program

Using multiple geoms per plot

Because we build plots using layers in ggplot2. We can add multiple geoms to a plot to

represent the data in unique ways.

Warning: Transformation introduced infinite values in continuous x-axis

Warning: Removed 140 rows containing non-finite values (`stat_density()`).

#We can combine geoms; here we combine a scatter plot with a

#add a line to our plot

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,color=dex)) +

 geom_line(aes(x=Num_transcripts, y = TotalCounts,color=dex))

112 Data visualization with ggplot2

Bioinformatics Training and Education Program

#to make our code more effective, we can put shared aesthetics in the

#ggplot function

ggplot(data=sc, aes(x=Num_transcripts, y = TotalCounts,color=dex)) +

 geom_point() +

 geom_line()

113 Data visualization with ggplot2

Bioinformatics Training and Education Program

#or plot different aesthetics per layer

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,

 color=SampleName)) +

 geom_line(aes(x=Num_transcripts, y = TotalCounts,color=dex))

114 Data visualization with ggplot2

Bioinformatics Training and Education Program

#you can also add subsets of data in a new layer without overriding

#preceding layers

#let's only provide a line for the treated samples

 ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,

 color=SampleName)) +

 geom_line(data=filter(sc,dex=="trt"),

 aes(x=Num_transcripts, y = TotalCounts,color=dex))

115 Data visualization with ggplot2

Bioinformatics Training and Education Program

To get multiple legends for the same aesthetic, check out the CRAN package ggnewscale

(https://cran.r-project.org/web/packages/ggnewscale/index.html).

Other data visualization options in R

We will continue with ggplot2 in the next lesson, but before we get there, let's take a moment

to discuss other R visualization options.

R base graphics

You do not need to load a package to visually explore data. Rather, you can use base R

graphics for plotting (from the graphics package). This plotting is fairly different from

ggplot2, which is based on the grid package. Unlike ggplot2 the data does not need to be

organized in a data frame to use base R graphics. The plots are built line-by-line using an

"Artist's pallete model" (https://bookdown.org/rdpeng/exdata/plotting-systems.html) , and

because of this, it is difficult to preserve plots from base R graphics as objects to be

manipulated later, as you can with ggplot2.

You can obtain fairly nice figures using base R graphics; however, it often will take more lines of

code.

116 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://cran.r-project.org/web/packages/ggnewscale/index.html
https://cran.r-project.org/web/packages/ggnewscale/index.html
https://cran.r-project.org/web/packages/ggnewscale/index.html
https://cran.r-project.org/web/packages/ggnewscale/index.html
https://cran.r-project.org/web/packages/ggnewscale/index.html
https://bookdown.org/rdpeng/exdata/plotting-systems.html
https://bookdown.org/rdpeng/exdata/plotting-systems.html

The most common function from R base graphics is plot(). For a complete list of functions,

use library(help = "graphics").

Base R graph

ggplot2 graph

plot(iris$Sepal.Length, iris$Petal.Length, pch=19,

 col=c("purple","yellow","blue")[as.numeric(iris$Species)],

 xlab="Sepal Length (cm)", ylab="Petal Length (cm)")

legend("bottomright",legend=levels(iris$Species),

 col=c("purple","yellow","blue"), pch=19)

ggplot(data=iris)+

 geom_point(aes(Sepal.Length,Petal.Length,color=Species))+

 scale_color_manual(values=c("purple","yellow","blue"))+

 theme_classic() +

 labs(x="Sepal Length (cm)",y="Petal Length (cm)")

117 Data visualization with ggplot2

Bioinformatics Training and Education Program

Lattice

The lattice package is another prominent graphic system in R. Like ggplot2 this is also

based on the grid package.

For more information comparing the three plotting systems, see this chapter (https://

bookdown.org/rdpeng/exdata/plotting-systems.html) from Exploratory Data Analysis with R.

Resource list

ggplot2 cheatsheet

The R Graph Gallery (https://www.r-graph-gallery.com/)

The R Graphics Cookbook (https://r-graphics.org/recipe-quick-bar)

From Data to Viz (https://www.data-to-viz.com/)

ggplot2 extensions (https://exts.ggplot2.tidyverse.org/gallery/)

ggplot2: Elegant Graphics for Data Analysis (https://ggplot2-book.org/index.html)

1.

2.

3.

4.

5.

6.

118 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://bookdown.org/rdpeng/exdata/plotting-systems.html
https://bookdown.org/rdpeng/exdata/plotting-systems.html
https://bookdown.org/rdpeng/exdata/plotting-systems.html
https://bookdown.org/rdpeng/exdata/plotting-systems.html
../resources/ggplot2_cheatsheet.pdf
https://www.r-graph-gallery.com/
https://www.r-graph-gallery.com/
https://r-graphics.org/recipe-quick-bar
https://r-graphics.org/recipe-quick-bar
https://www.data-to-viz.com/
https://www.data-to-viz.com/
https://exts.ggplot2.tidyverse.org/gallery/
https://exts.ggplot2.tidyverse.org/gallery/
https://ggplot2-book.org/index.html
https://ggplot2-book.org/index.html

Acknowledgements

Material from this lesson was adapted from Chapter 3 of R for Data Science (https://

r4ds.had.co.nz/data-visualisation.html) and from "Data Visualization", Introduction to data

analysis with R and Bioconductor (https://carpentries-incubator.github.io/bioc-intro/40-

visualization/index.html), which is part of the Carpentries Incubator.

119 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html
https://carpentries-incubator.github.io/bioc-intro/40-visualization/index.html

Introduction to Data Visualization with R

(Part 2)

Objectives

Review the grammar of graphics template.

Learn about the statistical transformations inherent to geoms.

Learn more about fine tuning figures with labels, legends, scales, and themes.

Learn how to save plots with ggsave().

Review general tips for creating publishable figures.

Our grammar of graphics template

Last lesson we discussed the three basic components of creating a ggplot2 plot: the data,

one or more geoms, and aesthetic mappings.

But, we also learned of other features that greatly improve our figures, and today we will be

expanding our ggplot2 template even further to include:

one or more datasets,

one or more geometric objects that serve as the visual representations of the

data, – for instance, points, lines, rectangles, contours,

descriptions of how the variables in the data are mapped to visual properties

(aesthetics) of the geometric objects, and an associated scale (e. g., linear,

logarithmic, rank),

a facet specification, i.e. the use of multiple similar subplots to look at

subsets of the same data,

one or more coordinate systems,

optional parameters that affect the layout and rendering, such text size, font

and alignment, legend positions.

statistical summarization rules

1.

2.

3.

4.

5.

ggplot(data = <DATA>) +
 <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

•

•

•

•

•

•

•

120 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

---(Holmes and Huber, 2021 (https://web.stanford.edu/class/bios221/book/Chap-

Graphics.html))

Loading the libraries

To begin plotting, let's load our tidyverse library.

Importing the data

We also need some data to plot, so if you haven't already, let's load the data we will need for

this lesson.

ggplot(data = <DATA>) +
 <GEOM_FUNCTION>(
 mapping = aes(<MAPPINGS>),
 stat = <STAT>
) +
 <FACET_FUNCTION> +
 <COORDINATE SYSTEM> +
 <THEME>

#load libraries
library(tidyverse) # Tidyverse automatically loads ggplot2

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.3 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.4 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.0
✔ purrr 1.0.2
── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflict

#scaled_counts
#We used this in lesson 2 so you may not need to reload
scaled_counts<-
 read.delim("./data/filtlowabund_scaledcounts_airways.txt",
 as.is=TRUE)

121 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

https://web.stanford.edu/class/bios221/book/Chap-Graphics.html
https://web.stanford.edu/class/bios221/book/Chap-Graphics.html
https://web.stanford.edu/class/bios221/book/Chap-Graphics.html
https://web.stanford.edu/class/bios221/book/Chap-Graphics.html

Statistical transformations

Many graphs, like scatterplots, plot the raw values of your dataset. Other graphs,

like bar charts, calculate new values to plot:

bar charts, histograms, and frequency polygons bin your data and then plot

bin counts, the number of points that fall in each bin.

smoothers fit a model to your data and then plot predictions from the model.

boxplots compute a robust summary of the distribution and then display a

specially formatted box. The algorithm used to calculate new values for a

graph is called a stat, short for statistical transformation. --- R4DS (https://

r4ds.had.co.nz/data-visualisation.html#statistical-transformations)

Let's plot a bar graph using the data (sc).

What's the difference between stat identity and stat count?

dexp<-read.delim("./data/diffexp_results_edger_airways.txt",
 as.is=TRUE)

#let's get some data
#we are only interested in transcript counts greater than 100
#read in the data
sc<-read.csv("./data/sc.csv")

•

•

•

#returns an error message. What went wrong?
ggplot(data=sc) +
 geom_bar(aes(x=Num_transcripts, y = TotalCounts))

Error in `geom_bar()`:
! Problem while computing stat.
ℹ Error occurred in the 1st layer.

Caused by error in `setup_params()`:
! `stat_count()` must only have an x or y aesthetic.

ggplot(data=sc) +
 geom_bar(aes(x=Num_transcripts, y = TotalCounts), stat="identity")

122 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations

As we can see, stat="identity" returns the raw data.

Let's look at another example.

#Let's filter our data to only include 4 transcripts of interest
#We used this code in the tidyverse lesson
keep_t<-c("CPD","EXT1","MCL1","LASP1")
interesting_trnsc<-scaled_counts %>%
 filter(transcript %in% keep_t)

#the default here is `stat_count()`
ggplot(data = interesting_trnsc) +
 geom_bar(mapping = aes(x = transcript, y=counts_scaled))

Error in `geom_bar()`:
! Problem while computing stat.
ℹ Error occurred in the 1st layer.

Caused by error in `setup_params()`:
! `stat_count()` must only have an x or y aesthetic.

#Let's take away the y aesthetic
ggplot(data = interesting_trnsc) +

123 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

This is not a very useful figure, and probably not worth plotting. We could have gotten this info

using str(). However, the point here is that there are default statistical transformations

occurring with many geoms, and you can specify alternatives.

Let's change the stat parameter to "identity". This will plot the raw values of the normalized

counts rather than how many rows are present for each transcript.

 geom_bar(mapping = aes(x = transcript))

#defaulted to a stacked barplot
ggplot(data = interesting_trnsc) +
 geom_bar(mapping = aes(x = transcript,y=counts_scaled,
 fill=SampleName),
 stat="identity",color="black") +
 facet_wrap(~dex)

124 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

What if we wanted the columns side by side?

#introducing the position argument, position="dodge"
ggplot(data = interesting_trnsc) +
 geom_bar(mapping = aes(x = transcript,y=counts_scaled,
 fill=SampleName),
 stat="identity",color="black",position="dodge") +
 facet_wrap(~dex)

125 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

How do we know what the default stat is for geom_bar()? Well, we could read the

documentation, ?geom_bar(). This is true of multiple geoms. The statistical transformation can

often be customized, so if the default is not what you need, check out the documentation to

learn more about how to make modifications. For example, you could provide custom mapping

for a box plot. To do this, see the examples section of the geom_boxplot() documentation.

Coordinate systems

ggplot2 uses a default coordinate system (the Cartesian coordinate system). This isn't super

important until we want to do something like make a map (See coord_quickmap()) or create

a pie chart (See coord_polar()).

When will we have to think about coordinate systems? We likely won't have to modify from

default in too many cases (see those above). The most common circumstance in which we will

likely need to change the coordinate system is in the event that we want to switch the x and y

axes (?coord_flip()) or if we want to fix our aspect ratio (?coord_fixed()).

#let's return to our bar plot above
#get horizontal bars instead of vertical bars

ggplot(data = interesting_trnsc) +
 geom_bar(mapping = aes(x = transcript,y=counts_scaled,

126 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

Labels, legends, scales, and themes

How do we ultimately get our figures to a publishable state? The bread and butter of pretty plots

really falls to the additional non-data layers of our ggplot2 code. These layers will include code

to label the axes, scale the axes, and customize the legends and theme (https://

ggplot2.tidyverse.org/reference/theme.html).

The default axes and legend titles come from the ggplot2 code.

 fill=SampleName),
 stat="identity",color="black",position="dodge") +
 facet_wrap(~dex) +
 coord_flip()

ggplot(data=sc) +
 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
 shape=21,size=2) +
 scale_fill_manual(values=c("purple", "yellow"))

127 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html

In the above plot, the y-axis label (TotalCounts) is the variable name mapped to the y aesthetic,

while the x-axis label (Num_transcripts) is the variable name named to the x aesthetic. The fill

aesthetic was set equal to "dex", and so this became the default title of the fill legend. We can

change these labels using ylab(), xlab(), or labs(), and guide() for the legend.

ggplot(data=sc) +
 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
 shape=21,size=2) +
 scale_fill_manual(values=c("purple", "yellow"),
 labels=c('treated','untreated'))+
 #can change labels of fill levels along with colors
 xlab("Recovered transcripts per sample") + #add x label
 ylab("Total sequences per sample") #add y label

128 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

Let's change the legend title.

ggplot(data=sc) +
 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
 shape=21,size=2) +
 scale_fill_manual(values=c("purple", "yellow"),
 labels=c('treated','untreated'))+
 #can change labels of fill levels along with colors
 xlab("Recovered transcripts per sample") + #add x label
 ylab("Total sequences per sample") +#add y label
 guides(fill = guide_legend(title="Treatment"))

129 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

We can modify the axes scales of continuous variables using scale_x_contiuous() and

scale_y_continuous(). Discrete (categorical variable) axes can be modified using

scale_x_discrete() and scale_y_discrete().

ggplot(data=sc) +
 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
 shape=21,size=2) +
 scale_fill_manual(values=c("purple", "yellow"),
 labels=c('treated','untreated'))+
 #can change labels of fill levels along with colors
 xlab("Recovered transcripts per sample") + #add x label
 ylab("Total sequences per sample") +#add y label
 guides(fill = guide_legend(title="Treatment")) + #label the legend
 scale_y_continuous(breaks=seq(1.0e7, 3.5e7, by = 2e6),
 limits=c(1.0e7,3.5e7)) #change breaks and limits

130 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

Perhaps we want to represent these data on a logarithmic scale.

ggplot(data=sc) +
 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
 shape=21,size=2) +
 scale_fill_manual(values=c("purple", "yellow"),
 labels=c('treated','untreated'))+
 #can change labels of fill levels along with colors
 xlab("Recovered transcripts per sample") + #add x label
 ylab("Total sequences per sample") +#add y label
 guides(fill = guide_legend(title="Treatment")) + #label the legend
 scale_y_continuous(trans="log10") #use the trans argument

131 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

Finally, we can change the overall look of non-data elements of our plot (titles, labels, fonts,

background, grid lines, and legends) by customizing ggplot2 themes. Check out ?

ggplot2::theme(). For a list of available parameters. ggplot2 provides 8 complete themes,

with theme_gray() as the default theme.

Note

You could manually transform the data without transforming the scales. The figures would be the same, excluding

the axes labels. When you use the transformed scale (e.g., scale_y_continuous(trans="log10") or

scale_y_log10()), the axis labels remain in the original data space. When the data is transformed manually, the

labels will also be transformed.

132 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

You can also create your own custom theme and then apply it to all figures in a plot.

Create a custom theme to use with multiple figures.

#Setting a theme
my_theme <-
 theme_bw() +
 theme(
 panel.border = element_blank(),
 axis.line = element_line(),
 panel.grid.major = element_line(size = 0.2),
 panel.grid.minor = element_line(size = 0.1),
 text = element_text(size = 12),
 legend.position = "bottom",

133 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

 axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)
)

Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
ℹ Please use the `linewidth` argument instead.

This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.

ggplot(data=sc) +
 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),
 shape=21,size=2) +
 scale_fill_manual(values=c("purple", "yellow"),
 labels=c('treated','untreated'))+
 #can change labels of fill levels along with colors
 xlab("Recovered transcripts per sample") + #add x label
 ylab("Total sequences per sample") +#add y label
 guides(fill = guide_legend(title="Treatment")) + #label the legend
 scale_y_continuous(trans="log10") + #use the trans argument
 my_theme

134 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

Saving plots (ggsave())

Finally, we have a quality plot ready to publish. The next step is to save our plot to a file. The

easiest way to do this with ggplot2 is ggsave(). This function will save the last plot that you

displayed by default. Look at the function parameters using ?ggsave().

Nice plot example

These steps can be used to create a publish worthy figure. For example, let's create a volcano

plot of our differential expression results.

A volcano plot is a type of scatterplot that shows statistical significance (P value)

versus magnitude of change (fold change). It enables quick visual identification of

genes with large fold changes that are also statistically significant. These may be

the most biologically significant genes. --- Maria Doyle, 2021 (https://

training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-

viz-with-volcanoplot/tutorial.html)

Plot

ggsave("Plot1.png",width=5.5,height=3.5,units="in",dpi=300)

#get the data
dexp_sigtrnsc<-dexp %>%
 mutate(Significant = FDR < 0.05 & abs(logFC) >= 2) %>% arrange(FDR)
topgenes<-dexp_sigtrnsc$transcript[1:6]

135 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html

#install.packages(ggrepel)
library(ggrepel)
ggplot(data=dexp_sigtrnsc,aes(x = logFC, y = log10(FDR))) +
 geom_point(aes(color = Significant, size = Significant,
 alpha = Significant)) +
 geom_text_repel(data=dexp_sigtrnsc %>%
 filter(transcript %in% topgenes),
 aes(label=transcript),
 nudge_y=0.5,hjust=0.5,direction="y",
 segment.color="gray") +
 scale_y_reverse(limits=c(0,-7))+
 scale_color_manual(values = c("black", "#e11f28")) +
 scale_size_discrete(range = c(0, 2)) +
 guides(size = "none", alpha= "none")+
 my_theme

Warning: Using size for a discrete variable is not advised.

Warning: Using alpha for a discrete variable is not advised.

136 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

Recommendations for creating publishable figures

(Inspired by Visualizing Data in the Tidyverse, a Coursera lesson)

Consider whether the plot type you have chosen is the best way to convey your message

Make your plot visually appealing

Careful color selection - color blind friendly if possible (e.g., library(viridis))

Eliminate unnecessary white space

Enhanced Volcano

There is a dedicated package for creating volcano plots available in Bioconductor, EnhancedVolcano (https://

bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html). Plots created using this package can be

customized using ggplot2 functions and syntax.



#The default cut-off for log2FC is >|2|
#the default cut-off for log10 p-value is 10e-6
library(EnhancedVolcano)
EnhancedVolcano(dexp_sigtrnsc,
 title = "Enhanced Volcano with Airways",
 lab = dexp_sigtrnsc$transcript,
 x = 'logFC',
 y = 'FDR')

1.

2.

◦

◦

137 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html

Carefully choose themes including font types

Label all axes with concise and informative labels

These labels should be straight forward and adequately describe the data

Ask yourself "Does the data make sense?"

Does the data plotted address the question you are answering?

Try not to mislead the audience

Often this means starting the y-axis at 0

Keep axes consistent when arranging facets or multiple plots

Keep colors consistent across plots

Do not try to convey too much information in the same plot

Keep plots fairly simple

Complementary packages

There are many complementary R packages related to creating publishable figures using

ggplot2. Check out the packages cowplot (https://cran.r-project.org/web/packages/cowplot/

vignettes/introduction.html) and ggpubr (https://github.com/kassambara/ggpubr) . Cowplot is

particularly great for providing functions that facilitate arranging multiple plots in a grid panel.

Usually publications restrict the number of figures allowed, and so it is helpful to be able to

group multiple figures into a single figure panel. GGpubr is particularly great for beginners,

providing easy code to make publish worthy figures. It is particularly great for stats integration

and easily incorporating brackets and p-values for group comparisons.

Acknowledgements

Material from this lesson was adapted from Chapter 3 of R for Data Science (https://

r4ds.had.co.nz/data-visualisation.html) and from a 2021 workshop entitled Introduction to Tidy

Transciptomics (https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/

tidytranscriptomics.html) by Maria Doyle and Stefano Mangiola.

◦

3.

◦

4.

◦

5.

◦

◦

◦

6.

◦

138 Introduction to Data Visualization with R (Part 2)

Bioinformatics Training and Education Program

https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://github.com/kassambara/ggpubr
https://github.com/kassambara/ggpubr
https://github.com/kassambara/ggpubr
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html

Introduction to Bioconductor and report

generation with R

Objectives

To explore Bioconductor, a repository for R packages related to biological data analysis.

To learn about options for report generation with R: RMarkdown and Quarto.

Introducing Bioconductor

Bioconductor (https://bioconductor.org/) is both an open source project and repository for R

packages related to the analysis of biological data, primarily bioinformatics and computational

biology, and as such it is a great place to search for -omics packages and pipelines. Read

more about the goals of the Bioconductor project here. (https://bioconductor.org/about/)

Since its inception in 2001, the Bioconductor project has kept pace with emerging technologies

from microarrays to spatial transcriptomics.

The current release of Bioconductor (v 3.18) contains:

2,266 software packages

429 experiment data packages

920 annotation packages

30 workflows

4 books

What types of packages are available in Bioconductor?

Bioconductor packages are divided into four types:

software

annotation data

experiment data

workflows.

Software packages themselves can be subdivided into packages that provide

infrastructure (i.e., classes) to store and access data, and packages that provide

methodological tools to process data stored in those data structures. This

separation of structure and analysis is at the core of the Bioconductor project,

1.

2.

•

•

•

•

•

1.

2.

3.

4.

139 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

https://bioconductor.org/
https://bioconductor.org/
https://bioconductor.org/about/
https://bioconductor.org/about/

encouraging developers of new methodological software packages to thoughtfully

re-use existing data containers where possible, and reducing the cognitive burden

imposed on users who can more easily experiment with alternative workflows

without the need to learn and convert between different data structures.

Annotation data packages provide self-contained databases of diverse genomic

annotations (e.g., gene identifiers, biological pathways). Different collections of

annotation packages can be found in the Bioconductor project. They are

identifiable by their respective naming pattern, and the information that they

contain. For instance, the so-called OrgDb packages (e.g., the org.Hs.eg.db

package) provide information mapping different types of gene identifiers and

pathway databases; the so-called EnsDb (e.g., EnsDb.Hsapiens.v86) packages

encapsulate individual versions of the Ensembl annotations in Bioconductor

packages; and the so-called TxDb packages (e.g.,

TxDb.Hsapiens.UCSC.hg38.knownGene) encapsulate individual versions UCSC

gene annotation tables.

Experiment data packages provide self-contained datasets that are often used by

software package developers to demonstrate the use of their package on well-

known standard datasets in their package vignettes.

Finally, workflow packages exclusively provide collections of vignettes that

demonstrate the combined usage of several other packages as a coherent

workflow, but do not provide any new source code or functionality themselves.

--- Introduction to Bioconductor from The Bioconductor Project (https://carpentries-

incubator.github.io/bioc-project/02-introduction-to-bioconductor.html), a lesson in

the Carpentries Incubator

For a comprehensive list of packages ranked by number of downloads, click here (https://

bioconductor.org/packages/release/BiocViews.html#___Software).

Bioconductor versions and install

Bioconductor release schedule

New versions of Bioconductor are released every 6 months and work with a specific version of

R.

Because of this release schedule and associated automated testing, "each Bioconductor

release provides a suite of packages that are mutually compatible, traceable, and guaranteed

to function for the associated version of R." --- Introduction to Bioconductor from The

Bioconductor Project (https://carpentries-incubator.github.io/bioc-project/02-introduction-to-

bioconductor.html).

140 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html

The latest version of Bioconductor (Bioconductor 3.18) works with R version 4.3. You may need

to update your R installation.

How to install a Bioconductor package?

To install a Bioconductor package, you will first need to installBiocManager, a CRAN package.

You can then use BiocManager to install the Bioconductor core packages and specific

packages.

To install the Bioconductor core packages, use the following:

To install a specific package:

To update installed Bioconductor packages, use:

How to find Bioconductor packages of interest?

The easiest way to search Bioconductor for a topic specific package is to use the BiocViews

search (https://bioconductor.org/packages/release/BiocViews.html#___Software) . BiocViews

includes a controlled vocabulary to categorize Bioconductor packages. Because packages are

tagged using this vocabulary, they can be grouped and searched by topic.

#install core packages
if (!require("BiocManager", quietly = TRUE))
 install.packages("BiocManager")
BiocManager::install(version = "3.18")

BiocManager::install("tidybulk") #replace tidybulk with the name of
#the package that interests you.

BiocManager::install()

141 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software

Packages are ranked. The more popular the package, the lower the rank.

Bioconductor education and communication

Resources for learning

There are a number of Bioconductor events/conferences throughout the year including the

annual BioC conference in North America and similar regional conferences throughout the

world (e.g., BioC Asia, BioC Europe). Upcoming events (e.g., conferences, workshops,

courses, summer schools, etc.) can be found at the bottom of the home page or in the Events

Calendar (http://www.bioconductor.org/help/events/).

Upcoming Events on the Bioconductor homepage

See the "Learn" (http://www.bioconductor.org/) tab or card on the Bioconductor website to find

additional resources such as course materials, presentations, and vignettes.

You could also use browseVignettes() to search for vignettes directly from R.

142 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

http://www.bioconductor.org/help/events/
http://www.bioconductor.org/help/events/
http://www.bioconductor.org/help/events/
http://www.bioconductor.org/
http://www.bioconductor.org/

Communication

For package support and questions on related topics, there is an active Bioconductor support

site (https://support.bioconductor.org/) that operates similarly to other forums (e.g., Biostars

(https://www.biostars.org/)).

There is also a Slack workspace for general community interaction with a range of channels. For

example, important announcements are posted to the #general channel in Slack.

Introduction to report generation with R.

Reproducibility in science means being able to generate the same experimental / analytical

results with a high degree of reliability. This is necessary for research validation, scientific and

public trust, innovation, and collaboration.

Reproducibility is not possible without complete transparency and exceptional documentation

of all research steps (i.e., from the lab bench to the computer).

On the other hand, reusability refers to the reuse of data, methods, or workflows either for

validation or new purposes. Reusability is important for applying methods to new problems,

standardizing methodologies, and advancing discovery.

Reusability is also not possible without exceptional documentation.

We can make our research more reproducible and our data and methods more reusable by

documenting, documenting, and documenting more...along with other steps (e.g., version

control, containerization, etc.).

There are two report generating systems built into RStudio:

R Markdown (https://rmarkdown.rstudio.com/)

Quarto (https://quarto.org/)

Both R Markdown and Quarto support dozens of static and interactive output formats and allow

the user to execute code within a larger narrative. Because Quarto is the next generation of R

Markdown, that will be the focus here.

What is Quarto?

Quarto® is an open-source scientific and technical publishing system built on

Pandoc ---https://quarto.org/ (https://quarto.org/)

What does this mean? Quarto allows you to combine code, commentary, and other features to

tell a story about your data or data analysis using articles, presentations, dashboards, websites,

blogs, or books. Click here (https://quarto.org/docs/output-formats/all-formats.html) for a list of

supported Pandoc output formats.

1.

2.

143 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

https://support.bioconductor.org/
https://support.bioconductor.org/
https://support.bioconductor.org/
https://www.biostars.org/
https://www.biostars.org/
https://www.biostars.org/
https://www.biostars.org/
https://rmarkdown.rstudio.com/
https://rmarkdown.rstudio.com/
https://quarto.org/
https://quarto.org/
https://quarto.org/
https://quarto.org/
https://quarto.org/docs/output-formats/all-formats.html
https://quarto.org/docs/output-formats/all-formats.html

Unlike R Markdown, Quarto is NOT an R package but instead is a command line tool.

Why use Quarto

Quarto helps you tell others exactly what you did and how you derived your conclusions - code,

results, and conclusions wrapped up in a single document.

Advantages of Quarto compared with other publishing systems:

Can use with the IDE or editor of your choice: Visual Studio Code, RStudio, JupyterLab/

Jupyter notebook, other.

Does not require R / RStudio.

Can use directly from the command line.

Language agnostic; can use the language of your choice (R, python, Julia, Bash,

Observable) and can mix languages in a single document (R, Python, Bash, Observable).

Easy to share with collaborators who prefer a different language or for mixed language

projects.

Better defaults; consistent syntax and approach across languages.

Similar to RMarkdown but with fewer dependencies, greater consistency, and more

flexibility.

Gallery of examples

Let's check out some examples.

(https://quarto.org/docs/gallery/)

Examples of Quarto report types from quarto.org

•

•

•

•

•

•

•

Note

Quarto can render most RMarkdown (.Rmd) and Jupyter notebook files (.ipynb) out of the box. No edits necessary.

This makes it an excellent tool for collaboration.

If you are already invested in R Markdown, you may want to stick with it. For now, there is no plan to discontinue R

Markdown, but there will be no further development. BUT, if you are just getting started with documenting your data

analyses and / or you are working on a highly collaborative project, Quarto is a good choice.

144 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

https://quarto.org/docs/gallery/
https://quarto.org/docs/gallery/
https://quarto.org/docs/gallery/
https://quarto.org/docs/gallery/
https://quarto.org/docs/gallery/

The Quarto gallery (https://quarto.org/docs/gallery/) includes many examples of various

documentation types. Click on the link to explore more!

Getting Started

Quarto is installed with the latest versions of RStudio. When rendering a Quarto document

(.qmd file), the code blocks are processed using either knitr or jupyter, which is converted

to markdown. That markdown is then converted to the final format (https://quarto.org/docs/

output-formats/all-formats.html) using pandoc.

Image modified from quarto.org

Open a new .qmd file

To get started with Quarto in RStudio, navigate to:

File > New File > Quarto Document

Markdown

Quarto uses markdown (https://quarto.org/docs/authoring/markdown-basics.html) for formatting text, images, links,

code, and other components in plain text documents. It is helpful to know some amount of markdown to get started,

but Quarto can also be used similar to word processor (using a visual editor).

145 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

https://quarto.org/docs/gallery/
https://quarto.org/docs/gallery/
https://quarto.org/docs/output-formats/all-formats.html
https://quarto.org/docs/output-formats/all-formats.html
https://quarto.org/docs/output-formats/all-formats.html
https://quarto.org/docs/output-formats/all-formats.html
https://quarto.org/docs/authoring/markdown-basics.html
https://quarto.org/docs/authoring/markdown-basics.html

This will open a window to easily modify initial options. Here, we can select Quarto outputs such

as a document, presentation, or interactive, and the output format (e.g., for a document, html,

pdf, word). We can adjust the engine (knitr or jupyter), and our choice of editor (source vs visual

editor).

146 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

Don't know markdown? No problem. Use the Visual editor.

One of the great things about Quarto is that you do not really need to know markdown to use it.

You can use a "What you see is what you mean (WYSIWYM)" editing interface. This provides an

editor toolbar along with other shortcuts to enhance the editing process.

You can switch between the visual editor and the source editor at the top of the document.

Note

The visual editor can be used along with markdown syntax. They do not need to be mutually exclusive.

147 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

A new Quarto document in RStudio, will include example text to help get you started.

Anatomy of Quarto document

Once you have intiated your document, you can get started documenting your analysis.

There are three basic components to a quarto document:

yaml header (bracketed by ---)

The yaml header or file allows us to control document level or project level options. Here,

we can specify formats, themes, executable options, and others.

markdown text (images, tables, text, etc.)

Your narrative including images, tables, text, and other elements can be added using

markdown syntax or using the visual editor.

code chunks (bracketed by ```)

Code blocks can be added using ```{r}``` or ```{python}``` or ```{bash}```.

Python requires the reticulate package when using knitr.

How code blocks and associated output behave can be modified using code chunk

options denoted by #|. Many options can also be applied to all code chunks in the yaml

header.

Happy documenting!

1.

2.

3.

148 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

Addtional Resources

If interested in Quarto, check out our recent Coding Club session (https://cbiit.webex.com/cbiit/

ldr.php?RCID=2ea9ffe6996ea4d195c65ee141567573) or navigate to quarto.org (https://

quarto.org/) and check out the documentation.

Acknowledgements

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-

introduction/index.html) and The Bioconductor Project: Introduction to Bioconductor (https://

carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html) from the

Carpentries Incubator.

149 Introduction to Bioconductor and report generation with R

Bioinformatics Training and Education Program

https://cbiit.webex.com/cbiit/ldr.php?RCID=2ea9ffe6996ea4d195c65ee141567573
https://cbiit.webex.com/cbiit/ldr.php?RCID=2ea9ffe6996ea4d195c65ee141567573
https://cbiit.webex.com/cbiit/ldr.php?RCID=2ea9ffe6996ea4d195c65ee141567573
https://cbiit.webex.com/cbiit/ldr.php?RCID=2ea9ffe6996ea4d195c65ee141567573
https://quarto.org/
https://quarto.org/
https://quarto.org/
https://quarto.org/
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html
https://carpentries-incubator.github.io/bioc-project/02-introduction-to-bioconductor.html

Additional Exercises

Lesson 2 Exercise Questions: Base R

syntax, objects, and data types

Let's use some functions.

a. Use sum() to add the numbers from 1 to 10.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

b. Compute the base 10 logarithm of the elements in the following vector and save to an

object called logvec: c(1:10).

{{Sdet}}

Solution{{Esum}}

{{Edet}}

c. What does the function paste() do? Use it to combine the following vectors. Use an _

as a separator.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

1.



sum(1:10)



logvec<- log10(c(1:10))

id <- LETTERS[1:5]
idnum<- c(1,3,6,9,12)



paste(id,idnum,sep="_")

151 Lesson 2 Exercise Questions: Base R syntax, objects, and data types

Bioinformatics Training and Education Program

d. What does the function identical() do? Use it to compare the following vectors.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

What is the value of each object? You should know the value without printing the value of

the object.

(Question taken from https://carpentries-incubator.github.io/bioc-intro/23-starting-with-r/

index.html)

Create the following objects; give each object an appropriate name.

a. Create an object that has the value of the number of bones in the adult human body.

b. Create an object containing the names of four different bones.

c. Create an object with values 1 to 100.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

a<-seq(2,10,by=2)
b<-c(2,4,6,8,10)



#tells us whether the two vectors are the same
identical(a,b)

2.

mass <- 47.5 # mass?
age <- 122 # age?
mass <- mass * 2.0 # mass?
age <- age - 20 # age?
mass_index <- mass/age # mass_index?

3.



bone_num<- 206
bone_names<- c("talus","calcaneus","tibia","fibula")
values<-c(1:100)

152 Lesson 2 Exercise Questions: Base R syntax, objects, and data types

Bioinformatics Training and Education Program

Vectors include data of a single type, so what happens if we mix different types? Use

typeof() to check the data type of the following objects.

{{Sdet}}

Solution{{Esum}}

{{Edet}} (Question taken from https://carpentries-incubator.github.io/bioc-intro/23-starting-

with-r/index.html)

Using indexing, create a new vector named combined that contains:

The 2nd and 3rd value of num_char.

The last value of char_logical.

The 1st value of tricky.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

4.

num_char <- c(1, 2, 3, "a")
num_logical <- c(1, 2, 3, TRUE, FALSE)
char_logical <- c("a", "b", "c", TRUE)
tricky <- c(1, 2, 3, "4")



#These were coerced into a single data type
typeof(num_char)
num_char
typeof(num_logical)
num_logical
typeof(char_logical)
char_logical
typeof(tricky)
tricky

5.



combined <- c(num_char[2:3], char_logical[length(char_logical)],
 tricky[1])

153 Lesson 2 Exercise Questions: Base R syntax, objects, and data types

Bioinformatics Training and Education Program

Lesson 3 Exercise Questions: BaseR

dataframe manipulation and factors

The filtlowabund_scaledcounts_airways.txt includes normalized and non-normalized

transcript count data from an RNAseq experiment. You can read more about the experiment

here (https://pubmed.ncbi.nlm.nih.gov/24926665/).

We are going to use the filtlowabund_scaledcounts_airways.txt file for this exericise.

Get the data here.

Putting what we have learned to the test:

The following questions synthesize several of the skills you have learned thus far. It may not be

immediately apparent how you would go about answering these questions. Remember, the R

community is expansive, and there are a number of ways to get help including but not limited to

google search. These questions have multiple solutions, but you should try to stick to the tools

you have learned to use thus far.

Import the filtlowabund_scaledcounts_airways.txt into R and save to an R object named

transcript_counts. Try not to use the dropdown menu for loading the data.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

What are the dimensions of transcript_counts?

{{Sdet}}

Solution{{Esum}}

{{Edet}}

What are the column names?

{{Sdet}}

1.



transcript_counts <-read.delim("./data/filtlowabund_scaledcounts_airways.txt"

2.



dim(transcript_counts)

3.

154 Lesson 3 Exercise Questions: BaseR dataframe manipulation and factors

Bioinformatics Training and Education Program

https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
../../data/filtlowabund_scaledcounts_airways.txt

Solution{{Esum}}

{{Edet}}

How many categories of transcripts are there? Think about what you know regarding

factors.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

Rename the column "sample" in transcript_counts to "SampleID".

{{Sdet}}

Solution{{Esum}}

{{Edet}}

What is the mean and standard deviation of "avgLength" across the entire

transcript_counts data frame? Hint: Read the help documentation for mean() and

sd().

{{Sdet}}

Solution{{Esum}}

{{Edet}}

Make a data frame with the column names "Mean" and "Standard_Dev" that holds the

values from question 6. Hint: check out the function data.frame().

{{Sdet}}



colnames(transcript_counts)

4.



nlevels(factor(transcript_counts$transcript,exclude=NULL))

5.



colnames(transcript_counts)[2]<-"SampleID"

6.



mean_avgLength<- mean(transcript_counts$avgLength)
sd_avgLength<- sd(transcript_counts$avgLength)

7.

155 Lesson 3 Exercise Questions: BaseR dataframe manipulation and factors

Bioinformatics Training and Education Program

Solution{{Esum}}

{{Edet}}



data.frame(Mean=mean_avgLength, Standard_Dev=sd_avgLength)

156 Lesson 3 Exercise Questions: BaseR dataframe manipulation and factors

Bioinformatics Training and Education Program

Lesson 4 Exercise Questions: Tidyverse

The filtlowabund_scaledcounts_airways.txt includes normalized and non-normalized

transcript count data from an RNAseq experiment. You can read more about the experiment

here (https://pubmed.ncbi.nlm.nih.gov/24926665/) . You can obtain the data outside of class

here.

The diffexp_results_edger_airways.txt includes results from differential expression

analysis using EdgeR. You can obtain the data outside of class here.

Putting what we have learned to the test:

The following questions synthesize several of the skills you have learned thus far. It may not be

immediately apparent how you would go about answering these questions. Remember, the R

community is expansive, and there are a number of ways to get help including but not limited to

google search. These questions have multiple solutions, but try to solve the problem using

tidyverse.

The normalized and non-normalized count data should be saved to the object

scaled_counts. The differential expression results should be saved to the object dexp.

Using scaled_counts, is there a difference in the number of transcripts with greater

than 0 normalized counts ("counts_scaled") per sample? What did you use to answer this

question.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

Select the following columns from the scaled_counts data frame: sample, cell, dex,

Run, transcript, avgLength, and counts_scaled. However, rearrange the columns so that

the column 'Run' follows 'sample' and 'avgLength' is the last column. Save this to the

object df_counts.

{{Sdet}}

Solution{{Esum}}

1.

table(scaled_counts[scaled_counts$counts_scaled>0,]$sample)



2.



157 Lesson 4 Exercise Questions: Tidyverse

Bioinformatics Training and Education Program

https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
../../data/filtlowabund_scaledcounts_airways.txt
../../data/diffexp_results_edger_airways.txt

{{Edet}}

Using the differential expression results, create a data frame with the top five differentially

expressed genes by p-value. Hint: Top genes in this case will have the smallest FDR

corrected p-value and an absolute value of the log fold change greater than 2. (Lesson 4

challenge question)

{{Sdet}}

Solution{{Esum}}

{{Edet}}

Filter the data frame scaled_counts to include only our top five differentially expressed

genes (from question 3) and save to a new object named top_gene_counts.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

Return a filtered data frame of the differential expression results. We want to look at only

the transcripts with logCPM greater than 3 with a logFC greater than or equal to an

absolute value of 2.5 and an adjusted (FDR) p-value less than 0.001.

{{Sdet}}

Solution{{Esum}}

df_counts<-scaled_counts %>%
 select(sample, Run, cell, dex, transcript,counts_scaled,avgLength

3.



topgene<-dexp %>%
 arrange(FDR) %>%
 filter(logFC >= abs(2)) %>%
 head(5)

4.



top_gene_counts<-
 scaled_counts %>%
 filter(transcript %in% topgene$transcript)

5.



dexp %>%
 filter(logCPM > 3,logFC >= abs(2.5), FDR < 0.001)

158 Lesson 4 Exercise Questions: Tidyverse

Bioinformatics Training and Education Program

{{Edet}}

159 Lesson 4 Exercise Questions: Tidyverse

Bioinformatics Training and Education Program

Lesson 5 Exercise Questions: Tidyverse

The filtlowabund_scaledcounts_airways.txt includes normalized and non-normalized

transcript count data from an RNAseq experiment. You can read more about the experiment

here (https://pubmed.ncbi.nlm.nih.gov/24926665/) . You can obtain the data outside of class

here.

The diffexp_results_edger_airways.txt includes results from differential expression

analysis using EdgeR. You can obtain the data outside of class here.

Putting what we have learned to the test:

The following questions synthesize several of the skills you have learned thus far. It may not be

immediately apparent how you would go about answering these questions. Remember, the R

community is expansive, and there are a number of ways to get help including but not limited to

google search. These questions have multiple solutions, but try to solve the problem using

tidyverse.

The normalized and non-normalized count data should be saved to the object

scaled_counts. The differential expression results should be saved to the object dexp.

Explore the column "avgLength" in scaled_counts. Does the data in this column vary

within a sample? How could we figure this out if we didn't know what was in this column?

{{Sdet}}

Solution{{Esum}}

{{Edet}}

Create a column in scaled_counts named "z-counts" that contains a z-score

transformation of the "counts" column.

{{Sdet}}

Solution{{Esum}}

1.



scaled_counts %>% group_by(sample) %>% summarize(median=median(avgLength
 max=max(avgLength),
 min=min(avgLength))

2.

scaled_counts %>% mutate(z_counts=scale(counts))

160 Lesson 5 Exercise Questions: Tidyverse

Bioinformatics Training and Education Program

https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
../../data/filtlowabund_scaledcounts_airways.txt
../../data/diffexp_results_edger_airways.txt

{{Edet}}

Coerce the columns "sample" and "SampleName" from scaled_counts to type factor.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

In the lesson 4 exercise, you created a data frame with the top five differentially

expressed genes by p-value and logFC.

Create a data frame of the mean, median, and standard deviation of the normalized

counts ("counts_scaled") for each of our top transcripts by treatment ("dex"). Is there a

large amount of variation within a treatment?

{{Sdet}}

Solution{{Esum}}

{{Edet}}



3.

scaled_counts %>% mutate(across(c(sample, SampleName), as.factor))



4.

topgene<-dexp %>%
 arrange(FDR) %>%
 filter(logFC >= abs(2)) %>%
 head(5)



scaled_counts %>%
filter(transcript %in% topgene$transcript) %>%
group_by(dex, transcript) %>%
summarize(mean_counts=mean(counts_scaled),
 sd=sd(counts_scaled),
 median=median(counts_scaled))

161 Lesson 5 Exercise Questions: Tidyverse

Bioinformatics Training and Education Program

Lesson 5 Exercise Questions: ggplot2

What geoms would you use to draw each of the following named plots?

a. Scatterplot

b. Line chart

c. Histogram

d. Bar chart

e. Pie chart

(Question taken from https://ggplot2-book.org/individual-geoms.html (https://ggplot2-

book.org/individual-geoms.html).)

{{Sdet}}

Solution{{Esum}}

{{Edet}}

We will use the mpg data set for the remainder of the questions. Use ?mpg to learn more

about these data. Visualize highway miles per gallon (hwy) by the class of car using a

box plot.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

Fill each box with color by class.

{{Sdet}}

Solution{{Esum}}

1.



a. geom_point
b. geom_line
c. geom_histogram
d. geom_bar
c. geom_bar with coord_polar

2.



ggplot(mpg)+
 geom_boxplot(aes(class,hwy))

3.



162 Lesson 5 Exercise Questions: ggplot2

Bioinformatics Training and Education Program

https://ggplot2-book.org/individual-geoms.html
https://ggplot2-book.org/individual-geoms.html
https://ggplot2-book.org/individual-geoms.html
https://ggplot2-book.org/individual-geoms.html

{{Edet}}

Reorder the boxes by the median of hwy. Hint: See fct_reorder() from forcats.

Change the x and y labels.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

Visualize question two as a violin plot instead.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

Visualize a cars engine size in liters (displ) versus fuel efficiency on the hwy (hwy).

{{Sdet}}

Solution{{Esum}}

{{Edet}}

Fit a smooth line (loess) to the data from question 6. Color the points by car class.

{{Sdet}}

Solution{{Esum}}

ggplot(mpg)+
 geom_boxplot(aes(class,hwy,fill=class))

4.



ggplot(mpg)+
 geom_boxplot(aes(fct_reorder(factor(class),hwy,median),hwy,fill
 labs(y="Miles per gallon (hwy)", x="Vehicle Class")

5.



ggplot(mpg)+
 geom_violin(aes(class,hwy))

6.



ggplot(mpg) +
 geom_point(aes(displ,hwy))

7.



163 Lesson 5 Exercise Questions: ggplot2

Bioinformatics Training and Education Program

{{Edet}}

Visualize a histogram of hwy and facet by year. Explore the binwidth and color the bars

red with a black outline.

{{Sdet}}

Solution{{Esum}}

{{Edet}}

ggplot(mpg) +
 geom_point(aes(displ,hwy,color=class))+
 geom_smooth(aes(displ,hwy))

8.



ggplot(mpg)+
 geom_histogram(aes(hwy),fill="red",color="black", binwidth=5)
 facet_wrap(~year)

164 Lesson 5 Exercise Questions: ggplot2

Bioinformatics Training and Education Program

Lesson 6 Exercise Questions: ggplot2

Putting what we have learned to the test:

The following questions synthesize several of the skills you have learned thus far. It may not be

immediately apparent how you would go about answering these questions. Remember, the R

community is expansive, and there are a number of ways to get help including but not limited to

google search. These questions have multiple solutions, but you should try to stick to the tools

you have learned to use thus far.

Your mission is to make a publishable figure.

We will use the iris data set for this.

Start by plotting Petal.Length on the x-axis and Petal.Width on

the y-axis.

{{Sdet}}

Solution{{Esum}}

{{Edet}}



library(ggplot2)
ggplot(iris)+
 geom_point(aes(Petal.Length,Petal.Width,color=Species))

165 Lesson 6 Exercise Questions: ggplot2

Bioinformatics Training and Education Program

Fix the axes so that the dimensions on the x-axis and the y-axis are

equal. Both axes should start at 0. Label the axis breaks every 0.5

units on the y-axis and every 1.0 units on the x-axis.

{{Sdet}}

Solution{{Esum}}

{{Edet}}



ggplot(iris)+
 geom_point(aes(Petal.Length,Petal.Width,color=Species))+
 coord_fixed(ratio=1,ylim=c(0,2.75),xlim=c(0,7)) +
 scale_y_continuous(breaks=c(0,0.5,1,1.5,2,2.5)) +
 scale_x_continuous(breaks=c(0,1,2,3,4,5,6,7))

166 Lesson 6 Exercise Questions: ggplot2

Bioinformatics Training and Education Program

Change to color of the points by species to be color blind friendly, and

change the legend title to "Iris Species". Label the x and y axis to

eliminate the variable names and add unit information.

{{Sdet}}

Solution{{Esum}}



#multiple ways to find color blind friendly palettes.
#using color brewer scales
RColorBrewer::display.brewer.all(colorblindFriendly=TRUE)

167 Lesson 6 Exercise Questions: ggplot2

Bioinformatics Training and Education Program

{{Edet}}

ggplot(iris)+
 geom_point(aes(Petal.Length,Petal.Width,color=Species))+
 coord_fixed(ratio=1,ylim=c(0,2.75),xlim=c(0,7)) +
 scale_y_continuous(breaks=c(0,0.5,1,1.5,2,2.5)) +
 scale_x_continuous(breaks=c(0,1,2,3,4,5,6,7)) +
 scale_color_brewer(palette = "Dark2",name="Iris Species") +
 labs(x="Petal Length (cm)", y= "Petal Width (cm)")

168 Lesson 6 Exercise Questions: ggplot2

Bioinformatics Training and Education Program

Play with the theme to make this a bit nicer. Change font style to

"Times". Change all font sizes to 12 pt font. Bold the legend title and

the axes titles. Increase the size of the points on the plot to 2. Bonus:

fill the points with color and have a black outline around each point.

{{Sdet}}

Solution{{Esum}}



169 Lesson 6 Exercise Questions: ggplot2

Bioinformatics Training and Education Program

{{Edet}}

Now, save your plot using ggsave.

{{Sdet}}

Solution{{Esum}}

ggplot(iris)+
 geom_point(aes(Petal.Length,Petal.Width,fill=Species),size=2,shape=
 coord_fixed(ratio=1,ylim=c(0,2.75),xlim=c(0,7)) +
 scale_y_continuous(breaks=c(0,0.5,1,1.5,2,2.5)) +
 scale_x_continuous(breaks=c(0,1,2,3,4,5,6,7)) +
 scale_fill_brewer(palette = "Dark2",name="Iris Species") +
 labs(x="Petal Length (cm)", y= "Petal Width (cm)") +
 theme_bw()+
 theme(axis.text=element_text(family="Times",size=12),
 axis.title=element_text(family="Times",face="bold",size=12),
 legend.text=element_text(family="Times",size=12),
 legend.title = (element_text(family="Times",face="bold",size=
)



170 Lesson 6 Exercise Questions: ggplot2

Bioinformatics Training and Education Program

{{Edet}}

ggsave("iris.tiff", width=5.5, height=3.5,units="in")

171 Lesson 6 Exercise Questions: ggplot2

Bioinformatics Training and Education Program

Data Access

Data used in this course series is available for download here: rintro_data.zip.

172 Data Access

Bioinformatics Training and Education Program

../rintro_data.zip

Getting help

Need help?

Optional help sessions are hosted on Tuesdays and Thursdays immediately following each

lesson (2:00 - 3:00 pm) on Webex.

Please email us at ncibtep@nih.gov (mailto:ncibtep@nih.gov) if you have questions about the

course material or you need help with a specific concept, problem, and/or project. We are

happy to set up a time to meet one-on-one.

BTEP now offers in-person office hours (https://bioinformatics.ccr.cancer.gov/btep/introducing-

btep-office-hours/) every 2nd Monday of the month. Join us 1-4 PM at the NIH Bethesda

campus, Building 37, Suite 3041.

174 Need help?

Bioinformatics Training and Education Program

mailto:ncibtep@nih.gov
mailto:ncibtep@nih.gov
https://bioinformatics.ccr.cancer.gov/btep/introducing-btep-office-hours/
https://bioinformatics.ccr.cancer.gov/btep/introducing-btep-office-hours/
https://bioinformatics.ccr.cancer.gov/btep/introducing-btep-office-hours/
https://bioinformatics.ccr.cancer.gov/btep/introducing-btep-office-hours/

References

For Further Reading

Books and / or Book Chapters of Interest

R for Data Science (https://r4ds.had.co.nz/index.html)

Hands-on Programming with R (https://rstudio-education.github.io/hopr/)

Statistical Inference via Data Science: A ModernDive into R and the Tidyverse (https://

moderndive.com/3-wrangling.html)

The R Graphics Cookbook (https://r-graphics.org/recipe-quick-bar)

ggplot2: Elegant Graphics for Data Analysis (https://ggplot2-book.org/index.html)

Advanced R (https://adv-r.hadley.nz/)

R Cheat Sheets

BaseR cheatsheet

dplyr cheatsheet

tidyr cheatsheet

ggplot2 cheatsheet

Other cheatsheets (https://www.rstudio.com/resources/cheatsheets/)

Other Resources

The R Graph Gallery (https://www.r-graph-gallery.com/)

From Data to Viz (https://www.data-to-viz.com/)

RMarkdown from RStudio (https://rmarkdown.rstudio.com/lesson-1.html)

Quarto for R (https://quarto.org/docs/computations/r.html)

Ten simple rules for teaching yourself R, Lawlor et al. 2022, PLoS Comput Biol (https://

www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/)

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

176 For Further Reading

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html
https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://r-graphics.org/recipe-quick-bar
https://r-graphics.org/recipe-quick-bar
https://ggplot2-book.org/index.html
https://ggplot2-book.org/index.html
https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
../../resources/base-r_cheatsheet.pdf
../../resources/dplyr_cheatsheet.pdf
../../resources/tidyr_cheatsheet.pdf
../../resources/ggplot2_cheatsheet.pdf
https://www.rstudio.com/resources/cheatsheets/
https://www.rstudio.com/resources/cheatsheets/
https://www.r-graph-gallery.com/
https://www.r-graph-gallery.com/
https://www.data-to-viz.com/
https://www.data-to-viz.com/
https://rmarkdown.rstudio.com/lesson-1.html
https://rmarkdown.rstudio.com/lesson-1.html
https://quarto.org/docs/computations/r.html
https://quarto.org/docs/computations/r.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436135/

	R Introductory Series
	Table of Contents
	Course Overview
	Introduction to R and RStudio
	Basics of R Programming
	R Data Structures: Introducing Data Frames
	Data Frames and Data Wrangling (Part 1)
	Data Frames and Data Wrangling (Part 2)
	Introduction to Data Visualization with R (Part 1)
	Introduction to Data Visualization with R (Part 2)
	Introduction to Bioconductor and report generation with R
	Additional Exercises
	Base R: Objects, vectors, and data types
	Base R and data frames
	Practicing the Tidyverse (Part 1)
	Practicing the Tidyverse (Part 2)
	ggplot2: Changing plot types
	ggplot2: Making Pretty Plots

	Getting the Data
	Getting help
	Need help?

	References
	For Further Reading

	Course Overview
	Welcome to the R Introductory Series!
	A series of introductory lessons in R for scientists.

	Course Expectations
	Content Organization
	Introduction to R and RStudio
	The Basics of R Programming
	R Data Structures: Introducing Data Frames
	Data Frames and Data Wrangling (part 1)
	Data Frames and Data Wrangling (part 2)
	Introduction to Data Visualization with R (part 1)
	Introduction to Data Visualization with R (Part 2)
	Introduction to Bioconductor and report generation with R

	Required Course Materials

	Introduction to R and RStudio
	Learning Objectives
	What is R?
	Why R?
	Where do we get R packages?
	Ways to run R
	What is RStudio?

	Getting Started with R and R Studio
	Creating an R project
	Creating an R script
	Introduction to the RStudio layout
	When to use Source vs Console?

	Uploading and exporting files from RStudio Server
	Data Management
	Saving your R environment (.Rdata)
	Navigating directories
	What is a path?

	Using functions
	Getting help
	Addtional Sources for help
	Test your learning
	Acknowledgments

	Basics of R Programming
	Objectives
	R objects
	Creating and deleting objects
	Naming conventions and reproducibility
	Reassigning objects
	Deleting objects
	Object data types
	Mathematical operations
	Vectors
	Test your learning
	Creating, subsetting, modifying, exporting
	Logical subsetting
	Other ways to handle missing data
	Using objects to store thresholds

	Using the %in% operator.
	Test your learning
	Saving and loading objects
	Exporting your R project
	Acknowledgments
	Additional Resources

	R Data Structures: Introducing Data Frames
	Learning Objectives
	Data Structures
	What are factors?
	Important functions

	Lists
	Important functions
	Example

	Data Frames: Working with Tabular Data
	Best Practices for organizing genomic data
	Introducing the airway data
	Importing / exporting data
	Examining and summarizing data frames
	What is the length of our data.frame? What are the dimensions?
	Other useful functions for inspecting data frames

	Data frame coercion and accessors
	Using colnames() to rename columns

	Test your learning
	Exporting Data (Save the data frame to a file)

	Data Matrices
	Acknowledgements
	Resources

	Data Frames and Data Wrangling (Part 1)
	Learning Objectives
	Best Practices for organizing genomic data
	Introducing tidy data
	What is tidy data?
	What is messy data?
	Tools for working with tidy data

	Load the core tidyverse packages
	Load the data
	Subsetting data frames with base R
	Using %in%
	Tips to remember for subsetting

	Data wrangling with tidyverse
	Subsetting with dplyr
	Selecting columns

	Test your learning
	Filtering by row

	Test your learning
	Acknowledgements
	Resources

	Data Frames and Data Wrangling (Part 2)
	Learning Objectives
	Load the tidyverse
	Re-load the data
	Introducing the pipe
	Running code one step at a time
	Nesting code
	Using the Pipe
	We can pipe from the beginning to the end.

	Test your learning

	Mutate
	Create a new column using existing columns
	Coerce variables
	More examples
	Test your learning

	Arrange, group_by, summarize
	Using arrange()
	The slice functions
	Sample sizes (counts and tallies) and missing data
	Test your learning

	Data Reshaping
	Pivot wider
	Coerce to a matrix

	Pivot longer
	Reshaping for plotting

	Acknowledgements
	Resources

	Data visualization with ggplot2
	Objectives
	Why use R for Data Visualization?
	Introducing ggplot2
	The ggplot2 template
	Geom functions
	Mapping and aesthetics (aes())
	R objects can also store figures
	Colors
	Facets
	Using multiple geoms per plot

	Other data visualization options in R
	R base graphics
	Lattice

	Resource list
	Acknowledgements

	Introduction to Data Visualization with R (Part 2)
	Objectives
	Our grammar of graphics template
	Loading the libraries
	Importing the data

	Statistical transformations
	Coordinate systems
	Labels, legends, scales, and themes
	Create a custom theme to use with multiple figures.

	Saving plots (ggsave())
	Nice plot example
	Recommendations for creating publishable figures
	Complementary packages
	Acknowledgements

	Introduction to Bioconductor and report generation with R
	Objectives
	Introducing Bioconductor
	What types of packages are available in Bioconductor?

	Bioconductor versions and install
	Bioconductor release schedule
	How to install a Bioconductor package?
	How to find Bioconductor packages of interest?

	Bioconductor education and communication
	Resources for learning
	Communication

	Introduction to report generation with R.
	What is Quarto?
	Why use Quarto
	Gallery of examples
	Getting Started
	Open a new .qmd file
	Don't know markdown? No problem. Use the Visual editor.

	Anatomy of Quarto document

	Addtional Resources
	Acknowledgements

	Additional Exercises
	Lesson 2 Exercise Questions: Base R syntax, objects, and data types
	Lesson 3 Exercise Questions: BaseR dataframe manipulation and factors
	Lesson 4 Exercise Questions: Tidyverse
	Lesson 5 Exercise Questions: Tidyverse
	Lesson 5 Exercise Questions: ggplot2
	Lesson 6 Exercise Questions: ggplot2
	Start by plotting Petal.Length on the x-axis and Petal.Width on the y-axis.
	Fix the axes so that the dimensions on the x-axis and the y-axis are equal. Both axes should start at 0. Label the axis breaks every 0.5 units on the y-axis and every 1.0 units on the x-axis.
	Change to color of the points by species to be color blind friendly, and change the legend title to "Iris Species". Label the x and y axis to eliminate the variable names and add unit information.
	Play with the theme to make this a bit nicer. Change font style to "Times". Change all font sizes to 12 pt font. Bold the legend title and the axes titles. Increase the size of the points on the plot to 2. Bonus: fill the points with color and have a black outline around each point.
	Now, save your plot using ggsave.

	Data Access
	Getting help
	Need help?
	References
	For Further Reading
	Books and / or Book Chapters of Interest
	R Cheat Sheets
	Other Resources

