Finishing the human genome
When: Jun. 1st, 2020 3:00 pm - 4:00 pm
About this Class
After nearly two decades of improvements, the current human reference genome is the most accurate and complete vertebrate genome ever produced. However, no one chromosome has been finished end to end, and hundreds of unresolved gaps persist. The remaining gaps include ribosomal rDNA arrays, large near-identical segmental duplications, and satellite DNA arrays. These regions harbor largely unexplored variation of unknown consequence, and their absence from the current reference genome can lead to experimental artifacts and hide true variants when re-sequencing additional human genomes. Using emerging, long-read sequencing technologies, the Telomere-to-Telomere consortium recently announced the completion of the first human chromosome, chromosome X. I will describe what it took to finish the first human chromosome "T2T" and report on the consortium's progress towards completing the rest of the human genome.
Bio:
Dr. Adam Phillippy is currently a Senior Investigator and head of the Genome Informatics Section at the National Human Genome Research Institute (NHGRI). His lab develops efficient computational methods for analyzing DNA sequencing data, including tools for genome assembly (Canu), genome alignment (MUMmer), genome clustering (Mash), microbial forensics (Parsnp), and metagenomics (Krona). He is a co-founder of the Telomere-to-Telomere Consortium and the Vertebrate Genomes Project, which seek to enable the complete and gapless assembly of human and all other vertebrate genomes. In 2019, he was awarded the US Presidential Early Career Award for Scientists and Engineers and was granted tenure at NHGRI. His lab's homepage can be found at genomeinformatics.githubio/