ncibtep@nih.gov

Bioinformatics Training and Education Program

KSTAR: An Algorithm for Inferring Kinase Activity from Patient Phosphoproteomic Data

KSTAR: An Algorithm for Inferring Kinase Activity from Patient Phosphoproteomic Data

 When: May. 19th, 2021 11:00 am - 12:00 pm

To Know

Where:
Online Webinar
Organizer:
CBIIT
This class has ended.

About this Class

Register
Kinase inhibitors have been intensively studied and used effectively for cancer treatment for decades. Yet, despite our progress in understanding kinases in oncology, more needs to be known to better predict how and which inhibitor will work best in any given patient at any given time. Phosphoproteomic data could hold the key for such precision medicine, allowing clinicians to select the best medication for each patient.
Presenter:  Kristen Naegle, Ph.D.
Dr. Kristin Naegle of the University of Virginia will describe a statistical and graph-theoretic approach to predicting kinase activity. She will show how her team developed an algorithm using phosphoproteomic data from breast cancer tumor biopsies and PDX models. They found that HER2-negative patients were more likely to respond to therapy due to HER2 activity; whereas HER2-positive patients, which lacked net HER2-activity, did not respond to therapy. Dr. Naegle will describe these findings and other work in the field of phosphoproteomics.